| //===-- HexagonISelDAGToDAG.cpp - A dag to dag inst selector for Hexagon --===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines an instruction selector for the Hexagon target. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "hexagon-isel" |
| #include "Hexagon.h" |
| #include "HexagonISelLowering.h" |
| #include "HexagonTargetMachine.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/CodeGen/SelectionDAGISel.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| using namespace llvm; |
| |
| static |
| cl::opt<unsigned> |
| MaxNumOfUsesForConstExtenders("ga-max-num-uses-for-constant-extenders", |
| cl::Hidden, cl::init(2), |
| cl::desc("Maximum number of uses of a global address such that we still us a" |
| "constant extended instruction")); |
| |
| //===----------------------------------------------------------------------===// |
| // Instruction Selector Implementation |
| //===----------------------------------------------------------------------===// |
| |
| namespace llvm { |
| void initializeHexagonDAGToDAGISelPass(PassRegistry&); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| /// HexagonDAGToDAGISel - Hexagon specific code to select Hexagon machine |
| /// instructions for SelectionDAG operations. |
| /// |
| namespace { |
| class HexagonDAGToDAGISel : public SelectionDAGISel { |
| /// Subtarget - Keep a pointer to the Hexagon Subtarget around so that we can |
| /// make the right decision when generating code for different targets. |
| const HexagonSubtarget &Subtarget; |
| |
| // Keep a reference to HexagonTargetMachine. |
| HexagonTargetMachine& TM; |
| const HexagonInstrInfo *TII; |
| DenseMap<const GlobalValue *, unsigned> GlobalAddressUseCountMap; |
| public: |
| explicit HexagonDAGToDAGISel(HexagonTargetMachine &targetmachine, |
| CodeGenOpt::Level OptLevel) |
| : SelectionDAGISel(targetmachine, OptLevel), |
| Subtarget(targetmachine.getSubtarget<HexagonSubtarget>()), |
| TM(targetmachine), |
| TII(static_cast<const HexagonInstrInfo*>(TM.getInstrInfo())) { |
| initializeHexagonDAGToDAGISelPass(*PassRegistry::getPassRegistry()); |
| } |
| bool hasNumUsesBelowThresGA(SDNode *N) const; |
| |
| SDNode *Select(SDNode *N); |
| |
| // Complex Pattern Selectors. |
| inline bool foldGlobalAddress(SDValue &N, SDValue &R); |
| inline bool foldGlobalAddressGP(SDValue &N, SDValue &R); |
| bool foldGlobalAddressImpl(SDValue &N, SDValue &R, bool ShouldLookForGP); |
| bool SelectADDRri(SDValue& N, SDValue &R1, SDValue &R2); |
| bool SelectADDRriS11_0(SDValue& N, SDValue &R1, SDValue &R2); |
| bool SelectADDRriS11_1(SDValue& N, SDValue &R1, SDValue &R2); |
| bool SelectADDRriS11_2(SDValue& N, SDValue &R1, SDValue &R2); |
| bool SelectMEMriS11_2(SDValue& Addr, SDValue &Base, SDValue &Offset); |
| bool SelectADDRriS11_3(SDValue& N, SDValue &R1, SDValue &R2); |
| bool SelectADDRrr(SDValue &Addr, SDValue &Base, SDValue &Offset); |
| bool SelectADDRriU6_0(SDValue& N, SDValue &R1, SDValue &R2); |
| bool SelectADDRriU6_1(SDValue& N, SDValue &R1, SDValue &R2); |
| bool SelectADDRriU6_2(SDValue& N, SDValue &R1, SDValue &R2); |
| |
| virtual const char *getPassName() const { |
| return "Hexagon DAG->DAG Pattern Instruction Selection"; |
| } |
| |
| /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for |
| /// inline asm expressions. |
| virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op, |
| char ConstraintCode, |
| std::vector<SDValue> &OutOps); |
| bool SelectAddr(SDNode *Op, SDValue Addr, SDValue &Base, SDValue &Offset); |
| |
| SDNode *SelectLoad(SDNode *N); |
| SDNode *SelectBaseOffsetLoad(LoadSDNode *LD, DebugLoc dl); |
| SDNode *SelectIndexedLoad(LoadSDNode *LD, DebugLoc dl); |
| SDNode *SelectIndexedLoadZeroExtend64(LoadSDNode *LD, unsigned Opcode, |
| DebugLoc dl); |
| SDNode *SelectIndexedLoadSignExtend64(LoadSDNode *LD, unsigned Opcode, |
| DebugLoc dl); |
| SDNode *SelectBaseOffsetStore(StoreSDNode *ST, DebugLoc dl); |
| SDNode *SelectIndexedStore(StoreSDNode *ST, DebugLoc dl); |
| SDNode *SelectStore(SDNode *N); |
| SDNode *SelectSHL(SDNode *N); |
| SDNode *SelectSelect(SDNode *N); |
| SDNode *SelectTruncate(SDNode *N); |
| SDNode *SelectMul(SDNode *N); |
| SDNode *SelectZeroExtend(SDNode *N); |
| SDNode *SelectIntrinsicWOChain(SDNode *N); |
| SDNode *SelectIntrinsicWChain(SDNode *N); |
| SDNode *SelectConstant(SDNode *N); |
| SDNode *SelectConstantFP(SDNode *N); |
| SDNode *SelectAdd(SDNode *N); |
| bool isConstExtProfitable(SDNode *N) const; |
| |
| // XformU7ToU7M1Imm - Return a target constant decremented by 1, in range |
| // [1..128], used in cmpb.gtu instructions. |
| inline SDValue XformU7ToU7M1Imm(signed Imm) { |
| assert((Imm >= 1 && Imm <= 128) && "Constant out of range for cmpb op"); |
| return CurDAG->getTargetConstant(Imm - 1, MVT::i8); |
| } |
| |
| // Include the pieces autogenerated from the target description. |
| #include "HexagonGenDAGISel.inc" |
| }; |
| } // end anonymous namespace |
| |
| |
| /// createHexagonISelDag - This pass converts a legalized DAG into a |
| /// Hexagon-specific DAG, ready for instruction scheduling. |
| /// |
| FunctionPass *llvm::createHexagonISelDag(HexagonTargetMachine &TM, |
| CodeGenOpt::Level OptLevel) { |
| return new HexagonDAGToDAGISel(TM, OptLevel); |
| } |
| |
| static void initializePassOnce(PassRegistry &Registry) { |
| const char *Name = "Hexagon DAG->DAG Pattern Instruction Selection"; |
| PassInfo *PI = new PassInfo(Name, "hexagon-isel", |
| &SelectionDAGISel::ID, 0, false, false); |
| Registry.registerPass(*PI, true); |
| } |
| |
| void llvm::initializeHexagonDAGToDAGISelPass(PassRegistry &Registry) { |
| CALL_ONCE_INITIALIZATION(initializePassOnce) |
| } |
| |
| |
| static bool IsS11_0_Offset(SDNode * S) { |
| ConstantSDNode *N = cast<ConstantSDNode>(S); |
| |
| // immS16 predicate - True if the immediate fits in a 16-bit sign extended |
| // field. |
| int64_t v = (int64_t)N->getSExtValue(); |
| return isInt<11>(v); |
| } |
| |
| |
| static bool IsS11_1_Offset(SDNode * S) { |
| ConstantSDNode *N = cast<ConstantSDNode>(S); |
| |
| // immS16 predicate - True if the immediate fits in a 16-bit sign extended |
| // field. |
| int64_t v = (int64_t)N->getSExtValue(); |
| return isShiftedInt<11,1>(v); |
| } |
| |
| |
| static bool IsS11_2_Offset(SDNode * S) { |
| ConstantSDNode *N = cast<ConstantSDNode>(S); |
| |
| // immS16 predicate - True if the immediate fits in a 16-bit sign extended |
| // field. |
| int64_t v = (int64_t)N->getSExtValue(); |
| return isShiftedInt<11,2>(v); |
| } |
| |
| |
| static bool IsS11_3_Offset(SDNode * S) { |
| ConstantSDNode *N = cast<ConstantSDNode>(S); |
| |
| // immS16 predicate - True if the immediate fits in a 16-bit sign extended |
| // field. |
| int64_t v = (int64_t)N->getSExtValue(); |
| return isShiftedInt<11,3>(v); |
| } |
| |
| |
| static bool IsU6_0_Offset(SDNode * S) { |
| ConstantSDNode *N = cast<ConstantSDNode>(S); |
| |
| // u6 predicate - True if the immediate fits in a 6-bit unsigned extended |
| // field. |
| int64_t v = (int64_t)N->getSExtValue(); |
| return isUInt<6>(v); |
| } |
| |
| |
| static bool IsU6_1_Offset(SDNode * S) { |
| ConstantSDNode *N = cast<ConstantSDNode>(S); |
| |
| // u6 predicate - True if the immediate fits in a 6-bit unsigned extended |
| // field. |
| int64_t v = (int64_t)N->getSExtValue(); |
| return isShiftedUInt<6,1>(v); |
| } |
| |
| |
| static bool IsU6_2_Offset(SDNode * S) { |
| ConstantSDNode *N = cast<ConstantSDNode>(S); |
| |
| // u6 predicate - True if the immediate fits in a 6-bit unsigned extended |
| // field. |
| int64_t v = (int64_t)N->getSExtValue(); |
| return isShiftedUInt<6,2>(v); |
| } |
| |
| |
| // Intrinsics that return a a predicate. |
| static unsigned doesIntrinsicReturnPredicate(unsigned ID) |
| { |
| switch (ID) { |
| default: |
| return 0; |
| case Intrinsic::hexagon_C2_cmpeq: |
| case Intrinsic::hexagon_C2_cmpgt: |
| case Intrinsic::hexagon_C2_cmpgtu: |
| case Intrinsic::hexagon_C2_cmpgtup: |
| case Intrinsic::hexagon_C2_cmpgtp: |
| case Intrinsic::hexagon_C2_cmpeqp: |
| case Intrinsic::hexagon_C2_bitsset: |
| case Intrinsic::hexagon_C2_bitsclr: |
| case Intrinsic::hexagon_C2_cmpeqi: |
| case Intrinsic::hexagon_C2_cmpgti: |
| case Intrinsic::hexagon_C2_cmpgtui: |
| case Intrinsic::hexagon_C2_cmpgei: |
| case Intrinsic::hexagon_C2_cmpgeui: |
| case Intrinsic::hexagon_C2_cmplt: |
| case Intrinsic::hexagon_C2_cmpltu: |
| case Intrinsic::hexagon_C2_bitsclri: |
| case Intrinsic::hexagon_C2_and: |
| case Intrinsic::hexagon_C2_or: |
| case Intrinsic::hexagon_C2_xor: |
| case Intrinsic::hexagon_C2_andn: |
| case Intrinsic::hexagon_C2_not: |
| case Intrinsic::hexagon_C2_orn: |
| case Intrinsic::hexagon_C2_pxfer_map: |
| case Intrinsic::hexagon_C2_any8: |
| case Intrinsic::hexagon_C2_all8: |
| case Intrinsic::hexagon_A2_vcmpbeq: |
| case Intrinsic::hexagon_A2_vcmpbgtu: |
| case Intrinsic::hexagon_A2_vcmpheq: |
| case Intrinsic::hexagon_A2_vcmphgt: |
| case Intrinsic::hexagon_A2_vcmphgtu: |
| case Intrinsic::hexagon_A2_vcmpweq: |
| case Intrinsic::hexagon_A2_vcmpwgt: |
| case Intrinsic::hexagon_A2_vcmpwgtu: |
| case Intrinsic::hexagon_C2_tfrrp: |
| case Intrinsic::hexagon_S2_tstbit_i: |
| case Intrinsic::hexagon_S2_tstbit_r: |
| return 1; |
| } |
| } |
| |
| |
| // Intrinsics that have predicate operands. |
| static unsigned doesIntrinsicContainPredicate(unsigned ID) |
| { |
| switch (ID) { |
| default: |
| return 0; |
| case Intrinsic::hexagon_C2_tfrpr: |
| return Hexagon::TFR_RsPd; |
| case Intrinsic::hexagon_C2_and: |
| return Hexagon::AND_pp; |
| case Intrinsic::hexagon_C2_xor: |
| return Hexagon::XOR_pp; |
| case Intrinsic::hexagon_C2_or: |
| return Hexagon::OR_pp; |
| case Intrinsic::hexagon_C2_not: |
| return Hexagon::NOT_p; |
| case Intrinsic::hexagon_C2_any8: |
| return Hexagon::ANY_pp; |
| case Intrinsic::hexagon_C2_all8: |
| return Hexagon::ALL_pp; |
| case Intrinsic::hexagon_C2_vitpack: |
| return Hexagon::VITPACK_pp; |
| case Intrinsic::hexagon_C2_mask: |
| return Hexagon::MASK_p; |
| case Intrinsic::hexagon_C2_mux: |
| return Hexagon::MUX_rr; |
| |
| // Mapping hexagon_C2_muxir to MUX_pri. This is pretty weird - but |
| // that's how it's mapped in q6protos.h. |
| case Intrinsic::hexagon_C2_muxir: |
| return Hexagon::MUX_ri; |
| |
| // Mapping hexagon_C2_muxri to MUX_pir. This is pretty weird - but |
| // that's how it's mapped in q6protos.h. |
| case Intrinsic::hexagon_C2_muxri: |
| return Hexagon::MUX_ir; |
| |
| case Intrinsic::hexagon_C2_muxii: |
| return Hexagon::MUX_ii; |
| case Intrinsic::hexagon_C2_vmux: |
| return Hexagon::VMUX_prr64; |
| case Intrinsic::hexagon_S2_valignrb: |
| return Hexagon::VALIGN_rrp; |
| case Intrinsic::hexagon_S2_vsplicerb: |
| return Hexagon::VSPLICE_rrp; |
| } |
| } |
| |
| |
| static bool OffsetFitsS11(EVT MemType, int64_t Offset) { |
| if (MemType == MVT::i64 && isShiftedInt<11,3>(Offset)) { |
| return true; |
| } |
| if (MemType == MVT::i32 && isShiftedInt<11,2>(Offset)) { |
| return true; |
| } |
| if (MemType == MVT::i16 && isShiftedInt<11,1>(Offset)) { |
| return true; |
| } |
| if (MemType == MVT::i8 && isInt<11>(Offset)) { |
| return true; |
| } |
| return false; |
| } |
| |
| |
| // |
| // Try to lower loads of GlobalAdresses into base+offset loads. Custom |
| // lowering for GlobalAddress nodes has already turned it into a |
| // CONST32. |
| // |
| SDNode *HexagonDAGToDAGISel::SelectBaseOffsetLoad(LoadSDNode *LD, DebugLoc dl) { |
| SDValue Chain = LD->getChain(); |
| SDNode* Const32 = LD->getBasePtr().getNode(); |
| unsigned Opcode = 0; |
| |
| if (Const32->getOpcode() == HexagonISD::CONST32 && |
| ISD::isNormalLoad(LD)) { |
| SDValue Base = Const32->getOperand(0); |
| EVT LoadedVT = LD->getMemoryVT(); |
| int64_t Offset = cast<GlobalAddressSDNode>(Base)->getOffset(); |
| if (Offset != 0 && OffsetFitsS11(LoadedVT, Offset)) { |
| MVT PointerTy = TLI.getPointerTy(); |
| const GlobalValue* GV = |
| cast<GlobalAddressSDNode>(Base)->getGlobal(); |
| SDValue TargAddr = |
| CurDAG->getTargetGlobalAddress(GV, dl, PointerTy, 0); |
| SDNode* NewBase = CurDAG->getMachineNode(Hexagon::CONST32_set, |
| dl, PointerTy, |
| TargAddr); |
| // Figure out base + offset opcode |
| if (LoadedVT == MVT::i64) Opcode = Hexagon::LDrid_indexed; |
| else if (LoadedVT == MVT::i32) Opcode = Hexagon::LDriw_indexed; |
| else if (LoadedVT == MVT::i16) Opcode = Hexagon::LDrih_indexed; |
| else if (LoadedVT == MVT::i8) Opcode = Hexagon::LDrib_indexed; |
| else llvm_unreachable("unknown memory type"); |
| |
| // Build indexed load. |
| SDValue TargetConstOff = CurDAG->getTargetConstant(Offset, PointerTy); |
| SDNode* Result = CurDAG->getMachineNode(Opcode, dl, |
| LD->getValueType(0), |
| MVT::Other, |
| SDValue(NewBase,0), |
| TargetConstOff, |
| Chain); |
| MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); |
| MemOp[0] = LD->getMemOperand(); |
| cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1); |
| ReplaceUses(LD, Result); |
| return Result; |
| } |
| } |
| |
| return SelectCode(LD); |
| } |
| |
| |
| SDNode *HexagonDAGToDAGISel::SelectIndexedLoadSignExtend64(LoadSDNode *LD, |
| unsigned Opcode, |
| DebugLoc dl) |
| { |
| SDValue Chain = LD->getChain(); |
| EVT LoadedVT = LD->getMemoryVT(); |
| SDValue Base = LD->getBasePtr(); |
| SDValue Offset = LD->getOffset(); |
| SDNode *OffsetNode = Offset.getNode(); |
| int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue(); |
| SDValue N1 = LD->getOperand(1); |
| SDValue CPTmpN1_0; |
| SDValue CPTmpN1_1; |
| if (SelectADDRriS11_2(N1, CPTmpN1_0, CPTmpN1_1) && |
| N1.getNode()->getValueType(0) == MVT::i32) { |
| if (TII->isValidAutoIncImm(LoadedVT, Val)) { |
| SDValue TargetConst = CurDAG->getTargetConstant(Val, MVT::i32); |
| SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::i32, |
| MVT::Other, Base, TargetConst, |
| Chain); |
| SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::SXTW, dl, MVT::i64, |
| SDValue(Result_1, 0)); |
| MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); |
| MemOp[0] = LD->getMemOperand(); |
| cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1); |
| const SDValue Froms[] = { SDValue(LD, 0), |
| SDValue(LD, 1), |
| SDValue(LD, 2) |
| }; |
| const SDValue Tos[] = { SDValue(Result_2, 0), |
| SDValue(Result_1, 1), |
| SDValue(Result_1, 2) |
| }; |
| ReplaceUses(Froms, Tos, 3); |
| return Result_2; |
| } |
| SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32); |
| SDValue TargetConstVal = CurDAG->getTargetConstant(Val, MVT::i32); |
| SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32, |
| MVT::Other, Base, TargetConst0, |
| Chain); |
| SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::SXTW, dl, |
| MVT::i64, SDValue(Result_1, 0)); |
| SDNode* Result_3 = CurDAG->getMachineNode(Hexagon::ADD_ri, dl, |
| MVT::i32, Base, TargetConstVal, |
| SDValue(Result_1, 1)); |
| MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); |
| MemOp[0] = LD->getMemOperand(); |
| cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1); |
| const SDValue Froms[] = { SDValue(LD, 0), |
| SDValue(LD, 1), |
| SDValue(LD, 2) |
| }; |
| const SDValue Tos[] = { SDValue(Result_2, 0), |
| SDValue(Result_3, 0), |
| SDValue(Result_1, 1) |
| }; |
| ReplaceUses(Froms, Tos, 3); |
| return Result_2; |
| } |
| return SelectCode(LD); |
| } |
| |
| |
| SDNode *HexagonDAGToDAGISel::SelectIndexedLoadZeroExtend64(LoadSDNode *LD, |
| unsigned Opcode, |
| DebugLoc dl) |
| { |
| SDValue Chain = LD->getChain(); |
| EVT LoadedVT = LD->getMemoryVT(); |
| SDValue Base = LD->getBasePtr(); |
| SDValue Offset = LD->getOffset(); |
| SDNode *OffsetNode = Offset.getNode(); |
| int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue(); |
| SDValue N1 = LD->getOperand(1); |
| SDValue CPTmpN1_0; |
| SDValue CPTmpN1_1; |
| if (SelectADDRriS11_2(N1, CPTmpN1_0, CPTmpN1_1) && |
| N1.getNode()->getValueType(0) == MVT::i32) { |
| if (TII->isValidAutoIncImm(LoadedVT, Val)) { |
| SDValue TargetConstVal = CurDAG->getTargetConstant(Val, MVT::i32); |
| SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32); |
| SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32, |
| MVT::i32, MVT::Other, Base, |
| TargetConstVal, Chain); |
| SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::TFRI, dl, MVT::i32, |
| TargetConst0); |
| SDNode *Result_3 = CurDAG->getMachineNode(Hexagon::COMBINE_rr, dl, |
| MVT::i64, MVT::Other, |
| SDValue(Result_2,0), |
| SDValue(Result_1,0)); |
| MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); |
| MemOp[0] = LD->getMemOperand(); |
| cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1); |
| const SDValue Froms[] = { SDValue(LD, 0), |
| SDValue(LD, 1), |
| SDValue(LD, 2) |
| }; |
| const SDValue Tos[] = { SDValue(Result_3, 0), |
| SDValue(Result_1, 1), |
| SDValue(Result_1, 2) |
| }; |
| ReplaceUses(Froms, Tos, 3); |
| return Result_3; |
| } |
| |
| // Generate an indirect load. |
| SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32); |
| SDValue TargetConstVal = CurDAG->getTargetConstant(Val, MVT::i32); |
| SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32, |
| MVT::Other, |
| Base, TargetConst0, Chain); |
| SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::TFRI, dl, MVT::i32, |
| TargetConst0); |
| SDNode *Result_3 = CurDAG->getMachineNode(Hexagon::COMBINE_rr, dl, |
| MVT::i64, MVT::Other, |
| SDValue(Result_2,0), |
| SDValue(Result_1,0)); |
| // Add offset to base. |
| SDNode* Result_4 = CurDAG->getMachineNode(Hexagon::ADD_ri, dl, MVT::i32, |
| Base, TargetConstVal, |
| SDValue(Result_1, 1)); |
| MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); |
| MemOp[0] = LD->getMemOperand(); |
| cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1); |
| const SDValue Froms[] = { SDValue(LD, 0), |
| SDValue(LD, 1), |
| SDValue(LD, 2) |
| }; |
| const SDValue Tos[] = { SDValue(Result_3, 0), // Load value. |
| SDValue(Result_4, 0), // New address. |
| SDValue(Result_1, 1) |
| }; |
| ReplaceUses(Froms, Tos, 3); |
| return Result_3; |
| } |
| |
| return SelectCode(LD); |
| } |
| |
| |
| SDNode *HexagonDAGToDAGISel::SelectIndexedLoad(LoadSDNode *LD, DebugLoc dl) { |
| SDValue Chain = LD->getChain(); |
| SDValue Base = LD->getBasePtr(); |
| SDValue Offset = LD->getOffset(); |
| SDNode *OffsetNode = Offset.getNode(); |
| // Get the constant value. |
| int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue(); |
| EVT LoadedVT = LD->getMemoryVT(); |
| unsigned Opcode = 0; |
| |
| // Check for zero ext loads. |
| bool zextval = (LD->getExtensionType() == ISD::ZEXTLOAD); |
| |
| // Figure out the opcode. |
| if (LoadedVT == MVT::i64) { |
| if (TII->isValidAutoIncImm(LoadedVT, Val)) |
| Opcode = Hexagon::POST_LDrid; |
| else |
| Opcode = Hexagon::LDrid; |
| } else if (LoadedVT == MVT::i32) { |
| if (TII->isValidAutoIncImm(LoadedVT, Val)) |
| Opcode = Hexagon::POST_LDriw; |
| else |
| Opcode = Hexagon::LDriw; |
| } else if (LoadedVT == MVT::i16) { |
| if (TII->isValidAutoIncImm(LoadedVT, Val)) |
| Opcode = zextval ? Hexagon::POST_LDriuh : Hexagon::POST_LDrih; |
| else |
| Opcode = zextval ? Hexagon::LDriuh : Hexagon::LDrih; |
| } else if (LoadedVT == MVT::i8) { |
| if (TII->isValidAutoIncImm(LoadedVT, Val)) |
| Opcode = zextval ? Hexagon::POST_LDriub : Hexagon::POST_LDrib; |
| else |
| Opcode = zextval ? Hexagon::LDriub : Hexagon::LDrib; |
| } else |
| llvm_unreachable("unknown memory type"); |
| |
| // For zero ext i64 loads, we need to add combine instructions. |
| if (LD->getValueType(0) == MVT::i64 && |
| LD->getExtensionType() == ISD::ZEXTLOAD) { |
| return SelectIndexedLoadZeroExtend64(LD, Opcode, dl); |
| } |
| if (LD->getValueType(0) == MVT::i64 && |
| LD->getExtensionType() == ISD::SEXTLOAD) { |
| // Handle sign ext i64 loads. |
| return SelectIndexedLoadSignExtend64(LD, Opcode, dl); |
| } |
| if (TII->isValidAutoIncImm(LoadedVT, Val)) { |
| SDValue TargetConstVal = CurDAG->getTargetConstant(Val, MVT::i32); |
| SDNode* Result = CurDAG->getMachineNode(Opcode, dl, |
| LD->getValueType(0), |
| MVT::i32, MVT::Other, Base, |
| TargetConstVal, Chain); |
| MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); |
| MemOp[0] = LD->getMemOperand(); |
| cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1); |
| const SDValue Froms[] = { SDValue(LD, 0), |
| SDValue(LD, 1), |
| SDValue(LD, 2) |
| }; |
| const SDValue Tos[] = { SDValue(Result, 0), |
| SDValue(Result, 1), |
| SDValue(Result, 2) |
| }; |
| ReplaceUses(Froms, Tos, 3); |
| return Result; |
| } else { |
| SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32); |
| SDValue TargetConstVal = CurDAG->getTargetConstant(Val, MVT::i32); |
| SDNode* Result_1 = CurDAG->getMachineNode(Opcode, dl, |
| LD->getValueType(0), |
| MVT::Other, Base, TargetConst0, |
| Chain); |
| SDNode* Result_2 = CurDAG->getMachineNode(Hexagon::ADD_ri, dl, MVT::i32, |
| Base, TargetConstVal, |
| SDValue(Result_1, 1)); |
| MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); |
| MemOp[0] = LD->getMemOperand(); |
| cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1); |
| const SDValue Froms[] = { SDValue(LD, 0), |
| SDValue(LD, 1), |
| SDValue(LD, 2) |
| }; |
| const SDValue Tos[] = { SDValue(Result_1, 0), |
| SDValue(Result_2, 0), |
| SDValue(Result_1, 1) |
| }; |
| ReplaceUses(Froms, Tos, 3); |
| return Result_1; |
| } |
| } |
| |
| |
| SDNode *HexagonDAGToDAGISel::SelectLoad(SDNode *N) { |
| SDNode *result; |
| DebugLoc dl = N->getDebugLoc(); |
| LoadSDNode *LD = cast<LoadSDNode>(N); |
| ISD::MemIndexedMode AM = LD->getAddressingMode(); |
| |
| // Handle indexed loads. |
| if (AM != ISD::UNINDEXED) { |
| result = SelectIndexedLoad(LD, dl); |
| } else { |
| result = SelectBaseOffsetLoad(LD, dl); |
| } |
| |
| return result; |
| } |
| |
| |
| SDNode *HexagonDAGToDAGISel::SelectIndexedStore(StoreSDNode *ST, DebugLoc dl) { |
| SDValue Chain = ST->getChain(); |
| SDValue Base = ST->getBasePtr(); |
| SDValue Offset = ST->getOffset(); |
| SDValue Value = ST->getValue(); |
| SDNode *OffsetNode = Offset.getNode(); |
| // Get the constant value. |
| int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue(); |
| EVT StoredVT = ST->getMemoryVT(); |
| |
| // Offset value must be within representable range |
| // and must have correct alignment properties. |
| if (TII->isValidAutoIncImm(StoredVT, Val)) { |
| SDValue Ops[] = {Base, CurDAG->getTargetConstant(Val, MVT::i32), Value, |
| Chain}; |
| unsigned Opcode = 0; |
| |
| // Figure out the post inc version of opcode. |
| if (StoredVT == MVT::i64) Opcode = Hexagon::POST_STdri; |
| else if (StoredVT == MVT::i32) Opcode = Hexagon::POST_STwri; |
| else if (StoredVT == MVT::i16) Opcode = Hexagon::POST_SThri; |
| else if (StoredVT == MVT::i8) Opcode = Hexagon::POST_STbri; |
| else llvm_unreachable("unknown memory type"); |
| |
| // Build post increment store. |
| SDNode* Result = CurDAG->getMachineNode(Opcode, dl, MVT::i32, |
| MVT::Other, Ops, 4); |
| MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); |
| MemOp[0] = ST->getMemOperand(); |
| cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1); |
| |
| ReplaceUses(ST, Result); |
| ReplaceUses(SDValue(ST,1), SDValue(Result,1)); |
| return Result; |
| } |
| |
| // Note: Order of operands matches the def of instruction: |
| // def STrid : STInst<(outs), (ins MEMri:$addr, DoubleRegs:$src1), ... |
| // and it differs for POST_ST* for instance. |
| SDValue Ops[] = { Base, CurDAG->getTargetConstant(0, MVT::i32), Value, |
| Chain}; |
| unsigned Opcode = 0; |
| |
| // Figure out the opcode. |
| if (StoredVT == MVT::i64) Opcode = Hexagon::STrid; |
| else if (StoredVT == MVT::i32) Opcode = Hexagon::STriw_indexed; |
| else if (StoredVT == MVT::i16) Opcode = Hexagon::STrih; |
| else if (StoredVT == MVT::i8) Opcode = Hexagon::STrib; |
| else llvm_unreachable("unknown memory type"); |
| |
| // Build regular store. |
| SDValue TargetConstVal = CurDAG->getTargetConstant(Val, MVT::i32); |
| SDNode* Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops, |
| 4); |
| // Build splitted incriment instruction. |
| SDNode* Result_2 = CurDAG->getMachineNode(Hexagon::ADD_ri, dl, MVT::i32, |
| Base, |
| TargetConstVal, |
| SDValue(Result_1, 0)); |
| MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); |
| MemOp[0] = ST->getMemOperand(); |
| cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1); |
| |
| ReplaceUses(SDValue(ST,0), SDValue(Result_2,0)); |
| ReplaceUses(SDValue(ST,1), SDValue(Result_1,0)); |
| return Result_2; |
| } |
| |
| |
| SDNode *HexagonDAGToDAGISel::SelectBaseOffsetStore(StoreSDNode *ST, |
| DebugLoc dl) { |
| SDValue Chain = ST->getChain(); |
| SDNode* Const32 = ST->getBasePtr().getNode(); |
| SDValue Value = ST->getValue(); |
| unsigned Opcode = 0; |
| |
| // Try to lower stores of GlobalAdresses into indexed stores. Custom |
| // lowering for GlobalAddress nodes has already turned it into a |
| // CONST32. Avoid truncating stores for the moment. Post-inc stores |
| // do the same. Don't think there's a reason for it, so will file a |
| // bug to fix. |
| if ((Const32->getOpcode() == HexagonISD::CONST32) && |
| !(Value.getValueType() == MVT::i64 && ST->isTruncatingStore())) { |
| SDValue Base = Const32->getOperand(0); |
| if (Base.getOpcode() == ISD::TargetGlobalAddress) { |
| EVT StoredVT = ST->getMemoryVT(); |
| int64_t Offset = cast<GlobalAddressSDNode>(Base)->getOffset(); |
| if (Offset != 0 && OffsetFitsS11(StoredVT, Offset)) { |
| MVT PointerTy = TLI.getPointerTy(); |
| const GlobalValue* GV = |
| cast<GlobalAddressSDNode>(Base)->getGlobal(); |
| SDValue TargAddr = |
| CurDAG->getTargetGlobalAddress(GV, dl, PointerTy, 0); |
| SDNode* NewBase = CurDAG->getMachineNode(Hexagon::CONST32_set, |
| dl, PointerTy, |
| TargAddr); |
| |
| // Figure out base + offset opcode |
| if (StoredVT == MVT::i64) Opcode = Hexagon::STrid_indexed; |
| else if (StoredVT == MVT::i32) Opcode = Hexagon::STriw_indexed; |
| else if (StoredVT == MVT::i16) Opcode = Hexagon::STrih_indexed; |
| else if (StoredVT == MVT::i8) Opcode = Hexagon::STrib_indexed; |
| else llvm_unreachable("unknown memory type"); |
| |
| SDValue Ops[] = {SDValue(NewBase,0), |
| CurDAG->getTargetConstant(Offset,PointerTy), |
| Value, Chain}; |
| // build indexed store |
| SDNode* Result = CurDAG->getMachineNode(Opcode, dl, |
| MVT::Other, Ops, 4); |
| MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); |
| MemOp[0] = ST->getMemOperand(); |
| cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1); |
| ReplaceUses(ST, Result); |
| return Result; |
| } |
| } |
| } |
| |
| return SelectCode(ST); |
| } |
| |
| |
| SDNode *HexagonDAGToDAGISel::SelectStore(SDNode *N) { |
| DebugLoc dl = N->getDebugLoc(); |
| StoreSDNode *ST = cast<StoreSDNode>(N); |
| ISD::MemIndexedMode AM = ST->getAddressingMode(); |
| |
| // Handle indexed stores. |
| if (AM != ISD::UNINDEXED) { |
| return SelectIndexedStore(ST, dl); |
| } |
| |
| return SelectBaseOffsetStore(ST, dl); |
| } |
| |
| SDNode *HexagonDAGToDAGISel::SelectMul(SDNode *N) { |
| DebugLoc dl = N->getDebugLoc(); |
| |
| // |
| // %conv.i = sext i32 %tmp1 to i64 |
| // %conv2.i = sext i32 %add to i64 |
| // %mul.i = mul nsw i64 %conv2.i, %conv.i |
| // |
| // --- match with the following --- |
| // |
| // %mul.i = mpy (%tmp1, %add) |
| // |
| |
| if (N->getValueType(0) == MVT::i64) { |
| // Shifting a i64 signed multiply. |
| SDValue MulOp0 = N->getOperand(0); |
| SDValue MulOp1 = N->getOperand(1); |
| |
| SDValue OP0; |
| SDValue OP1; |
| |
| // Handle sign_extend and sextload. |
| if (MulOp0.getOpcode() == ISD::SIGN_EXTEND) { |
| SDValue Sext0 = MulOp0.getOperand(0); |
| if (Sext0.getNode()->getValueType(0) != MVT::i32) { |
| return SelectCode(N); |
| } |
| |
| OP0 = Sext0; |
| } else if (MulOp0.getOpcode() == ISD::LOAD) { |
| LoadSDNode *LD = cast<LoadSDNode>(MulOp0.getNode()); |
| if (LD->getMemoryVT() != MVT::i32 || |
| LD->getExtensionType() != ISD::SEXTLOAD || |
| LD->getAddressingMode() != ISD::UNINDEXED) { |
| return SelectCode(N); |
| } |
| |
| SDValue Chain = LD->getChain(); |
| SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32); |
| OP0 = SDValue (CurDAG->getMachineNode(Hexagon::LDriw, dl, MVT::i32, |
| MVT::Other, |
| LD->getBasePtr(), TargetConst0, |
| Chain), 0); |
| } else { |
| return SelectCode(N); |
| } |
| |
| // Same goes for the second operand. |
| if (MulOp1.getOpcode() == ISD::SIGN_EXTEND) { |
| SDValue Sext1 = MulOp1.getOperand(0); |
| if (Sext1.getNode()->getValueType(0) != MVT::i32) { |
| return SelectCode(N); |
| } |
| |
| OP1 = Sext1; |
| } else if (MulOp1.getOpcode() == ISD::LOAD) { |
| LoadSDNode *LD = cast<LoadSDNode>(MulOp1.getNode()); |
| if (LD->getMemoryVT() != MVT::i32 || |
| LD->getExtensionType() != ISD::SEXTLOAD || |
| LD->getAddressingMode() != ISD::UNINDEXED) { |
| return SelectCode(N); |
| } |
| |
| SDValue Chain = LD->getChain(); |
| SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32); |
| OP1 = SDValue (CurDAG->getMachineNode(Hexagon::LDriw, dl, MVT::i32, |
| MVT::Other, |
| LD->getBasePtr(), TargetConst0, |
| Chain), 0); |
| } else { |
| return SelectCode(N); |
| } |
| |
| // Generate a mpy instruction. |
| SDNode *Result = CurDAG->getMachineNode(Hexagon::MPY64, dl, MVT::i64, |
| OP0, OP1); |
| ReplaceUses(N, Result); |
| return Result; |
| } |
| |
| return SelectCode(N); |
| } |
| |
| |
| SDNode *HexagonDAGToDAGISel::SelectSelect(SDNode *N) { |
| DebugLoc dl = N->getDebugLoc(); |
| SDValue N0 = N->getOperand(0); |
| if (N0.getOpcode() == ISD::SETCC) { |
| SDValue N00 = N0.getOperand(0); |
| if (N00.getOpcode() == ISD::SIGN_EXTEND_INREG) { |
| SDValue N000 = N00.getOperand(0); |
| SDValue N001 = N00.getOperand(1); |
| if (cast<VTSDNode>(N001)->getVT() == MVT::i16) { |
| SDValue N01 = N0.getOperand(1); |
| SDValue N02 = N0.getOperand(2); |
| |
| // Pattern: (select:i32 (setcc:i1 (sext_inreg:i32 IntRegs:i32:$src2, |
| // i16:Other),IntRegs:i32:$src1, SETLT:Other),IntRegs:i32:$src1, |
| // IntRegs:i32:$src2) |
| // Emits: (MAXh_rr:i32 IntRegs:i32:$src1, IntRegs:i32:$src2) |
| // Pattern complexity = 9 cost = 1 size = 0. |
| if (cast<CondCodeSDNode>(N02)->get() == ISD::SETLT) { |
| SDValue N1 = N->getOperand(1); |
| if (N01 == N1) { |
| SDValue N2 = N->getOperand(2); |
| if (N000 == N2 && |
| N0.getNode()->getValueType(N0.getResNo()) == MVT::i1 && |
| N00.getNode()->getValueType(N00.getResNo()) == MVT::i32) { |
| SDNode *SextNode = CurDAG->getMachineNode(Hexagon::SXTH, dl, |
| MVT::i32, N000); |
| SDNode *Result = CurDAG->getMachineNode(Hexagon::MAXw_rr, dl, |
| MVT::i32, |
| SDValue(SextNode, 0), |
| N1); |
| ReplaceUses(N, Result); |
| return Result; |
| } |
| } |
| } |
| |
| // Pattern: (select:i32 (setcc:i1 (sext_inreg:i32 IntRegs:i32:$src2, |
| // i16:Other), IntRegs:i32:$src1, SETGT:Other), IntRegs:i32:$src1, |
| // IntRegs:i32:$src2) |
| // Emits: (MINh_rr:i32 IntRegs:i32:$src1, IntRegs:i32:$src2) |
| // Pattern complexity = 9 cost = 1 size = 0. |
| if (cast<CondCodeSDNode>(N02)->get() == ISD::SETGT) { |
| SDValue N1 = N->getOperand(1); |
| if (N01 == N1) { |
| SDValue N2 = N->getOperand(2); |
| if (N000 == N2 && |
| N0.getNode()->getValueType(N0.getResNo()) == MVT::i1 && |
| N00.getNode()->getValueType(N00.getResNo()) == MVT::i32) { |
| SDNode *SextNode = CurDAG->getMachineNode(Hexagon::SXTH, dl, |
| MVT::i32, N000); |
| SDNode *Result = CurDAG->getMachineNode(Hexagon::MINw_rr, dl, |
| MVT::i32, |
| SDValue(SextNode, 0), |
| N1); |
| ReplaceUses(N, Result); |
| return Result; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| return SelectCode(N); |
| } |
| |
| |
| SDNode *HexagonDAGToDAGISel::SelectTruncate(SDNode *N) { |
| DebugLoc dl = N->getDebugLoc(); |
| SDValue Shift = N->getOperand(0); |
| |
| // |
| // %conv.i = sext i32 %tmp1 to i64 |
| // %conv2.i = sext i32 %add to i64 |
| // %mul.i = mul nsw i64 %conv2.i, %conv.i |
| // %shr5.i = lshr i64 %mul.i, 32 |
| // %conv3.i = trunc i64 %shr5.i to i32 |
| // |
| // --- match with the following --- |
| // |
| // %conv3.i = mpy (%tmp1, %add) |
| // |
| // Trunc to i32. |
| if (N->getValueType(0) == MVT::i32) { |
| // Trunc from i64. |
| if (Shift.getNode()->getValueType(0) == MVT::i64) { |
| // Trunc child is logical shift right. |
| if (Shift.getOpcode() != ISD::SRL) { |
| return SelectCode(N); |
| } |
| |
| SDValue ShiftOp0 = Shift.getOperand(0); |
| SDValue ShiftOp1 = Shift.getOperand(1); |
| |
| // Shift by const 32 |
| if (ShiftOp1.getOpcode() != ISD::Constant) { |
| return SelectCode(N); |
| } |
| |
| int32_t ShiftConst = |
| cast<ConstantSDNode>(ShiftOp1.getNode())->getSExtValue(); |
| if (ShiftConst != 32) { |
| return SelectCode(N); |
| } |
| |
| // Shifting a i64 signed multiply |
| SDValue Mul = ShiftOp0; |
| if (Mul.getOpcode() != ISD::MUL) { |
| return SelectCode(N); |
| } |
| |
| SDValue MulOp0 = Mul.getOperand(0); |
| SDValue MulOp1 = Mul.getOperand(1); |
| |
| SDValue OP0; |
| SDValue OP1; |
| |
| // Handle sign_extend and sextload |
| if (MulOp0.getOpcode() == ISD::SIGN_EXTEND) { |
| SDValue Sext0 = MulOp0.getOperand(0); |
| if (Sext0.getNode()->getValueType(0) != MVT::i32) { |
| return SelectCode(N); |
| } |
| |
| OP0 = Sext0; |
| } else if (MulOp0.getOpcode() == ISD::LOAD) { |
| LoadSDNode *LD = cast<LoadSDNode>(MulOp0.getNode()); |
| if (LD->getMemoryVT() != MVT::i32 || |
| LD->getExtensionType() != ISD::SEXTLOAD || |
| LD->getAddressingMode() != ISD::UNINDEXED) { |
| return SelectCode(N); |
| } |
| |
| SDValue Chain = LD->getChain(); |
| SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32); |
| OP0 = SDValue (CurDAG->getMachineNode(Hexagon::LDriw, dl, MVT::i32, |
| MVT::Other, |
| LD->getBasePtr(), |
| TargetConst0, Chain), 0); |
| } else { |
| return SelectCode(N); |
| } |
| |
| // Same goes for the second operand. |
| if (MulOp1.getOpcode() == ISD::SIGN_EXTEND) { |
| SDValue Sext1 = MulOp1.getOperand(0); |
| if (Sext1.getNode()->getValueType(0) != MVT::i32) |
| return SelectCode(N); |
| |
| OP1 = Sext1; |
| } else if (MulOp1.getOpcode() == ISD::LOAD) { |
| LoadSDNode *LD = cast<LoadSDNode>(MulOp1.getNode()); |
| if (LD->getMemoryVT() != MVT::i32 || |
| LD->getExtensionType() != ISD::SEXTLOAD || |
| LD->getAddressingMode() != ISD::UNINDEXED) { |
| return SelectCode(N); |
| } |
| |
| SDValue Chain = LD->getChain(); |
| SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32); |
| OP1 = SDValue (CurDAG->getMachineNode(Hexagon::LDriw, dl, MVT::i32, |
| MVT::Other, |
| LD->getBasePtr(), |
| TargetConst0, Chain), 0); |
| } else { |
| return SelectCode(N); |
| } |
| |
| // Generate a mpy instruction. |
| SDNode *Result = CurDAG->getMachineNode(Hexagon::MPY, dl, MVT::i32, |
| OP0, OP1); |
| ReplaceUses(N, Result); |
| return Result; |
| } |
| } |
| |
| return SelectCode(N); |
| } |
| |
| |
| SDNode *HexagonDAGToDAGISel::SelectSHL(SDNode *N) { |
| DebugLoc dl = N->getDebugLoc(); |
| if (N->getValueType(0) == MVT::i32) { |
| SDValue Shl_0 = N->getOperand(0); |
| SDValue Shl_1 = N->getOperand(1); |
| // RHS is const. |
| if (Shl_1.getOpcode() == ISD::Constant) { |
| if (Shl_0.getOpcode() == ISD::MUL) { |
| SDValue Mul_0 = Shl_0.getOperand(0); // Val |
| SDValue Mul_1 = Shl_0.getOperand(1); // Const |
| // RHS of mul is const. |
| if (Mul_1.getOpcode() == ISD::Constant) { |
| int32_t ShlConst = |
| cast<ConstantSDNode>(Shl_1.getNode())->getSExtValue(); |
| int32_t MulConst = |
| cast<ConstantSDNode>(Mul_1.getNode())->getSExtValue(); |
| int32_t ValConst = MulConst << ShlConst; |
| SDValue Val = CurDAG->getTargetConstant(ValConst, |
| MVT::i32); |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val.getNode())) |
| if (isInt<9>(CN->getSExtValue())) { |
| SDNode* Result = |
| CurDAG->getMachineNode(Hexagon::MPYI_ri, dl, |
| MVT::i32, Mul_0, Val); |
| ReplaceUses(N, Result); |
| return Result; |
| } |
| |
| } |
| } else if (Shl_0.getOpcode() == ISD::SUB) { |
| SDValue Sub_0 = Shl_0.getOperand(0); // Const 0 |
| SDValue Sub_1 = Shl_0.getOperand(1); // Val |
| if (Sub_0.getOpcode() == ISD::Constant) { |
| int32_t SubConst = |
| cast<ConstantSDNode>(Sub_0.getNode())->getSExtValue(); |
| if (SubConst == 0) { |
| if (Sub_1.getOpcode() == ISD::SHL) { |
| SDValue Shl2_0 = Sub_1.getOperand(0); // Val |
| SDValue Shl2_1 = Sub_1.getOperand(1); // Const |
| if (Shl2_1.getOpcode() == ISD::Constant) { |
| int32_t ShlConst = |
| cast<ConstantSDNode>(Shl_1.getNode())->getSExtValue(); |
| int32_t Shl2Const = |
| cast<ConstantSDNode>(Shl2_1.getNode())->getSExtValue(); |
| int32_t ValConst = 1 << (ShlConst+Shl2Const); |
| SDValue Val = CurDAG->getTargetConstant(-ValConst, MVT::i32); |
| if (ConstantSDNode *CN = |
| dyn_cast<ConstantSDNode>(Val.getNode())) |
| if (isInt<9>(CN->getSExtValue())) { |
| SDNode* Result = |
| CurDAG->getMachineNode(Hexagon::MPYI_ri, dl, MVT::i32, |
| Shl2_0, Val); |
| ReplaceUses(N, Result); |
| return Result; |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| return SelectCode(N); |
| } |
| |
| |
| // |
| // If there is an zero_extend followed an intrinsic in DAG (this means - the |
| // result of the intrinsic is predicate); convert the zero_extend to |
| // transfer instruction. |
| // |
| // Zero extend -> transfer is lowered here. Otherwise, zero_extend will be |
| // converted into a MUX as predicate registers defined as 1 bit in the |
| // compiler. Architecture defines them as 8-bit registers. |
| // We want to preserve all the lower 8-bits and, not just 1 LSB bit. |
| // |
| SDNode *HexagonDAGToDAGISel::SelectZeroExtend(SDNode *N) { |
| DebugLoc dl = N->getDebugLoc(); |
| SDNode *IsIntrinsic = N->getOperand(0).getNode(); |
| if ((IsIntrinsic->getOpcode() == ISD::INTRINSIC_WO_CHAIN)) { |
| unsigned ID = |
| cast<ConstantSDNode>(IsIntrinsic->getOperand(0))->getZExtValue(); |
| if (doesIntrinsicReturnPredicate(ID)) { |
| // Now we need to differentiate target data types. |
| if (N->getValueType(0) == MVT::i64) { |
| // Convert the zero_extend to Rs = Pd followed by COMBINE_rr(0,Rs). |
| SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32); |
| SDNode *Result_1 = CurDAG->getMachineNode(Hexagon::TFR_RsPd, dl, |
| MVT::i32, |
| SDValue(IsIntrinsic, 0)); |
| SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::TFRI, dl, |
| MVT::i32, |
| TargetConst0); |
| SDNode *Result_3 = CurDAG->getMachineNode(Hexagon::COMBINE_rr, dl, |
| MVT::i64, MVT::Other, |
| SDValue(Result_2, 0), |
| SDValue(Result_1, 0)); |
| ReplaceUses(N, Result_3); |
| return Result_3; |
| } |
| if (N->getValueType(0) == MVT::i32) { |
| // Convert the zero_extend to Rs = Pd |
| SDNode* RsPd = CurDAG->getMachineNode(Hexagon::TFR_RsPd, dl, |
| MVT::i32, |
| SDValue(IsIntrinsic, 0)); |
| ReplaceUses(N, RsPd); |
| return RsPd; |
| } |
| llvm_unreachable("Unexpected value type"); |
| } |
| } |
| return SelectCode(N); |
| } |
| |
| |
| // |
| // Checking for intrinsics which have predicate registers as operand(s) |
| // and lowering to the actual intrinsic. |
| // |
| SDNode *HexagonDAGToDAGISel::SelectIntrinsicWOChain(SDNode *N) { |
| DebugLoc dl = N->getDebugLoc(); |
| unsigned ID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); |
| unsigned IntrinsicWithPred = doesIntrinsicContainPredicate(ID); |
| |
| // We are concerned with only those intrinsics that have predicate registers |
| // as at least one of the operands. |
| if (IntrinsicWithPred) { |
| SmallVector<SDValue, 8> Ops; |
| const MCInstrDesc &MCID = TII->get(IntrinsicWithPred); |
| const TargetRegisterInfo *TRI = TM.getRegisterInfo(); |
| |
| // Iterate over all the operands of the intrinsics. |
| // For PredRegs, do the transfer. |
| // For Double/Int Regs, just preserve the value |
| // For immediates, lower it. |
| for (unsigned i = 1; i < N->getNumOperands(); ++i) { |
| SDNode *Arg = N->getOperand(i).getNode(); |
| const TargetRegisterClass *RC = TII->getRegClass(MCID, i, TRI, *MF); |
| |
| if (RC == &Hexagon::IntRegsRegClass || |
| RC == &Hexagon::DoubleRegsRegClass) { |
| Ops.push_back(SDValue(Arg, 0)); |
| } else if (RC == &Hexagon::PredRegsRegClass) { |
| // Do the transfer. |
| SDNode *PdRs = CurDAG->getMachineNode(Hexagon::TFR_PdRs, dl, MVT::i1, |
| SDValue(Arg, 0)); |
| Ops.push_back(SDValue(PdRs,0)); |
| } else if (RC == NULL && (dyn_cast<ConstantSDNode>(Arg) != NULL)) { |
| // This is immediate operand. Lower it here making sure that we DO have |
| // const SDNode for immediate value. |
| int32_t Val = cast<ConstantSDNode>(Arg)->getSExtValue(); |
| SDValue SDVal = CurDAG->getTargetConstant(Val, MVT::i32); |
| Ops.push_back(SDVal); |
| } else { |
| llvm_unreachable("Unimplemented"); |
| } |
| } |
| EVT ReturnValueVT = N->getValueType(0); |
| SDNode *Result = CurDAG->getMachineNode(IntrinsicWithPred, dl, |
| ReturnValueVT, |
| Ops.data(), Ops.size()); |
| ReplaceUses(N, Result); |
| return Result; |
| } |
| return SelectCode(N); |
| } |
| |
| // |
| // Map floating point constant values. |
| // |
| SDNode *HexagonDAGToDAGISel::SelectConstantFP(SDNode *N) { |
| DebugLoc dl = N->getDebugLoc(); |
| ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N); |
| APFloat APF = CN->getValueAPF(); |
| if (N->getValueType(0) == MVT::f32) { |
| return CurDAG->getMachineNode(Hexagon::TFRI_f, dl, MVT::f32, |
| CurDAG->getTargetConstantFP(APF.convertToFloat(), MVT::f32)); |
| } |
| else if (N->getValueType(0) == MVT::f64) { |
| return CurDAG->getMachineNode(Hexagon::CONST64_Float_Real, dl, MVT::f64, |
| CurDAG->getTargetConstantFP(APF.convertToDouble(), MVT::f64)); |
| } |
| |
| return SelectCode(N); |
| } |
| |
| |
| // |
| // Map predicate true (encoded as -1 in LLVM) to a XOR. |
| // |
| SDNode *HexagonDAGToDAGISel::SelectConstant(SDNode *N) { |
| DebugLoc dl = N->getDebugLoc(); |
| if (N->getValueType(0) == MVT::i1) { |
| SDNode* Result; |
| int32_t Val = cast<ConstantSDNode>(N)->getSExtValue(); |
| if (Val == -1) { |
| // Create the IntReg = 1 node. |
| SDNode* IntRegTFR = |
| CurDAG->getMachineNode(Hexagon::TFRI, dl, MVT::i32, |
| CurDAG->getTargetConstant(0, MVT::i32)); |
| |
| // Pd = IntReg |
| SDNode* Pd = CurDAG->getMachineNode(Hexagon::TFR_PdRs, dl, MVT::i1, |
| SDValue(IntRegTFR, 0)); |
| |
| // not(Pd) |
| SDNode* NotPd = CurDAG->getMachineNode(Hexagon::NOT_p, dl, MVT::i1, |
| SDValue(Pd, 0)); |
| |
| // xor(not(Pd)) |
| Result = CurDAG->getMachineNode(Hexagon::XOR_pp, dl, MVT::i1, |
| SDValue(Pd, 0), SDValue(NotPd, 0)); |
| |
| // We have just built: |
| // Rs = Pd |
| // Pd = xor(not(Pd), Pd) |
| |
| ReplaceUses(N, Result); |
| return Result; |
| } |
| } |
| |
| return SelectCode(N); |
| } |
| |
| |
| // |
| // Map add followed by a asr -> asr +=. |
| // |
| SDNode *HexagonDAGToDAGISel::SelectAdd(SDNode *N) { |
| DebugLoc dl = N->getDebugLoc(); |
| if (N->getValueType(0) != MVT::i32) { |
| return SelectCode(N); |
| } |
| // Identify nodes of the form: add(asr(...)). |
| SDNode* Src1 = N->getOperand(0).getNode(); |
| if (Src1->getOpcode() != ISD::SRA || !Src1->hasOneUse() |
| || Src1->getValueType(0) != MVT::i32) { |
| return SelectCode(N); |
| } |
| |
| // Build Rd = Rd' + asr(Rs, Rt). The machine constraints will ensure that |
| // Rd and Rd' are assigned to the same register |
| SDNode* Result = CurDAG->getMachineNode(Hexagon::ASR_ADD_rr, dl, MVT::i32, |
| N->getOperand(1), |
| Src1->getOperand(0), |
| Src1->getOperand(1)); |
| ReplaceUses(N, Result); |
| |
| return Result; |
| } |
| |
| |
| SDNode *HexagonDAGToDAGISel::Select(SDNode *N) { |
| if (N->isMachineOpcode()) |
| return NULL; // Already selected. |
| |
| |
| switch (N->getOpcode()) { |
| case ISD::Constant: |
| return SelectConstant(N); |
| |
| case ISD::ConstantFP: |
| return SelectConstantFP(N); |
| |
| case ISD::ADD: |
| return SelectAdd(N); |
| |
| case ISD::SHL: |
| return SelectSHL(N); |
| |
| case ISD::LOAD: |
| return SelectLoad(N); |
| |
| case ISD::STORE: |
| return SelectStore(N); |
| |
| case ISD::SELECT: |
| return SelectSelect(N); |
| |
| case ISD::TRUNCATE: |
| return SelectTruncate(N); |
| |
| case ISD::MUL: |
| return SelectMul(N); |
| |
| case ISD::ZERO_EXTEND: |
| return SelectZeroExtend(N); |
| |
| case ISD::INTRINSIC_WO_CHAIN: |
| return SelectIntrinsicWOChain(N); |
| } |
| |
| return SelectCode(N); |
| } |
| |
| |
| // |
| // Hexagon_TODO: Five functions for ADDRri?! Surely there must be a better way |
| // to define these instructions. |
| // |
| bool HexagonDAGToDAGISel::SelectADDRri(SDValue& Addr, SDValue &Base, |
| SDValue &Offset) { |
| if (Addr.getOpcode() == ISD::TargetExternalSymbol || |
| Addr.getOpcode() == ISD::TargetGlobalAddress) |
| return false; // Direct calls. |
| |
| if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) { |
| Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32); |
| Offset = CurDAG->getTargetConstant(0, MVT::i32); |
| return true; |
| } |
| Base = Addr; |
| Offset = CurDAG->getTargetConstant(0, MVT::i32); |
| return true; |
| } |
| |
| |
| bool HexagonDAGToDAGISel::SelectADDRriS11_0(SDValue& Addr, SDValue &Base, |
| SDValue &Offset) { |
| if (Addr.getOpcode() == ISD::TargetExternalSymbol || |
| Addr.getOpcode() == ISD::TargetGlobalAddress) |
| return false; // Direct calls. |
| |
| if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) { |
| Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32); |
| Offset = CurDAG->getTargetConstant(0, MVT::i32); |
| return (IsS11_0_Offset(Offset.getNode())); |
| } |
| Base = Addr; |
| Offset = CurDAG->getTargetConstant(0, MVT::i32); |
| return (IsS11_0_Offset(Offset.getNode())); |
| } |
| |
| |
| bool HexagonDAGToDAGISel::SelectADDRriS11_1(SDValue& Addr, SDValue &Base, |
| SDValue &Offset) { |
| if (Addr.getOpcode() == ISD::TargetExternalSymbol || |
| Addr.getOpcode() == ISD::TargetGlobalAddress) |
| return false; // Direct calls. |
| |
| if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) { |
| Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32); |
| Offset = CurDAG->getTargetConstant(0, MVT::i32); |
| return (IsS11_1_Offset(Offset.getNode())); |
| } |
| Base = Addr; |
| Offset = CurDAG->getTargetConstant(0, MVT::i32); |
| return (IsS11_1_Offset(Offset.getNode())); |
| } |
| |
| |
| bool HexagonDAGToDAGISel::SelectADDRriS11_2(SDValue& Addr, SDValue &Base, |
| SDValue &Offset) { |
| if (Addr.getOpcode() == ISD::TargetExternalSymbol || |
| Addr.getOpcode() == ISD::TargetGlobalAddress) |
| return false; // Direct calls. |
| |
| if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) { |
| Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32); |
| Offset = CurDAG->getTargetConstant(0, MVT::i32); |
| return (IsS11_2_Offset(Offset.getNode())); |
| } |
| Base = Addr; |
| Offset = CurDAG->getTargetConstant(0, MVT::i32); |
| return (IsS11_2_Offset(Offset.getNode())); |
| } |
| |
| |
| bool HexagonDAGToDAGISel::SelectADDRriU6_0(SDValue& Addr, SDValue &Base, |
| SDValue &Offset) { |
| if (Addr.getOpcode() == ISD::TargetExternalSymbol || |
| Addr.getOpcode() == ISD::TargetGlobalAddress) |
| return false; // Direct calls. |
| |
| if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) { |
| Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32); |
| Offset = CurDAG->getTargetConstant(0, MVT::i32); |
| return (IsU6_0_Offset(Offset.getNode())); |
| } |
| Base = Addr; |
| Offset = CurDAG->getTargetConstant(0, MVT::i32); |
| return (IsU6_0_Offset(Offset.getNode())); |
| } |
| |
| |
| bool HexagonDAGToDAGISel::SelectADDRriU6_1(SDValue& Addr, SDValue &Base, |
| SDValue &Offset) { |
| if (Addr.getOpcode() == ISD::TargetExternalSymbol || |
| Addr.getOpcode() == ISD::TargetGlobalAddress) |
| return false; // Direct calls. |
| |
| if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) { |
| Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32); |
| Offset = CurDAG->getTargetConstant(0, MVT::i32); |
| return (IsU6_1_Offset(Offset.getNode())); |
| } |
| Base = Addr; |
| Offset = CurDAG->getTargetConstant(0, MVT::i32); |
| return (IsU6_1_Offset(Offset.getNode())); |
| } |
| |
| |
| bool HexagonDAGToDAGISel::SelectADDRriU6_2(SDValue& Addr, SDValue &Base, |
| SDValue &Offset) { |
| if (Addr.getOpcode() == ISD::TargetExternalSymbol || |
| Addr.getOpcode() == ISD::TargetGlobalAddress) |
| return false; // Direct calls. |
| |
| if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) { |
| Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32); |
| Offset = CurDAG->getTargetConstant(0, MVT::i32); |
| return (IsU6_2_Offset(Offset.getNode())); |
| } |
| Base = Addr; |
| Offset = CurDAG->getTargetConstant(0, MVT::i32); |
| return (IsU6_2_Offset(Offset.getNode())); |
| } |
| |
| |
| bool HexagonDAGToDAGISel::SelectMEMriS11_2(SDValue& Addr, SDValue &Base, |
| SDValue &Offset) { |
| |
| if (Addr.getOpcode() != ISD::ADD) { |
| return(SelectADDRriS11_2(Addr, Base, Offset)); |
| } |
| |
| return SelectADDRriS11_2(Addr, Base, Offset); |
| } |
| |
| |
| bool HexagonDAGToDAGISel::SelectADDRriS11_3(SDValue& Addr, SDValue &Base, |
| SDValue &Offset) { |
| if (Addr.getOpcode() == ISD::TargetExternalSymbol || |
| Addr.getOpcode() == ISD::TargetGlobalAddress) |
| return false; // Direct calls. |
| |
| if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) { |
| Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32); |
| Offset = CurDAG->getTargetConstant(0, MVT::i32); |
| return (IsS11_3_Offset(Offset.getNode())); |
| } |
| Base = Addr; |
| Offset = CurDAG->getTargetConstant(0, MVT::i32); |
| return (IsS11_3_Offset(Offset.getNode())); |
| } |
| |
| bool HexagonDAGToDAGISel::SelectADDRrr(SDValue &Addr, SDValue &R1, |
| SDValue &R2) { |
| if (Addr.getOpcode() == ISD::FrameIndex) return false; |
| if (Addr.getOpcode() == ISD::TargetExternalSymbol || |
| Addr.getOpcode() == ISD::TargetGlobalAddress) |
| return false; // Direct calls. |
| |
| if (Addr.getOpcode() == ISD::ADD) { |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1))) |
| if (isInt<13>(CN->getSExtValue())) |
| return false; // Let the reg+imm pattern catch this! |
| R1 = Addr.getOperand(0); |
| R2 = Addr.getOperand(1); |
| return true; |
| } |
| |
| R1 = Addr; |
| |
| return true; |
| } |
| |
| |
| // Handle generic address case. It is accessed from inlined asm =m constraints, |
| // which could have any kind of pointer. |
| bool HexagonDAGToDAGISel::SelectAddr(SDNode *Op, SDValue Addr, |
| SDValue &Base, SDValue &Offset) { |
| if (Addr.getOpcode() == ISD::TargetExternalSymbol || |
| Addr.getOpcode() == ISD::TargetGlobalAddress) |
| return false; // Direct calls. |
| |
| if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) { |
| Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32); |
| Offset = CurDAG->getTargetConstant(0, MVT::i32); |
| return true; |
| } |
| |
| if (Addr.getOpcode() == ISD::ADD) { |
| Base = Addr.getOperand(0); |
| Offset = Addr.getOperand(1); |
| return true; |
| } |
| |
| Base = Addr; |
| Offset = CurDAG->getTargetConstant(0, MVT::i32); |
| return true; |
| } |
| |
| |
| bool HexagonDAGToDAGISel:: |
| SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode, |
| std::vector<SDValue> &OutOps) { |
| SDValue Op0, Op1; |
| |
| switch (ConstraintCode) { |
| case 'o': // Offsetable. |
| case 'v': // Not offsetable. |
| default: return true; |
| case 'm': // Memory. |
| if (!SelectAddr(Op.getNode(), Op, Op0, Op1)) |
| return true; |
| break; |
| } |
| |
| OutOps.push_back(Op0); |
| OutOps.push_back(Op1); |
| return false; |
| } |
| |
| bool HexagonDAGToDAGISel::isConstExtProfitable(SDNode *N) const { |
| unsigned UseCount = 0; |
| for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { |
| UseCount++; |
| } |
| |
| return (UseCount <= 1); |
| |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Return 'true' if use count of the global address is below threshold. |
| //===--------------------------------------------------------------------===// |
| bool HexagonDAGToDAGISel::hasNumUsesBelowThresGA(SDNode *N) const { |
| assert(N->getOpcode() == ISD::TargetGlobalAddress && |
| "Expecting a target global address"); |
| |
| // Always try to fold the address. |
| if (TM.getOptLevel() == CodeGenOpt::Aggressive) |
| return true; |
| |
| GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); |
| DenseMap<const GlobalValue *, unsigned>::const_iterator GI = |
| GlobalAddressUseCountMap.find(GA->getGlobal()); |
| |
| if (GI == GlobalAddressUseCountMap.end()) |
| return false; |
| |
| return GI->second <= MaxNumOfUsesForConstExtenders; |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Return true if the non GP-relative global address can be folded. |
| //===--------------------------------------------------------------------===// |
| inline bool HexagonDAGToDAGISel::foldGlobalAddress(SDValue &N, SDValue &R) { |
| return foldGlobalAddressImpl(N, R, false); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Return true if the GP-relative global address can be folded. |
| //===--------------------------------------------------------------------===// |
| inline bool HexagonDAGToDAGISel::foldGlobalAddressGP(SDValue &N, SDValue &R) { |
| return foldGlobalAddressImpl(N, R, true); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Fold offset of the global address if number of uses are below threshold. |
| //===--------------------------------------------------------------------===// |
| bool HexagonDAGToDAGISel::foldGlobalAddressImpl(SDValue &N, SDValue &R, |
| bool ShouldLookForGP) { |
| if (N.getOpcode() == ISD::ADD) { |
| SDValue N0 = N.getOperand(0); |
| SDValue N1 = N.getOperand(1); |
| if ((ShouldLookForGP && (N0.getOpcode() == HexagonISD::CONST32_GP)) || |
| (!ShouldLookForGP && (N0.getOpcode() == HexagonISD::CONST32))) { |
| ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N1); |
| GlobalAddressSDNode *GA = |
| dyn_cast<GlobalAddressSDNode>(N0.getOperand(0)); |
| |
| if (Const && GA && |
| (GA->getOpcode() == ISD::TargetGlobalAddress)) { |
| if ((N0.getOpcode() == HexagonISD::CONST32) && |
| !hasNumUsesBelowThresGA(GA)) |
| return false; |
| R = CurDAG->getTargetGlobalAddress(GA->getGlobal(), |
| Const->getDebugLoc(), |
| N.getValueType(), |
| GA->getOffset() + |
| (uint64_t)Const->getSExtValue()); |
| return true; |
| } |
| } |
| } |
| return false; |
| } |