| //===- TargetRegisterInfo.cpp - Target Register Information Implementation ===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the TargetRegisterInfo interface. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/VirtRegMap.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace llvm; |
| |
| TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc *ID, |
| regclass_iterator RCB, regclass_iterator RCE, |
| const char *const *SRINames, |
| const unsigned *SRILaneMasks) |
| : InfoDesc(ID), SubRegIndexNames(SRINames), |
| SubRegIndexLaneMasks(SRILaneMasks), |
| RegClassBegin(RCB), RegClassEnd(RCE) { |
| } |
| |
| TargetRegisterInfo::~TargetRegisterInfo() {} |
| |
| void PrintReg::print(raw_ostream &OS) const { |
| if (!Reg) |
| OS << "%noreg"; |
| else if (TargetRegisterInfo::isStackSlot(Reg)) |
| OS << "SS#" << TargetRegisterInfo::stackSlot2Index(Reg); |
| else if (TargetRegisterInfo::isVirtualRegister(Reg)) |
| OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Reg); |
| else if (TRI && Reg < TRI->getNumRegs()) |
| OS << '%' << TRI->getName(Reg); |
| else |
| OS << "%physreg" << Reg; |
| if (SubIdx) { |
| if (TRI) |
| OS << ':' << TRI->getSubRegIndexName(SubIdx); |
| else |
| OS << ":sub(" << SubIdx << ')'; |
| } |
| } |
| |
| void PrintRegUnit::print(raw_ostream &OS) const { |
| // Generic printout when TRI is missing. |
| if (!TRI) { |
| OS << "Unit~" << Unit; |
| return; |
| } |
| |
| // Check for invalid register units. |
| if (Unit >= TRI->getNumRegUnits()) { |
| OS << "BadUnit~" << Unit; |
| return; |
| } |
| |
| // Normal units have at least one root. |
| MCRegUnitRootIterator Roots(Unit, TRI); |
| assert(Roots.isValid() && "Unit has no roots."); |
| OS << TRI->getName(*Roots); |
| for (++Roots; Roots.isValid(); ++Roots) |
| OS << '~' << TRI->getName(*Roots); |
| } |
| |
| /// getAllocatableClass - Return the maximal subclass of the given register |
| /// class that is alloctable, or NULL. |
| const TargetRegisterClass * |
| TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const { |
| if (!RC || RC->isAllocatable()) |
| return RC; |
| |
| const unsigned *SubClass = RC->getSubClassMask(); |
| for (unsigned Base = 0, BaseE = getNumRegClasses(); |
| Base < BaseE; Base += 32) { |
| unsigned Idx = Base; |
| for (unsigned Mask = *SubClass++; Mask; Mask >>= 1) { |
| unsigned Offset = CountTrailingZeros_32(Mask); |
| const TargetRegisterClass *SubRC = getRegClass(Idx + Offset); |
| if (SubRC->isAllocatable()) |
| return SubRC; |
| Mask >>= Offset; |
| Idx += Offset + 1; |
| } |
| } |
| return NULL; |
| } |
| |
| /// getMinimalPhysRegClass - Returns the Register Class of a physical |
| /// register of the given type, picking the most sub register class of |
| /// the right type that contains this physreg. |
| const TargetRegisterClass * |
| TargetRegisterInfo::getMinimalPhysRegClass(unsigned reg, EVT VT) const { |
| assert(isPhysicalRegister(reg) && "reg must be a physical register"); |
| |
| // Pick the most sub register class of the right type that contains |
| // this physreg. |
| const TargetRegisterClass* BestRC = 0; |
| for (regclass_iterator I = regclass_begin(), E = regclass_end(); I != E; ++I){ |
| const TargetRegisterClass* RC = *I; |
| if ((VT == MVT::Other || RC->hasType(VT)) && RC->contains(reg) && |
| (!BestRC || BestRC->hasSubClass(RC))) |
| BestRC = RC; |
| } |
| |
| assert(BestRC && "Couldn't find the register class"); |
| return BestRC; |
| } |
| |
| /// getAllocatableSetForRC - Toggle the bits that represent allocatable |
| /// registers for the specific register class. |
| static void getAllocatableSetForRC(const MachineFunction &MF, |
| const TargetRegisterClass *RC, BitVector &R){ |
| assert(RC->isAllocatable() && "invalid for nonallocatable sets"); |
| ArrayRef<uint16_t> Order = RC->getRawAllocationOrder(MF); |
| for (unsigned i = 0; i != Order.size(); ++i) |
| R.set(Order[i]); |
| } |
| |
| BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF, |
| const TargetRegisterClass *RC) const { |
| BitVector Allocatable(getNumRegs()); |
| if (RC) { |
| // A register class with no allocatable subclass returns an empty set. |
| const TargetRegisterClass *SubClass = getAllocatableClass(RC); |
| if (SubClass) |
| getAllocatableSetForRC(MF, SubClass, Allocatable); |
| } else { |
| for (TargetRegisterInfo::regclass_iterator I = regclass_begin(), |
| E = regclass_end(); I != E; ++I) |
| if ((*I)->isAllocatable()) |
| getAllocatableSetForRC(MF, *I, Allocatable); |
| } |
| |
| // Mask out the reserved registers |
| BitVector Reserved = getReservedRegs(MF); |
| Allocatable &= Reserved.flip(); |
| |
| return Allocatable; |
| } |
| |
| static inline |
| const TargetRegisterClass *firstCommonClass(const uint32_t *A, |
| const uint32_t *B, |
| const TargetRegisterInfo *TRI) { |
| for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32) |
| if (unsigned Common = *A++ & *B++) |
| return TRI->getRegClass(I + CountTrailingZeros_32(Common)); |
| return 0; |
| } |
| |
| const TargetRegisterClass * |
| TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A, |
| const TargetRegisterClass *B) const { |
| // First take care of the trivial cases. |
| if (A == B) |
| return A; |
| if (!A || !B) |
| return 0; |
| |
| // Register classes are ordered topologically, so the largest common |
| // sub-class it the common sub-class with the smallest ID. |
| return firstCommonClass(A->getSubClassMask(), B->getSubClassMask(), this); |
| } |
| |
| const TargetRegisterClass * |
| TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A, |
| const TargetRegisterClass *B, |
| unsigned Idx) const { |
| assert(A && B && "Missing register class"); |
| assert(Idx && "Bad sub-register index"); |
| |
| // Find Idx in the list of super-register indices. |
| for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI) |
| if (RCI.getSubReg() == Idx) |
| // The bit mask contains all register classes that are projected into B |
| // by Idx. Find a class that is also a sub-class of A. |
| return firstCommonClass(RCI.getMask(), A->getSubClassMask(), this); |
| return 0; |
| } |
| |
| const TargetRegisterClass *TargetRegisterInfo:: |
| getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA, |
| const TargetRegisterClass *RCB, unsigned SubB, |
| unsigned &PreA, unsigned &PreB) const { |
| assert(RCA && SubA && RCB && SubB && "Invalid arguments"); |
| |
| // Search all pairs of sub-register indices that project into RCA and RCB |
| // respectively. This is quadratic, but usually the sets are very small. On |
| // most targets like X86, there will only be a single sub-register index |
| // (e.g., sub_16bit projecting into GR16). |
| // |
| // The worst case is a register class like DPR on ARM. |
| // We have indices dsub_0..dsub_7 projecting into that class. |
| // |
| // It is very common that one register class is a sub-register of the other. |
| // Arrange for RCA to be the larger register so the answer will be found in |
| // the first iteration. This makes the search linear for the most common |
| // case. |
| const TargetRegisterClass *BestRC = 0; |
| unsigned *BestPreA = &PreA; |
| unsigned *BestPreB = &PreB; |
| if (RCA->getSize() < RCB->getSize()) { |
| std::swap(RCA, RCB); |
| std::swap(SubA, SubB); |
| std::swap(BestPreA, BestPreB); |
| } |
| |
| // Also terminate the search one we have found a register class as small as |
| // RCA. |
| unsigned MinSize = RCA->getSize(); |
| |
| for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) { |
| unsigned FinalA = composeSubRegIndices(IA.getSubReg(), SubA); |
| for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) { |
| // Check if a common super-register class exists for this index pair. |
| const TargetRegisterClass *RC = |
| firstCommonClass(IA.getMask(), IB.getMask(), this); |
| if (!RC || RC->getSize() < MinSize) |
| continue; |
| |
| // The indexes must compose identically: PreA+SubA == PreB+SubB. |
| unsigned FinalB = composeSubRegIndices(IB.getSubReg(), SubB); |
| if (FinalA != FinalB) |
| continue; |
| |
| // Is RC a better candidate than BestRC? |
| if (BestRC && RC->getSize() >= BestRC->getSize()) |
| continue; |
| |
| // Yes, RC is the smallest super-register seen so far. |
| BestRC = RC; |
| *BestPreA = IA.getSubReg(); |
| *BestPreB = IB.getSubReg(); |
| |
| // Bail early if we reached MinSize. We won't find a better candidate. |
| if (BestRC->getSize() == MinSize) |
| return BestRC; |
| } |
| } |
| return BestRC; |
| } |
| |
| // Compute target-independent register allocator hints to help eliminate copies. |
| void |
| TargetRegisterInfo::getRegAllocationHints(unsigned VirtReg, |
| ArrayRef<MCPhysReg> Order, |
| SmallVectorImpl<MCPhysReg> &Hints, |
| const MachineFunction &MF, |
| const VirtRegMap *VRM) const { |
| const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| std::pair<unsigned, unsigned> Hint = MRI.getRegAllocationHint(VirtReg); |
| |
| // Hints with HintType != 0 were set by target-dependent code. |
| // Such targets must provide their own implementation of |
| // TRI::getRegAllocationHints to interpret those hint types. |
| assert(Hint.first == 0 && "Target must implement TRI::getRegAllocationHints"); |
| |
| // Target-independent hints are either a physical or a virtual register. |
| unsigned Phys = Hint.second; |
| if (VRM && isVirtualRegister(Phys)) |
| Phys = VRM->getPhys(Phys); |
| |
| // Check that Phys is a valid hint in VirtReg's register class. |
| if (!isPhysicalRegister(Phys)) |
| return; |
| if (MRI.isReserved(Phys)) |
| return; |
| // Check that Phys is in the allocation order. We shouldn't heed hints |
| // from VirtReg's register class if they aren't in the allocation order. The |
| // target probably has a reason for removing the register. |
| if (std::find(Order.begin(), Order.end(), Phys) == Order.end()) |
| return; |
| |
| // All clear, tell the register allocator to prefer this register. |
| Hints.push_back(Phys); |
| } |