| //===-- Constants.cpp - Implement Constant nodes --------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the Constant* classes. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/IR/Constants.h" |
| #include "ConstantFold.h" |
| #include "LLVMContextImpl.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/FoldingSet.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/StringMap.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/GetElementPtrTypeIterator.h" |
| #include "llvm/Support/ManagedStatic.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cstdarg> |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| // Constant Class |
| //===----------------------------------------------------------------------===// |
| |
| void Constant::anchor() { } |
| |
| bool Constant::isNegativeZeroValue() const { |
| // Floating point values have an explicit -0.0 value. |
| if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) |
| return CFP->isZero() && CFP->isNegative(); |
| |
| // Otherwise, just use +0.0. |
| return isNullValue(); |
| } |
| |
| // Return true iff this constant is positive zero (floating point), negative |
| // zero (floating point), or a null value. |
| bool Constant::isZeroValue() const { |
| // Floating point values have an explicit -0.0 value. |
| if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) |
| return CFP->isZero(); |
| |
| // Otherwise, just use +0.0. |
| return isNullValue(); |
| } |
| |
| bool Constant::isNullValue() const { |
| // 0 is null. |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) |
| return CI->isZero(); |
| |
| // +0.0 is null. |
| if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) |
| return CFP->isZero() && !CFP->isNegative(); |
| |
| // constant zero is zero for aggregates and cpnull is null for pointers. |
| return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this); |
| } |
| |
| bool Constant::isAllOnesValue() const { |
| // Check for -1 integers |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) |
| return CI->isMinusOne(); |
| |
| // Check for FP which are bitcasted from -1 integers |
| if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) |
| return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue(); |
| |
| // Check for constant vectors which are splats of -1 values. |
| if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) |
| if (Constant *Splat = CV->getSplatValue()) |
| return Splat->isAllOnesValue(); |
| |
| // Check for constant vectors which are splats of -1 values. |
| if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) |
| if (Constant *Splat = CV->getSplatValue()) |
| return Splat->isAllOnesValue(); |
| |
| return false; |
| } |
| |
| // Constructor to create a '0' constant of arbitrary type... |
| Constant *Constant::getNullValue(Type *Ty) { |
| switch (Ty->getTypeID()) { |
| case Type::IntegerTyID: |
| return ConstantInt::get(Ty, 0); |
| case Type::HalfTyID: |
| return ConstantFP::get(Ty->getContext(), |
| APFloat::getZero(APFloat::IEEEhalf)); |
| case Type::FloatTyID: |
| return ConstantFP::get(Ty->getContext(), |
| APFloat::getZero(APFloat::IEEEsingle)); |
| case Type::DoubleTyID: |
| return ConstantFP::get(Ty->getContext(), |
| APFloat::getZero(APFloat::IEEEdouble)); |
| case Type::X86_FP80TyID: |
| return ConstantFP::get(Ty->getContext(), |
| APFloat::getZero(APFloat::x87DoubleExtended)); |
| case Type::FP128TyID: |
| return ConstantFP::get(Ty->getContext(), |
| APFloat::getZero(APFloat::IEEEquad)); |
| case Type::PPC_FP128TyID: |
| return ConstantFP::get(Ty->getContext(), |
| APFloat(APFloat::PPCDoubleDouble, |
| APInt::getNullValue(128))); |
| case Type::PointerTyID: |
| return ConstantPointerNull::get(cast<PointerType>(Ty)); |
| case Type::StructTyID: |
| case Type::ArrayTyID: |
| case Type::VectorTyID: |
| return ConstantAggregateZero::get(Ty); |
| default: |
| // Function, Label, or Opaque type? |
| llvm_unreachable("Cannot create a null constant of that type!"); |
| } |
| } |
| |
| Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) { |
| Type *ScalarTy = Ty->getScalarType(); |
| |
| // Create the base integer constant. |
| Constant *C = ConstantInt::get(Ty->getContext(), V); |
| |
| // Convert an integer to a pointer, if necessary. |
| if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy)) |
| C = ConstantExpr::getIntToPtr(C, PTy); |
| |
| // Broadcast a scalar to a vector, if necessary. |
| if (VectorType *VTy = dyn_cast<VectorType>(Ty)) |
| C = ConstantVector::getSplat(VTy->getNumElements(), C); |
| |
| return C; |
| } |
| |
| Constant *Constant::getAllOnesValue(Type *Ty) { |
| if (IntegerType *ITy = dyn_cast<IntegerType>(Ty)) |
| return ConstantInt::get(Ty->getContext(), |
| APInt::getAllOnesValue(ITy->getBitWidth())); |
| |
| if (Ty->isFloatingPointTy()) { |
| APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(), |
| !Ty->isPPC_FP128Ty()); |
| return ConstantFP::get(Ty->getContext(), FL); |
| } |
| |
| VectorType *VTy = cast<VectorType>(Ty); |
| return ConstantVector::getSplat(VTy->getNumElements(), |
| getAllOnesValue(VTy->getElementType())); |
| } |
| |
| /// getAggregateElement - For aggregates (struct/array/vector) return the |
| /// constant that corresponds to the specified element if possible, or null if |
| /// not. This can return null if the element index is a ConstantExpr, or if |
| /// 'this' is a constant expr. |
| Constant *Constant::getAggregateElement(unsigned Elt) const { |
| if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this)) |
| return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : 0; |
| |
| if (const ConstantArray *CA = dyn_cast<ConstantArray>(this)) |
| return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : 0; |
| |
| if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) |
| return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : 0; |
| |
| if (const ConstantAggregateZero *CAZ =dyn_cast<ConstantAggregateZero>(this)) |
| return CAZ->getElementValue(Elt); |
| |
| if (const UndefValue *UV = dyn_cast<UndefValue>(this)) |
| return UV->getElementValue(Elt); |
| |
| if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this)) |
| return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) : 0; |
| return 0; |
| } |
| |
| Constant *Constant::getAggregateElement(Constant *Elt) const { |
| assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer"); |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt)) |
| return getAggregateElement(CI->getZExtValue()); |
| return 0; |
| } |
| |
| |
| void Constant::destroyConstantImpl() { |
| // When a Constant is destroyed, there may be lingering |
| // references to the constant by other constants in the constant pool. These |
| // constants are implicitly dependent on the module that is being deleted, |
| // but they don't know that. Because we only find out when the CPV is |
| // deleted, we must now notify all of our users (that should only be |
| // Constants) that they are, in fact, invalid now and should be deleted. |
| // |
| while (!use_empty()) { |
| Value *V = use_back(); |
| #ifndef NDEBUG // Only in -g mode... |
| if (!isa<Constant>(V)) { |
| dbgs() << "While deleting: " << *this |
| << "\n\nUse still stuck around after Def is destroyed: " |
| << *V << "\n\n"; |
| } |
| #endif |
| assert(isa<Constant>(V) && "References remain to Constant being destroyed"); |
| cast<Constant>(V)->destroyConstant(); |
| |
| // The constant should remove itself from our use list... |
| assert((use_empty() || use_back() != V) && "Constant not removed!"); |
| } |
| |
| // Value has no outstanding references it is safe to delete it now... |
| delete this; |
| } |
| |
| /// canTrap - Return true if evaluation of this constant could trap. This is |
| /// true for things like constant expressions that could divide by zero. |
| bool Constant::canTrap() const { |
| assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!"); |
| // The only thing that could possibly trap are constant exprs. |
| const ConstantExpr *CE = dyn_cast<ConstantExpr>(this); |
| if (!CE) return false; |
| |
| // ConstantExpr traps if any operands can trap. |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) |
| if (CE->getOperand(i)->canTrap()) |
| return true; |
| |
| // Otherwise, only specific operations can trap. |
| switch (CE->getOpcode()) { |
| default: |
| return false; |
| case Instruction::UDiv: |
| case Instruction::SDiv: |
| case Instruction::FDiv: |
| case Instruction::URem: |
| case Instruction::SRem: |
| case Instruction::FRem: |
| // Div and rem can trap if the RHS is not known to be non-zero. |
| if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue()) |
| return true; |
| return false; |
| } |
| } |
| |
| /// isThreadDependent - Return true if the value can vary between threads. |
| bool Constant::isThreadDependent() const { |
| SmallPtrSet<const Constant*, 64> Visited; |
| SmallVector<const Constant*, 64> WorkList; |
| WorkList.push_back(this); |
| Visited.insert(this); |
| |
| while (!WorkList.empty()) { |
| const Constant *C = WorkList.pop_back_val(); |
| |
| if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) { |
| if (GV->isThreadLocal()) |
| return true; |
| } |
| |
| for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) { |
| const Constant *D = dyn_cast<Constant>(C->getOperand(I)); |
| if (!D) |
| continue; |
| if (Visited.insert(D)) |
| WorkList.push_back(D); |
| } |
| } |
| |
| return false; |
| } |
| |
| /// isConstantUsed - Return true if the constant has users other than constant |
| /// exprs and other dangling things. |
| bool Constant::isConstantUsed() const { |
| for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { |
| const Constant *UC = dyn_cast<Constant>(*UI); |
| if (UC == 0 || isa<GlobalValue>(UC)) |
| return true; |
| |
| if (UC->isConstantUsed()) |
| return true; |
| } |
| return false; |
| } |
| |
| |
| |
| /// getRelocationInfo - This method classifies the entry according to |
| /// whether or not it may generate a relocation entry. This must be |
| /// conservative, so if it might codegen to a relocatable entry, it should say |
| /// so. The return values are: |
| /// |
| /// NoRelocation: This constant pool entry is guaranteed to never have a |
| /// relocation applied to it (because it holds a simple constant like |
| /// '4'). |
| /// LocalRelocation: This entry has relocations, but the entries are |
| /// guaranteed to be resolvable by the static linker, so the dynamic |
| /// linker will never see them. |
| /// GlobalRelocations: This entry may have arbitrary relocations. |
| /// |
| /// FIXME: This really should not be in IR. |
| Constant::PossibleRelocationsTy Constant::getRelocationInfo() const { |
| if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) { |
| if (GV->hasLocalLinkage() || GV->hasHiddenVisibility()) |
| return LocalRelocation; // Local to this file/library. |
| return GlobalRelocations; // Global reference. |
| } |
| |
| if (const BlockAddress *BA = dyn_cast<BlockAddress>(this)) |
| return BA->getFunction()->getRelocationInfo(); |
| |
| // While raw uses of blockaddress need to be relocated, differences between |
| // two of them don't when they are for labels in the same function. This is a |
| // common idiom when creating a table for the indirect goto extension, so we |
| // handle it efficiently here. |
| if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) |
| if (CE->getOpcode() == Instruction::Sub) { |
| ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0)); |
| ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1)); |
| if (LHS && RHS && |
| LHS->getOpcode() == Instruction::PtrToInt && |
| RHS->getOpcode() == Instruction::PtrToInt && |
| isa<BlockAddress>(LHS->getOperand(0)) && |
| isa<BlockAddress>(RHS->getOperand(0)) && |
| cast<BlockAddress>(LHS->getOperand(0))->getFunction() == |
| cast<BlockAddress>(RHS->getOperand(0))->getFunction()) |
| return NoRelocation; |
| } |
| |
| PossibleRelocationsTy Result = NoRelocation; |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) |
| Result = std::max(Result, |
| cast<Constant>(getOperand(i))->getRelocationInfo()); |
| |
| return Result; |
| } |
| |
| /// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove |
| /// it. This involves recursively eliminating any dead users of the |
| /// constantexpr. |
| static bool removeDeadUsersOfConstant(const Constant *C) { |
| if (isa<GlobalValue>(C)) return false; // Cannot remove this |
| |
| while (!C->use_empty()) { |
| const Constant *User = dyn_cast<Constant>(C->use_back()); |
| if (!User) return false; // Non-constant usage; |
| if (!removeDeadUsersOfConstant(User)) |
| return false; // Constant wasn't dead |
| } |
| |
| const_cast<Constant*>(C)->destroyConstant(); |
| return true; |
| } |
| |
| |
| /// removeDeadConstantUsers - If there are any dead constant users dangling |
| /// off of this constant, remove them. This method is useful for clients |
| /// that want to check to see if a global is unused, but don't want to deal |
| /// with potentially dead constants hanging off of the globals. |
| void Constant::removeDeadConstantUsers() const { |
| Value::const_use_iterator I = use_begin(), E = use_end(); |
| Value::const_use_iterator LastNonDeadUser = E; |
| while (I != E) { |
| const Constant *User = dyn_cast<Constant>(*I); |
| if (User == 0) { |
| LastNonDeadUser = I; |
| ++I; |
| continue; |
| } |
| |
| if (!removeDeadUsersOfConstant(User)) { |
| // If the constant wasn't dead, remember that this was the last live use |
| // and move on to the next constant. |
| LastNonDeadUser = I; |
| ++I; |
| continue; |
| } |
| |
| // If the constant was dead, then the iterator is invalidated. |
| if (LastNonDeadUser == E) { |
| I = use_begin(); |
| if (I == E) break; |
| } else { |
| I = LastNonDeadUser; |
| ++I; |
| } |
| } |
| } |
| |
| |
| |
| //===----------------------------------------------------------------------===// |
| // ConstantInt |
| //===----------------------------------------------------------------------===// |
| |
| void ConstantInt::anchor() { } |
| |
| ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V) |
| : Constant(Ty, ConstantIntVal, 0, 0), Val(V) { |
| assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type"); |
| } |
| |
| ConstantInt *ConstantInt::getTrue(LLVMContext &Context) { |
| LLVMContextImpl *pImpl = Context.pImpl; |
| if (!pImpl->TheTrueVal) |
| pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1); |
| return pImpl->TheTrueVal; |
| } |
| |
| ConstantInt *ConstantInt::getFalse(LLVMContext &Context) { |
| LLVMContextImpl *pImpl = Context.pImpl; |
| if (!pImpl->TheFalseVal) |
| pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0); |
| return pImpl->TheFalseVal; |
| } |
| |
| Constant *ConstantInt::getTrue(Type *Ty) { |
| VectorType *VTy = dyn_cast<VectorType>(Ty); |
| if (!VTy) { |
| assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1."); |
| return ConstantInt::getTrue(Ty->getContext()); |
| } |
| assert(VTy->getElementType()->isIntegerTy(1) && |
| "True must be vector of i1 or i1."); |
| return ConstantVector::getSplat(VTy->getNumElements(), |
| ConstantInt::getTrue(Ty->getContext())); |
| } |
| |
| Constant *ConstantInt::getFalse(Type *Ty) { |
| VectorType *VTy = dyn_cast<VectorType>(Ty); |
| if (!VTy) { |
| assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1."); |
| return ConstantInt::getFalse(Ty->getContext()); |
| } |
| assert(VTy->getElementType()->isIntegerTy(1) && |
| "False must be vector of i1 or i1."); |
| return ConstantVector::getSplat(VTy->getNumElements(), |
| ConstantInt::getFalse(Ty->getContext())); |
| } |
| |
| |
| // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap |
| // as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the |
| // operator== and operator!= to ensure that the DenseMap doesn't attempt to |
| // compare APInt's of different widths, which would violate an APInt class |
| // invariant which generates an assertion. |
| ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) { |
| // Get the corresponding integer type for the bit width of the value. |
| IntegerType *ITy = IntegerType::get(Context, V.getBitWidth()); |
| // get an existing value or the insertion position |
| DenseMapAPIntKeyInfo::KeyTy Key(V, ITy); |
| ConstantInt *&Slot = Context.pImpl->IntConstants[Key]; |
| if (!Slot) Slot = new ConstantInt(ITy, V); |
| return Slot; |
| } |
| |
| Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) { |
| Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned); |
| |
| // For vectors, broadcast the value. |
| if (VectorType *VTy = dyn_cast<VectorType>(Ty)) |
| return ConstantVector::getSplat(VTy->getNumElements(), C); |
| |
| return C; |
| } |
| |
| ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, |
| bool isSigned) { |
| return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned)); |
| } |
| |
| ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) { |
| return get(Ty, V, true); |
| } |
| |
| Constant *ConstantInt::getSigned(Type *Ty, int64_t V) { |
| return get(Ty, V, true); |
| } |
| |
| Constant *ConstantInt::get(Type *Ty, const APInt& V) { |
| ConstantInt *C = get(Ty->getContext(), V); |
| assert(C->getType() == Ty->getScalarType() && |
| "ConstantInt type doesn't match the type implied by its value!"); |
| |
| // For vectors, broadcast the value. |
| if (VectorType *VTy = dyn_cast<VectorType>(Ty)) |
| return ConstantVector::getSplat(VTy->getNumElements(), C); |
| |
| return C; |
| } |
| |
| ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, |
| uint8_t radix) { |
| return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ConstantFP |
| //===----------------------------------------------------------------------===// |
| |
| static const fltSemantics *TypeToFloatSemantics(Type *Ty) { |
| if (Ty->isHalfTy()) |
| return &APFloat::IEEEhalf; |
| if (Ty->isFloatTy()) |
| return &APFloat::IEEEsingle; |
| if (Ty->isDoubleTy()) |
| return &APFloat::IEEEdouble; |
| if (Ty->isX86_FP80Ty()) |
| return &APFloat::x87DoubleExtended; |
| else if (Ty->isFP128Ty()) |
| return &APFloat::IEEEquad; |
| |
| assert(Ty->isPPC_FP128Ty() && "Unknown FP format"); |
| return &APFloat::PPCDoubleDouble; |
| } |
| |
| void ConstantFP::anchor() { } |
| |
| /// get() - This returns a constant fp for the specified value in the |
| /// specified type. This should only be used for simple constant values like |
| /// 2.0/1.0 etc, that are known-valid both as double and as the target format. |
| Constant *ConstantFP::get(Type *Ty, double V) { |
| LLVMContext &Context = Ty->getContext(); |
| |
| APFloat FV(V); |
| bool ignored; |
| FV.convert(*TypeToFloatSemantics(Ty->getScalarType()), |
| APFloat::rmNearestTiesToEven, &ignored); |
| Constant *C = get(Context, FV); |
| |
| // For vectors, broadcast the value. |
| if (VectorType *VTy = dyn_cast<VectorType>(Ty)) |
| return ConstantVector::getSplat(VTy->getNumElements(), C); |
| |
| return C; |
| } |
| |
| |
| Constant *ConstantFP::get(Type *Ty, StringRef Str) { |
| LLVMContext &Context = Ty->getContext(); |
| |
| APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str); |
| Constant *C = get(Context, FV); |
| |
| // For vectors, broadcast the value. |
| if (VectorType *VTy = dyn_cast<VectorType>(Ty)) |
| return ConstantVector::getSplat(VTy->getNumElements(), C); |
| |
| return C; |
| } |
| |
| |
| ConstantFP *ConstantFP::getNegativeZero(Type *Ty) { |
| LLVMContext &Context = Ty->getContext(); |
| APFloat apf = cast<ConstantFP>(Constant::getNullValue(Ty))->getValueAPF(); |
| apf.changeSign(); |
| return get(Context, apf); |
| } |
| |
| |
| Constant *ConstantFP::getZeroValueForNegation(Type *Ty) { |
| Type *ScalarTy = Ty->getScalarType(); |
| if (ScalarTy->isFloatingPointTy()) { |
| Constant *C = getNegativeZero(ScalarTy); |
| if (VectorType *VTy = dyn_cast<VectorType>(Ty)) |
| return ConstantVector::getSplat(VTy->getNumElements(), C); |
| return C; |
| } |
| |
| return Constant::getNullValue(Ty); |
| } |
| |
| |
| // ConstantFP accessors. |
| ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) { |
| DenseMapAPFloatKeyInfo::KeyTy Key(V); |
| |
| LLVMContextImpl* pImpl = Context.pImpl; |
| |
| ConstantFP *&Slot = pImpl->FPConstants[Key]; |
| |
| if (!Slot) { |
| Type *Ty; |
| if (&V.getSemantics() == &APFloat::IEEEhalf) |
| Ty = Type::getHalfTy(Context); |
| else if (&V.getSemantics() == &APFloat::IEEEsingle) |
| Ty = Type::getFloatTy(Context); |
| else if (&V.getSemantics() == &APFloat::IEEEdouble) |
| Ty = Type::getDoubleTy(Context); |
| else if (&V.getSemantics() == &APFloat::x87DoubleExtended) |
| Ty = Type::getX86_FP80Ty(Context); |
| else if (&V.getSemantics() == &APFloat::IEEEquad) |
| Ty = Type::getFP128Ty(Context); |
| else { |
| assert(&V.getSemantics() == &APFloat::PPCDoubleDouble && |
| "Unknown FP format"); |
| Ty = Type::getPPC_FP128Ty(Context); |
| } |
| Slot = new ConstantFP(Ty, V); |
| } |
| |
| return Slot; |
| } |
| |
| ConstantFP *ConstantFP::getInfinity(Type *Ty, bool Negative) { |
| const fltSemantics &Semantics = *TypeToFloatSemantics(Ty); |
| return ConstantFP::get(Ty->getContext(), |
| APFloat::getInf(Semantics, Negative)); |
| } |
| |
| ConstantFP::ConstantFP(Type *Ty, const APFloat& V) |
| : Constant(Ty, ConstantFPVal, 0, 0), Val(V) { |
| assert(&V.getSemantics() == TypeToFloatSemantics(Ty) && |
| "FP type Mismatch"); |
| } |
| |
| bool ConstantFP::isExactlyValue(const APFloat &V) const { |
| return Val.bitwiseIsEqual(V); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ConstantAggregateZero Implementation |
| //===----------------------------------------------------------------------===// |
| |
| /// getSequentialElement - If this CAZ has array or vector type, return a zero |
| /// with the right element type. |
| Constant *ConstantAggregateZero::getSequentialElement() const { |
| return Constant::getNullValue(getType()->getSequentialElementType()); |
| } |
| |
| /// getStructElement - If this CAZ has struct type, return a zero with the |
| /// right element type for the specified element. |
| Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const { |
| return Constant::getNullValue(getType()->getStructElementType(Elt)); |
| } |
| |
| /// getElementValue - Return a zero of the right value for the specified GEP |
| /// index if we can, otherwise return null (e.g. if C is a ConstantExpr). |
| Constant *ConstantAggregateZero::getElementValue(Constant *C) const { |
| if (isa<SequentialType>(getType())) |
| return getSequentialElement(); |
| return getStructElement(cast<ConstantInt>(C)->getZExtValue()); |
| } |
| |
| /// getElementValue - Return a zero of the right value for the specified GEP |
| /// index. |
| Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const { |
| if (isa<SequentialType>(getType())) |
| return getSequentialElement(); |
| return getStructElement(Idx); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // UndefValue Implementation |
| //===----------------------------------------------------------------------===// |
| |
| /// getSequentialElement - If this undef has array or vector type, return an |
| /// undef with the right element type. |
| UndefValue *UndefValue::getSequentialElement() const { |
| return UndefValue::get(getType()->getSequentialElementType()); |
| } |
| |
| /// getStructElement - If this undef has struct type, return a zero with the |
| /// right element type for the specified element. |
| UndefValue *UndefValue::getStructElement(unsigned Elt) const { |
| return UndefValue::get(getType()->getStructElementType(Elt)); |
| } |
| |
| /// getElementValue - Return an undef of the right value for the specified GEP |
| /// index if we can, otherwise return null (e.g. if C is a ConstantExpr). |
| UndefValue *UndefValue::getElementValue(Constant *C) const { |
| if (isa<SequentialType>(getType())) |
| return getSequentialElement(); |
| return getStructElement(cast<ConstantInt>(C)->getZExtValue()); |
| } |
| |
| /// getElementValue - Return an undef of the right value for the specified GEP |
| /// index. |
| UndefValue *UndefValue::getElementValue(unsigned Idx) const { |
| if (isa<SequentialType>(getType())) |
| return getSequentialElement(); |
| return getStructElement(Idx); |
| } |
| |
| |
| |
| //===----------------------------------------------------------------------===// |
| // ConstantXXX Classes |
| //===----------------------------------------------------------------------===// |
| |
| template <typename ItTy, typename EltTy> |
| static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) { |
| for (; Start != End; ++Start) |
| if (*Start != Elt) |
| return false; |
| return true; |
| } |
| |
| ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V) |
| : Constant(T, ConstantArrayVal, |
| OperandTraits<ConstantArray>::op_end(this) - V.size(), |
| V.size()) { |
| assert(V.size() == T->getNumElements() && |
| "Invalid initializer vector for constant array"); |
| for (unsigned i = 0, e = V.size(); i != e; ++i) |
| assert(V[i]->getType() == T->getElementType() && |
| "Initializer for array element doesn't match array element type!"); |
| std::copy(V.begin(), V.end(), op_begin()); |
| } |
| |
| Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) { |
| // Empty arrays are canonicalized to ConstantAggregateZero. |
| if (V.empty()) |
| return ConstantAggregateZero::get(Ty); |
| |
| for (unsigned i = 0, e = V.size(); i != e; ++i) { |
| assert(V[i]->getType() == Ty->getElementType() && |
| "Wrong type in array element initializer"); |
| } |
| LLVMContextImpl *pImpl = Ty->getContext().pImpl; |
| |
| // If this is an all-zero array, return a ConstantAggregateZero object. If |
| // all undef, return an UndefValue, if "all simple", then return a |
| // ConstantDataArray. |
| Constant *C = V[0]; |
| if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C)) |
| return UndefValue::get(Ty); |
| |
| if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C)) |
| return ConstantAggregateZero::get(Ty); |
| |
| // Check to see if all of the elements are ConstantFP or ConstantInt and if |
| // the element type is compatible with ConstantDataVector. If so, use it. |
| if (ConstantDataSequential::isElementTypeCompatible(C->getType())) { |
| // We speculatively build the elements here even if it turns out that there |
| // is a constantexpr or something else weird in the array, since it is so |
| // uncommon for that to happen. |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { |
| if (CI->getType()->isIntegerTy(8)) { |
| SmallVector<uint8_t, 16> Elts; |
| for (unsigned i = 0, e = V.size(); i != e; ++i) |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) |
| Elts.push_back(CI->getZExtValue()); |
| else |
| break; |
| if (Elts.size() == V.size()) |
| return ConstantDataArray::get(C->getContext(), Elts); |
| } else if (CI->getType()->isIntegerTy(16)) { |
| SmallVector<uint16_t, 16> Elts; |
| for (unsigned i = 0, e = V.size(); i != e; ++i) |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) |
| Elts.push_back(CI->getZExtValue()); |
| else |
| break; |
| if (Elts.size() == V.size()) |
| return ConstantDataArray::get(C->getContext(), Elts); |
| } else if (CI->getType()->isIntegerTy(32)) { |
| SmallVector<uint32_t, 16> Elts; |
| for (unsigned i = 0, e = V.size(); i != e; ++i) |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) |
| Elts.push_back(CI->getZExtValue()); |
| else |
| break; |
| if (Elts.size() == V.size()) |
| return ConstantDataArray::get(C->getContext(), Elts); |
| } else if (CI->getType()->isIntegerTy(64)) { |
| SmallVector<uint64_t, 16> Elts; |
| for (unsigned i = 0, e = V.size(); i != e; ++i) |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) |
| Elts.push_back(CI->getZExtValue()); |
| else |
| break; |
| if (Elts.size() == V.size()) |
| return ConstantDataArray::get(C->getContext(), Elts); |
| } |
| } |
| |
| if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { |
| if (CFP->getType()->isFloatTy()) { |
| SmallVector<float, 16> Elts; |
| for (unsigned i = 0, e = V.size(); i != e; ++i) |
| if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i])) |
| Elts.push_back(CFP->getValueAPF().convertToFloat()); |
| else |
| break; |
| if (Elts.size() == V.size()) |
| return ConstantDataArray::get(C->getContext(), Elts); |
| } else if (CFP->getType()->isDoubleTy()) { |
| SmallVector<double, 16> Elts; |
| for (unsigned i = 0, e = V.size(); i != e; ++i) |
| if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i])) |
| Elts.push_back(CFP->getValueAPF().convertToDouble()); |
| else |
| break; |
| if (Elts.size() == V.size()) |
| return ConstantDataArray::get(C->getContext(), Elts); |
| } |
| } |
| } |
| |
| // Otherwise, we really do want to create a ConstantArray. |
| return pImpl->ArrayConstants.getOrCreate(Ty, V); |
| } |
| |
| /// getTypeForElements - Return an anonymous struct type to use for a constant |
| /// with the specified set of elements. The list must not be empty. |
| StructType *ConstantStruct::getTypeForElements(LLVMContext &Context, |
| ArrayRef<Constant*> V, |
| bool Packed) { |
| unsigned VecSize = V.size(); |
| SmallVector<Type*, 16> EltTypes(VecSize); |
| for (unsigned i = 0; i != VecSize; ++i) |
| EltTypes[i] = V[i]->getType(); |
| |
| return StructType::get(Context, EltTypes, Packed); |
| } |
| |
| |
| StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V, |
| bool Packed) { |
| assert(!V.empty() && |
| "ConstantStruct::getTypeForElements cannot be called on empty list"); |
| return getTypeForElements(V[0]->getContext(), V, Packed); |
| } |
| |
| |
| ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V) |
| : Constant(T, ConstantStructVal, |
| OperandTraits<ConstantStruct>::op_end(this) - V.size(), |
| V.size()) { |
| assert(V.size() == T->getNumElements() && |
| "Invalid initializer vector for constant structure"); |
| for (unsigned i = 0, e = V.size(); i != e; ++i) |
| assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) && |
| "Initializer for struct element doesn't match struct element type!"); |
| std::copy(V.begin(), V.end(), op_begin()); |
| } |
| |
| // ConstantStruct accessors. |
| Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) { |
| assert((ST->isOpaque() || ST->getNumElements() == V.size()) && |
| "Incorrect # elements specified to ConstantStruct::get"); |
| |
| // Create a ConstantAggregateZero value if all elements are zeros. |
| bool isZero = true; |
| bool isUndef = false; |
| |
| if (!V.empty()) { |
| isUndef = isa<UndefValue>(V[0]); |
| isZero = V[0]->isNullValue(); |
| if (isUndef || isZero) { |
| for (unsigned i = 0, e = V.size(); i != e; ++i) { |
| if (!V[i]->isNullValue()) |
| isZero = false; |
| if (!isa<UndefValue>(V[i])) |
| isUndef = false; |
| } |
| } |
| } |
| if (isZero) |
| return ConstantAggregateZero::get(ST); |
| if (isUndef) |
| return UndefValue::get(ST); |
| |
| return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V); |
| } |
| |
| Constant *ConstantStruct::get(StructType *T, ...) { |
| va_list ap; |
| SmallVector<Constant*, 8> Values; |
| va_start(ap, T); |
| while (Constant *Val = va_arg(ap, llvm::Constant*)) |
| Values.push_back(Val); |
| va_end(ap); |
| return get(T, Values); |
| } |
| |
| ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V) |
| : Constant(T, ConstantVectorVal, |
| OperandTraits<ConstantVector>::op_end(this) - V.size(), |
| V.size()) { |
| for (size_t i = 0, e = V.size(); i != e; i++) |
| assert(V[i]->getType() == T->getElementType() && |
| "Initializer for vector element doesn't match vector element type!"); |
| std::copy(V.begin(), V.end(), op_begin()); |
| } |
| |
| // ConstantVector accessors. |
| Constant *ConstantVector::get(ArrayRef<Constant*> V) { |
| assert(!V.empty() && "Vectors can't be empty"); |
| VectorType *T = VectorType::get(V.front()->getType(), V.size()); |
| LLVMContextImpl *pImpl = T->getContext().pImpl; |
| |
| // If this is an all-undef or all-zero vector, return a |
| // ConstantAggregateZero or UndefValue. |
| Constant *C = V[0]; |
| bool isZero = C->isNullValue(); |
| bool isUndef = isa<UndefValue>(C); |
| |
| if (isZero || isUndef) { |
| for (unsigned i = 1, e = V.size(); i != e; ++i) |
| if (V[i] != C) { |
| isZero = isUndef = false; |
| break; |
| } |
| } |
| |
| if (isZero) |
| return ConstantAggregateZero::get(T); |
| if (isUndef) |
| return UndefValue::get(T); |
| |
| // Check to see if all of the elements are ConstantFP or ConstantInt and if |
| // the element type is compatible with ConstantDataVector. If so, use it. |
| if (ConstantDataSequential::isElementTypeCompatible(C->getType())) { |
| // We speculatively build the elements here even if it turns out that there |
| // is a constantexpr or something else weird in the array, since it is so |
| // uncommon for that to happen. |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { |
| if (CI->getType()->isIntegerTy(8)) { |
| SmallVector<uint8_t, 16> Elts; |
| for (unsigned i = 0, e = V.size(); i != e; ++i) |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) |
| Elts.push_back(CI->getZExtValue()); |
| else |
| break; |
| if (Elts.size() == V.size()) |
| return ConstantDataVector::get(C->getContext(), Elts); |
| } else if (CI->getType()->isIntegerTy(16)) { |
| SmallVector<uint16_t, 16> Elts; |
| for (unsigned i = 0, e = V.size(); i != e; ++i) |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) |
| Elts.push_back(CI->getZExtValue()); |
| else |
| break; |
| if (Elts.size() == V.size()) |
| return ConstantDataVector::get(C->getContext(), Elts); |
| } else if (CI->getType()->isIntegerTy(32)) { |
| SmallVector<uint32_t, 16> Elts; |
| for (unsigned i = 0, e = V.size(); i != e; ++i) |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) |
| Elts.push_back(CI->getZExtValue()); |
| else |
| break; |
| if (Elts.size() == V.size()) |
| return ConstantDataVector::get(C->getContext(), Elts); |
| } else if (CI->getType()->isIntegerTy(64)) { |
| SmallVector<uint64_t, 16> Elts; |
| for (unsigned i = 0, e = V.size(); i != e; ++i) |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) |
| Elts.push_back(CI->getZExtValue()); |
| else |
| break; |
| if (Elts.size() == V.size()) |
| return ConstantDataVector::get(C->getContext(), Elts); |
| } |
| } |
| |
| if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { |
| if (CFP->getType()->isFloatTy()) { |
| SmallVector<float, 16> Elts; |
| for (unsigned i = 0, e = V.size(); i != e; ++i) |
| if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i])) |
| Elts.push_back(CFP->getValueAPF().convertToFloat()); |
| else |
| break; |
| if (Elts.size() == V.size()) |
| return ConstantDataVector::get(C->getContext(), Elts); |
| } else if (CFP->getType()->isDoubleTy()) { |
| SmallVector<double, 16> Elts; |
| for (unsigned i = 0, e = V.size(); i != e; ++i) |
| if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i])) |
| Elts.push_back(CFP->getValueAPF().convertToDouble()); |
| else |
| break; |
| if (Elts.size() == V.size()) |
| return ConstantDataVector::get(C->getContext(), Elts); |
| } |
| } |
| } |
| |
| // Otherwise, the element type isn't compatible with ConstantDataVector, or |
| // the operand list constants a ConstantExpr or something else strange. |
| return pImpl->VectorConstants.getOrCreate(T, V); |
| } |
| |
| Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) { |
| // If this splat is compatible with ConstantDataVector, use it instead of |
| // ConstantVector. |
| if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) && |
| ConstantDataSequential::isElementTypeCompatible(V->getType())) |
| return ConstantDataVector::getSplat(NumElts, V); |
| |
| SmallVector<Constant*, 32> Elts(NumElts, V); |
| return get(Elts); |
| } |
| |
| |
| // Utility function for determining if a ConstantExpr is a CastOp or not. This |
| // can't be inline because we don't want to #include Instruction.h into |
| // Constant.h |
| bool ConstantExpr::isCast() const { |
| return Instruction::isCast(getOpcode()); |
| } |
| |
| bool ConstantExpr::isCompare() const { |
| return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp; |
| } |
| |
| bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const { |
| if (getOpcode() != Instruction::GetElementPtr) return false; |
| |
| gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this); |
| User::const_op_iterator OI = llvm::next(this->op_begin()); |
| |
| // Skip the first index, as it has no static limit. |
| ++GEPI; |
| ++OI; |
| |
| // The remaining indices must be compile-time known integers within the |
| // bounds of the corresponding notional static array types. |
| for (; GEPI != E; ++GEPI, ++OI) { |
| ConstantInt *CI = dyn_cast<ConstantInt>(*OI); |
| if (!CI) return false; |
| if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI)) |
| if (CI->getValue().getActiveBits() > 64 || |
| CI->getZExtValue() >= ATy->getNumElements()) |
| return false; |
| } |
| |
| // All the indices checked out. |
| return true; |
| } |
| |
| bool ConstantExpr::hasIndices() const { |
| return getOpcode() == Instruction::ExtractValue || |
| getOpcode() == Instruction::InsertValue; |
| } |
| |
| ArrayRef<unsigned> ConstantExpr::getIndices() const { |
| if (const ExtractValueConstantExpr *EVCE = |
| dyn_cast<ExtractValueConstantExpr>(this)) |
| return EVCE->Indices; |
| |
| return cast<InsertValueConstantExpr>(this)->Indices; |
| } |
| |
| unsigned ConstantExpr::getPredicate() const { |
| assert(isCompare()); |
| return ((const CompareConstantExpr*)this)->predicate; |
| } |
| |
| /// getWithOperandReplaced - Return a constant expression identical to this |
| /// one, but with the specified operand set to the specified value. |
| Constant * |
| ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const { |
| assert(Op->getType() == getOperand(OpNo)->getType() && |
| "Replacing operand with value of different type!"); |
| if (getOperand(OpNo) == Op) |
| return const_cast<ConstantExpr*>(this); |
| |
| SmallVector<Constant*, 8> NewOps; |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) |
| NewOps.push_back(i == OpNo ? Op : getOperand(i)); |
| |
| return getWithOperands(NewOps); |
| } |
| |
| /// getWithOperands - This returns the current constant expression with the |
| /// operands replaced with the specified values. The specified array must |
| /// have the same number of operands as our current one. |
| Constant *ConstantExpr:: |
| getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const { |
| assert(Ops.size() == getNumOperands() && "Operand count mismatch!"); |
| bool AnyChange = Ty != getType(); |
| for (unsigned i = 0; i != Ops.size(); ++i) |
| AnyChange |= Ops[i] != getOperand(i); |
| |
| if (!AnyChange) // No operands changed, return self. |
| return const_cast<ConstantExpr*>(this); |
| |
| switch (getOpcode()) { |
| case Instruction::Trunc: |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| case Instruction::FPTrunc: |
| case Instruction::FPExt: |
| case Instruction::UIToFP: |
| case Instruction::SIToFP: |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: |
| case Instruction::PtrToInt: |
| case Instruction::IntToPtr: |
| case Instruction::BitCast: |
| return ConstantExpr::getCast(getOpcode(), Ops[0], Ty); |
| case Instruction::Select: |
| return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]); |
| case Instruction::InsertElement: |
| return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); |
| case Instruction::ExtractElement: |
| return ConstantExpr::getExtractElement(Ops[0], Ops[1]); |
| case Instruction::InsertValue: |
| return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices()); |
| case Instruction::ExtractValue: |
| return ConstantExpr::getExtractValue(Ops[0], getIndices()); |
| case Instruction::ShuffleVector: |
| return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]); |
| case Instruction::GetElementPtr: |
| return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1), |
| cast<GEPOperator>(this)->isInBounds()); |
| case Instruction::ICmp: |
| case Instruction::FCmp: |
| return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]); |
| default: |
| assert(getNumOperands() == 2 && "Must be binary operator?"); |
| return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData); |
| } |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // isValueValidForType implementations |
| |
| bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) { |
| unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay |
| if (Ty->isIntegerTy(1)) |
| return Val == 0 || Val == 1; |
| if (NumBits >= 64) |
| return true; // always true, has to fit in largest type |
| uint64_t Max = (1ll << NumBits) - 1; |
| return Val <= Max; |
| } |
| |
| bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) { |
| unsigned NumBits = Ty->getIntegerBitWidth(); |
| if (Ty->isIntegerTy(1)) |
| return Val == 0 || Val == 1 || Val == -1; |
| if (NumBits >= 64) |
| return true; // always true, has to fit in largest type |
| int64_t Min = -(1ll << (NumBits-1)); |
| int64_t Max = (1ll << (NumBits-1)) - 1; |
| return (Val >= Min && Val <= Max); |
| } |
| |
| bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) { |
| // convert modifies in place, so make a copy. |
| APFloat Val2 = APFloat(Val); |
| bool losesInfo; |
| switch (Ty->getTypeID()) { |
| default: |
| return false; // These can't be represented as floating point! |
| |
| // FIXME rounding mode needs to be more flexible |
| case Type::HalfTyID: { |
| if (&Val2.getSemantics() == &APFloat::IEEEhalf) |
| return true; |
| Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo); |
| return !losesInfo; |
| } |
| case Type::FloatTyID: { |
| if (&Val2.getSemantics() == &APFloat::IEEEsingle) |
| return true; |
| Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo); |
| return !losesInfo; |
| } |
| case Type::DoubleTyID: { |
| if (&Val2.getSemantics() == &APFloat::IEEEhalf || |
| &Val2.getSemantics() == &APFloat::IEEEsingle || |
| &Val2.getSemantics() == &APFloat::IEEEdouble) |
| return true; |
| Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo); |
| return !losesInfo; |
| } |
| case Type::X86_FP80TyID: |
| return &Val2.getSemantics() == &APFloat::IEEEhalf || |
| &Val2.getSemantics() == &APFloat::IEEEsingle || |
| &Val2.getSemantics() == &APFloat::IEEEdouble || |
| &Val2.getSemantics() == &APFloat::x87DoubleExtended; |
| case Type::FP128TyID: |
| return &Val2.getSemantics() == &APFloat::IEEEhalf || |
| &Val2.getSemantics() == &APFloat::IEEEsingle || |
| &Val2.getSemantics() == &APFloat::IEEEdouble || |
| &Val2.getSemantics() == &APFloat::IEEEquad; |
| case Type::PPC_FP128TyID: |
| return &Val2.getSemantics() == &APFloat::IEEEhalf || |
| &Val2.getSemantics() == &APFloat::IEEEsingle || |
| &Val2.getSemantics() == &APFloat::IEEEdouble || |
| &Val2.getSemantics() == &APFloat::PPCDoubleDouble; |
| } |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Factory Function Implementation |
| |
| ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) { |
| assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) && |
| "Cannot create an aggregate zero of non-aggregate type!"); |
| |
| ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty]; |
| if (Entry == 0) |
| Entry = new ConstantAggregateZero(Ty); |
| |
| return Entry; |
| } |
| |
| /// destroyConstant - Remove the constant from the constant table. |
| /// |
| void ConstantAggregateZero::destroyConstant() { |
| getContext().pImpl->CAZConstants.erase(getType()); |
| destroyConstantImpl(); |
| } |
| |
| /// destroyConstant - Remove the constant from the constant table... |
| /// |
| void ConstantArray::destroyConstant() { |
| getType()->getContext().pImpl->ArrayConstants.remove(this); |
| destroyConstantImpl(); |
| } |
| |
| |
| //---- ConstantStruct::get() implementation... |
| // |
| |
| // destroyConstant - Remove the constant from the constant table... |
| // |
| void ConstantStruct::destroyConstant() { |
| getType()->getContext().pImpl->StructConstants.remove(this); |
| destroyConstantImpl(); |
| } |
| |
| // destroyConstant - Remove the constant from the constant table... |
| // |
| void ConstantVector::destroyConstant() { |
| getType()->getContext().pImpl->VectorConstants.remove(this); |
| destroyConstantImpl(); |
| } |
| |
| /// getSplatValue - If this is a splat vector constant, meaning that all of |
| /// the elements have the same value, return that value. Otherwise return 0. |
| Constant *Constant::getSplatValue() const { |
| assert(this->getType()->isVectorTy() && "Only valid for vectors!"); |
| if (isa<ConstantAggregateZero>(this)) |
| return getNullValue(this->getType()->getVectorElementType()); |
| if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) |
| return CV->getSplatValue(); |
| if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) |
| return CV->getSplatValue(); |
| return 0; |
| } |
| |
| /// getSplatValue - If this is a splat constant, where all of the |
| /// elements have the same value, return that value. Otherwise return null. |
| Constant *ConstantVector::getSplatValue() const { |
| // Check out first element. |
| Constant *Elt = getOperand(0); |
| // Then make sure all remaining elements point to the same value. |
| for (unsigned I = 1, E = getNumOperands(); I < E; ++I) |
| if (getOperand(I) != Elt) |
| return 0; |
| return Elt; |
| } |
| |
| /// If C is a constant integer then return its value, otherwise C must be a |
| /// vector of constant integers, all equal, and the common value is returned. |
| const APInt &Constant::getUniqueInteger() const { |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) |
| return CI->getValue(); |
| assert(this->getSplatValue() && "Doesn't contain a unique integer!"); |
| const Constant *C = this->getAggregateElement(0U); |
| assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!"); |
| return cast<ConstantInt>(C)->getValue(); |
| } |
| |
| |
| //---- ConstantPointerNull::get() implementation. |
| // |
| |
| ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) { |
| ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty]; |
| if (Entry == 0) |
| Entry = new ConstantPointerNull(Ty); |
| |
| return Entry; |
| } |
| |
| // destroyConstant - Remove the constant from the constant table... |
| // |
| void ConstantPointerNull::destroyConstant() { |
| getContext().pImpl->CPNConstants.erase(getType()); |
| // Free the constant and any dangling references to it. |
| destroyConstantImpl(); |
| } |
| |
| |
| //---- UndefValue::get() implementation. |
| // |
| |
| UndefValue *UndefValue::get(Type *Ty) { |
| UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty]; |
| if (Entry == 0) |
| Entry = new UndefValue(Ty); |
| |
| return Entry; |
| } |
| |
| // destroyConstant - Remove the constant from the constant table. |
| // |
| void UndefValue::destroyConstant() { |
| // Free the constant and any dangling references to it. |
| getContext().pImpl->UVConstants.erase(getType()); |
| destroyConstantImpl(); |
| } |
| |
| //---- BlockAddress::get() implementation. |
| // |
| |
| BlockAddress *BlockAddress::get(BasicBlock *BB) { |
| assert(BB->getParent() != 0 && "Block must have a parent"); |
| return get(BB->getParent(), BB); |
| } |
| |
| BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) { |
| BlockAddress *&BA = |
| F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)]; |
| if (BA == 0) |
| BA = new BlockAddress(F, BB); |
| |
| assert(BA->getFunction() == F && "Basic block moved between functions"); |
| return BA; |
| } |
| |
| BlockAddress::BlockAddress(Function *F, BasicBlock *BB) |
| : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal, |
| &Op<0>(), 2) { |
| setOperand(0, F); |
| setOperand(1, BB); |
| BB->AdjustBlockAddressRefCount(1); |
| } |
| |
| |
| // destroyConstant - Remove the constant from the constant table. |
| // |
| void BlockAddress::destroyConstant() { |
| getFunction()->getType()->getContext().pImpl |
| ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock())); |
| getBasicBlock()->AdjustBlockAddressRefCount(-1); |
| destroyConstantImpl(); |
| } |
| |
| void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) { |
| // This could be replacing either the Basic Block or the Function. In either |
| // case, we have to remove the map entry. |
| Function *NewF = getFunction(); |
| BasicBlock *NewBB = getBasicBlock(); |
| |
| if (U == &Op<0>()) |
| NewF = cast<Function>(To); |
| else |
| NewBB = cast<BasicBlock>(To); |
| |
| // See if the 'new' entry already exists, if not, just update this in place |
| // and return early. |
| BlockAddress *&NewBA = |
| getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)]; |
| if (NewBA == 0) { |
| getBasicBlock()->AdjustBlockAddressRefCount(-1); |
| |
| // Remove the old entry, this can't cause the map to rehash (just a |
| // tombstone will get added). |
| getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(), |
| getBasicBlock())); |
| NewBA = this; |
| setOperand(0, NewF); |
| setOperand(1, NewBB); |
| getBasicBlock()->AdjustBlockAddressRefCount(1); |
| return; |
| } |
| |
| // Otherwise, I do need to replace this with an existing value. |
| assert(NewBA != this && "I didn't contain From!"); |
| |
| // Everyone using this now uses the replacement. |
| replaceAllUsesWith(NewBA); |
| |
| destroyConstant(); |
| } |
| |
| //---- ConstantExpr::get() implementations. |
| // |
| |
| /// This is a utility function to handle folding of casts and lookup of the |
| /// cast in the ExprConstants map. It is used by the various get* methods below. |
| static inline Constant *getFoldedCast( |
| Instruction::CastOps opc, Constant *C, Type *Ty) { |
| assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!"); |
| // Fold a few common cases |
| if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty)) |
| return FC; |
| |
| LLVMContextImpl *pImpl = Ty->getContext().pImpl; |
| |
| // Look up the constant in the table first to ensure uniqueness. |
| ExprMapKeyType Key(opc, C); |
| |
| return pImpl->ExprConstants.getOrCreate(Ty, Key); |
| } |
| |
| Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty) { |
| Instruction::CastOps opc = Instruction::CastOps(oc); |
| assert(Instruction::isCast(opc) && "opcode out of range"); |
| assert(C && Ty && "Null arguments to getCast"); |
| assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!"); |
| |
| switch (opc) { |
| default: |
| llvm_unreachable("Invalid cast opcode"); |
| case Instruction::Trunc: return getTrunc(C, Ty); |
| case Instruction::ZExt: return getZExt(C, Ty); |
| case Instruction::SExt: return getSExt(C, Ty); |
| case Instruction::FPTrunc: return getFPTrunc(C, Ty); |
| case Instruction::FPExt: return getFPExtend(C, Ty); |
| case Instruction::UIToFP: return getUIToFP(C, Ty); |
| case Instruction::SIToFP: return getSIToFP(C, Ty); |
| case Instruction::FPToUI: return getFPToUI(C, Ty); |
| case Instruction::FPToSI: return getFPToSI(C, Ty); |
| case Instruction::PtrToInt: return getPtrToInt(C, Ty); |
| case Instruction::IntToPtr: return getIntToPtr(C, Ty); |
| case Instruction::BitCast: return getBitCast(C, Ty); |
| } |
| } |
| |
| Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) { |
| if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) |
| return getBitCast(C, Ty); |
| return getZExt(C, Ty); |
| } |
| |
| Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) { |
| if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) |
| return getBitCast(C, Ty); |
| return getSExt(C, Ty); |
| } |
| |
| Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) { |
| if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) |
| return getBitCast(C, Ty); |
| return getTrunc(C, Ty); |
| } |
| |
| Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) { |
| assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); |
| assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && |
| "Invalid cast"); |
| |
| if (Ty->isIntOrIntVectorTy()) |
| return getPtrToInt(S, Ty); |
| return getBitCast(S, Ty); |
| } |
| |
| Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, |
| bool isSigned) { |
| assert(C->getType()->isIntOrIntVectorTy() && |
| Ty->isIntOrIntVectorTy() && "Invalid cast"); |
| unsigned SrcBits = C->getType()->getScalarSizeInBits(); |
| unsigned DstBits = Ty->getScalarSizeInBits(); |
| Instruction::CastOps opcode = |
| (SrcBits == DstBits ? Instruction::BitCast : |
| (SrcBits > DstBits ? Instruction::Trunc : |
| (isSigned ? Instruction::SExt : Instruction::ZExt))); |
| return getCast(opcode, C, Ty); |
| } |
| |
| Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) { |
| assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && |
| "Invalid cast"); |
| unsigned SrcBits = C->getType()->getScalarSizeInBits(); |
| unsigned DstBits = Ty->getScalarSizeInBits(); |
| if (SrcBits == DstBits) |
| return C; // Avoid a useless cast |
| Instruction::CastOps opcode = |
| (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt); |
| return getCast(opcode, C, Ty); |
| } |
| |
| Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty) { |
| #ifndef NDEBUG |
| bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; |
| bool toVec = Ty->getTypeID() == Type::VectorTyID; |
| #endif |
| assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); |
| assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer"); |
| assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral"); |
| assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& |
| "SrcTy must be larger than DestTy for Trunc!"); |
| |
| return getFoldedCast(Instruction::Trunc, C, Ty); |
| } |
| |
| Constant *ConstantExpr::getSExt(Constant *C, Type *Ty) { |
| #ifndef NDEBUG |
| bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; |
| bool toVec = Ty->getTypeID() == Type::VectorTyID; |
| #endif |
| assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); |
| assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral"); |
| assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer"); |
| assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& |
| "SrcTy must be smaller than DestTy for SExt!"); |
| |
| return getFoldedCast(Instruction::SExt, C, Ty); |
| } |
| |
| Constant *ConstantExpr::getZExt(Constant *C, Type *Ty) { |
| #ifndef NDEBUG |
| bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; |
| bool toVec = Ty->getTypeID() == Type::VectorTyID; |
| #endif |
| assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); |
| assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral"); |
| assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer"); |
| assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& |
| "SrcTy must be smaller than DestTy for ZExt!"); |
| |
| return getFoldedCast(Instruction::ZExt, C, Ty); |
| } |
| |
| Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty) { |
| #ifndef NDEBUG |
| bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; |
| bool toVec = Ty->getTypeID() == Type::VectorTyID; |
| #endif |
| assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); |
| assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && |
| C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& |
| "This is an illegal floating point truncation!"); |
| return getFoldedCast(Instruction::FPTrunc, C, Ty); |
| } |
| |
| Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty) { |
| #ifndef NDEBUG |
| bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; |
| bool toVec = Ty->getTypeID() == Type::VectorTyID; |
| #endif |
| assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); |
| assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && |
| C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& |
| "This is an illegal floating point extension!"); |
| return getFoldedCast(Instruction::FPExt, C, Ty); |
| } |
| |
| Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty) { |
| #ifndef NDEBUG |
| bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; |
| bool toVec = Ty->getTypeID() == Type::VectorTyID; |
| #endif |
| assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); |
| assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && |
| "This is an illegal uint to floating point cast!"); |
| return getFoldedCast(Instruction::UIToFP, C, Ty); |
| } |
| |
| Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty) { |
| #ifndef NDEBUG |
| bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; |
| bool toVec = Ty->getTypeID() == Type::VectorTyID; |
| #endif |
| assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); |
| assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && |
| "This is an illegal sint to floating point cast!"); |
| return getFoldedCast(Instruction::SIToFP, C, Ty); |
| } |
| |
| Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty) { |
| #ifndef NDEBUG |
| bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; |
| bool toVec = Ty->getTypeID() == Type::VectorTyID; |
| #endif |
| assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); |
| assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && |
| "This is an illegal floating point to uint cast!"); |
| return getFoldedCast(Instruction::FPToUI, C, Ty); |
| } |
| |
| Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty) { |
| #ifndef NDEBUG |
| bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; |
| bool toVec = Ty->getTypeID() == Type::VectorTyID; |
| #endif |
| assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); |
| assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && |
| "This is an illegal floating point to sint cast!"); |
| return getFoldedCast(Instruction::FPToSI, C, Ty); |
| } |
| |
| Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy) { |
| assert(C->getType()->getScalarType()->isPointerTy() && |
| "PtrToInt source must be pointer or pointer vector"); |
| assert(DstTy->getScalarType()->isIntegerTy() && |
| "PtrToInt destination must be integer or integer vector"); |
| assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); |
| if (isa<VectorType>(C->getType())) |
| assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&& |
| "Invalid cast between a different number of vector elements"); |
| return getFoldedCast(Instruction::PtrToInt, C, DstTy); |
| } |
| |
| Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy) { |
| assert(C->getType()->getScalarType()->isIntegerTy() && |
| "IntToPtr source must be integer or integer vector"); |
| assert(DstTy->getScalarType()->isPointerTy() && |
| "IntToPtr destination must be a pointer or pointer vector"); |
| assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); |
| if (isa<VectorType>(C->getType())) |
| assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&& |
| "Invalid cast between a different number of vector elements"); |
| return getFoldedCast(Instruction::IntToPtr, C, DstTy); |
| } |
| |
| Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy) { |
| assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) && |
| "Invalid constantexpr bitcast!"); |
| |
| // It is common to ask for a bitcast of a value to its own type, handle this |
| // speedily. |
| if (C->getType() == DstTy) return C; |
| |
| return getFoldedCast(Instruction::BitCast, C, DstTy); |
| } |
| |
| Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2, |
| unsigned Flags) { |
| // Check the operands for consistency first. |
| assert(Opcode >= Instruction::BinaryOpsBegin && |
| Opcode < Instruction::BinaryOpsEnd && |
| "Invalid opcode in binary constant expression"); |
| assert(C1->getType() == C2->getType() && |
| "Operand types in binary constant expression should match"); |
| |
| #ifndef NDEBUG |
| switch (Opcode) { |
| case Instruction::Add: |
| case Instruction::Sub: |
| case Instruction::Mul: |
| assert(C1->getType() == C2->getType() && "Op types should be identical!"); |
| assert(C1->getType()->isIntOrIntVectorTy() && |
| "Tried to create an integer operation on a non-integer type!"); |
| break; |
| case Instruction::FAdd: |
| case Instruction::FSub: |
| case Instruction::FMul: |
| assert(C1->getType() == C2->getType() && "Op types should be identical!"); |
| assert(C1->getType()->isFPOrFPVectorTy() && |
| "Tried to create a floating-point operation on a " |
| "non-floating-point type!"); |
| break; |
| case Instruction::UDiv: |
| case Instruction::SDiv: |
| assert(C1->getType() == C2->getType() && "Op types should be identical!"); |
| assert(C1->getType()->isIntOrIntVectorTy() && |
| "Tried to create an arithmetic operation on a non-arithmetic type!"); |
| break; |
| case Instruction::FDiv: |
| assert(C1->getType() == C2->getType() && "Op types should be identical!"); |
| assert(C1->getType()->isFPOrFPVectorTy() && |
| "Tried to create an arithmetic operation on a non-arithmetic type!"); |
| break; |
| case Instruction::URem: |
| case Instruction::SRem: |
| assert(C1->getType() == C2->getType() && "Op types should be identical!"); |
| assert(C1->getType()->isIntOrIntVectorTy() && |
| "Tried to create an arithmetic operation on a non-arithmetic type!"); |
| break; |
| case Instruction::FRem: |
| assert(C1->getType() == C2->getType() && "Op types should be identical!"); |
| assert(C1->getType()->isFPOrFPVectorTy() && |
| "Tried to create an arithmetic operation on a non-arithmetic type!"); |
| break; |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: |
| assert(C1->getType() == C2->getType() && "Op types should be identical!"); |
| assert(C1->getType()->isIntOrIntVectorTy() && |
| "Tried to create a logical operation on a non-integral type!"); |
| break; |
| case Instruction::Shl: |
| case Instruction::LShr: |
| case Instruction::AShr: |
| assert(C1->getType() == C2->getType() && "Op types should be identical!"); |
| assert(C1->getType()->isIntOrIntVectorTy() && |
| "Tried to create a shift operation on a non-integer type!"); |
| break; |
| default: |
| break; |
| } |
| #endif |
| |
| if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2)) |
| return FC; // Fold a few common cases. |
| |
| Constant *ArgVec[] = { C1, C2 }; |
| ExprMapKeyType Key(Opcode, ArgVec, 0, Flags); |
| |
| LLVMContextImpl *pImpl = C1->getContext().pImpl; |
| return pImpl->ExprConstants.getOrCreate(C1->getType(), Key); |
| } |
| |
| Constant *ConstantExpr::getSizeOf(Type* Ty) { |
| // sizeof is implemented as: (i64) gep (Ty*)null, 1 |
| // Note that a non-inbounds gep is used, as null isn't within any object. |
| Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); |
| Constant *GEP = getGetElementPtr( |
| Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); |
| return getPtrToInt(GEP, |
| Type::getInt64Ty(Ty->getContext())); |
| } |
| |
| Constant *ConstantExpr::getAlignOf(Type* Ty) { |
| // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1 |
| // Note that a non-inbounds gep is used, as null isn't within any object. |
| Type *AligningTy = |
| StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, NULL); |
| Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo()); |
| Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0); |
| Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); |
| Constant *Indices[2] = { Zero, One }; |
| Constant *GEP = getGetElementPtr(NullPtr, Indices); |
| return getPtrToInt(GEP, |
| Type::getInt64Ty(Ty->getContext())); |
| } |
| |
| Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) { |
| return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()), |
| FieldNo)); |
| } |
| |
| Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) { |
| // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo |
| // Note that a non-inbounds gep is used, as null isn't within any object. |
| Constant *GEPIdx[] = { |
| ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0), |
| FieldNo |
| }; |
| Constant *GEP = getGetElementPtr( |
| Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); |
| return getPtrToInt(GEP, |
| Type::getInt64Ty(Ty->getContext())); |
| } |
| |
| Constant *ConstantExpr::getCompare(unsigned short Predicate, |
| Constant *C1, Constant *C2) { |
| assert(C1->getType() == C2->getType() && "Op types should be identical!"); |
| |
| switch (Predicate) { |
| default: llvm_unreachable("Invalid CmpInst predicate"); |
| case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT: |
| case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE: |
| case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO: |
| case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE: |
| case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE: |
| case CmpInst::FCMP_TRUE: |
| return getFCmp(Predicate, C1, C2); |
| |
| case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT: |
| case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE: |
| case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT: |
| case CmpInst::ICMP_SLE: |
| return getICmp(Predicate, C1, C2); |
| } |
| } |
| |
| Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) { |
| assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands"); |
| |
| if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2)) |
| return SC; // Fold common cases |
| |
| Constant *ArgVec[] = { C, V1, V2 }; |
| ExprMapKeyType Key(Instruction::Select, ArgVec); |
| |
| LLVMContextImpl *pImpl = C->getContext().pImpl; |
| return pImpl->ExprConstants.getOrCreate(V1->getType(), Key); |
| } |
| |
| Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs, |
| bool InBounds) { |
| assert(C->getType()->isPtrOrPtrVectorTy() && |
| "Non-pointer type for constant GetElementPtr expression"); |
| |
| if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs)) |
| return FC; // Fold a few common cases. |
| |
| // Get the result type of the getelementptr! |
| Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), Idxs); |
| assert(Ty && "GEP indices invalid!"); |
| unsigned AS = C->getType()->getPointerAddressSpace(); |
| Type *ReqTy = Ty->getPointerTo(AS); |
| if (VectorType *VecTy = dyn_cast<VectorType>(C->getType())) |
| ReqTy = VectorType::get(ReqTy, VecTy->getNumElements()); |
| |
| // Look up the constant in the table first to ensure uniqueness |
| std::vector<Constant*> ArgVec; |
| ArgVec.reserve(1 + Idxs.size()); |
| ArgVec.push_back(C); |
| for (unsigned i = 0, e = Idxs.size(); i != e; ++i) { |
| assert(Idxs[i]->getType()->isVectorTy() == ReqTy->isVectorTy() && |
| "getelementptr index type missmatch"); |
| assert((!Idxs[i]->getType()->isVectorTy() || |
| ReqTy->getVectorNumElements() == |
| Idxs[i]->getType()->getVectorNumElements()) && |
| "getelementptr index type missmatch"); |
| ArgVec.push_back(cast<Constant>(Idxs[i])); |
| } |
| const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0, |
| InBounds ? GEPOperator::IsInBounds : 0); |
| |
| LLVMContextImpl *pImpl = C->getContext().pImpl; |
| return pImpl->ExprConstants.getOrCreate(ReqTy, Key); |
| } |
| |
| Constant * |
| ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) { |
| assert(LHS->getType() == RHS->getType()); |
| assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE && |
| pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate"); |
| |
| if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) |
| return FC; // Fold a few common cases... |
| |
| // Look up the constant in the table first to ensure uniqueness |
| Constant *ArgVec[] = { LHS, RHS }; |
| // Get the key type with both the opcode and predicate |
| const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred); |
| |
| Type *ResultTy = Type::getInt1Ty(LHS->getContext()); |
| if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) |
| ResultTy = VectorType::get(ResultTy, VT->getNumElements()); |
| |
| LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; |
| return pImpl->ExprConstants.getOrCreate(ResultTy, Key); |
| } |
| |
| Constant * |
| ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) { |
| assert(LHS->getType() == RHS->getType()); |
| assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate"); |
| |
| if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) |
| return FC; // Fold a few common cases... |
| |
| // Look up the constant in the table first to ensure uniqueness |
| Constant *ArgVec[] = { LHS, RHS }; |
| // Get the key type with both the opcode and predicate |
| const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred); |
| |
| Type *ResultTy = Type::getInt1Ty(LHS->getContext()); |
| if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) |
| ResultTy = VectorType::get(ResultTy, VT->getNumElements()); |
| |
| LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; |
| return pImpl->ExprConstants.getOrCreate(ResultTy, Key); |
| } |
| |
| Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) { |
| assert(Val->getType()->isVectorTy() && |
| "Tried to create extractelement operation on non-vector type!"); |
| assert(Idx->getType()->isIntegerTy(32) && |
| "Extractelement index must be i32 type!"); |
| |
| if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx)) |
| return FC; // Fold a few common cases. |
| |
| // Look up the constant in the table first to ensure uniqueness |
| Constant *ArgVec[] = { Val, Idx }; |
| const ExprMapKeyType Key(Instruction::ExtractElement, ArgVec); |
| |
| LLVMContextImpl *pImpl = Val->getContext().pImpl; |
| Type *ReqTy = Val->getType()->getVectorElementType(); |
| return pImpl->ExprConstants.getOrCreate(ReqTy, Key); |
| } |
| |
| Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, |
| Constant *Idx) { |
| assert(Val->getType()->isVectorTy() && |
| "Tried to create insertelement operation on non-vector type!"); |
| assert(Elt->getType() == Val->getType()->getVectorElementType() && |
| "Insertelement types must match!"); |
| assert(Idx->getType()->isIntegerTy(32) && |
| "Insertelement index must be i32 type!"); |
| |
| if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx)) |
| return FC; // Fold a few common cases. |
| // Look up the constant in the table first to ensure uniqueness |
| Constant *ArgVec[] = { Val, Elt, Idx }; |
| const ExprMapKeyType Key(Instruction::InsertElement, ArgVec); |
| |
| LLVMContextImpl *pImpl = Val->getContext().pImpl; |
| return pImpl->ExprConstants.getOrCreate(Val->getType(), Key); |
| } |
| |
| Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, |
| Constant *Mask) { |
| assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) && |
| "Invalid shuffle vector constant expr operands!"); |
| |
| if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask)) |
| return FC; // Fold a few common cases. |
| |
| unsigned NElts = Mask->getType()->getVectorNumElements(); |
| Type *EltTy = V1->getType()->getVectorElementType(); |
| Type *ShufTy = VectorType::get(EltTy, NElts); |
| |
| // Look up the constant in the table first to ensure uniqueness |
| Constant *ArgVec[] = { V1, V2, Mask }; |
| const ExprMapKeyType Key(Instruction::ShuffleVector, ArgVec); |
| |
| LLVMContextImpl *pImpl = ShufTy->getContext().pImpl; |
| return pImpl->ExprConstants.getOrCreate(ShufTy, Key); |
| } |
| |
| Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val, |
| ArrayRef<unsigned> Idxs) { |
| assert(ExtractValueInst::getIndexedType(Agg->getType(), |
| Idxs) == Val->getType() && |
| "insertvalue indices invalid!"); |
| assert(Agg->getType()->isFirstClassType() && |
| "Non-first-class type for constant insertvalue expression"); |
| Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs); |
| assert(FC && "insertvalue constant expr couldn't be folded!"); |
| return FC; |
| } |
| |
| Constant *ConstantExpr::getExtractValue(Constant *Agg, |
| ArrayRef<unsigned> Idxs) { |
| assert(Agg->getType()->isFirstClassType() && |
| "Tried to create extractelement operation on non-first-class type!"); |
| |
| Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs); |
| (void)ReqTy; |
| assert(ReqTy && "extractvalue indices invalid!"); |
| |
| assert(Agg->getType()->isFirstClassType() && |
| "Non-first-class type for constant extractvalue expression"); |
| Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs); |
| assert(FC && "ExtractValue constant expr couldn't be folded!"); |
| return FC; |
| } |
| |
| Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) { |
| assert(C->getType()->isIntOrIntVectorTy() && |
| "Cannot NEG a nonintegral value!"); |
| return getSub(ConstantFP::getZeroValueForNegation(C->getType()), |
| C, HasNUW, HasNSW); |
| } |
| |
| Constant *ConstantExpr::getFNeg(Constant *C) { |
| assert(C->getType()->isFPOrFPVectorTy() && |
| "Cannot FNEG a non-floating-point value!"); |
| return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C); |
| } |
| |
| Constant *ConstantExpr::getNot(Constant *C) { |
| assert(C->getType()->isIntOrIntVectorTy() && |
| "Cannot NOT a nonintegral value!"); |
| return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType())); |
| } |
| |
| Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2, |
| bool HasNUW, bool HasNSW) { |
| unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | |
| (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); |
| return get(Instruction::Add, C1, C2, Flags); |
| } |
| |
| Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) { |
| return get(Instruction::FAdd, C1, C2); |
| } |
| |
| Constant *ConstantExpr::getSub(Constant *C1, Constant *C2, |
| bool HasNUW, bool HasNSW) { |
| unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | |
| (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); |
| return get(Instruction::Sub, C1, C2, Flags); |
| } |
| |
| Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) { |
| return get(Instruction::FSub, C1, C2); |
| } |
| |
| Constant *ConstantExpr::getMul(Constant *C1, Constant *C2, |
| bool HasNUW, bool HasNSW) { |
| unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | |
| (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); |
| return get(Instruction::Mul, C1, C2, Flags); |
| } |
| |
| Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) { |
| return get(Instruction::FMul, C1, C2); |
| } |
| |
| Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) { |
| return get(Instruction::UDiv, C1, C2, |
| isExact ? PossiblyExactOperator::IsExact : 0); |
| } |
| |
| Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) { |
| return get(Instruction::SDiv, C1, C2, |
| isExact ? PossiblyExactOperator::IsExact : 0); |
| } |
| |
| Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) { |
| return get(Instruction::FDiv, C1, C2); |
| } |
| |
| Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) { |
| return get(Instruction::URem, C1, C2); |
| } |
| |
| Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) { |
| return get(Instruction::SRem, C1, C2); |
| } |
| |
| Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) { |
| return get(Instruction::FRem, C1, C2); |
| } |
| |
| Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) { |
| return get(Instruction::And, C1, C2); |
| } |
| |
| Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) { |
| return get(Instruction::Or, C1, C2); |
| } |
| |
| Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) { |
| return get(Instruction::Xor, C1, C2); |
| } |
| |
| Constant *ConstantExpr::getShl(Constant *C1, Constant *C2, |
| bool HasNUW, bool HasNSW) { |
| unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | |
| (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); |
| return get(Instruction::Shl, C1, C2, Flags); |
| } |
| |
| Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) { |
| return get(Instruction::LShr, C1, C2, |
| isExact ? PossiblyExactOperator::IsExact : 0); |
| } |
| |
| Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) { |
| return get(Instruction::AShr, C1, C2, |
| isExact ? PossiblyExactOperator::IsExact : 0); |
| } |
| |
| /// getBinOpIdentity - Return the identity for the given binary operation, |
| /// i.e. a constant C such that X op C = X and C op X = X for every X. It |
| /// returns null if the operator doesn't have an identity. |
| Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) { |
| switch (Opcode) { |
| default: |
| // Doesn't have an identity. |
| return 0; |
| |
| case Instruction::Add: |
| case Instruction::Or: |
| case Instruction::Xor: |
| return Constant::getNullValue(Ty); |
| |
| case Instruction::Mul: |
| return ConstantInt::get(Ty, 1); |
| |
| case Instruction::And: |
| return Constant::getAllOnesValue(Ty); |
| } |
| } |
| |
| /// getBinOpAbsorber - Return the absorbing element for the given binary |
| /// operation, i.e. a constant C such that X op C = C and C op X = C for |
| /// every X. For example, this returns zero for integer multiplication. |
| /// It returns null if the operator doesn't have an absorbing element. |
| Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) { |
| switch (Opcode) { |
| default: |
| // Doesn't have an absorber. |
| return 0; |
| |
| case Instruction::Or: |
| return Constant::getAllOnesValue(Ty); |
| |
| case Instruction::And: |
| case Instruction::Mul: |
| return Constant::getNullValue(Ty); |
| } |
| } |
| |
| // destroyConstant - Remove the constant from the constant table... |
| // |
| void ConstantExpr::destroyConstant() { |
| getType()->getContext().pImpl->ExprConstants.remove(this); |
| destroyConstantImpl(); |
| } |
| |
| const char *ConstantExpr::getOpcodeName() const { |
| return Instruction::getOpcodeName(getOpcode()); |
| } |
| |
| |
| |
| GetElementPtrConstantExpr:: |
| GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList, |
| Type *DestTy) |
| : ConstantExpr(DestTy, Instruction::GetElementPtr, |
| OperandTraits<GetElementPtrConstantExpr>::op_end(this) |
| - (IdxList.size()+1), IdxList.size()+1) { |
| OperandList[0] = C; |
| for (unsigned i = 0, E = IdxList.size(); i != E; ++i) |
| OperandList[i+1] = IdxList[i]; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ConstantData* implementations |
| |
| void ConstantDataArray::anchor() {} |
| void ConstantDataVector::anchor() {} |
| |
| /// getElementType - Return the element type of the array/vector. |
| Type *ConstantDataSequential::getElementType() const { |
| return getType()->getElementType(); |
| } |
| |
| StringRef ConstantDataSequential::getRawDataValues() const { |
| return StringRef(DataElements, getNumElements()*getElementByteSize()); |
| } |
| |
| /// isElementTypeCompatible - Return true if a ConstantDataSequential can be |
| /// formed with a vector or array of the specified element type. |
| /// ConstantDataArray only works with normal float and int types that are |
| /// stored densely in memory, not with things like i42 or x86_f80. |
| bool ConstantDataSequential::isElementTypeCompatible(const Type *Ty) { |
| if (Ty->isFloatTy() || Ty->isDoubleTy()) return true; |
| if (const IntegerType *IT = dyn_cast<IntegerType>(Ty)) { |
| switch (IT->getBitWidth()) { |
| case 8: |
| case 16: |
| case 32: |
| case 64: |
| return true; |
| default: break; |
| } |
| } |
| return false; |
| } |
| |
| /// getNumElements - Return the number of elements in the array or vector. |
| unsigned ConstantDataSequential::getNumElements() const { |
| if (ArrayType *AT = dyn_cast<ArrayType>(getType())) |
| return AT->getNumElements(); |
| return getType()->getVectorNumElements(); |
| } |
| |
| |
| /// getElementByteSize - Return the size in bytes of the elements in the data. |
| uint64_t ConstantDataSequential::getElementByteSize() const { |
| return getElementType()->getPrimitiveSizeInBits()/8; |
| } |
| |
| /// getElementPointer - Return the start of the specified element. |
| const char *ConstantDataSequential::getElementPointer(unsigned Elt) const { |
| assert(Elt < getNumElements() && "Invalid Elt"); |
| return DataElements+Elt*getElementByteSize(); |
| } |
| |
| |
| /// isAllZeros - return true if the array is empty or all zeros. |
| static bool isAllZeros(StringRef Arr) { |
| for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I) |
| if (*I != 0) |
| return false; |
| return true; |
| } |
| |
| /// getImpl - This is the underlying implementation of all of the |
| /// ConstantDataSequential::get methods. They all thunk down to here, providing |
| /// the correct element type. We take the bytes in as a StringRef because |
| /// we *want* an underlying "char*" to avoid TBAA type punning violations. |
| Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) { |
| assert(isElementTypeCompatible(Ty->getSequentialElementType())); |
| // If the elements are all zero or there are no elements, return a CAZ, which |
| // is more dense and canonical. |
| if (isAllZeros(Elements)) |
| return ConstantAggregateZero::get(Ty); |
| |
| // Do a lookup to see if we have already formed one of these. |
| StringMap<ConstantDataSequential*>::MapEntryTy &Slot = |
| Ty->getContext().pImpl->CDSConstants.GetOrCreateValue(Elements); |
| |
| // The bucket can point to a linked list of different CDS's that have the same |
| // body but different types. For example, 0,0,0,1 could be a 4 element array |
| // of i8, or a 1-element array of i32. They'll both end up in the same |
| /// StringMap bucket, linked up by their Next pointers. Walk the list. |
| ConstantDataSequential **Entry = &Slot.getValue(); |
| for (ConstantDataSequential *Node = *Entry; Node != 0; |
| Entry = &Node->Next, Node = *Entry) |
| if (Node->getType() == Ty) |
| return Node; |
| |
| // Okay, we didn't get a hit. Create a node of the right class, link it in, |
| // and return it. |
| if (isa<ArrayType>(Ty)) |
| return *Entry = new ConstantDataArray(Ty, Slot.getKeyData()); |
| |
| assert(isa<VectorType>(Ty)); |
| return *Entry = new ConstantDataVector(Ty, Slot.getKeyData()); |
| } |
| |
| void ConstantDataSequential::destroyConstant() { |
| // Remove the constant from the StringMap. |
| StringMap<ConstantDataSequential*> &CDSConstants = |
| getType()->getContext().pImpl->CDSConstants; |
| |
| StringMap<ConstantDataSequential*>::iterator Slot = |
| CDSConstants.find(getRawDataValues()); |
| |
| assert(Slot != CDSConstants.end() && "CDS not found in uniquing table"); |
| |
| ConstantDataSequential **Entry = &Slot->getValue(); |
| |
| // Remove the entry from the hash table. |
| if ((*Entry)->Next == 0) { |
| // If there is only one value in the bucket (common case) it must be this |
| // entry, and removing the entry should remove the bucket completely. |
| assert((*Entry) == this && "Hash mismatch in ConstantDataSequential"); |
| getContext().pImpl->CDSConstants.erase(Slot); |
| } else { |
| // Otherwise, there are multiple entries linked off the bucket, unlink the |
| // node we care about but keep the bucket around. |
| for (ConstantDataSequential *Node = *Entry; ; |
| Entry = &Node->Next, Node = *Entry) { |
| assert(Node && "Didn't find entry in its uniquing hash table!"); |
| // If we found our entry, unlink it from the list and we're done. |
| if (Node == this) { |
| *Entry = Node->Next; |
| break; |
| } |
| } |
| } |
| |
| // If we were part of a list, make sure that we don't delete the list that is |
| // still owned by the uniquing map. |
| Next = 0; |
| |
| // Finally, actually delete it. |
| destroyConstantImpl(); |
| } |
| |
| /// get() constructors - Return a constant with array type with an element |
| /// count and element type matching the ArrayRef passed in. Note that this |
| /// can return a ConstantAggregateZero object. |
| Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) { |
| Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size()); |
| const char *Data = reinterpret_cast<const char *>(Elts.data()); |
| return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty); |
| } |
| Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){ |
| Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size()); |
| const char *Data = reinterpret_cast<const char *>(Elts.data()); |
| return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty); |
| } |
| Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){ |
| Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size()); |
| const char *Data = reinterpret_cast<const char *>(Elts.data()); |
| return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty); |
| } |
| Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){ |
| Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size()); |
| const char *Data = reinterpret_cast<const char *>(Elts.data()); |
| return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty); |
| } |
| Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) { |
| Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size()); |
| const char *Data = reinterpret_cast<const char *>(Elts.data()); |
| return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty); |
| } |
| Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) { |
| Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size()); |
| const char *Data = reinterpret_cast<const char *>(Elts.data()); |
| return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty); |
| } |
| |
| /// getString - This method constructs a CDS and initializes it with a text |
| /// string. The default behavior (AddNull==true) causes a null terminator to |
| /// be placed at the end of the array (increasing the length of the string by |
| /// one more than the StringRef would normally indicate. Pass AddNull=false |
| /// to disable this behavior. |
| Constant *ConstantDataArray::getString(LLVMContext &Context, |
| StringRef Str, bool AddNull) { |
| if (!AddNull) { |
| const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data()); |
| return get(Context, ArrayRef<uint8_t>(const_cast<uint8_t *>(Data), |
| Str.size())); |
| } |
| |
| SmallVector<uint8_t, 64> ElementVals; |
| ElementVals.append(Str.begin(), Str.end()); |
| ElementVals.push_back(0); |
| return get(Context, ElementVals); |
| } |
| |
| /// get() constructors - Return a constant with vector type with an element |
| /// count and element type matching the ArrayRef passed in. Note that this |
| /// can return a ConstantAggregateZero object. |
| Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){ |
| Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size()); |
| const char *Data = reinterpret_cast<const char *>(Elts.data()); |
| return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty); |
| } |
| Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){ |
| Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size()); |
| const char *Data = reinterpret_cast<const char *>(Elts.data()); |
| return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty); |
| } |
| Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){ |
| Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size()); |
| const char *Data = reinterpret_cast<const char *>(Elts.data()); |
| return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty); |
| } |
| Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){ |
| Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size()); |
| const char *Data = reinterpret_cast<const char *>(Elts.data()); |
| return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty); |
| } |
| Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) { |
| Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size()); |
| const char *Data = reinterpret_cast<const char *>(Elts.data()); |
| return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty); |
| } |
| Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) { |
| Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size()); |
| const char *Data = reinterpret_cast<const char *>(Elts.data()); |
| return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty); |
| } |
| |
| Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) { |
| assert(isElementTypeCompatible(V->getType()) && |
| "Element type not compatible with ConstantData"); |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { |
| if (CI->getType()->isIntegerTy(8)) { |
| SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue()); |
| return get(V->getContext(), Elts); |
| } |
| if (CI->getType()->isIntegerTy(16)) { |
| SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue()); |
| return get(V->getContext(), Elts); |
| } |
| if (CI->getType()->isIntegerTy(32)) { |
| SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue()); |
| return get(V->getContext(), Elts); |
| } |
| assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type"); |
| SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue()); |
| return get(V->getContext(), Elts); |
| } |
| |
| if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { |
| if (CFP->getType()->isFloatTy()) { |
| SmallVector<float, 16> Elts(NumElts, CFP->getValueAPF().convertToFloat()); |
| return get(V->getContext(), Elts); |
| } |
| if (CFP->getType()->isDoubleTy()) { |
| SmallVector<double, 16> Elts(NumElts, |
| CFP->getValueAPF().convertToDouble()); |
| return get(V->getContext(), Elts); |
| } |
| } |
| return ConstantVector::getSplat(NumElts, V); |
| } |
| |
| |
| /// getElementAsInteger - If this is a sequential container of integers (of |
| /// any size), return the specified element in the low bits of a uint64_t. |
| uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const { |
| assert(isa<IntegerType>(getElementType()) && |
| "Accessor can only be used when element is an integer"); |
| const char *EltPtr = getElementPointer(Elt); |
| |
| // The data is stored in host byte order, make sure to cast back to the right |
| // type to load with the right endianness. |
| switch (getElementType()->getIntegerBitWidth()) { |
| default: llvm_unreachable("Invalid bitwidth for CDS"); |
| case 8: |
| return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr)); |
| case 16: |
| return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr)); |
| case 32: |
| return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr)); |
| case 64: |
| return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr)); |
| } |
| } |
| |
| /// getElementAsAPFloat - If this is a sequential container of floating point |
| /// type, return the specified element as an APFloat. |
| APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const { |
| const char *EltPtr = getElementPointer(Elt); |
| |
| switch (getElementType()->getTypeID()) { |
| default: |
| llvm_unreachable("Accessor can only be used when element is float/double!"); |
| case Type::FloatTyID: { |
| const float *FloatPrt = reinterpret_cast<const float *>(EltPtr); |
| return APFloat(*const_cast<float *>(FloatPrt)); |
| } |
| case Type::DoubleTyID: { |
| const double *DoublePtr = reinterpret_cast<const double *>(EltPtr); |
| return APFloat(*const_cast<double *>(DoublePtr)); |
| } |
| } |
| } |
| |
| /// getElementAsFloat - If this is an sequential container of floats, return |
| /// the specified element as a float. |
| float ConstantDataSequential::getElementAsFloat(unsigned Elt) const { |
| assert(getElementType()->isFloatTy() && |
| "Accessor can only be used when element is a 'float'"); |
| const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt)); |
| return *const_cast<float *>(EltPtr); |
| } |
| |
| /// getElementAsDouble - If this is an sequential container of doubles, return |
| /// the specified element as a float. |
| double ConstantDataSequential::getElementAsDouble(unsigned Elt) const { |
| assert(getElementType()->isDoubleTy() && |
| "Accessor can only be used when element is a 'float'"); |
| const double *EltPtr = |
| reinterpret_cast<const double *>(getElementPointer(Elt)); |
| return *const_cast<double *>(EltPtr); |
| } |
| |
| /// getElementAsConstant - Return a Constant for a specified index's element. |
| /// Note that this has to compute a new constant to return, so it isn't as |
| /// efficient as getElementAsInteger/Float/Double. |
| Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const { |
| if (getElementType()->isFloatTy() || getElementType()->isDoubleTy()) |
| return ConstantFP::get(getContext(), getElementAsAPFloat(Elt)); |
| |
| return ConstantInt::get(getElementType(), getElementAsInteger(Elt)); |
| } |
| |
| /// isString - This method returns true if this is an array of i8. |
| bool ConstantDataSequential::isString() const { |
| return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8); |
| } |
| |
| /// isCString - This method returns true if the array "isString", ends with a |
| /// nul byte, and does not contains any other nul bytes. |
| bool ConstantDataSequential::isCString() const { |
| if (!isString()) |
| return false; |
| |
| StringRef Str = getAsString(); |
| |
| // The last value must be nul. |
| if (Str.back() != 0) return false; |
| |
| // Other elements must be non-nul. |
| return Str.drop_back().find(0) == StringRef::npos; |
| } |
| |
| /// getSplatValue - If this is a splat constant, meaning that all of the |
| /// elements have the same value, return that value. Otherwise return NULL. |
| Constant *ConstantDataVector::getSplatValue() const { |
| const char *Base = getRawDataValues().data(); |
| |
| // Compare elements 1+ to the 0'th element. |
| unsigned EltSize = getElementByteSize(); |
| for (unsigned i = 1, e = getNumElements(); i != e; ++i) |
| if (memcmp(Base, Base+i*EltSize, EltSize)) |
| return 0; |
| |
| // If they're all the same, return the 0th one as a representative. |
| return getElementAsConstant(0); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // replaceUsesOfWithOnConstant implementations |
| |
| /// replaceUsesOfWithOnConstant - Update this constant array to change uses of |
| /// 'From' to be uses of 'To'. This must update the uniquing data structures |
| /// etc. |
| /// |
| /// Note that we intentionally replace all uses of From with To here. Consider |
| /// a large array that uses 'From' 1000 times. By handling this case all here, |
| /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that |
| /// single invocation handles all 1000 uses. Handling them one at a time would |
| /// work, but would be really slow because it would have to unique each updated |
| /// array instance. |
| /// |
| void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To, |
| Use *U) { |
| assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); |
| Constant *ToC = cast<Constant>(To); |
| |
| LLVMContextImpl *pImpl = getType()->getContext().pImpl; |
| |
| SmallVector<Constant*, 8> Values; |
| LLVMContextImpl::ArrayConstantsTy::LookupKey Lookup; |
| Lookup.first = cast<ArrayType>(getType()); |
| Values.reserve(getNumOperands()); // Build replacement array. |
| |
| // Fill values with the modified operands of the constant array. Also, |
| // compute whether this turns into an all-zeros array. |
| unsigned NumUpdated = 0; |
| |
| // Keep track of whether all the values in the array are "ToC". |
| bool AllSame = true; |
| for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { |
| Constant *Val = cast<Constant>(O->get()); |
| if (Val == From) { |
| Val = ToC; |
| ++NumUpdated; |
| } |
| Values.push_back(Val); |
| AllSame &= Val == ToC; |
| } |
| |
| Constant *Replacement = 0; |
| if (AllSame && ToC->isNullValue()) { |
| Replacement = ConstantAggregateZero::get(getType()); |
| } else if (AllSame && isa<UndefValue>(ToC)) { |
| Replacement = UndefValue::get(getType()); |
| } else { |
| // Check to see if we have this array type already. |
| Lookup.second = makeArrayRef(Values); |
| LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I = |
| pImpl->ArrayConstants.find(Lookup); |
| |
| if (I != pImpl->ArrayConstants.map_end()) { |
| Replacement = I->first; |
| } else { |
| // Okay, the new shape doesn't exist in the system yet. Instead of |
| // creating a new constant array, inserting it, replaceallusesof'ing the |
| // old with the new, then deleting the old... just update the current one |
| // in place! |
| pImpl->ArrayConstants.remove(this); |
| |
| // Update to the new value. Optimize for the case when we have a single |
| // operand that we're changing, but handle bulk updates efficiently. |
| if (NumUpdated == 1) { |
| unsigned OperandToUpdate = U - OperandList; |
| assert(getOperand(OperandToUpdate) == From && |
| "ReplaceAllUsesWith broken!"); |
| setOperand(OperandToUpdate, ToC); |
| } else { |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) |
| if (getOperand(i) == From) |
| setOperand(i, ToC); |
| } |
| pImpl->ArrayConstants.insert(this); |
| return; |
| } |
| } |
| |
| // Otherwise, I do need to replace this with an existing value. |
| assert(Replacement != this && "I didn't contain From!"); |
| |
| // Everyone using this now uses the replacement. |
| replaceAllUsesWith(Replacement); |
| |
| // Delete the old constant! |
| destroyConstant(); |
| } |
| |
| void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To, |
| Use *U) { |
| assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); |
| Constant *ToC = cast<Constant>(To); |
| |
| unsigned OperandToUpdate = U-OperandList; |
| assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!"); |
| |
| SmallVector<Constant*, 8> Values; |
| LLVMContextImpl::StructConstantsTy::LookupKey Lookup; |
| Lookup.first = cast<StructType>(getType()); |
| Values.reserve(getNumOperands()); // Build replacement struct. |
| |
| // Fill values with the modified operands of the constant struct. Also, |
| // compute whether this turns into an all-zeros struct. |
| bool isAllZeros = false; |
| bool isAllUndef = false; |
| if (ToC->isNullValue()) { |
| isAllZeros = true; |
| for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { |
| Constant *Val = cast<Constant>(O->get()); |
| Values.push_back(Val); |
| if (isAllZeros) isAllZeros = Val->isNullValue(); |
| } |
| } else if (isa<UndefValue>(ToC)) { |
| isAllUndef = true; |
| for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { |
| Constant *Val = cast<Constant>(O->get()); |
| Values.push_back(Val); |
| if (isAllUndef) isAllUndef = isa<UndefValue>(Val); |
| } |
| } else { |
| for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) |
| Values.push_back(cast<Constant>(O->get())); |
| } |
| Values[OperandToUpdate] = ToC; |
| |
| LLVMContextImpl *pImpl = getContext().pImpl; |
| |
| Constant *Replacement = 0; |
| if (isAllZeros) { |
| Replacement = ConstantAggregateZero::get(getType()); |
| } else if (isAllUndef) { |
| Replacement = UndefValue::get(getType()); |
| } else { |
| // Check to see if we have this struct type already. |
| Lookup.second = makeArrayRef(Values); |
| LLVMContextImpl::StructConstantsTy::MapTy::iterator I = |
| pImpl->StructConstants.find(Lookup); |
| |
| if (I != pImpl->StructConstants.map_end()) { |
| Replacement = I->first; |
| } else { |
| // Okay, the new shape doesn't exist in the system yet. Instead of |
| // creating a new constant struct, inserting it, replaceallusesof'ing the |
| // old with the new, then deleting the old... just update the current one |
| // in place! |
| pImpl->StructConstants.remove(this); |
| |
| // Update to the new value. |
| setOperand(OperandToUpdate, ToC); |
| pImpl->StructConstants.insert(this); |
| return; |
| } |
| } |
| |
| assert(Replacement != this && "I didn't contain From!"); |
| |
| // Everyone using this now uses the replacement. |
| replaceAllUsesWith(Replacement); |
| |
| // Delete the old constant! |
| destroyConstant(); |
| } |
| |
| void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To, |
| Use *U) { |
| assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); |
| |
| SmallVector<Constant*, 8> Values; |
| Values.reserve(getNumOperands()); // Build replacement array... |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| Constant *Val = getOperand(i); |
| if (Val == From) Val = cast<Constant>(To); |
| Values.push_back(Val); |
| } |
| |
| Constant *Replacement = get(Values); |
| assert(Replacement != this && "I didn't contain From!"); |
| |
| // Everyone using this now uses the replacement. |
| replaceAllUsesWith(Replacement); |
| |
| // Delete the old constant! |
| destroyConstant(); |
| } |
| |
| void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV, |
| Use *U) { |
| assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!"); |
| Constant *To = cast<Constant>(ToV); |
| |
| SmallVector<Constant*, 8> NewOps; |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| Constant *Op = getOperand(i); |
| NewOps.push_back(Op == From ? To : Op); |
| } |
| |
| Constant *Replacement = getWithOperands(NewOps); |
| assert(Replacement != this && "I didn't contain From!"); |
| |
| // Everyone using this now uses the replacement. |
| replaceAllUsesWith(Replacement); |
| |
| // Delete the old constant! |
| destroyConstant(); |
| } |
| |
| Instruction *ConstantExpr::getAsInstruction() { |
| SmallVector<Value*,4> ValueOperands; |
| for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) |
| ValueOperands.push_back(cast<Value>(I)); |
| |
| ArrayRef<Value*> Ops(ValueOperands); |
| |
| switch (getOpcode()) { |
| case Instruction::Trunc: |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| case Instruction::FPTrunc: |
| case Instruction::FPExt: |
| case Instruction::UIToFP: |
| case Instruction::SIToFP: |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: |
| case Instruction::PtrToInt: |
| case Instruction::IntToPtr: |
| case Instruction::BitCast: |
| return CastInst::Create((Instruction::CastOps)getOpcode(), |
| Ops[0], getType()); |
| case Instruction::Select: |
| return SelectInst::Create(Ops[0], Ops[1], Ops[2]); |
| case Instruction::InsertElement: |
| return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]); |
| case Instruction::ExtractElement: |
| return ExtractElementInst::Create(Ops[0], Ops[1]); |
| case Instruction::InsertValue: |
| return InsertValueInst::Create(Ops[0], Ops[1], getIndices()); |
| case Instruction::ExtractValue: |
| return ExtractValueInst::Create(Ops[0], getIndices()); |
| case Instruction::ShuffleVector: |
| return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]); |
| |
| case Instruction::GetElementPtr: |
| if (cast<GEPOperator>(this)->isInBounds()) |
| return GetElementPtrInst::CreateInBounds(Ops[0], Ops.slice(1)); |
| else |
| return GetElementPtrInst::Create(Ops[0], Ops.slice(1)); |
| |
| case Instruction::ICmp: |
| case Instruction::FCmp: |
| return CmpInst::Create((Instruction::OtherOps)getOpcode(), |
| getPredicate(), Ops[0], Ops[1]); |
| |
| default: |
| assert(getNumOperands() == 2 && "Must be binary operator?"); |
| BinaryOperator *BO = |
| BinaryOperator::Create((Instruction::BinaryOps)getOpcode(), |
| Ops[0], Ops[1]); |
| if (isa<OverflowingBinaryOperator>(BO)) { |
| BO->setHasNoUnsignedWrap(SubclassOptionalData & |
| OverflowingBinaryOperator::NoUnsignedWrap); |
| BO->setHasNoSignedWrap(SubclassOptionalData & |
| OverflowingBinaryOperator::NoSignedWrap); |
| } |
| if (isa<PossiblyExactOperator>(BO)) |
| BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact); |
| return BO; |
| } |
| } |