| //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines several CodeGen-specific LLVM IR analysis utilties. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/Analysis.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Target/TargetLowering.h" |
| using namespace llvm; |
| |
| /// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence |
| /// of insertvalue or extractvalue indices that identify a member, return |
| /// the linearized index of the start of the member. |
| /// |
| unsigned llvm::ComputeLinearIndex(Type *Ty, |
| const unsigned *Indices, |
| const unsigned *IndicesEnd, |
| unsigned CurIndex) { |
| // Base case: We're done. |
| if (Indices && Indices == IndicesEnd) |
| return CurIndex; |
| |
| // Given a struct type, recursively traverse the elements. |
| if (StructType *STy = dyn_cast<StructType>(Ty)) { |
| for (StructType::element_iterator EB = STy->element_begin(), |
| EI = EB, |
| EE = STy->element_end(); |
| EI != EE; ++EI) { |
| if (Indices && *Indices == unsigned(EI - EB)) |
| return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex); |
| CurIndex = ComputeLinearIndex(*EI, 0, 0, CurIndex); |
| } |
| return CurIndex; |
| } |
| // Given an array type, recursively traverse the elements. |
| else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { |
| Type *EltTy = ATy->getElementType(); |
| for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { |
| if (Indices && *Indices == i) |
| return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex); |
| CurIndex = ComputeLinearIndex(EltTy, 0, 0, CurIndex); |
| } |
| return CurIndex; |
| } |
| // We haven't found the type we're looking for, so keep searching. |
| return CurIndex + 1; |
| } |
| |
| /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of |
| /// EVTs that represent all the individual underlying |
| /// non-aggregate types that comprise it. |
| /// |
| /// If Offsets is non-null, it points to a vector to be filled in |
| /// with the in-memory offsets of each of the individual values. |
| /// |
| void llvm::ComputeValueVTs(const TargetLowering &TLI, Type *Ty, |
| SmallVectorImpl<EVT> &ValueVTs, |
| SmallVectorImpl<uint64_t> *Offsets, |
| uint64_t StartingOffset) { |
| // Given a struct type, recursively traverse the elements. |
| if (StructType *STy = dyn_cast<StructType>(Ty)) { |
| const StructLayout *SL = TLI.getDataLayout()->getStructLayout(STy); |
| for (StructType::element_iterator EB = STy->element_begin(), |
| EI = EB, |
| EE = STy->element_end(); |
| EI != EE; ++EI) |
| ComputeValueVTs(TLI, *EI, ValueVTs, Offsets, |
| StartingOffset + SL->getElementOffset(EI - EB)); |
| return; |
| } |
| // Given an array type, recursively traverse the elements. |
| if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { |
| Type *EltTy = ATy->getElementType(); |
| uint64_t EltSize = TLI.getDataLayout()->getTypeAllocSize(EltTy); |
| for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) |
| ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets, |
| StartingOffset + i * EltSize); |
| return; |
| } |
| // Interpret void as zero return values. |
| if (Ty->isVoidTy()) |
| return; |
| // Base case: we can get an EVT for this LLVM IR type. |
| ValueVTs.push_back(TLI.getValueType(Ty)); |
| if (Offsets) |
| Offsets->push_back(StartingOffset); |
| } |
| |
| /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. |
| GlobalVariable *llvm::ExtractTypeInfo(Value *V) { |
| V = V->stripPointerCasts(); |
| GlobalVariable *GV = dyn_cast<GlobalVariable>(V); |
| |
| if (GV && GV->getName() == "llvm.eh.catch.all.value") { |
| assert(GV->hasInitializer() && |
| "The EH catch-all value must have an initializer"); |
| Value *Init = GV->getInitializer(); |
| GV = dyn_cast<GlobalVariable>(Init); |
| if (!GV) V = cast<ConstantPointerNull>(Init); |
| } |
| |
| assert((GV || isa<ConstantPointerNull>(V)) && |
| "TypeInfo must be a global variable or NULL"); |
| return GV; |
| } |
| |
| /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being |
| /// processed uses a memory 'm' constraint. |
| bool |
| llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos, |
| const TargetLowering &TLI) { |
| for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { |
| InlineAsm::ConstraintInfo &CI = CInfos[i]; |
| for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { |
| TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); |
| if (CType == TargetLowering::C_Memory) |
| return true; |
| } |
| |
| // Indirect operand accesses access memory. |
| if (CI.isIndirect) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// getFCmpCondCode - Return the ISD condition code corresponding to |
| /// the given LLVM IR floating-point condition code. This includes |
| /// consideration of global floating-point math flags. |
| /// |
| ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { |
| switch (Pred) { |
| case FCmpInst::FCMP_FALSE: return ISD::SETFALSE; |
| case FCmpInst::FCMP_OEQ: return ISD::SETOEQ; |
| case FCmpInst::FCMP_OGT: return ISD::SETOGT; |
| case FCmpInst::FCMP_OGE: return ISD::SETOGE; |
| case FCmpInst::FCMP_OLT: return ISD::SETOLT; |
| case FCmpInst::FCMP_OLE: return ISD::SETOLE; |
| case FCmpInst::FCMP_ONE: return ISD::SETONE; |
| case FCmpInst::FCMP_ORD: return ISD::SETO; |
| case FCmpInst::FCMP_UNO: return ISD::SETUO; |
| case FCmpInst::FCMP_UEQ: return ISD::SETUEQ; |
| case FCmpInst::FCMP_UGT: return ISD::SETUGT; |
| case FCmpInst::FCMP_UGE: return ISD::SETUGE; |
| case FCmpInst::FCMP_ULT: return ISD::SETULT; |
| case FCmpInst::FCMP_ULE: return ISD::SETULE; |
| case FCmpInst::FCMP_UNE: return ISD::SETUNE; |
| case FCmpInst::FCMP_TRUE: return ISD::SETTRUE; |
| default: llvm_unreachable("Invalid FCmp predicate opcode!"); |
| } |
| } |
| |
| ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) { |
| switch (CC) { |
| case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ; |
| case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE; |
| case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT; |
| case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE; |
| case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT; |
| case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE; |
| default: return CC; |
| } |
| } |
| |
| /// getICmpCondCode - Return the ISD condition code corresponding to |
| /// the given LLVM IR integer condition code. |
| /// |
| ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { |
| switch (Pred) { |
| case ICmpInst::ICMP_EQ: return ISD::SETEQ; |
| case ICmpInst::ICMP_NE: return ISD::SETNE; |
| case ICmpInst::ICMP_SLE: return ISD::SETLE; |
| case ICmpInst::ICMP_ULE: return ISD::SETULE; |
| case ICmpInst::ICMP_SGE: return ISD::SETGE; |
| case ICmpInst::ICMP_UGE: return ISD::SETUGE; |
| case ICmpInst::ICMP_SLT: return ISD::SETLT; |
| case ICmpInst::ICMP_ULT: return ISD::SETULT; |
| case ICmpInst::ICMP_SGT: return ISD::SETGT; |
| case ICmpInst::ICMP_UGT: return ISD::SETUGT; |
| default: |
| llvm_unreachable("Invalid ICmp predicate opcode!"); |
| } |
| } |
| |
| |
| /// getNoopInput - If V is a noop (i.e., lowers to no machine code), look |
| /// through it (and any transitive noop operands to it) and return its input |
| /// value. This is used to determine if a tail call can be formed. |
| /// |
| static const Value *getNoopInput(const Value *V, const TargetLowering &TLI) { |
| // If V is not an instruction, it can't be looked through. |
| const Instruction *I = dyn_cast<Instruction>(V); |
| if (I == 0 || !I->hasOneUse() || I->getNumOperands() == 0) return V; |
| |
| Value *Op = I->getOperand(0); |
| |
| // Look through truly no-op truncates. |
| if (isa<TruncInst>(I) && |
| TLI.isTruncateFree(I->getOperand(0)->getType(), I->getType())) |
| return getNoopInput(I->getOperand(0), TLI); |
| |
| // Look through truly no-op bitcasts. |
| if (isa<BitCastInst>(I)) { |
| // No type change at all. |
| if (Op->getType() == I->getType()) |
| return getNoopInput(Op, TLI); |
| |
| // Pointer to pointer cast. |
| if (Op->getType()->isPointerTy() && I->getType()->isPointerTy()) |
| return getNoopInput(Op, TLI); |
| |
| if (isa<VectorType>(Op->getType()) && isa<VectorType>(I->getType()) && |
| TLI.isTypeLegal(EVT::getEVT(Op->getType())) && |
| TLI.isTypeLegal(EVT::getEVT(I->getType()))) |
| return getNoopInput(Op, TLI); |
| } |
| |
| // Look through inttoptr. |
| if (isa<IntToPtrInst>(I) && !isa<VectorType>(I->getType())) { |
| // Make sure this isn't a truncating or extending cast. We could support |
| // this eventually, but don't bother for now. |
| if (TLI.getPointerTy().getSizeInBits() == |
| cast<IntegerType>(Op->getType())->getBitWidth()) |
| return getNoopInput(Op, TLI); |
| } |
| |
| // Look through ptrtoint. |
| if (isa<PtrToIntInst>(I) && !isa<VectorType>(I->getType())) { |
| // Make sure this isn't a truncating or extending cast. We could support |
| // this eventually, but don't bother for now. |
| if (TLI.getPointerTy().getSizeInBits() == |
| cast<IntegerType>(I->getType())->getBitWidth()) |
| return getNoopInput(Op, TLI); |
| } |
| |
| |
| // Otherwise it's not something we can look through. |
| return V; |
| } |
| |
| |
| /// Test if the given instruction is in a position to be optimized |
| /// with a tail-call. This roughly means that it's in a block with |
| /// a return and there's nothing that needs to be scheduled |
| /// between it and the return. |
| /// |
| /// This function only tests target-independent requirements. |
| bool llvm::isInTailCallPosition(ImmutableCallSite CS,const TargetLowering &TLI){ |
| const Instruction *I = CS.getInstruction(); |
| const BasicBlock *ExitBB = I->getParent(); |
| const TerminatorInst *Term = ExitBB->getTerminator(); |
| const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); |
| |
| // The block must end in a return statement or unreachable. |
| // |
| // FIXME: Decline tailcall if it's not guaranteed and if the block ends in |
| // an unreachable, for now. The way tailcall optimization is currently |
| // implemented means it will add an epilogue followed by a jump. That is |
| // not profitable. Also, if the callee is a special function (e.g. |
| // longjmp on x86), it can end up causing miscompilation that has not |
| // been fully understood. |
| if (!Ret && |
| (!TLI.getTargetMachine().Options.GuaranteedTailCallOpt || |
| !isa<UnreachableInst>(Term))) |
| return false; |
| |
| // If I will have a chain, make sure no other instruction that will have a |
| // chain interposes between I and the return. |
| if (I->mayHaveSideEffects() || I->mayReadFromMemory() || |
| !isSafeToSpeculativelyExecute(I)) |
| for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ; |
| --BBI) { |
| if (&*BBI == I) |
| break; |
| // Debug info intrinsics do not get in the way of tail call optimization. |
| if (isa<DbgInfoIntrinsic>(BBI)) |
| continue; |
| if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || |
| !isSafeToSpeculativelyExecute(BBI)) |
| return false; |
| } |
| |
| // If the block ends with a void return or unreachable, it doesn't matter |
| // what the call's return type is. |
| if (!Ret || Ret->getNumOperands() == 0) return true; |
| |
| // If the return value is undef, it doesn't matter what the call's |
| // return type is. |
| if (isa<UndefValue>(Ret->getOperand(0))) return true; |
| |
| // Conservatively require the attributes of the call to match those of |
| // the return. Ignore noalias because it doesn't affect the call sequence. |
| const Function *F = ExitBB->getParent(); |
| AttributeSet CallerAttrs = F->getAttributes(); |
| if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex). |
| removeAttribute(Attribute::NoAlias) != |
| AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex). |
| removeAttribute(Attribute::NoAlias)) |
| return false; |
| |
| // It's not safe to eliminate the sign / zero extension of the return value. |
| if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || |
| CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) |
| return false; |
| |
| // Otherwise, make sure the unmodified return value of I is the return value. |
| // We handle two cases: multiple return values + scalars. |
| Value *RetVal = Ret->getOperand(0); |
| if (!isa<InsertValueInst>(RetVal) || !isa<StructType>(RetVal->getType())) |
| // Handle scalars first. |
| return getNoopInput(Ret->getOperand(0), TLI) == I; |
| |
| // If this is an aggregate return, look through the insert/extract values and |
| // see if each is transparent. |
| for (unsigned i = 0, e =cast<StructType>(RetVal->getType())->getNumElements(); |
| i != e; ++i) { |
| const Value *InScalar = FindInsertedValue(RetVal, i); |
| if (InScalar == 0) return false; |
| InScalar = getNoopInput(InScalar, TLI); |
| |
| // If the scalar value being inserted is an extractvalue of the right index |
| // from the call, then everything is good. |
| const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(InScalar); |
| if (EVI == 0 || EVI->getOperand(0) != I || EVI->getNumIndices() != 1 || |
| EVI->getIndices()[0] != i) |
| return false; |
| } |
| |
| return true; |
| } |