| //===-- LiveInterval.cpp - Live Interval Representation -------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the LiveRange and LiveInterval classes. Given some |
| // numbering of each the machine instructions an interval [i, j) is said to be a |
| // live interval for register v if there is no instruction with number j' > j |
| // such that v is live at j' and there is no instruction with number i' < i such |
| // that v is live at i'. In this implementation intervals can have holes, |
| // i.e. an interval might look like [1,20), [50,65), [1000,1001). Each |
| // individual range is represented as an instance of LiveRange, and the whole |
| // interval is represented as an instance of LiveInterval. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/LiveInterval.h" |
| #include "RegisterCoalescer.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| LiveInterval::iterator LiveInterval::find(SlotIndex Pos) { |
| // This algorithm is basically std::upper_bound. |
| // Unfortunately, std::upper_bound cannot be used with mixed types until we |
| // adopt C++0x. Many libraries can do it, but not all. |
| if (empty() || Pos >= endIndex()) |
| return end(); |
| iterator I = begin(); |
| size_t Len = ranges.size(); |
| do { |
| size_t Mid = Len >> 1; |
| if (Pos < I[Mid].end) |
| Len = Mid; |
| else |
| I += Mid + 1, Len -= Mid + 1; |
| } while (Len); |
| return I; |
| } |
| |
| VNInfo *LiveInterval::createDeadDef(SlotIndex Def, |
| VNInfo::Allocator &VNInfoAllocator) { |
| assert(!Def.isDead() && "Cannot define a value at the dead slot"); |
| iterator I = find(Def); |
| if (I == end()) { |
| VNInfo *VNI = getNextValue(Def, VNInfoAllocator); |
| ranges.push_back(LiveRange(Def, Def.getDeadSlot(), VNI)); |
| return VNI; |
| } |
| if (SlotIndex::isSameInstr(Def, I->start)) { |
| assert(I->valno->def == I->start && "Inconsistent existing value def"); |
| |
| // It is possible to have both normal and early-clobber defs of the same |
| // register on an instruction. It doesn't make a lot of sense, but it is |
| // possible to specify in inline assembly. |
| // |
| // Just convert everything to early-clobber. |
| Def = std::min(Def, I->start); |
| if (Def != I->start) |
| I->start = I->valno->def = Def; |
| return I->valno; |
| } |
| assert(SlotIndex::isEarlierInstr(Def, I->start) && "Already live at def"); |
| VNInfo *VNI = getNextValue(Def, VNInfoAllocator); |
| ranges.insert(I, LiveRange(Def, Def.getDeadSlot(), VNI)); |
| return VNI; |
| } |
| |
| // overlaps - Return true if the intersection of the two live intervals is |
| // not empty. |
| // |
| // An example for overlaps(): |
| // |
| // 0: A = ... |
| // 4: B = ... |
| // 8: C = A + B ;; last use of A |
| // |
| // The live intervals should look like: |
| // |
| // A = [3, 11) |
| // B = [7, x) |
| // C = [11, y) |
| // |
| // A->overlaps(C) should return false since we want to be able to join |
| // A and C. |
| // |
| bool LiveInterval::overlapsFrom(const LiveInterval& other, |
| const_iterator StartPos) const { |
| assert(!empty() && "empty interval"); |
| const_iterator i = begin(); |
| const_iterator ie = end(); |
| const_iterator j = StartPos; |
| const_iterator je = other.end(); |
| |
| assert((StartPos->start <= i->start || StartPos == other.begin()) && |
| StartPos != other.end() && "Bogus start position hint!"); |
| |
| if (i->start < j->start) { |
| i = std::upper_bound(i, ie, j->start); |
| if (i != ranges.begin()) --i; |
| } else if (j->start < i->start) { |
| ++StartPos; |
| if (StartPos != other.end() && StartPos->start <= i->start) { |
| assert(StartPos < other.end() && i < end()); |
| j = std::upper_bound(j, je, i->start); |
| if (j != other.ranges.begin()) --j; |
| } |
| } else { |
| return true; |
| } |
| |
| if (j == je) return false; |
| |
| while (i != ie) { |
| if (i->start > j->start) { |
| std::swap(i, j); |
| std::swap(ie, je); |
| } |
| |
| if (i->end > j->start) |
| return true; |
| ++i; |
| } |
| |
| return false; |
| } |
| |
| bool LiveInterval::overlaps(const LiveInterval &Other, |
| const CoalescerPair &CP, |
| const SlotIndexes &Indexes) const { |
| assert(!empty() && "empty interval"); |
| if (Other.empty()) |
| return false; |
| |
| // Use binary searches to find initial positions. |
| const_iterator I = find(Other.beginIndex()); |
| const_iterator IE = end(); |
| if (I == IE) |
| return false; |
| const_iterator J = Other.find(I->start); |
| const_iterator JE = Other.end(); |
| if (J == JE) |
| return false; |
| |
| for (;;) { |
| // J has just been advanced to satisfy: |
| assert(J->end >= I->start); |
| // Check for an overlap. |
| if (J->start < I->end) { |
| // I and J are overlapping. Find the later start. |
| SlotIndex Def = std::max(I->start, J->start); |
| // Allow the overlap if Def is a coalescable copy. |
| if (Def.isBlock() || |
| !CP.isCoalescable(Indexes.getInstructionFromIndex(Def))) |
| return true; |
| } |
| // Advance the iterator that ends first to check for more overlaps. |
| if (J->end > I->end) { |
| std::swap(I, J); |
| std::swap(IE, JE); |
| } |
| // Advance J until J->end >= I->start. |
| do |
| if (++J == JE) |
| return false; |
| while (J->end < I->start); |
| } |
| } |
| |
| /// overlaps - Return true if the live interval overlaps a range specified |
| /// by [Start, End). |
| bool LiveInterval::overlaps(SlotIndex Start, SlotIndex End) const { |
| assert(Start < End && "Invalid range"); |
| const_iterator I = std::lower_bound(begin(), end(), End); |
| return I != begin() && (--I)->end > Start; |
| } |
| |
| |
| /// ValNo is dead, remove it. If it is the largest value number, just nuke it |
| /// (and any other deleted values neighboring it), otherwise mark it as ~1U so |
| /// it can be nuked later. |
| void LiveInterval::markValNoForDeletion(VNInfo *ValNo) { |
| if (ValNo->id == getNumValNums()-1) { |
| do { |
| valnos.pop_back(); |
| } while (!valnos.empty() && valnos.back()->isUnused()); |
| } else { |
| ValNo->markUnused(); |
| } |
| } |
| |
| /// RenumberValues - Renumber all values in order of appearance and delete the |
| /// remaining unused values. |
| void LiveInterval::RenumberValues(LiveIntervals &lis) { |
| SmallPtrSet<VNInfo*, 8> Seen; |
| valnos.clear(); |
| for (const_iterator I = begin(), E = end(); I != E; ++I) { |
| VNInfo *VNI = I->valno; |
| if (!Seen.insert(VNI)) |
| continue; |
| assert(!VNI->isUnused() && "Unused valno used by live range"); |
| VNI->id = (unsigned)valnos.size(); |
| valnos.push_back(VNI); |
| } |
| } |
| |
| /// extendIntervalEndTo - This method is used when we want to extend the range |
| /// specified by I to end at the specified endpoint. To do this, we should |
| /// merge and eliminate all ranges that this will overlap with. The iterator is |
| /// not invalidated. |
| void LiveInterval::extendIntervalEndTo(Ranges::iterator I, SlotIndex NewEnd) { |
| assert(I != ranges.end() && "Not a valid interval!"); |
| VNInfo *ValNo = I->valno; |
| |
| // Search for the first interval that we can't merge with. |
| Ranges::iterator MergeTo = llvm::next(I); |
| for (; MergeTo != ranges.end() && NewEnd >= MergeTo->end; ++MergeTo) { |
| assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); |
| } |
| |
| // If NewEnd was in the middle of an interval, make sure to get its endpoint. |
| I->end = std::max(NewEnd, prior(MergeTo)->end); |
| |
| // If the newly formed range now touches the range after it and if they have |
| // the same value number, merge the two ranges into one range. |
| if (MergeTo != ranges.end() && MergeTo->start <= I->end && |
| MergeTo->valno == ValNo) { |
| I->end = MergeTo->end; |
| ++MergeTo; |
| } |
| |
| // Erase any dead ranges. |
| ranges.erase(llvm::next(I), MergeTo); |
| } |
| |
| |
| /// extendIntervalStartTo - This method is used when we want to extend the range |
| /// specified by I to start at the specified endpoint. To do this, we should |
| /// merge and eliminate all ranges that this will overlap with. |
| LiveInterval::Ranges::iterator |
| LiveInterval::extendIntervalStartTo(Ranges::iterator I, SlotIndex NewStart) { |
| assert(I != ranges.end() && "Not a valid interval!"); |
| VNInfo *ValNo = I->valno; |
| |
| // Search for the first interval that we can't merge with. |
| Ranges::iterator MergeTo = I; |
| do { |
| if (MergeTo == ranges.begin()) { |
| I->start = NewStart; |
| ranges.erase(MergeTo, I); |
| return I; |
| } |
| assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); |
| --MergeTo; |
| } while (NewStart <= MergeTo->start); |
| |
| // If we start in the middle of another interval, just delete a range and |
| // extend that interval. |
| if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) { |
| MergeTo->end = I->end; |
| } else { |
| // Otherwise, extend the interval right after. |
| ++MergeTo; |
| MergeTo->start = NewStart; |
| MergeTo->end = I->end; |
| } |
| |
| ranges.erase(llvm::next(MergeTo), llvm::next(I)); |
| return MergeTo; |
| } |
| |
| LiveInterval::iterator |
| LiveInterval::addRangeFrom(LiveRange LR, iterator From) { |
| SlotIndex Start = LR.start, End = LR.end; |
| iterator it = std::upper_bound(From, ranges.end(), Start); |
| |
| // If the inserted interval starts in the middle or right at the end of |
| // another interval, just extend that interval to contain the range of LR. |
| if (it != ranges.begin()) { |
| iterator B = prior(it); |
| if (LR.valno == B->valno) { |
| if (B->start <= Start && B->end >= Start) { |
| extendIntervalEndTo(B, End); |
| return B; |
| } |
| } else { |
| // Check to make sure that we are not overlapping two live ranges with |
| // different valno's. |
| assert(B->end <= Start && |
| "Cannot overlap two LiveRanges with differing ValID's" |
| " (did you def the same reg twice in a MachineInstr?)"); |
| } |
| } |
| |
| // Otherwise, if this range ends in the middle of, or right next to, another |
| // interval, merge it into that interval. |
| if (it != ranges.end()) { |
| if (LR.valno == it->valno) { |
| if (it->start <= End) { |
| it = extendIntervalStartTo(it, Start); |
| |
| // If LR is a complete superset of an interval, we may need to grow its |
| // endpoint as well. |
| if (End > it->end) |
| extendIntervalEndTo(it, End); |
| return it; |
| } |
| } else { |
| // Check to make sure that we are not overlapping two live ranges with |
| // different valno's. |
| assert(it->start >= End && |
| "Cannot overlap two LiveRanges with differing ValID's"); |
| } |
| } |
| |
| // Otherwise, this is just a new range that doesn't interact with anything. |
| // Insert it. |
| return ranges.insert(it, LR); |
| } |
| |
| /// extendInBlock - If this interval is live before Kill in the basic |
| /// block that starts at StartIdx, extend it to be live up to Kill and return |
| /// the value. If there is no live range before Kill, return NULL. |
| VNInfo *LiveInterval::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) { |
| if (empty()) |
| return 0; |
| iterator I = std::upper_bound(begin(), end(), Kill.getPrevSlot()); |
| if (I == begin()) |
| return 0; |
| --I; |
| if (I->end <= StartIdx) |
| return 0; |
| if (I->end < Kill) |
| extendIntervalEndTo(I, Kill); |
| return I->valno; |
| } |
| |
| /// removeRange - Remove the specified range from this interval. Note that |
| /// the range must be in a single LiveRange in its entirety. |
| void LiveInterval::removeRange(SlotIndex Start, SlotIndex End, |
| bool RemoveDeadValNo) { |
| // Find the LiveRange containing this span. |
| Ranges::iterator I = find(Start); |
| assert(I != ranges.end() && "Range is not in interval!"); |
| assert(I->containsRange(Start, End) && "Range is not entirely in interval!"); |
| |
| // If the span we are removing is at the start of the LiveRange, adjust it. |
| VNInfo *ValNo = I->valno; |
| if (I->start == Start) { |
| if (I->end == End) { |
| if (RemoveDeadValNo) { |
| // Check if val# is dead. |
| bool isDead = true; |
| for (const_iterator II = begin(), EE = end(); II != EE; ++II) |
| if (II != I && II->valno == ValNo) { |
| isDead = false; |
| break; |
| } |
| if (isDead) { |
| // Now that ValNo is dead, remove it. |
| markValNoForDeletion(ValNo); |
| } |
| } |
| |
| ranges.erase(I); // Removed the whole LiveRange. |
| } else |
| I->start = End; |
| return; |
| } |
| |
| // Otherwise if the span we are removing is at the end of the LiveRange, |
| // adjust the other way. |
| if (I->end == End) { |
| I->end = Start; |
| return; |
| } |
| |
| // Otherwise, we are splitting the LiveRange into two pieces. |
| SlotIndex OldEnd = I->end; |
| I->end = Start; // Trim the old interval. |
| |
| // Insert the new one. |
| ranges.insert(llvm::next(I), LiveRange(End, OldEnd, ValNo)); |
| } |
| |
| /// removeValNo - Remove all the ranges defined by the specified value#. |
| /// Also remove the value# from value# list. |
| void LiveInterval::removeValNo(VNInfo *ValNo) { |
| if (empty()) return; |
| Ranges::iterator I = ranges.end(); |
| Ranges::iterator E = ranges.begin(); |
| do { |
| --I; |
| if (I->valno == ValNo) |
| ranges.erase(I); |
| } while (I != E); |
| // Now that ValNo is dead, remove it. |
| markValNoForDeletion(ValNo); |
| } |
| |
| /// join - Join two live intervals (this, and other) together. This applies |
| /// mappings to the value numbers in the LHS/RHS intervals as specified. If |
| /// the intervals are not joinable, this aborts. |
| void LiveInterval::join(LiveInterval &Other, |
| const int *LHSValNoAssignments, |
| const int *RHSValNoAssignments, |
| SmallVector<VNInfo*, 16> &NewVNInfo, |
| MachineRegisterInfo *MRI) { |
| verify(); |
| |
| // Determine if any of our live range values are mapped. This is uncommon, so |
| // we want to avoid the interval scan if not. |
| bool MustMapCurValNos = false; |
| unsigned NumVals = getNumValNums(); |
| unsigned NumNewVals = NewVNInfo.size(); |
| for (unsigned i = 0; i != NumVals; ++i) { |
| unsigned LHSValID = LHSValNoAssignments[i]; |
| if (i != LHSValID || |
| (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) { |
| MustMapCurValNos = true; |
| break; |
| } |
| } |
| |
| // If we have to apply a mapping to our base interval assignment, rewrite it |
| // now. |
| if (MustMapCurValNos && !empty()) { |
| // Map the first live range. |
| |
| iterator OutIt = begin(); |
| OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]]; |
| for (iterator I = llvm::next(OutIt), E = end(); I != E; ++I) { |
| VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]]; |
| assert(nextValNo != 0 && "Huh?"); |
| |
| // If this live range has the same value # as its immediate predecessor, |
| // and if they are neighbors, remove one LiveRange. This happens when we |
| // have [0,4:0)[4,7:1) and map 0/1 onto the same value #. |
| if (OutIt->valno == nextValNo && OutIt->end == I->start) { |
| OutIt->end = I->end; |
| } else { |
| // Didn't merge. Move OutIt to the next interval, |
| ++OutIt; |
| OutIt->valno = nextValNo; |
| if (OutIt != I) { |
| OutIt->start = I->start; |
| OutIt->end = I->end; |
| } |
| } |
| } |
| // If we merge some live ranges, chop off the end. |
| ++OutIt; |
| ranges.erase(OutIt, end()); |
| } |
| |
| // Rewrite Other values before changing the VNInfo ids. |
| // This can leave Other in an invalid state because we're not coalescing |
| // touching segments that now have identical values. That's OK since Other is |
| // not supposed to be valid after calling join(); |
| for (iterator I = Other.begin(), E = Other.end(); I != E; ++I) |
| I->valno = NewVNInfo[RHSValNoAssignments[I->valno->id]]; |
| |
| // Update val# info. Renumber them and make sure they all belong to this |
| // LiveInterval now. Also remove dead val#'s. |
| unsigned NumValNos = 0; |
| for (unsigned i = 0; i < NumNewVals; ++i) { |
| VNInfo *VNI = NewVNInfo[i]; |
| if (VNI) { |
| if (NumValNos >= NumVals) |
| valnos.push_back(VNI); |
| else |
| valnos[NumValNos] = VNI; |
| VNI->id = NumValNos++; // Renumber val#. |
| } |
| } |
| if (NumNewVals < NumVals) |
| valnos.resize(NumNewVals); // shrinkify |
| |
| // Okay, now insert the RHS live ranges into the LHS. |
| LiveRangeUpdater Updater(this); |
| for (iterator I = Other.begin(), E = Other.end(); I != E; ++I) |
| Updater.add(*I); |
| } |
| |
| /// MergeRangesInAsValue - Merge all of the intervals in RHS into this live |
| /// interval as the specified value number. The LiveRanges in RHS are |
| /// allowed to overlap with LiveRanges in the current interval, but only if |
| /// the overlapping LiveRanges have the specified value number. |
| void LiveInterval::MergeRangesInAsValue(const LiveInterval &RHS, |
| VNInfo *LHSValNo) { |
| LiveRangeUpdater Updater(this); |
| for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) |
| Updater.add(I->start, I->end, LHSValNo); |
| } |
| |
| /// MergeValueInAsValue - Merge all of the live ranges of a specific val# |
| /// in RHS into this live interval as the specified value number. |
| /// The LiveRanges in RHS are allowed to overlap with LiveRanges in the |
| /// current interval, it will replace the value numbers of the overlaped |
| /// live ranges with the specified value number. |
| void LiveInterval::MergeValueInAsValue(const LiveInterval &RHS, |
| const VNInfo *RHSValNo, |
| VNInfo *LHSValNo) { |
| LiveRangeUpdater Updater(this); |
| for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) |
| if (I->valno == RHSValNo) |
| Updater.add(I->start, I->end, LHSValNo); |
| } |
| |
| /// MergeValueNumberInto - This method is called when two value nubmers |
| /// are found to be equivalent. This eliminates V1, replacing all |
| /// LiveRanges with the V1 value number with the V2 value number. This can |
| /// cause merging of V1/V2 values numbers and compaction of the value space. |
| VNInfo* LiveInterval::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) { |
| assert(V1 != V2 && "Identical value#'s are always equivalent!"); |
| |
| // This code actually merges the (numerically) larger value number into the |
| // smaller value number, which is likely to allow us to compactify the value |
| // space. The only thing we have to be careful of is to preserve the |
| // instruction that defines the result value. |
| |
| // Make sure V2 is smaller than V1. |
| if (V1->id < V2->id) { |
| V1->copyFrom(*V2); |
| std::swap(V1, V2); |
| } |
| |
| // Merge V1 live ranges into V2. |
| for (iterator I = begin(); I != end(); ) { |
| iterator LR = I++; |
| if (LR->valno != V1) continue; // Not a V1 LiveRange. |
| |
| // Okay, we found a V1 live range. If it had a previous, touching, V2 live |
| // range, extend it. |
| if (LR != begin()) { |
| iterator Prev = LR-1; |
| if (Prev->valno == V2 && Prev->end == LR->start) { |
| Prev->end = LR->end; |
| |
| // Erase this live-range. |
| ranges.erase(LR); |
| I = Prev+1; |
| LR = Prev; |
| } |
| } |
| |
| // Okay, now we have a V1 or V2 live range that is maximally merged forward. |
| // Ensure that it is a V2 live-range. |
| LR->valno = V2; |
| |
| // If we can merge it into later V2 live ranges, do so now. We ignore any |
| // following V1 live ranges, as they will be merged in subsequent iterations |
| // of the loop. |
| if (I != end()) { |
| if (I->start == LR->end && I->valno == V2) { |
| LR->end = I->end; |
| ranges.erase(I); |
| I = LR+1; |
| } |
| } |
| } |
| |
| // Now that V1 is dead, remove it. |
| markValNoForDeletion(V1); |
| |
| return V2; |
| } |
| |
| unsigned LiveInterval::getSize() const { |
| unsigned Sum = 0; |
| for (const_iterator I = begin(), E = end(); I != E; ++I) |
| Sum += I->start.distance(I->end); |
| return Sum; |
| } |
| |
| raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange &LR) { |
| return os << '[' << LR.start << ',' << LR.end << ':' << LR.valno->id << ")"; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| void LiveRange::dump() const { |
| dbgs() << *this << "\n"; |
| } |
| #endif |
| |
| void LiveInterval::print(raw_ostream &OS) const { |
| if (empty()) |
| OS << "EMPTY"; |
| else { |
| for (LiveInterval::Ranges::const_iterator I = ranges.begin(), |
| E = ranges.end(); I != E; ++I) { |
| OS << *I; |
| assert(I->valno == getValNumInfo(I->valno->id) && "Bad VNInfo"); |
| } |
| } |
| |
| // Print value number info. |
| if (getNumValNums()) { |
| OS << " "; |
| unsigned vnum = 0; |
| for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e; |
| ++i, ++vnum) { |
| const VNInfo *vni = *i; |
| if (vnum) OS << " "; |
| OS << vnum << "@"; |
| if (vni->isUnused()) { |
| OS << "x"; |
| } else { |
| OS << vni->def; |
| if (vni->isPHIDef()) |
| OS << "-phi"; |
| } |
| } |
| } |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| void LiveInterval::dump() const { |
| dbgs() << *this << "\n"; |
| } |
| #endif |
| |
| #ifndef NDEBUG |
| void LiveInterval::verify() const { |
| for (const_iterator I = begin(), E = end(); I != E; ++I) { |
| assert(I->start.isValid()); |
| assert(I->end.isValid()); |
| assert(I->start < I->end); |
| assert(I->valno != 0); |
| assert(I->valno == valnos[I->valno->id]); |
| if (llvm::next(I) != E) { |
| assert(I->end <= llvm::next(I)->start); |
| if (I->end == llvm::next(I)->start) |
| assert(I->valno != llvm::next(I)->valno); |
| } |
| } |
| } |
| #endif |
| |
| |
| void LiveRange::print(raw_ostream &os) const { |
| os << *this; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LiveRangeUpdater class |
| //===----------------------------------------------------------------------===// |
| // |
| // The LiveRangeUpdater class always maintains these invariants: |
| // |
| // - When LastStart is invalid, Spills is empty and the iterators are invalid. |
| // This is the initial state, and the state created by flush(). |
| // In this state, isDirty() returns false. |
| // |
| // Otherwise, segments are kept in three separate areas: |
| // |
| // 1. [begin; WriteI) at the front of LI. |
| // 2. [ReadI; end) at the back of LI. |
| // 3. Spills. |
| // |
| // - LI.begin() <= WriteI <= ReadI <= LI.end(). |
| // - Segments in all three areas are fully ordered and coalesced. |
| // - Segments in area 1 precede and can't coalesce with segments in area 2. |
| // - Segments in Spills precede and can't coalesce with segments in area 2. |
| // - No coalescing is possible between segments in Spills and segments in area |
| // 1, and there are no overlapping segments. |
| // |
| // The segments in Spills are not ordered with respect to the segments in area |
| // 1. They need to be merged. |
| // |
| // When they exist, Spills.back().start <= LastStart, |
| // and WriteI[-1].start <= LastStart. |
| |
| void LiveRangeUpdater::print(raw_ostream &OS) const { |
| if (!isDirty()) { |
| if (LI) |
| OS << "Clean " << PrintReg(LI->reg) << " updater: " << *LI << '\n'; |
| else |
| OS << "Null updater.\n"; |
| return; |
| } |
| assert(LI && "Can't have null LI in dirty updater."); |
| OS << PrintReg(LI->reg) << " updater with gap = " << (ReadI - WriteI) |
| << ", last start = " << LastStart |
| << ":\n Area 1:"; |
| for (LiveInterval::const_iterator I = LI->begin(); I != WriteI; ++I) |
| OS << ' ' << *I; |
| OS << "\n Spills:"; |
| for (unsigned I = 0, E = Spills.size(); I != E; ++I) |
| OS << ' ' << Spills[I]; |
| OS << "\n Area 2:"; |
| for (LiveInterval::const_iterator I = ReadI, E = LI->end(); I != E; ++I) |
| OS << ' ' << *I; |
| OS << '\n'; |
| } |
| |
| void LiveRangeUpdater::dump() const |
| { |
| print(errs()); |
| } |
| |
| // Determine if A and B should be coalesced. |
| static inline bool coalescable(const LiveRange &A, const LiveRange &B) { |
| assert(A.start <= B.start && "Unordered live ranges."); |
| if (A.end == B.start) |
| return A.valno == B.valno; |
| if (A.end < B.start) |
| return false; |
| assert(A.valno == B.valno && "Cannot overlap different values"); |
| return true; |
| } |
| |
| void LiveRangeUpdater::add(LiveRange Seg) { |
| assert(LI && "Cannot add to a null destination"); |
| |
| // Flush the state if Start moves backwards. |
| if (!LastStart.isValid() || LastStart > Seg.start) { |
| if (isDirty()) |
| flush(); |
| // This brings us to an uninitialized state. Reinitialize. |
| assert(Spills.empty() && "Leftover spilled segments"); |
| WriteI = ReadI = LI->begin(); |
| } |
| |
| // Remember start for next time. |
| LastStart = Seg.start; |
| |
| // Advance ReadI until it ends after Seg.start. |
| LiveInterval::iterator E = LI->end(); |
| if (ReadI != E && ReadI->end <= Seg.start) { |
| // First try to close the gap between WriteI and ReadI with spills. |
| if (ReadI != WriteI) |
| mergeSpills(); |
| // Then advance ReadI. |
| if (ReadI == WriteI) |
| ReadI = WriteI = LI->find(Seg.start); |
| else |
| while (ReadI != E && ReadI->end <= Seg.start) |
| *WriteI++ = *ReadI++; |
| } |
| |
| assert(ReadI == E || ReadI->end > Seg.start); |
| |
| // Check if the ReadI segment begins early. |
| if (ReadI != E && ReadI->start <= Seg.start) { |
| assert(ReadI->valno == Seg.valno && "Cannot overlap different values"); |
| // Bail if Seg is completely contained in ReadI. |
| if (ReadI->end >= Seg.end) |
| return; |
| // Coalesce into Seg. |
| Seg.start = ReadI->start; |
| ++ReadI; |
| } |
| |
| // Coalesce as much as possible from ReadI into Seg. |
| while (ReadI != E && coalescable(Seg, *ReadI)) { |
| Seg.end = std::max(Seg.end, ReadI->end); |
| ++ReadI; |
| } |
| |
| // Try coalescing Spills.back() into Seg. |
| if (!Spills.empty() && coalescable(Spills.back(), Seg)) { |
| Seg.start = Spills.back().start; |
| Seg.end = std::max(Spills.back().end, Seg.end); |
| Spills.pop_back(); |
| } |
| |
| // Try coalescing Seg into WriteI[-1]. |
| if (WriteI != LI->begin() && coalescable(WriteI[-1], Seg)) { |
| WriteI[-1].end = std::max(WriteI[-1].end, Seg.end); |
| return; |
| } |
| |
| // Seg doesn't coalesce with anything, and needs to be inserted somewhere. |
| if (WriteI != ReadI) { |
| *WriteI++ = Seg; |
| return; |
| } |
| |
| // Finally, append to LI or Spills. |
| if (WriteI == E) { |
| LI->ranges.push_back(Seg); |
| WriteI = ReadI = LI->ranges.end(); |
| } else |
| Spills.push_back(Seg); |
| } |
| |
| // Merge as many spilled segments as possible into the gap between WriteI |
| // and ReadI. Advance WriteI to reflect the inserted instructions. |
| void LiveRangeUpdater::mergeSpills() { |
| // Perform a backwards merge of Spills and [SpillI;WriteI). |
| size_t GapSize = ReadI - WriteI; |
| size_t NumMoved = std::min(Spills.size(), GapSize); |
| LiveInterval::iterator Src = WriteI; |
| LiveInterval::iterator Dst = Src + NumMoved; |
| LiveInterval::iterator SpillSrc = Spills.end(); |
| LiveInterval::iterator B = LI->begin(); |
| |
| // This is the new WriteI position after merging spills. |
| WriteI = Dst; |
| |
| // Now merge Src and Spills backwards. |
| while (Src != Dst) { |
| if (Src != B && Src[-1].start > SpillSrc[-1].start) |
| *--Dst = *--Src; |
| else |
| *--Dst = *--SpillSrc; |
| } |
| assert(NumMoved == size_t(Spills.end() - SpillSrc)); |
| Spills.erase(SpillSrc, Spills.end()); |
| } |
| |
| void LiveRangeUpdater::flush() { |
| if (!isDirty()) |
| return; |
| // Clear the dirty state. |
| LastStart = SlotIndex(); |
| |
| assert(LI && "Cannot add to a null destination"); |
| |
| // Nothing to merge? |
| if (Spills.empty()) { |
| LI->ranges.erase(WriteI, ReadI); |
| LI->verify(); |
| return; |
| } |
| |
| // Resize the WriteI - ReadI gap to match Spills. |
| size_t GapSize = ReadI - WriteI; |
| if (GapSize < Spills.size()) { |
| // The gap is too small. Make some room. |
| size_t WritePos = WriteI - LI->begin(); |
| LI->ranges.insert(ReadI, Spills.size() - GapSize, LiveRange()); |
| // This also invalidated ReadI, but it is recomputed below. |
| WriteI = LI->ranges.begin() + WritePos; |
| } else { |
| // Shrink the gap if necessary. |
| LI->ranges.erase(WriteI + Spills.size(), ReadI); |
| } |
| ReadI = WriteI + Spills.size(); |
| mergeSpills(); |
| LI->verify(); |
| } |
| |
| unsigned ConnectedVNInfoEqClasses::Classify(const LiveInterval *LI) { |
| // Create initial equivalence classes. |
| EqClass.clear(); |
| EqClass.grow(LI->getNumValNums()); |
| |
| const VNInfo *used = 0, *unused = 0; |
| |
| // Determine connections. |
| for (LiveInterval::const_vni_iterator I = LI->vni_begin(), E = LI->vni_end(); |
| I != E; ++I) { |
| const VNInfo *VNI = *I; |
| // Group all unused values into one class. |
| if (VNI->isUnused()) { |
| if (unused) |
| EqClass.join(unused->id, VNI->id); |
| unused = VNI; |
| continue; |
| } |
| used = VNI; |
| if (VNI->isPHIDef()) { |
| const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); |
| assert(MBB && "Phi-def has no defining MBB"); |
| // Connect to values live out of predecessors. |
| for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), |
| PE = MBB->pred_end(); PI != PE; ++PI) |
| if (const VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI))) |
| EqClass.join(VNI->id, PVNI->id); |
| } else { |
| // Normal value defined by an instruction. Check for two-addr redef. |
| // FIXME: This could be coincidental. Should we really check for a tied |
| // operand constraint? |
| // Note that VNI->def may be a use slot for an early clobber def. |
| if (const VNInfo *UVNI = LI->getVNInfoBefore(VNI->def)) |
| EqClass.join(VNI->id, UVNI->id); |
| } |
| } |
| |
| // Lump all the unused values in with the last used value. |
| if (used && unused) |
| EqClass.join(used->id, unused->id); |
| |
| EqClass.compress(); |
| return EqClass.getNumClasses(); |
| } |
| |
| void ConnectedVNInfoEqClasses::Distribute(LiveInterval *LIV[], |
| MachineRegisterInfo &MRI) { |
| assert(LIV[0] && "LIV[0] must be set"); |
| LiveInterval &LI = *LIV[0]; |
| |
| // Rewrite instructions. |
| for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg), |
| RE = MRI.reg_end(); RI != RE;) { |
| MachineOperand &MO = RI.getOperand(); |
| MachineInstr *MI = MO.getParent(); |
| ++RI; |
| // DBG_VALUE instructions should have been eliminated earlier. |
| LiveRangeQuery LRQ(LI, LIS.getInstructionIndex(MI)); |
| const VNInfo *VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined(); |
| // In the case of an <undef> use that isn't tied to any def, VNI will be |
| // NULL. If the use is tied to a def, VNI will be the defined value. |
| if (!VNI) |
| continue; |
| MO.setReg(LIV[getEqClass(VNI)]->reg); |
| } |
| |
| // Move runs to new intervals. |
| LiveInterval::iterator J = LI.begin(), E = LI.end(); |
| while (J != E && EqClass[J->valno->id] == 0) |
| ++J; |
| for (LiveInterval::iterator I = J; I != E; ++I) { |
| if (unsigned eq = EqClass[I->valno->id]) { |
| assert((LIV[eq]->empty() || LIV[eq]->expiredAt(I->start)) && |
| "New intervals should be empty"); |
| LIV[eq]->ranges.push_back(*I); |
| } else |
| *J++ = *I; |
| } |
| LI.ranges.erase(J, E); |
| |
| // Transfer VNInfos to their new owners and renumber them. |
| unsigned j = 0, e = LI.getNumValNums(); |
| while (j != e && EqClass[j] == 0) |
| ++j; |
| for (unsigned i = j; i != e; ++i) { |
| VNInfo *VNI = LI.getValNumInfo(i); |
| if (unsigned eq = EqClass[i]) { |
| VNI->id = LIV[eq]->getNumValNums(); |
| LIV[eq]->valnos.push_back(VNI); |
| } else { |
| VNI->id = j; |
| LI.valnos[j++] = VNI; |
| } |
| } |
| LI.valnos.resize(j); |
| } |