| //===- lib/CodeGen/MachineTraceMetrics.cpp ----------------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "machine-trace-metrics" |
| #include "llvm/CodeGen/MachineTraceMetrics.h" |
| #include "llvm/ADT/PostOrderIterator.h" |
| #include "llvm/ADT/SparseSet.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/MC/MCSubtargetInfo.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/Target/TargetSubtargetInfo.h" |
| |
| using namespace llvm; |
| |
| char MachineTraceMetrics::ID = 0; |
| char &llvm::MachineTraceMetricsID = MachineTraceMetrics::ID; |
| |
| INITIALIZE_PASS_BEGIN(MachineTraceMetrics, |
| "machine-trace-metrics", "Machine Trace Metrics", false, true) |
| INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) |
| INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) |
| INITIALIZE_PASS_END(MachineTraceMetrics, |
| "machine-trace-metrics", "Machine Trace Metrics", false, true) |
| |
| MachineTraceMetrics::MachineTraceMetrics() |
| : MachineFunctionPass(ID), MF(0), TII(0), TRI(0), MRI(0), Loops(0) { |
| std::fill(Ensembles, array_endof(Ensembles), (Ensemble*)0); |
| } |
| |
| void MachineTraceMetrics::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesAll(); |
| AU.addRequired<MachineBranchProbabilityInfo>(); |
| AU.addRequired<MachineLoopInfo>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| bool MachineTraceMetrics::runOnMachineFunction(MachineFunction &Func) { |
| MF = &Func; |
| TII = MF->getTarget().getInstrInfo(); |
| TRI = MF->getTarget().getRegisterInfo(); |
| MRI = &MF->getRegInfo(); |
| Loops = &getAnalysis<MachineLoopInfo>(); |
| const TargetSubtargetInfo &ST = |
| MF->getTarget().getSubtarget<TargetSubtargetInfo>(); |
| SchedModel.init(*ST.getSchedModel(), &ST, TII); |
| BlockInfo.resize(MF->getNumBlockIDs()); |
| return false; |
| } |
| |
| void MachineTraceMetrics::releaseMemory() { |
| MF = 0; |
| BlockInfo.clear(); |
| for (unsigned i = 0; i != TS_NumStrategies; ++i) { |
| delete Ensembles[i]; |
| Ensembles[i] = 0; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Fixed block information |
| //===----------------------------------------------------------------------===// |
| // |
| // The number of instructions in a basic block and the CPU resources used by |
| // those instructions don't depend on any given trace strategy. |
| |
| /// Compute the resource usage in basic block MBB. |
| const MachineTraceMetrics::FixedBlockInfo* |
| MachineTraceMetrics::getResources(const MachineBasicBlock *MBB) { |
| assert(MBB && "No basic block"); |
| FixedBlockInfo *FBI = &BlockInfo[MBB->getNumber()]; |
| if (FBI->hasResources()) |
| return FBI; |
| |
| // Compute resource usage in the block. |
| // FIXME: Compute per-functional unit counts. |
| FBI->HasCalls = false; |
| unsigned InstrCount = 0; |
| for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end(); |
| I != E; ++I) { |
| const MachineInstr *MI = I; |
| if (MI->isTransient()) |
| continue; |
| ++InstrCount; |
| if (MI->isCall()) |
| FBI->HasCalls = true; |
| } |
| FBI->InstrCount = InstrCount; |
| return FBI; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Ensemble utility functions |
| //===----------------------------------------------------------------------===// |
| |
| MachineTraceMetrics::Ensemble::Ensemble(MachineTraceMetrics *ct) |
| : MTM(*ct) { |
| BlockInfo.resize(MTM.BlockInfo.size()); |
| } |
| |
| // Virtual destructor serves as an anchor. |
| MachineTraceMetrics::Ensemble::~Ensemble() {} |
| |
| const MachineLoop* |
| MachineTraceMetrics::Ensemble::getLoopFor(const MachineBasicBlock *MBB) const { |
| return MTM.Loops->getLoopFor(MBB); |
| } |
| |
| // Update resource-related information in the TraceBlockInfo for MBB. |
| // Only update resources related to the trace above MBB. |
| void MachineTraceMetrics::Ensemble:: |
| computeDepthResources(const MachineBasicBlock *MBB) { |
| TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; |
| |
| // Compute resources from trace above. The top block is simple. |
| if (!TBI->Pred) { |
| TBI->InstrDepth = 0; |
| TBI->Head = MBB->getNumber(); |
| return; |
| } |
| |
| // Compute from the block above. A post-order traversal ensures the |
| // predecessor is always computed first. |
| TraceBlockInfo *PredTBI = &BlockInfo[TBI->Pred->getNumber()]; |
| assert(PredTBI->hasValidDepth() && "Trace above has not been computed yet"); |
| const FixedBlockInfo *PredFBI = MTM.getResources(TBI->Pred); |
| TBI->InstrDepth = PredTBI->InstrDepth + PredFBI->InstrCount; |
| TBI->Head = PredTBI->Head; |
| } |
| |
| // Update resource-related information in the TraceBlockInfo for MBB. |
| // Only update resources related to the trace below MBB. |
| void MachineTraceMetrics::Ensemble:: |
| computeHeightResources(const MachineBasicBlock *MBB) { |
| TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; |
| |
| // Compute resources for the current block. |
| TBI->InstrHeight = MTM.getResources(MBB)->InstrCount; |
| |
| // The trace tail is done. |
| if (!TBI->Succ) { |
| TBI->Tail = MBB->getNumber(); |
| return; |
| } |
| |
| // Compute from the block below. A post-order traversal ensures the |
| // predecessor is always computed first. |
| TraceBlockInfo *SuccTBI = &BlockInfo[TBI->Succ->getNumber()]; |
| assert(SuccTBI->hasValidHeight() && "Trace below has not been computed yet"); |
| TBI->InstrHeight += SuccTBI->InstrHeight; |
| TBI->Tail = SuccTBI->Tail; |
| } |
| |
| // Check if depth resources for MBB are valid and return the TBI. |
| // Return NULL if the resources have been invalidated. |
| const MachineTraceMetrics::TraceBlockInfo* |
| MachineTraceMetrics::Ensemble:: |
| getDepthResources(const MachineBasicBlock *MBB) const { |
| const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; |
| return TBI->hasValidDepth() ? TBI : 0; |
| } |
| |
| // Check if height resources for MBB are valid and return the TBI. |
| // Return NULL if the resources have been invalidated. |
| const MachineTraceMetrics::TraceBlockInfo* |
| MachineTraceMetrics::Ensemble:: |
| getHeightResources(const MachineBasicBlock *MBB) const { |
| const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; |
| return TBI->hasValidHeight() ? TBI : 0; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Trace Selection Strategies |
| //===----------------------------------------------------------------------===// |
| // |
| // A trace selection strategy is implemented as a sub-class of Ensemble. The |
| // trace through a block B is computed by two DFS traversals of the CFG |
| // starting from B. One upwards, and one downwards. During the upwards DFS, |
| // pickTracePred() is called on the post-ordered blocks. During the downwards |
| // DFS, pickTraceSucc() is called in a post-order. |
| // |
| |
| // We never allow traces that leave loops, but we do allow traces to enter |
| // nested loops. We also never allow traces to contain back-edges. |
| // |
| // This means that a loop header can never appear above the center block of a |
| // trace, except as the trace head. Below the center block, loop exiting edges |
| // are banned. |
| // |
| // Return true if an edge from the From loop to the To loop is leaving a loop. |
| // Either of To and From can be null. |
| static bool isExitingLoop(const MachineLoop *From, const MachineLoop *To) { |
| return From && !From->contains(To); |
| } |
| |
| // MinInstrCountEnsemble - Pick the trace that executes the least number of |
| // instructions. |
| namespace { |
| class MinInstrCountEnsemble : public MachineTraceMetrics::Ensemble { |
| const char *getName() const { return "MinInstr"; } |
| const MachineBasicBlock *pickTracePred(const MachineBasicBlock*); |
| const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock*); |
| |
| public: |
| MinInstrCountEnsemble(MachineTraceMetrics *mtm) |
| : MachineTraceMetrics::Ensemble(mtm) {} |
| }; |
| } |
| |
| // Select the preferred predecessor for MBB. |
| const MachineBasicBlock* |
| MinInstrCountEnsemble::pickTracePred(const MachineBasicBlock *MBB) { |
| if (MBB->pred_empty()) |
| return 0; |
| const MachineLoop *CurLoop = getLoopFor(MBB); |
| // Don't leave loops, and never follow back-edges. |
| if (CurLoop && MBB == CurLoop->getHeader()) |
| return 0; |
| unsigned CurCount = MTM.getResources(MBB)->InstrCount; |
| const MachineBasicBlock *Best = 0; |
| unsigned BestDepth = 0; |
| for (MachineBasicBlock::const_pred_iterator |
| I = MBB->pred_begin(), E = MBB->pred_end(); I != E; ++I) { |
| const MachineBasicBlock *Pred = *I; |
| const MachineTraceMetrics::TraceBlockInfo *PredTBI = |
| getDepthResources(Pred); |
| // Ignore cycles that aren't natural loops. |
| if (!PredTBI) |
| continue; |
| // Pick the predecessor that would give this block the smallest InstrDepth. |
| unsigned Depth = PredTBI->InstrDepth + CurCount; |
| if (!Best || Depth < BestDepth) |
| Best = Pred, BestDepth = Depth; |
| } |
| return Best; |
| } |
| |
| // Select the preferred successor for MBB. |
| const MachineBasicBlock* |
| MinInstrCountEnsemble::pickTraceSucc(const MachineBasicBlock *MBB) { |
| if (MBB->pred_empty()) |
| return 0; |
| const MachineLoop *CurLoop = getLoopFor(MBB); |
| const MachineBasicBlock *Best = 0; |
| unsigned BestHeight = 0; |
| for (MachineBasicBlock::const_succ_iterator |
| I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) { |
| const MachineBasicBlock *Succ = *I; |
| // Don't consider back-edges. |
| if (CurLoop && Succ == CurLoop->getHeader()) |
| continue; |
| // Don't consider successors exiting CurLoop. |
| if (isExitingLoop(CurLoop, getLoopFor(Succ))) |
| continue; |
| const MachineTraceMetrics::TraceBlockInfo *SuccTBI = |
| getHeightResources(Succ); |
| // Ignore cycles that aren't natural loops. |
| if (!SuccTBI) |
| continue; |
| // Pick the successor that would give this block the smallest InstrHeight. |
| unsigned Height = SuccTBI->InstrHeight; |
| if (!Best || Height < BestHeight) |
| Best = Succ, BestHeight = Height; |
| } |
| return Best; |
| } |
| |
| // Get an Ensemble sub-class for the requested trace strategy. |
| MachineTraceMetrics::Ensemble * |
| MachineTraceMetrics::getEnsemble(MachineTraceMetrics::Strategy strategy) { |
| assert(strategy < TS_NumStrategies && "Invalid trace strategy enum"); |
| Ensemble *&E = Ensembles[strategy]; |
| if (E) |
| return E; |
| |
| // Allocate new Ensemble on demand. |
| switch (strategy) { |
| case TS_MinInstrCount: return (E = new MinInstrCountEnsemble(this)); |
| default: llvm_unreachable("Invalid trace strategy enum"); |
| } |
| } |
| |
| void MachineTraceMetrics::invalidate(const MachineBasicBlock *MBB) { |
| DEBUG(dbgs() << "Invalidate traces through BB#" << MBB->getNumber() << '\n'); |
| BlockInfo[MBB->getNumber()].invalidate(); |
| for (unsigned i = 0; i != TS_NumStrategies; ++i) |
| if (Ensembles[i]) |
| Ensembles[i]->invalidate(MBB); |
| } |
| |
| void MachineTraceMetrics::verifyAnalysis() const { |
| if (!MF) |
| return; |
| #ifndef NDEBUG |
| assert(BlockInfo.size() == MF->getNumBlockIDs() && "Outdated BlockInfo size"); |
| for (unsigned i = 0; i != TS_NumStrategies; ++i) |
| if (Ensembles[i]) |
| Ensembles[i]->verify(); |
| #endif |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Trace building |
| //===----------------------------------------------------------------------===// |
| // |
| // Traces are built by two CFG traversals. To avoid recomputing too much, use a |
| // set abstraction that confines the search to the current loop, and doesn't |
| // revisit blocks. |
| |
| namespace { |
| struct LoopBounds { |
| MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> Blocks; |
| SmallPtrSet<const MachineBasicBlock*, 8> Visited; |
| const MachineLoopInfo *Loops; |
| bool Downward; |
| LoopBounds(MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> blocks, |
| const MachineLoopInfo *loops) |
| : Blocks(blocks), Loops(loops), Downward(false) {} |
| }; |
| } |
| |
| // Specialize po_iterator_storage in order to prune the post-order traversal so |
| // it is limited to the current loop and doesn't traverse the loop back edges. |
| namespace llvm { |
| template<> |
| class po_iterator_storage<LoopBounds, true> { |
| LoopBounds &LB; |
| public: |
| po_iterator_storage(LoopBounds &lb) : LB(lb) {} |
| void finishPostorder(const MachineBasicBlock*) {} |
| |
| bool insertEdge(const MachineBasicBlock *From, const MachineBasicBlock *To) { |
| // Skip already visited To blocks. |
| MachineTraceMetrics::TraceBlockInfo &TBI = LB.Blocks[To->getNumber()]; |
| if (LB.Downward ? TBI.hasValidHeight() : TBI.hasValidDepth()) |
| return false; |
| // From is null once when To is the trace center block. |
| if (From) { |
| if (const MachineLoop *FromLoop = LB.Loops->getLoopFor(From)) { |
| // Don't follow backedges, don't leave FromLoop when going upwards. |
| if ((LB.Downward ? To : From) == FromLoop->getHeader()) |
| return false; |
| // Don't leave FromLoop. |
| if (isExitingLoop(FromLoop, LB.Loops->getLoopFor(To))) |
| return false; |
| } |
| } |
| // To is a new block. Mark the block as visited in case the CFG has cycles |
| // that MachineLoopInfo didn't recognize as a natural loop. |
| return LB.Visited.insert(To); |
| } |
| }; |
| } |
| |
| /// Compute the trace through MBB. |
| void MachineTraceMetrics::Ensemble::computeTrace(const MachineBasicBlock *MBB) { |
| DEBUG(dbgs() << "Computing " << getName() << " trace through BB#" |
| << MBB->getNumber() << '\n'); |
| // Set up loop bounds for the backwards post-order traversal. |
| LoopBounds Bounds(BlockInfo, MTM.Loops); |
| |
| // Run an upwards post-order search for the trace start. |
| Bounds.Downward = false; |
| Bounds.Visited.clear(); |
| typedef ipo_ext_iterator<const MachineBasicBlock*, LoopBounds> UpwardPO; |
| for (UpwardPO I = ipo_ext_begin(MBB, Bounds), E = ipo_ext_end(MBB, Bounds); |
| I != E; ++I) { |
| DEBUG(dbgs() << " pred for BB#" << I->getNumber() << ": "); |
| TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; |
| // All the predecessors have been visited, pick the preferred one. |
| TBI.Pred = pickTracePred(*I); |
| DEBUG({ |
| if (TBI.Pred) |
| dbgs() << "BB#" << TBI.Pred->getNumber() << '\n'; |
| else |
| dbgs() << "null\n"; |
| }); |
| // The trace leading to I is now known, compute the depth resources. |
| computeDepthResources(*I); |
| } |
| |
| // Run a downwards post-order search for the trace end. |
| Bounds.Downward = true; |
| Bounds.Visited.clear(); |
| typedef po_ext_iterator<const MachineBasicBlock*, LoopBounds> DownwardPO; |
| for (DownwardPO I = po_ext_begin(MBB, Bounds), E = po_ext_end(MBB, Bounds); |
| I != E; ++I) { |
| DEBUG(dbgs() << " succ for BB#" << I->getNumber() << ": "); |
| TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; |
| // All the successors have been visited, pick the preferred one. |
| TBI.Succ = pickTraceSucc(*I); |
| DEBUG({ |
| if (TBI.Succ) |
| dbgs() << "BB#" << TBI.Succ->getNumber() << '\n'; |
| else |
| dbgs() << "null\n"; |
| }); |
| // The trace leaving I is now known, compute the height resources. |
| computeHeightResources(*I); |
| } |
| } |
| |
| /// Invalidate traces through BadMBB. |
| void |
| MachineTraceMetrics::Ensemble::invalidate(const MachineBasicBlock *BadMBB) { |
| SmallVector<const MachineBasicBlock*, 16> WorkList; |
| TraceBlockInfo &BadTBI = BlockInfo[BadMBB->getNumber()]; |
| |
| // Invalidate height resources of blocks above MBB. |
| if (BadTBI.hasValidHeight()) { |
| BadTBI.invalidateHeight(); |
| WorkList.push_back(BadMBB); |
| do { |
| const MachineBasicBlock *MBB = WorkList.pop_back_val(); |
| DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName() |
| << " height.\n"); |
| // Find any MBB predecessors that have MBB as their preferred successor. |
| // They are the only ones that need to be invalidated. |
| for (MachineBasicBlock::const_pred_iterator |
| I = MBB->pred_begin(), E = MBB->pred_end(); I != E; ++I) { |
| TraceBlockInfo &TBI = BlockInfo[(*I)->getNumber()]; |
| if (!TBI.hasValidHeight()) |
| continue; |
| if (TBI.Succ == MBB) { |
| TBI.invalidateHeight(); |
| WorkList.push_back(*I); |
| continue; |
| } |
| // Verify that TBI.Succ is actually a *I successor. |
| assert((!TBI.Succ || (*I)->isSuccessor(TBI.Succ)) && "CFG changed"); |
| } |
| } while (!WorkList.empty()); |
| } |
| |
| // Invalidate depth resources of blocks below MBB. |
| if (BadTBI.hasValidDepth()) { |
| BadTBI.invalidateDepth(); |
| WorkList.push_back(BadMBB); |
| do { |
| const MachineBasicBlock *MBB = WorkList.pop_back_val(); |
| DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName() |
| << " depth.\n"); |
| // Find any MBB successors that have MBB as their preferred predecessor. |
| // They are the only ones that need to be invalidated. |
| for (MachineBasicBlock::const_succ_iterator |
| I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) { |
| TraceBlockInfo &TBI = BlockInfo[(*I)->getNumber()]; |
| if (!TBI.hasValidDepth()) |
| continue; |
| if (TBI.Pred == MBB) { |
| TBI.invalidateDepth(); |
| WorkList.push_back(*I); |
| continue; |
| } |
| // Verify that TBI.Pred is actually a *I predecessor. |
| assert((!TBI.Pred || (*I)->isPredecessor(TBI.Pred)) && "CFG changed"); |
| } |
| } while (!WorkList.empty()); |
| } |
| |
| // Clear any per-instruction data. We only have to do this for BadMBB itself |
| // because the instructions in that block may change. Other blocks may be |
| // invalidated, but their instructions will stay the same, so there is no |
| // need to erase the Cycle entries. They will be overwritten when we |
| // recompute. |
| for (MachineBasicBlock::const_iterator I = BadMBB->begin(), E = BadMBB->end(); |
| I != E; ++I) |
| Cycles.erase(I); |
| } |
| |
| void MachineTraceMetrics::Ensemble::verify() const { |
| #ifndef NDEBUG |
| assert(BlockInfo.size() == MTM.MF->getNumBlockIDs() && |
| "Outdated BlockInfo size"); |
| for (unsigned Num = 0, e = BlockInfo.size(); Num != e; ++Num) { |
| const TraceBlockInfo &TBI = BlockInfo[Num]; |
| if (TBI.hasValidDepth() && TBI.Pred) { |
| const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); |
| assert(MBB->isPredecessor(TBI.Pred) && "CFG doesn't match trace"); |
| assert(BlockInfo[TBI.Pred->getNumber()].hasValidDepth() && |
| "Trace is broken, depth should have been invalidated."); |
| const MachineLoop *Loop = getLoopFor(MBB); |
| assert(!(Loop && MBB == Loop->getHeader()) && "Trace contains backedge"); |
| } |
| if (TBI.hasValidHeight() && TBI.Succ) { |
| const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); |
| assert(MBB->isSuccessor(TBI.Succ) && "CFG doesn't match trace"); |
| assert(BlockInfo[TBI.Succ->getNumber()].hasValidHeight() && |
| "Trace is broken, height should have been invalidated."); |
| const MachineLoop *Loop = getLoopFor(MBB); |
| const MachineLoop *SuccLoop = getLoopFor(TBI.Succ); |
| assert(!(Loop && Loop == SuccLoop && TBI.Succ == Loop->getHeader()) && |
| "Trace contains backedge"); |
| } |
| } |
| #endif |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Data Dependencies |
| //===----------------------------------------------------------------------===// |
| // |
| // Compute the depth and height of each instruction based on data dependencies |
| // and instruction latencies. These cycle numbers assume that the CPU can issue |
| // an infinite number of instructions per cycle as long as their dependencies |
| // are ready. |
| |
| // A data dependency is represented as a defining MI and operand numbers on the |
| // defining and using MI. |
| namespace { |
| struct DataDep { |
| const MachineInstr *DefMI; |
| unsigned DefOp; |
| unsigned UseOp; |
| |
| DataDep(const MachineInstr *DefMI, unsigned DefOp, unsigned UseOp) |
| : DefMI(DefMI), DefOp(DefOp), UseOp(UseOp) {} |
| |
| /// Create a DataDep from an SSA form virtual register. |
| DataDep(const MachineRegisterInfo *MRI, unsigned VirtReg, unsigned UseOp) |
| : UseOp(UseOp) { |
| assert(TargetRegisterInfo::isVirtualRegister(VirtReg)); |
| MachineRegisterInfo::def_iterator DefI = MRI->def_begin(VirtReg); |
| assert(!DefI.atEnd() && "Register has no defs"); |
| DefMI = &*DefI; |
| DefOp = DefI.getOperandNo(); |
| assert((++DefI).atEnd() && "Register has multiple defs"); |
| } |
| }; |
| } |
| |
| // Get the input data dependencies that must be ready before UseMI can issue. |
| // Return true if UseMI has any physreg operands. |
| static bool getDataDeps(const MachineInstr *UseMI, |
| SmallVectorImpl<DataDep> &Deps, |
| const MachineRegisterInfo *MRI) { |
| bool HasPhysRegs = false; |
| for (ConstMIOperands MO(UseMI); MO.isValid(); ++MO) { |
| if (!MO->isReg()) |
| continue; |
| unsigned Reg = MO->getReg(); |
| if (!Reg) |
| continue; |
| if (TargetRegisterInfo::isPhysicalRegister(Reg)) { |
| HasPhysRegs = true; |
| continue; |
| } |
| // Collect virtual register reads. |
| if (MO->readsReg()) |
| Deps.push_back(DataDep(MRI, Reg, MO.getOperandNo())); |
| } |
| return HasPhysRegs; |
| } |
| |
| // Get the input data dependencies of a PHI instruction, using Pred as the |
| // preferred predecessor. |
| // This will add at most one dependency to Deps. |
| static void getPHIDeps(const MachineInstr *UseMI, |
| SmallVectorImpl<DataDep> &Deps, |
| const MachineBasicBlock *Pred, |
| const MachineRegisterInfo *MRI) { |
| // No predecessor at the beginning of a trace. Ignore dependencies. |
| if (!Pred) |
| return; |
| assert(UseMI->isPHI() && UseMI->getNumOperands() % 2 && "Bad PHI"); |
| for (unsigned i = 1; i != UseMI->getNumOperands(); i += 2) { |
| if (UseMI->getOperand(i + 1).getMBB() == Pred) { |
| unsigned Reg = UseMI->getOperand(i).getReg(); |
| Deps.push_back(DataDep(MRI, Reg, i)); |
| return; |
| } |
| } |
| } |
| |
| // Keep track of physreg data dependencies by recording each live register unit. |
| // Associate each regunit with an instruction operand. Depending on the |
| // direction instructions are scanned, it could be the operand that defined the |
| // regunit, or the highest operand to read the regunit. |
| namespace { |
| struct LiveRegUnit { |
| unsigned RegUnit; |
| unsigned Cycle; |
| const MachineInstr *MI; |
| unsigned Op; |
| |
| unsigned getSparseSetIndex() const { return RegUnit; } |
| |
| LiveRegUnit(unsigned RU) : RegUnit(RU), Cycle(0), MI(0), Op(0) {} |
| }; |
| } |
| |
| // Identify physreg dependencies for UseMI, and update the live regunit |
| // tracking set when scanning instructions downwards. |
| static void updatePhysDepsDownwards(const MachineInstr *UseMI, |
| SmallVectorImpl<DataDep> &Deps, |
| SparseSet<LiveRegUnit> &RegUnits, |
| const TargetRegisterInfo *TRI) { |
| SmallVector<unsigned, 8> Kills; |
| SmallVector<unsigned, 8> LiveDefOps; |
| |
| for (ConstMIOperands MO(UseMI); MO.isValid(); ++MO) { |
| if (!MO->isReg()) |
| continue; |
| unsigned Reg = MO->getReg(); |
| if (!TargetRegisterInfo::isPhysicalRegister(Reg)) |
| continue; |
| // Track live defs and kills for updating RegUnits. |
| if (MO->isDef()) { |
| if (MO->isDead()) |
| Kills.push_back(Reg); |
| else |
| LiveDefOps.push_back(MO.getOperandNo()); |
| } else if (MO->isKill()) |
| Kills.push_back(Reg); |
| // Identify dependencies. |
| if (!MO->readsReg()) |
| continue; |
| for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { |
| SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units); |
| if (I == RegUnits.end()) |
| continue; |
| Deps.push_back(DataDep(I->MI, I->Op, MO.getOperandNo())); |
| break; |
| } |
| } |
| |
| // Update RegUnits to reflect live registers after UseMI. |
| // First kills. |
| for (unsigned i = 0, e = Kills.size(); i != e; ++i) |
| for (MCRegUnitIterator Units(Kills[i], TRI); Units.isValid(); ++Units) |
| RegUnits.erase(*Units); |
| |
| // Second, live defs. |
| for (unsigned i = 0, e = LiveDefOps.size(); i != e; ++i) { |
| unsigned DefOp = LiveDefOps[i]; |
| for (MCRegUnitIterator Units(UseMI->getOperand(DefOp).getReg(), TRI); |
| Units.isValid(); ++Units) { |
| LiveRegUnit &LRU = RegUnits[*Units]; |
| LRU.MI = UseMI; |
| LRU.Op = DefOp; |
| } |
| } |
| } |
| |
| /// The length of the critical path through a trace is the maximum of two path |
| /// lengths: |
| /// |
| /// 1. The maximum height+depth over all instructions in the trace center block. |
| /// |
| /// 2. The longest cross-block dependency chain. For small blocks, it is |
| /// possible that the critical path through the trace doesn't include any |
| /// instructions in the block. |
| /// |
| /// This function computes the second number from the live-in list of the |
| /// center block. |
| unsigned MachineTraceMetrics::Ensemble:: |
| computeCrossBlockCriticalPath(const TraceBlockInfo &TBI) { |
| assert(TBI.HasValidInstrDepths && "Missing depth info"); |
| assert(TBI.HasValidInstrHeights && "Missing height info"); |
| unsigned MaxLen = 0; |
| for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) { |
| const LiveInReg &LIR = TBI.LiveIns[i]; |
| if (!TargetRegisterInfo::isVirtualRegister(LIR.Reg)) |
| continue; |
| const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); |
| // Ignore dependencies outside the current trace. |
| const TraceBlockInfo &DefTBI = BlockInfo[DefMI->getParent()->getNumber()]; |
| if (!DefTBI.isUsefulDominator(TBI)) |
| continue; |
| unsigned Len = LIR.Height + Cycles[DefMI].Depth; |
| MaxLen = std::max(MaxLen, Len); |
| } |
| return MaxLen; |
| } |
| |
| /// Compute instruction depths for all instructions above or in MBB in its |
| /// trace. This assumes that the trace through MBB has already been computed. |
| void MachineTraceMetrics::Ensemble:: |
| computeInstrDepths(const MachineBasicBlock *MBB) { |
| // The top of the trace may already be computed, and HasValidInstrDepths |
| // implies Head->HasValidInstrDepths, so we only need to start from the first |
| // block in the trace that needs to be recomputed. |
| SmallVector<const MachineBasicBlock*, 8> Stack; |
| do { |
| TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; |
| assert(TBI.hasValidDepth() && "Incomplete trace"); |
| if (TBI.HasValidInstrDepths) |
| break; |
| Stack.push_back(MBB); |
| MBB = TBI.Pred; |
| } while (MBB); |
| |
| // FIXME: If MBB is non-null at this point, it is the last pre-computed block |
| // in the trace. We should track any live-out physregs that were defined in |
| // the trace. This is quite rare in SSA form, typically created by CSE |
| // hoisting a compare. |
| SparseSet<LiveRegUnit> RegUnits; |
| RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); |
| |
| // Go through trace blocks in top-down order, stopping after the center block. |
| SmallVector<DataDep, 8> Deps; |
| while (!Stack.empty()) { |
| MBB = Stack.pop_back_val(); |
| DEBUG(dbgs() << "Depths for BB#" << MBB->getNumber() << ":\n"); |
| TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; |
| TBI.HasValidInstrDepths = true; |
| TBI.CriticalPath = 0; |
| |
| // Also compute the critical path length through MBB when possible. |
| if (TBI.HasValidInstrHeights) |
| TBI.CriticalPath = computeCrossBlockCriticalPath(TBI); |
| |
| for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end(); |
| I != E; ++I) { |
| const MachineInstr *UseMI = I; |
| |
| // Collect all data dependencies. |
| Deps.clear(); |
| if (UseMI->isPHI()) |
| getPHIDeps(UseMI, Deps, TBI.Pred, MTM.MRI); |
| else if (getDataDeps(UseMI, Deps, MTM.MRI)) |
| updatePhysDepsDownwards(UseMI, Deps, RegUnits, MTM.TRI); |
| |
| // Filter and process dependencies, computing the earliest issue cycle. |
| unsigned Cycle = 0; |
| for (unsigned i = 0, e = Deps.size(); i != e; ++i) { |
| const DataDep &Dep = Deps[i]; |
| const TraceBlockInfo&DepTBI = |
| BlockInfo[Dep.DefMI->getParent()->getNumber()]; |
| // Ignore dependencies from outside the current trace. |
| if (!DepTBI.isUsefulDominator(TBI)) |
| continue; |
| assert(DepTBI.HasValidInstrDepths && "Inconsistent dependency"); |
| unsigned DepCycle = Cycles.lookup(Dep.DefMI).Depth; |
| // Add latency if DefMI is a real instruction. Transients get latency 0. |
| if (!Dep.DefMI->isTransient()) |
| DepCycle += MTM.SchedModel |
| .computeOperandLatency(Dep.DefMI, Dep.DefOp, UseMI, Dep.UseOp, |
| /* FindMin = */ false); |
| Cycle = std::max(Cycle, DepCycle); |
| } |
| // Remember the instruction depth. |
| InstrCycles &MICycles = Cycles[UseMI]; |
| MICycles.Depth = Cycle; |
| |
| if (!TBI.HasValidInstrHeights) { |
| DEBUG(dbgs() << Cycle << '\t' << *UseMI); |
| continue; |
| } |
| // Update critical path length. |
| TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Height); |
| DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << *UseMI); |
| } |
| } |
| } |
| |
| // Identify physreg dependencies for MI when scanning instructions upwards. |
| // Return the issue height of MI after considering any live regunits. |
| // Height is the issue height computed from virtual register dependencies alone. |
| static unsigned updatePhysDepsUpwards(const MachineInstr *MI, unsigned Height, |
| SparseSet<LiveRegUnit> &RegUnits, |
| const TargetSchedModel &SchedModel, |
| const TargetInstrInfo *TII, |
| const TargetRegisterInfo *TRI) { |
| SmallVector<unsigned, 8> ReadOps; |
| for (ConstMIOperands MO(MI); MO.isValid(); ++MO) { |
| if (!MO->isReg()) |
| continue; |
| unsigned Reg = MO->getReg(); |
| if (!TargetRegisterInfo::isPhysicalRegister(Reg)) |
| continue; |
| if (MO->readsReg()) |
| ReadOps.push_back(MO.getOperandNo()); |
| if (!MO->isDef()) |
| continue; |
| // This is a def of Reg. Remove corresponding entries from RegUnits, and |
| // update MI Height to consider the physreg dependencies. |
| for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { |
| SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units); |
| if (I == RegUnits.end()) |
| continue; |
| unsigned DepHeight = I->Cycle; |
| if (!MI->isTransient()) { |
| // We may not know the UseMI of this dependency, if it came from the |
| // live-in list. SchedModel can handle a NULL UseMI. |
| DepHeight += SchedModel |
| .computeOperandLatency(MI, MO.getOperandNo(), I->MI, I->Op, |
| /* FindMin = */ false); |
| } |
| Height = std::max(Height, DepHeight); |
| // This regunit is dead above MI. |
| RegUnits.erase(I); |
| } |
| } |
| |
| // Now we know the height of MI. Update any regunits read. |
| for (unsigned i = 0, e = ReadOps.size(); i != e; ++i) { |
| unsigned Reg = MI->getOperand(ReadOps[i]).getReg(); |
| for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { |
| LiveRegUnit &LRU = RegUnits[*Units]; |
| // Set the height to the highest reader of the unit. |
| if (LRU.Cycle <= Height && LRU.MI != MI) { |
| LRU.Cycle = Height; |
| LRU.MI = MI; |
| LRU.Op = ReadOps[i]; |
| } |
| } |
| } |
| |
| return Height; |
| } |
| |
| |
| typedef DenseMap<const MachineInstr *, unsigned> MIHeightMap; |
| |
| // Push the height of DefMI upwards if required to match UseMI. |
| // Return true if this is the first time DefMI was seen. |
| static bool pushDepHeight(const DataDep &Dep, |
| const MachineInstr *UseMI, unsigned UseHeight, |
| MIHeightMap &Heights, |
| const TargetSchedModel &SchedModel, |
| const TargetInstrInfo *TII) { |
| // Adjust height by Dep.DefMI latency. |
| if (!Dep.DefMI->isTransient()) |
| UseHeight += SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp, |
| UseMI, Dep.UseOp, false); |
| |
| // Update Heights[DefMI] to be the maximum height seen. |
| MIHeightMap::iterator I; |
| bool New; |
| tie(I, New) = Heights.insert(std::make_pair(Dep.DefMI, UseHeight)); |
| if (New) |
| return true; |
| |
| // DefMI has been pushed before. Give it the max height. |
| if (I->second < UseHeight) |
| I->second = UseHeight; |
| return false; |
| } |
| |
| /// Assuming that the virtual register defined by DefMI:DefOp was used by |
| /// Trace.back(), add it to the live-in lists of all the blocks in Trace. Stop |
| /// when reaching the block that contains DefMI. |
| void MachineTraceMetrics::Ensemble:: |
| addLiveIns(const MachineInstr *DefMI, unsigned DefOp, |
| ArrayRef<const MachineBasicBlock*> Trace) { |
| assert(!Trace.empty() && "Trace should contain at least one block"); |
| unsigned Reg = DefMI->getOperand(DefOp).getReg(); |
| assert(TargetRegisterInfo::isVirtualRegister(Reg)); |
| const MachineBasicBlock *DefMBB = DefMI->getParent(); |
| |
| // Reg is live-in to all blocks in Trace that follow DefMBB. |
| for (unsigned i = Trace.size(); i; --i) { |
| const MachineBasicBlock *MBB = Trace[i-1]; |
| if (MBB == DefMBB) |
| return; |
| TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; |
| // Just add the register. The height will be updated later. |
| TBI.LiveIns.push_back(Reg); |
| } |
| } |
| |
| /// Compute instruction heights in the trace through MBB. This updates MBB and |
| /// the blocks below it in the trace. It is assumed that the trace has already |
| /// been computed. |
| void MachineTraceMetrics::Ensemble:: |
| computeInstrHeights(const MachineBasicBlock *MBB) { |
| // The bottom of the trace may already be computed. |
| // Find the blocks that need updating. |
| SmallVector<const MachineBasicBlock*, 8> Stack; |
| do { |
| TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; |
| assert(TBI.hasValidHeight() && "Incomplete trace"); |
| if (TBI.HasValidInstrHeights) |
| break; |
| Stack.push_back(MBB); |
| TBI.LiveIns.clear(); |
| MBB = TBI.Succ; |
| } while (MBB); |
| |
| // As we move upwards in the trace, keep track of instructions that are |
| // required by deeper trace instructions. Map MI -> height required so far. |
| MIHeightMap Heights; |
| |
| // For physregs, the def isn't known when we see the use. |
| // Instead, keep track of the highest use of each regunit. |
| SparseSet<LiveRegUnit> RegUnits; |
| RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); |
| |
| // If the bottom of the trace was already precomputed, initialize heights |
| // from its live-in list. |
| // MBB is the highest precomputed block in the trace. |
| if (MBB) { |
| TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; |
| for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) { |
| LiveInReg LI = TBI.LiveIns[i]; |
| if (TargetRegisterInfo::isVirtualRegister(LI.Reg)) { |
| // For virtual registers, the def latency is included. |
| unsigned &Height = Heights[MTM.MRI->getVRegDef(LI.Reg)]; |
| if (Height < LI.Height) |
| Height = LI.Height; |
| } else { |
| // For register units, the def latency is not included because we don't |
| // know the def yet. |
| RegUnits[LI.Reg].Cycle = LI.Height; |
| } |
| } |
| } |
| |
| // Go through the trace blocks in bottom-up order. |
| SmallVector<DataDep, 8> Deps; |
| for (;!Stack.empty(); Stack.pop_back()) { |
| MBB = Stack.back(); |
| DEBUG(dbgs() << "Heights for BB#" << MBB->getNumber() << ":\n"); |
| TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; |
| TBI.HasValidInstrHeights = true; |
| TBI.CriticalPath = 0; |
| |
| // Get dependencies from PHIs in the trace successor. |
| const MachineBasicBlock *Succ = TBI.Succ; |
| // If MBB is the last block in the trace, and it has a back-edge to the |
| // loop header, get loop-carried dependencies from PHIs in the header. For |
| // that purpose, pretend that all the loop header PHIs have height 0. |
| if (!Succ) |
| if (const MachineLoop *Loop = getLoopFor(MBB)) |
| if (MBB->isSuccessor(Loop->getHeader())) |
| Succ = Loop->getHeader(); |
| |
| if (Succ) { |
| for (MachineBasicBlock::const_iterator I = Succ->begin(), E = Succ->end(); |
| I != E && I->isPHI(); ++I) { |
| const MachineInstr *PHI = I; |
| Deps.clear(); |
| getPHIDeps(PHI, Deps, MBB, MTM.MRI); |
| if (!Deps.empty()) { |
| // Loop header PHI heights are all 0. |
| unsigned Height = TBI.Succ ? Cycles.lookup(PHI).Height : 0; |
| DEBUG(dbgs() << "pred\t" << Height << '\t' << *PHI); |
| if (pushDepHeight(Deps.front(), PHI, Height, |
| Heights, MTM.SchedModel, MTM.TII)) |
| addLiveIns(Deps.front().DefMI, Deps.front().DefOp, Stack); |
| } |
| } |
| } |
| |
| // Go through the block backwards. |
| for (MachineBasicBlock::const_iterator BI = MBB->end(), BB = MBB->begin(); |
| BI != BB;) { |
| const MachineInstr *MI = --BI; |
| |
| // Find the MI height as determined by virtual register uses in the |
| // trace below. |
| unsigned Cycle = 0; |
| MIHeightMap::iterator HeightI = Heights.find(MI); |
| if (HeightI != Heights.end()) { |
| Cycle = HeightI->second; |
| // We won't be seeing any more MI uses. |
| Heights.erase(HeightI); |
| } |
| |
| // Don't process PHI deps. They depend on the specific predecessor, and |
| // we'll get them when visiting the predecessor. |
| Deps.clear(); |
| bool HasPhysRegs = !MI->isPHI() && getDataDeps(MI, Deps, MTM.MRI); |
| |
| // There may also be regunit dependencies to include in the height. |
| if (HasPhysRegs) |
| Cycle = updatePhysDepsUpwards(MI, Cycle, RegUnits, |
| MTM.SchedModel, MTM.TII, MTM.TRI); |
| |
| // Update the required height of any virtual registers read by MI. |
| for (unsigned i = 0, e = Deps.size(); i != e; ++i) |
| if (pushDepHeight(Deps[i], MI, Cycle, Heights, MTM.SchedModel, MTM.TII)) |
| addLiveIns(Deps[i].DefMI, Deps[i].DefOp, Stack); |
| |
| InstrCycles &MICycles = Cycles[MI]; |
| MICycles.Height = Cycle; |
| if (!TBI.HasValidInstrDepths) { |
| DEBUG(dbgs() << Cycle << '\t' << *MI); |
| continue; |
| } |
| // Update critical path length. |
| TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Depth); |
| DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << *MI); |
| } |
| |
| // Update virtual live-in heights. They were added by addLiveIns() with a 0 |
| // height because the final height isn't known until now. |
| DEBUG(dbgs() << "BB#" << MBB->getNumber() << " Live-ins:"); |
| for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) { |
| LiveInReg &LIR = TBI.LiveIns[i]; |
| const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); |
| LIR.Height = Heights.lookup(DefMI); |
| DEBUG(dbgs() << ' ' << PrintReg(LIR.Reg) << '@' << LIR.Height); |
| } |
| |
| // Transfer the live regunits to the live-in list. |
| for (SparseSet<LiveRegUnit>::const_iterator |
| RI = RegUnits.begin(), RE = RegUnits.end(); RI != RE; ++RI) { |
| TBI.LiveIns.push_back(LiveInReg(RI->RegUnit, RI->Cycle)); |
| DEBUG(dbgs() << ' ' << PrintRegUnit(RI->RegUnit, MTM.TRI) |
| << '@' << RI->Cycle); |
| } |
| DEBUG(dbgs() << '\n'); |
| |
| if (!TBI.HasValidInstrDepths) |
| continue; |
| // Add live-ins to the critical path length. |
| TBI.CriticalPath = std::max(TBI.CriticalPath, |
| computeCrossBlockCriticalPath(TBI)); |
| DEBUG(dbgs() << "Critical path: " << TBI.CriticalPath << '\n'); |
| } |
| } |
| |
| MachineTraceMetrics::Trace |
| MachineTraceMetrics::Ensemble::getTrace(const MachineBasicBlock *MBB) { |
| // FIXME: Check cache tags, recompute as needed. |
| computeTrace(MBB); |
| computeInstrDepths(MBB); |
| computeInstrHeights(MBB); |
| return Trace(*this, BlockInfo[MBB->getNumber()]); |
| } |
| |
| unsigned |
| MachineTraceMetrics::Trace::getInstrSlack(const MachineInstr *MI) const { |
| assert(MI && "Not an instruction."); |
| assert(getBlockNum() == unsigned(MI->getParent()->getNumber()) && |
| "MI must be in the trace center block"); |
| InstrCycles Cyc = getInstrCycles(MI); |
| return getCriticalPath() - (Cyc.Depth + Cyc.Height); |
| } |
| |
| unsigned |
| MachineTraceMetrics::Trace::getPHIDepth(const MachineInstr *PHI) const { |
| const MachineBasicBlock *MBB = TE.MTM.MF->getBlockNumbered(getBlockNum()); |
| SmallVector<DataDep, 1> Deps; |
| getPHIDeps(PHI, Deps, MBB, TE.MTM.MRI); |
| assert(Deps.size() == 1 && "PHI doesn't have MBB as a predecessor"); |
| DataDep &Dep = Deps.front(); |
| unsigned DepCycle = getInstrCycles(Dep.DefMI).Depth; |
| // Add latency if DefMI is a real instruction. Transients get latency 0. |
| if (!Dep.DefMI->isTransient()) |
| DepCycle += TE.MTM.SchedModel |
| .computeOperandLatency(Dep.DefMI, Dep.DefOp, PHI, Dep.UseOp, false); |
| return DepCycle; |
| } |
| |
| unsigned MachineTraceMetrics::Trace::getResourceDepth(bool Bottom) const { |
| // For now, we compute the resource depth from instruction count / issue |
| // width. Eventually, we should compute resource depth per functional unit |
| // and return the max. |
| unsigned Instrs = TBI.InstrDepth; |
| if (Bottom) |
| Instrs += TE.MTM.BlockInfo[getBlockNum()].InstrCount; |
| if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) |
| Instrs /= IW; |
| // Assume issue width 1 without a schedule model. |
| return Instrs; |
| } |
| |
| unsigned MachineTraceMetrics::Trace:: |
| getResourceLength(ArrayRef<const MachineBasicBlock*> Extrablocks) const { |
| unsigned Instrs = TBI.InstrDepth + TBI.InstrHeight; |
| for (unsigned i = 0, e = Extrablocks.size(); i != e; ++i) |
| Instrs += TE.MTM.getResources(Extrablocks[i])->InstrCount; |
| if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) |
| Instrs /= IW; |
| // Assume issue width 1 without a schedule model. |
| return Instrs; |
| } |
| |
| void MachineTraceMetrics::Ensemble::print(raw_ostream &OS) const { |
| OS << getName() << " ensemble:\n"; |
| for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) { |
| OS << " BB#" << i << '\t'; |
| BlockInfo[i].print(OS); |
| OS << '\n'; |
| } |
| } |
| |
| void MachineTraceMetrics::TraceBlockInfo::print(raw_ostream &OS) const { |
| if (hasValidDepth()) { |
| OS << "depth=" << InstrDepth; |
| if (Pred) |
| OS << " pred=BB#" << Pred->getNumber(); |
| else |
| OS << " pred=null"; |
| OS << " head=BB#" << Head; |
| if (HasValidInstrDepths) |
| OS << " +instrs"; |
| } else |
| OS << "depth invalid"; |
| OS << ", "; |
| if (hasValidHeight()) { |
| OS << "height=" << InstrHeight; |
| if (Succ) |
| OS << " succ=BB#" << Succ->getNumber(); |
| else |
| OS << " succ=null"; |
| OS << " tail=BB#" << Tail; |
| if (HasValidInstrHeights) |
| OS << " +instrs"; |
| } else |
| OS << "height invalid"; |
| if (HasValidInstrDepths && HasValidInstrHeights) |
| OS << ", crit=" << CriticalPath; |
| } |
| |
| void MachineTraceMetrics::Trace::print(raw_ostream &OS) const { |
| unsigned MBBNum = &TBI - &TE.BlockInfo[0]; |
| |
| OS << TE.getName() << " trace BB#" << TBI.Head << " --> BB#" << MBBNum |
| << " --> BB#" << TBI.Tail << ':'; |
| if (TBI.hasValidHeight() && TBI.hasValidDepth()) |
| OS << ' ' << getInstrCount() << " instrs."; |
| if (TBI.HasValidInstrDepths && TBI.HasValidInstrHeights) |
| OS << ' ' << TBI.CriticalPath << " cycles."; |
| |
| const MachineTraceMetrics::TraceBlockInfo *Block = &TBI; |
| OS << "\nBB#" << MBBNum; |
| while (Block->hasValidDepth() && Block->Pred) { |
| unsigned Num = Block->Pred->getNumber(); |
| OS << " <- BB#" << Num; |
| Block = &TE.BlockInfo[Num]; |
| } |
| |
| Block = &TBI; |
| OS << "\n "; |
| while (Block->hasValidHeight() && Block->Succ) { |
| unsigned Num = Block->Succ->getNumber(); |
| OS << " -> BB#" << Num; |
| Block = &TE.BlockInfo[Num]; |
| } |
| OS << '\n'; |
| } |