| //===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the function verifier interface, that can be used for some |
| // sanity checking of input to the system. |
| // |
| // Note that this does not provide full `Java style' security and verifications, |
| // instead it just tries to ensure that code is well-formed. |
| // |
| // * Both of a binary operator's parameters are of the same type |
| // * Verify that the indices of mem access instructions match other operands |
| // * Verify that arithmetic and other things are only performed on first-class |
| // types. Verify that shifts & logicals only happen on integrals f.e. |
| // * All of the constants in a switch statement are of the correct type |
| // * The code is in valid SSA form |
| // * It should be illegal to put a label into any other type (like a structure) |
| // or to return one. [except constant arrays!] |
| // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad |
| // * PHI nodes must have an entry for each predecessor, with no extras. |
| // * PHI nodes must be the first thing in a basic block, all grouped together |
| // * PHI nodes must have at least one entry |
| // * All basic blocks should only end with terminator insts, not contain them |
| // * The entry node to a function must not have predecessors |
| // * All Instructions must be embedded into a basic block |
| // * Functions cannot take a void-typed parameter |
| // * Verify that a function's argument list agrees with it's declared type. |
| // * It is illegal to specify a name for a void value. |
| // * It is illegal to have a internal global value with no initializer |
| // * It is illegal to have a ret instruction that returns a value that does not |
| // agree with the function return value type. |
| // * Function call argument types match the function prototype |
| // * All other things that are tested by asserts spread about the code... |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/Verifier.h" |
| #include "llvm/CallingConv.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/InlineAsm.h" |
| #include "llvm/IntrinsicInst.h" |
| #include "llvm/MDNode.h" |
| #include "llvm/Module.h" |
| #include "llvm/ModuleProvider.h" |
| #include "llvm/Pass.h" |
| #include "llvm/PassManager.h" |
| #include "llvm/Analysis/Dominators.h" |
| #include "llvm/Assembly/Writer.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/Support/CallSite.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/Support/InstVisitor.h" |
| #include "llvm/Support/Streams.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <sstream> |
| #include <cstdarg> |
| using namespace llvm; |
| |
| namespace { // Anonymous namespace for class |
| struct VISIBILITY_HIDDEN PreVerifier : public FunctionPass { |
| static char ID; // Pass ID, replacement for typeid |
| |
| PreVerifier() : FunctionPass(&ID) { } |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesAll(); |
| } |
| |
| // Check that the prerequisites for successful DominatorTree construction |
| // are satisfied. |
| bool runOnFunction(Function &F) { |
| bool Broken = false; |
| |
| for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) { |
| if (I->empty() || !I->back().isTerminator()) { |
| cerr << "Basic Block does not have terminator!\n"; |
| WriteAsOperand(*cerr, I, true); |
| cerr << "\n"; |
| Broken = true; |
| } |
| } |
| |
| if (Broken) |
| abort(); |
| |
| return false; |
| } |
| }; |
| } |
| |
| char PreVerifier::ID = 0; |
| static RegisterPass<PreVerifier> |
| PreVer("preverify", "Preliminary module verification"); |
| static const PassInfo *const PreVerifyID = &PreVer; |
| |
| namespace { |
| struct VISIBILITY_HIDDEN |
| Verifier : public FunctionPass, InstVisitor<Verifier> { |
| static char ID; // Pass ID, replacement for typeid |
| bool Broken; // Is this module found to be broken? |
| bool RealPass; // Are we not being run by a PassManager? |
| VerifierFailureAction action; |
| // What to do if verification fails. |
| Module *Mod; // Module we are verifying right now |
| DominatorTree *DT; // Dominator Tree, caution can be null! |
| std::stringstream msgs; // A stringstream to collect messages |
| |
| /// InstInThisBlock - when verifying a basic block, keep track of all of the |
| /// instructions we have seen so far. This allows us to do efficient |
| /// dominance checks for the case when an instruction has an operand that is |
| /// an instruction in the same block. |
| SmallPtrSet<Instruction*, 16> InstsInThisBlock; |
| |
| Verifier() |
| : FunctionPass(&ID), |
| Broken(false), RealPass(true), action(AbortProcessAction), |
| DT(0), msgs( std::ios::app | std::ios::out ) {} |
| explicit Verifier(VerifierFailureAction ctn) |
| : FunctionPass(&ID), |
| Broken(false), RealPass(true), action(ctn), DT(0), |
| msgs( std::ios::app | std::ios::out ) {} |
| explicit Verifier(bool AB) |
| : FunctionPass(&ID), |
| Broken(false), RealPass(true), |
| action( AB ? AbortProcessAction : PrintMessageAction), DT(0), |
| msgs( std::ios::app | std::ios::out ) {} |
| explicit Verifier(DominatorTree &dt) |
| : FunctionPass(&ID), |
| Broken(false), RealPass(false), action(PrintMessageAction), |
| DT(&dt), msgs( std::ios::app | std::ios::out ) {} |
| |
| |
| bool doInitialization(Module &M) { |
| Mod = &M; |
| verifyTypeSymbolTable(M.getTypeSymbolTable()); |
| |
| // If this is a real pass, in a pass manager, we must abort before |
| // returning back to the pass manager, or else the pass manager may try to |
| // run other passes on the broken module. |
| if (RealPass) |
| return abortIfBroken(); |
| return false; |
| } |
| |
| bool runOnFunction(Function &F) { |
| // Get dominator information if we are being run by PassManager |
| if (RealPass) DT = &getAnalysis<DominatorTree>(); |
| |
| Mod = F.getParent(); |
| |
| visit(F); |
| InstsInThisBlock.clear(); |
| |
| // If this is a real pass, in a pass manager, we must abort before |
| // returning back to the pass manager, or else the pass manager may try to |
| // run other passes on the broken module. |
| if (RealPass) |
| return abortIfBroken(); |
| |
| return false; |
| } |
| |
| bool doFinalization(Module &M) { |
| // Scan through, checking all of the external function's linkage now... |
| for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) { |
| visitGlobalValue(*I); |
| |
| // Check to make sure function prototypes are okay. |
| if (I->isDeclaration()) visitFunction(*I); |
| } |
| |
| for (Module::global_iterator I = M.global_begin(), E = M.global_end(); |
| I != E; ++I) |
| visitGlobalVariable(*I); |
| |
| for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); |
| I != E; ++I) |
| visitGlobalAlias(*I); |
| |
| // If the module is broken, abort at this time. |
| return abortIfBroken(); |
| } |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesAll(); |
| AU.addRequiredID(PreVerifyID); |
| if (RealPass) |
| AU.addRequired<DominatorTree>(); |
| } |
| |
| /// abortIfBroken - If the module is broken and we are supposed to abort on |
| /// this condition, do so. |
| /// |
| bool abortIfBroken() { |
| if (!Broken) return false; |
| msgs << "Broken module found, "; |
| switch (action) { |
| default: assert(0 && "Unknown action"); |
| case AbortProcessAction: |
| msgs << "compilation aborted!\n"; |
| cerr << msgs.str(); |
| abort(); |
| case PrintMessageAction: |
| msgs << "verification continues.\n"; |
| cerr << msgs.str(); |
| return false; |
| case ReturnStatusAction: |
| msgs << "compilation terminated.\n"; |
| return true; |
| } |
| } |
| |
| |
| // Verification methods... |
| void verifyTypeSymbolTable(TypeSymbolTable &ST); |
| void visitGlobalValue(GlobalValue &GV); |
| void visitGlobalVariable(GlobalVariable &GV); |
| void visitGlobalAlias(GlobalAlias &GA); |
| void visitFunction(Function &F); |
| void visitBasicBlock(BasicBlock &BB); |
| using InstVisitor<Verifier>::visit; |
| |
| void visit(Instruction &I); |
| |
| void visitTruncInst(TruncInst &I); |
| void visitZExtInst(ZExtInst &I); |
| void visitSExtInst(SExtInst &I); |
| void visitFPTruncInst(FPTruncInst &I); |
| void visitFPExtInst(FPExtInst &I); |
| void visitFPToUIInst(FPToUIInst &I); |
| void visitFPToSIInst(FPToSIInst &I); |
| void visitUIToFPInst(UIToFPInst &I); |
| void visitSIToFPInst(SIToFPInst &I); |
| void visitIntToPtrInst(IntToPtrInst &I); |
| void visitPtrToIntInst(PtrToIntInst &I); |
| void visitBitCastInst(BitCastInst &I); |
| void visitPHINode(PHINode &PN); |
| void visitBinaryOperator(BinaryOperator &B); |
| void visitICmpInst(ICmpInst &IC); |
| void visitFCmpInst(FCmpInst &FC); |
| void visitExtractElementInst(ExtractElementInst &EI); |
| void visitInsertElementInst(InsertElementInst &EI); |
| void visitShuffleVectorInst(ShuffleVectorInst &EI); |
| void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } |
| void visitCallInst(CallInst &CI); |
| void visitInvokeInst(InvokeInst &II); |
| void visitGetElementPtrInst(GetElementPtrInst &GEP); |
| void visitLoadInst(LoadInst &LI); |
| void visitStoreInst(StoreInst &SI); |
| void visitInstruction(Instruction &I); |
| void visitTerminatorInst(TerminatorInst &I); |
| void visitReturnInst(ReturnInst &RI); |
| void visitSwitchInst(SwitchInst &SI); |
| void visitSelectInst(SelectInst &SI); |
| void visitUserOp1(Instruction &I); |
| void visitUserOp2(Instruction &I) { visitUserOp1(I); } |
| void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI); |
| void visitAllocationInst(AllocationInst &AI); |
| void visitExtractValueInst(ExtractValueInst &EVI); |
| void visitInsertValueInst(InsertValueInst &IVI); |
| |
| void VerifyCallSite(CallSite CS); |
| bool PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty, |
| int VT, unsigned ArgNo, std::string &Suffix); |
| void VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F, |
| unsigned RetNum, unsigned ParamNum, ...); |
| void VerifyParameterAttrs(Attributes Attrs, const Type *Ty, |
| bool isReturnValue, const Value *V); |
| void VerifyFunctionAttrs(const FunctionType *FT, const AttrListPtr &Attrs, |
| const Value *V); |
| |
| void WriteValue(const Value *V) { |
| if (!V) return; |
| if (isa<Instruction>(V)) { |
| msgs << *V; |
| } else { |
| WriteAsOperand(msgs, V, true, Mod); |
| msgs << "\n"; |
| } |
| } |
| |
| void WriteType(const Type *T) { |
| if (!T) return; |
| raw_os_ostream RO(msgs); |
| RO << ' '; |
| WriteTypeSymbolic(RO, T, Mod); |
| } |
| |
| |
| // CheckFailed - A check failed, so print out the condition and the message |
| // that failed. This provides a nice place to put a breakpoint if you want |
| // to see why something is not correct. |
| void CheckFailed(const std::string &Message, |
| const Value *V1 = 0, const Value *V2 = 0, |
| const Value *V3 = 0, const Value *V4 = 0) { |
| msgs << Message << "\n"; |
| WriteValue(V1); |
| WriteValue(V2); |
| WriteValue(V3); |
| WriteValue(V4); |
| Broken = true; |
| } |
| |
| void CheckFailed( const std::string& Message, const Value* V1, |
| const Type* T2, const Value* V3 = 0 ) { |
| msgs << Message << "\n"; |
| WriteValue(V1); |
| WriteType(T2); |
| WriteValue(V3); |
| Broken = true; |
| } |
| }; |
| } // End anonymous namespace |
| |
| char Verifier::ID = 0; |
| static RegisterPass<Verifier> X("verify", "Module Verifier"); |
| |
| // Assert - We know that cond should be true, if not print an error message. |
| #define Assert(C, M) \ |
| do { if (!(C)) { CheckFailed(M); return; } } while (0) |
| #define Assert1(C, M, V1) \ |
| do { if (!(C)) { CheckFailed(M, V1); return; } } while (0) |
| #define Assert2(C, M, V1, V2) \ |
| do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0) |
| #define Assert3(C, M, V1, V2, V3) \ |
| do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0) |
| #define Assert4(C, M, V1, V2, V3, V4) \ |
| do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0) |
| |
| void Verifier::visit(Instruction &I) { |
| for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) |
| Assert1(I.getOperand(i) != 0, "Operand is null", &I); |
| InstVisitor<Verifier>::visit(I); |
| } |
| |
| |
| void Verifier::visitGlobalValue(GlobalValue &GV) { |
| Assert1(!GV.isDeclaration() || |
| GV.hasExternalLinkage() || |
| GV.hasDLLImportLinkage() || |
| GV.hasExternalWeakLinkage() || |
| GV.hasGhostLinkage() || |
| (isa<GlobalAlias>(GV) && |
| (GV.hasLocalLinkage() || GV.hasWeakLinkage())), |
| "Global is external, but doesn't have external or dllimport or weak linkage!", |
| &GV); |
| |
| Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(), |
| "Global is marked as dllimport, but not external", &GV); |
| |
| Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), |
| "Only global variables can have appending linkage!", &GV); |
| |
| if (GV.hasAppendingLinkage()) { |
| GlobalVariable &GVar = cast<GlobalVariable>(GV); |
| Assert1(isa<ArrayType>(GVar.getType()->getElementType()), |
| "Only global arrays can have appending linkage!", &GV); |
| } |
| } |
| |
| void Verifier::visitGlobalVariable(GlobalVariable &GV) { |
| if (GV.hasInitializer()) { |
| Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(), |
| "Global variable initializer type does not match global " |
| "variable type!", &GV); |
| |
| // Verify that any metadata used in a global initializer points only to |
| // other globals. |
| if (MDNode *FirstNode = dyn_cast<MDNode>(GV.getInitializer())) { |
| SmallVector<const MDNode *, 4> NodesToAnalyze; |
| NodesToAnalyze.push_back(FirstNode); |
| while (!NodesToAnalyze.empty()) { |
| const MDNode *N = NodesToAnalyze.back(); |
| NodesToAnalyze.pop_back(); |
| |
| for (MDNode::const_elem_iterator I = N->elem_begin(), |
| E = N->elem_end(); I != E; ++I) |
| if (const Value *V = *I) { |
| if (const MDNode *Next = dyn_cast<MDNode>(V)) |
| NodesToAnalyze.push_back(Next); |
| else |
| Assert3(isa<Constant>(V), |
| "reference to instruction from global metadata node", |
| &GV, N, V); |
| } |
| } |
| } |
| } else { |
| Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() || |
| GV.hasExternalWeakLinkage(), |
| "invalid linkage type for global declaration", &GV); |
| } |
| |
| visitGlobalValue(GV); |
| } |
| |
| void Verifier::visitGlobalAlias(GlobalAlias &GA) { |
| Assert1(!GA.getName().empty(), |
| "Alias name cannot be empty!", &GA); |
| Assert1(GA.hasExternalLinkage() || GA.hasLocalLinkage() || |
| GA.hasWeakLinkage(), |
| "Alias should have external or external weak linkage!", &GA); |
| Assert1(GA.getAliasee(), |
| "Aliasee cannot be NULL!", &GA); |
| Assert1(GA.getType() == GA.getAliasee()->getType(), |
| "Alias and aliasee types should match!", &GA); |
| |
| if (!isa<GlobalValue>(GA.getAliasee())) { |
| const ConstantExpr *CE = dyn_cast<ConstantExpr>(GA.getAliasee()); |
| Assert1(CE && |
| (CE->getOpcode() == Instruction::BitCast || |
| CE->getOpcode() == Instruction::GetElementPtr) && |
| isa<GlobalValue>(CE->getOperand(0)), |
| "Aliasee should be either GlobalValue or bitcast of GlobalValue", |
| &GA); |
| } |
| |
| const GlobalValue* Aliasee = GA.resolveAliasedGlobal(/*stopOnWeak*/ false); |
| Assert1(Aliasee, |
| "Aliasing chain should end with function or global variable", &GA); |
| |
| visitGlobalValue(GA); |
| } |
| |
| void Verifier::verifyTypeSymbolTable(TypeSymbolTable &ST) { |
| } |
| |
| // VerifyParameterAttrs - Check the given attributes for an argument or return |
| // value of the specified type. The value V is printed in error messages. |
| void Verifier::VerifyParameterAttrs(Attributes Attrs, const Type *Ty, |
| bool isReturnValue, const Value *V) { |
| if (Attrs == Attribute::None) |
| return; |
| |
| Attributes FnCheckAttr = Attrs & Attribute::FunctionOnly; |
| Assert1(!FnCheckAttr, "Attribute " + Attribute::getAsString(FnCheckAttr) + |
| " only applies to the function!", V); |
| |
| if (isReturnValue) { |
| Attributes RetI = Attrs & Attribute::ParameterOnly; |
| Assert1(!RetI, "Attribute " + Attribute::getAsString(RetI) + |
| " does not apply to return values!", V); |
| } |
| |
| for (unsigned i = 0; |
| i < array_lengthof(Attribute::MutuallyIncompatible); ++i) { |
| Attributes MutI = Attrs & Attribute::MutuallyIncompatible[i]; |
| Assert1(!(MutI & (MutI - 1)), "Attributes " + |
| Attribute::getAsString(MutI) + " are incompatible!", V); |
| } |
| |
| Attributes TypeI = Attrs & Attribute::typeIncompatible(Ty); |
| Assert1(!TypeI, "Wrong type for attribute " + |
| Attribute::getAsString(TypeI), V); |
| |
| Attributes ByValI = Attrs & Attribute::ByVal; |
| if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) { |
| Assert1(!ByValI || PTy->getElementType()->isSized(), |
| "Attribute " + Attribute::getAsString(ByValI) + |
| " does not support unsized types!", V); |
| } else { |
| Assert1(!ByValI, |
| "Attribute " + Attribute::getAsString(ByValI) + |
| " only applies to parameters with pointer type!", V); |
| } |
| } |
| |
| // VerifyFunctionAttrs - Check parameter attributes against a function type. |
| // The value V is printed in error messages. |
| void Verifier::VerifyFunctionAttrs(const FunctionType *FT, |
| const AttrListPtr &Attrs, |
| const Value *V) { |
| if (Attrs.isEmpty()) |
| return; |
| |
| bool SawNest = false; |
| |
| for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) { |
| const AttributeWithIndex &Attr = Attrs.getSlot(i); |
| |
| const Type *Ty; |
| if (Attr.Index == 0) |
| Ty = FT->getReturnType(); |
| else if (Attr.Index-1 < FT->getNumParams()) |
| Ty = FT->getParamType(Attr.Index-1); |
| else |
| break; // VarArgs attributes, verified elsewhere. |
| |
| VerifyParameterAttrs(Attr.Attrs, Ty, Attr.Index == 0, V); |
| |
| if (Attr.Attrs & Attribute::Nest) { |
| Assert1(!SawNest, "More than one parameter has attribute nest!", V); |
| SawNest = true; |
| } |
| |
| if (Attr.Attrs & Attribute::StructRet) |
| Assert1(Attr.Index == 1, "Attribute sret not on first parameter!", V); |
| } |
| |
| Attributes FAttrs = Attrs.getFnAttributes(); |
| Attributes NotFn = FAttrs & (~Attribute::FunctionOnly); |
| Assert1(!NotFn, "Attribute " + Attribute::getAsString(NotFn) + |
| " does not apply to the function!", V); |
| |
| for (unsigned i = 0; |
| i < array_lengthof(Attribute::MutuallyIncompatible); ++i) { |
| Attributes MutI = FAttrs & Attribute::MutuallyIncompatible[i]; |
| Assert1(!(MutI & (MutI - 1)), "Attributes " + |
| Attribute::getAsString(MutI) + " are incompatible!", V); |
| } |
| } |
| |
| static bool VerifyAttributeCount(const AttrListPtr &Attrs, unsigned Params) { |
| if (Attrs.isEmpty()) |
| return true; |
| |
| unsigned LastSlot = Attrs.getNumSlots() - 1; |
| unsigned LastIndex = Attrs.getSlot(LastSlot).Index; |
| if (LastIndex <= Params |
| || (LastIndex == (unsigned)~0 |
| && (LastSlot == 0 || Attrs.getSlot(LastSlot - 1).Index <= Params))) |
| return true; |
| |
| return false; |
| } |
| // visitFunction - Verify that a function is ok. |
| // |
| void Verifier::visitFunction(Function &F) { |
| // Check function arguments. |
| const FunctionType *FT = F.getFunctionType(); |
| unsigned NumArgs = F.arg_size(); |
| |
| Assert2(FT->getNumParams() == NumArgs, |
| "# formal arguments must match # of arguments for function type!", |
| &F, FT); |
| Assert1(F.getReturnType()->isFirstClassType() || |
| F.getReturnType() == Type::VoidTy || |
| isa<StructType>(F.getReturnType()), |
| "Functions cannot return aggregate values!", &F); |
| |
| Assert1(!F.hasStructRetAttr() || F.getReturnType() == Type::VoidTy, |
| "Invalid struct return type!", &F); |
| |
| const AttrListPtr &Attrs = F.getAttributes(); |
| |
| Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()), |
| "Attributes after last parameter!", &F); |
| |
| // Check function attributes. |
| VerifyFunctionAttrs(FT, Attrs, &F); |
| |
| // Check that this function meets the restrictions on this calling convention. |
| switch (F.getCallingConv()) { |
| default: |
| break; |
| case CallingConv::C: |
| break; |
| case CallingConv::Fast: |
| case CallingConv::Cold: |
| case CallingConv::X86_FastCall: |
| Assert1(!F.isVarArg(), |
| "Varargs functions must have C calling conventions!", &F); |
| break; |
| } |
| |
| bool isLLVMdotName = F.getName().size() >= 5 && |
| F.getName().substr(0, 5) == "llvm."; |
| if (!isLLVMdotName) |
| Assert1(F.getReturnType() != Type::MetadataTy, |
| "Function may not return metadata unless it's an intrinsic", &F); |
| |
| // Check that the argument values match the function type for this function... |
| unsigned i = 0; |
| for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); |
| I != E; ++I, ++i) { |
| Assert2(I->getType() == FT->getParamType(i), |
| "Argument value does not match function argument type!", |
| I, FT->getParamType(i)); |
| Assert1(I->getType()->isFirstClassType(), |
| "Function arguments must have first-class types!", I); |
| if (!isLLVMdotName) |
| Assert2(I->getType() != Type::MetadataTy, |
| "Function takes metadata but isn't an intrinsic", I, &F); |
| } |
| |
| if (F.isDeclaration()) { |
| Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() || |
| F.hasExternalWeakLinkage() || F.hasGhostLinkage(), |
| "invalid linkage type for function declaration", &F); |
| } else { |
| // Verify that this function (which has a body) is not named "llvm.*". It |
| // is not legal to define intrinsics. |
| Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); |
| |
| // Check the entry node |
| BasicBlock *Entry = &F.getEntryBlock(); |
| Assert1(pred_begin(Entry) == pred_end(Entry), |
| "Entry block to function must not have predecessors!", Entry); |
| } |
| } |
| |
| |
| // verifyBasicBlock - Verify that a basic block is well formed... |
| // |
| void Verifier::visitBasicBlock(BasicBlock &BB) { |
| InstsInThisBlock.clear(); |
| |
| // Ensure that basic blocks have terminators! |
| Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB); |
| |
| // Check constraints that this basic block imposes on all of the PHI nodes in |
| // it. |
| if (isa<PHINode>(BB.front())) { |
| SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB)); |
| SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; |
| std::sort(Preds.begin(), Preds.end()); |
| PHINode *PN; |
| for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) { |
| |
| // Ensure that PHI nodes have at least one entry! |
| Assert1(PN->getNumIncomingValues() != 0, |
| "PHI nodes must have at least one entry. If the block is dead, " |
| "the PHI should be removed!", PN); |
| Assert1(PN->getNumIncomingValues() == Preds.size(), |
| "PHINode should have one entry for each predecessor of its " |
| "parent basic block!", PN); |
| |
| // Get and sort all incoming values in the PHI node... |
| Values.clear(); |
| Values.reserve(PN->getNumIncomingValues()); |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) |
| Values.push_back(std::make_pair(PN->getIncomingBlock(i), |
| PN->getIncomingValue(i))); |
| std::sort(Values.begin(), Values.end()); |
| |
| for (unsigned i = 0, e = Values.size(); i != e; ++i) { |
| // Check to make sure that if there is more than one entry for a |
| // particular basic block in this PHI node, that the incoming values are |
| // all identical. |
| // |
| Assert4(i == 0 || Values[i].first != Values[i-1].first || |
| Values[i].second == Values[i-1].second, |
| "PHI node has multiple entries for the same basic block with " |
| "different incoming values!", PN, Values[i].first, |
| Values[i].second, Values[i-1].second); |
| |
| // Check to make sure that the predecessors and PHI node entries are |
| // matched up. |
| Assert3(Values[i].first == Preds[i], |
| "PHI node entries do not match predecessors!", PN, |
| Values[i].first, Preds[i]); |
| } |
| } |
| } |
| } |
| |
| void Verifier::visitTerminatorInst(TerminatorInst &I) { |
| // Ensure that terminators only exist at the end of the basic block. |
| Assert1(&I == I.getParent()->getTerminator(), |
| "Terminator found in the middle of a basic block!", I.getParent()); |
| visitInstruction(I); |
| } |
| |
| void Verifier::visitReturnInst(ReturnInst &RI) { |
| Function *F = RI.getParent()->getParent(); |
| unsigned N = RI.getNumOperands(); |
| if (F->getReturnType() == Type::VoidTy) |
| Assert2(N == 0, |
| "Found return instr that returns non-void in Function of void " |
| "return type!", &RI, F->getReturnType()); |
| else if (N == 1 && F->getReturnType() == RI.getOperand(0)->getType()) { |
| // Exactly one return value and it matches the return type. Good. |
| } else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) { |
| // The return type is a struct; check for multiple return values. |
| Assert2(STy->getNumElements() == N, |
| "Incorrect number of return values in ret instruction!", |
| &RI, F->getReturnType()); |
| for (unsigned i = 0; i != N; ++i) |
| Assert2(STy->getElementType(i) == RI.getOperand(i)->getType(), |
| "Function return type does not match operand " |
| "type of return inst!", &RI, F->getReturnType()); |
| } else if (const ArrayType *ATy = dyn_cast<ArrayType>(F->getReturnType())) { |
| // The return type is an array; check for multiple return values. |
| Assert2(ATy->getNumElements() == N, |
| "Incorrect number of return values in ret instruction!", |
| &RI, F->getReturnType()); |
| for (unsigned i = 0; i != N; ++i) |
| Assert2(ATy->getElementType() == RI.getOperand(i)->getType(), |
| "Function return type does not match operand " |
| "type of return inst!", &RI, F->getReturnType()); |
| } else { |
| CheckFailed("Function return type does not match operand " |
| "type of return inst!", &RI, F->getReturnType()); |
| } |
| |
| // Check to make sure that the return value has necessary properties for |
| // terminators... |
| visitTerminatorInst(RI); |
| } |
| |
| void Verifier::visitSwitchInst(SwitchInst &SI) { |
| // Check to make sure that all of the constants in the switch instruction |
| // have the same type as the switched-on value. |
| const Type *SwitchTy = SI.getCondition()->getType(); |
| for (unsigned i = 1, e = SI.getNumCases(); i != e; ++i) |
| Assert1(SI.getCaseValue(i)->getType() == SwitchTy, |
| "Switch constants must all be same type as switch value!", &SI); |
| |
| visitTerminatorInst(SI); |
| } |
| |
| void Verifier::visitSelectInst(SelectInst &SI) { |
| Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), |
| SI.getOperand(2)), |
| "Invalid operands for select instruction!", &SI); |
| |
| Assert1(SI.getTrueValue()->getType() == SI.getType(), |
| "Select values must have same type as select instruction!", &SI); |
| visitInstruction(SI); |
| } |
| |
| |
| /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of |
| /// a pass, if any exist, it's an error. |
| /// |
| void Verifier::visitUserOp1(Instruction &I) { |
| Assert1(0, "User-defined operators should not live outside of a pass!", &I); |
| } |
| |
| void Verifier::visitTruncInst(TruncInst &I) { |
| // Get the source and destination types |
| const Type *SrcTy = I.getOperand(0)->getType(); |
| const Type *DestTy = I.getType(); |
| |
| // Get the size of the types in bits, we'll need this later |
| unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); |
| unsigned DestBitSize = DestTy->getScalarSizeInBits(); |
| |
| Assert1(SrcTy->isIntOrIntVector(), "Trunc only operates on integer", &I); |
| Assert1(DestTy->isIntOrIntVector(), "Trunc only produces integer", &I); |
| Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy), |
| "trunc source and destination must both be a vector or neither", &I); |
| Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I); |
| |
| visitInstruction(I); |
| } |
| |
| void Verifier::visitZExtInst(ZExtInst &I) { |
| // Get the source and destination types |
| const Type *SrcTy = I.getOperand(0)->getType(); |
| const Type *DestTy = I.getType(); |
| |
| // Get the size of the types in bits, we'll need this later |
| Assert1(SrcTy->isIntOrIntVector(), "ZExt only operates on integer", &I); |
| Assert1(DestTy->isIntOrIntVector(), "ZExt only produces an integer", &I); |
| Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy), |
| "zext source and destination must both be a vector or neither", &I); |
| unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); |
| unsigned DestBitSize = DestTy->getScalarSizeInBits(); |
| |
| Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I); |
| |
| visitInstruction(I); |
| } |
| |
| void Verifier::visitSExtInst(SExtInst &I) { |
| // Get the source and destination types |
| const Type *SrcTy = I.getOperand(0)->getType(); |
| const Type *DestTy = I.getType(); |
| |
| // Get the size of the types in bits, we'll need this later |
| unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); |
| unsigned DestBitSize = DestTy->getScalarSizeInBits(); |
| |
| Assert1(SrcTy->isIntOrIntVector(), "SExt only operates on integer", &I); |
| Assert1(DestTy->isIntOrIntVector(), "SExt only produces an integer", &I); |
| Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy), |
| "sext source and destination must both be a vector or neither", &I); |
| Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I); |
| |
| visitInstruction(I); |
| } |
| |
| void Verifier::visitFPTruncInst(FPTruncInst &I) { |
| // Get the source and destination types |
| const Type *SrcTy = I.getOperand(0)->getType(); |
| const Type *DestTy = I.getType(); |
| // Get the size of the types in bits, we'll need this later |
| unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); |
| unsigned DestBitSize = DestTy->getScalarSizeInBits(); |
| |
| Assert1(SrcTy->isFPOrFPVector(),"FPTrunc only operates on FP", &I); |
| Assert1(DestTy->isFPOrFPVector(),"FPTrunc only produces an FP", &I); |
| Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy), |
| "fptrunc source and destination must both be a vector or neither",&I); |
| Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I); |
| |
| visitInstruction(I); |
| } |
| |
| void Verifier::visitFPExtInst(FPExtInst &I) { |
| // Get the source and destination types |
| const Type *SrcTy = I.getOperand(0)->getType(); |
| const Type *DestTy = I.getType(); |
| |
| // Get the size of the types in bits, we'll need this later |
| unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); |
| unsigned DestBitSize = DestTy->getScalarSizeInBits(); |
| |
| Assert1(SrcTy->isFPOrFPVector(),"FPExt only operates on FP", &I); |
| Assert1(DestTy->isFPOrFPVector(),"FPExt only produces an FP", &I); |
| Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy), |
| "fpext source and destination must both be a vector or neither", &I); |
| Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I); |
| |
| visitInstruction(I); |
| } |
| |
| void Verifier::visitUIToFPInst(UIToFPInst &I) { |
| // Get the source and destination types |
| const Type *SrcTy = I.getOperand(0)->getType(); |
| const Type *DestTy = I.getType(); |
| |
| bool SrcVec = isa<VectorType>(SrcTy); |
| bool DstVec = isa<VectorType>(DestTy); |
| |
| Assert1(SrcVec == DstVec, |
| "UIToFP source and dest must both be vector or scalar", &I); |
| Assert1(SrcTy->isIntOrIntVector(), |
| "UIToFP source must be integer or integer vector", &I); |
| Assert1(DestTy->isFPOrFPVector(), |
| "UIToFP result must be FP or FP vector", &I); |
| |
| if (SrcVec && DstVec) |
| Assert1(cast<VectorType>(SrcTy)->getNumElements() == |
| cast<VectorType>(DestTy)->getNumElements(), |
| "UIToFP source and dest vector length mismatch", &I); |
| |
| visitInstruction(I); |
| } |
| |
| void Verifier::visitSIToFPInst(SIToFPInst &I) { |
| // Get the source and destination types |
| const Type *SrcTy = I.getOperand(0)->getType(); |
| const Type *DestTy = I.getType(); |
| |
| bool SrcVec = SrcTy->getTypeID() == Type::VectorTyID; |
| bool DstVec = DestTy->getTypeID() == Type::VectorTyID; |
| |
| Assert1(SrcVec == DstVec, |
| "SIToFP source and dest must both be vector or scalar", &I); |
| Assert1(SrcTy->isIntOrIntVector(), |
| "SIToFP source must be integer or integer vector", &I); |
| Assert1(DestTy->isFPOrFPVector(), |
| "SIToFP result must be FP or FP vector", &I); |
| |
| if (SrcVec && DstVec) |
| Assert1(cast<VectorType>(SrcTy)->getNumElements() == |
| cast<VectorType>(DestTy)->getNumElements(), |
| "SIToFP source and dest vector length mismatch", &I); |
| |
| visitInstruction(I); |
| } |
| |
| void Verifier::visitFPToUIInst(FPToUIInst &I) { |
| // Get the source and destination types |
| const Type *SrcTy = I.getOperand(0)->getType(); |
| const Type *DestTy = I.getType(); |
| |
| bool SrcVec = isa<VectorType>(SrcTy); |
| bool DstVec = isa<VectorType>(DestTy); |
| |
| Assert1(SrcVec == DstVec, |
| "FPToUI source and dest must both be vector or scalar", &I); |
| Assert1(SrcTy->isFPOrFPVector(), "FPToUI source must be FP or FP vector", &I); |
| Assert1(DestTy->isIntOrIntVector(), |
| "FPToUI result must be integer or integer vector", &I); |
| |
| if (SrcVec && DstVec) |
| Assert1(cast<VectorType>(SrcTy)->getNumElements() == |
| cast<VectorType>(DestTy)->getNumElements(), |
| "FPToUI source and dest vector length mismatch", &I); |
| |
| visitInstruction(I); |
| } |
| |
| void Verifier::visitFPToSIInst(FPToSIInst &I) { |
| // Get the source and destination types |
| const Type *SrcTy = I.getOperand(0)->getType(); |
| const Type *DestTy = I.getType(); |
| |
| bool SrcVec = isa<VectorType>(SrcTy); |
| bool DstVec = isa<VectorType>(DestTy); |
| |
| Assert1(SrcVec == DstVec, |
| "FPToSI source and dest must both be vector or scalar", &I); |
| Assert1(SrcTy->isFPOrFPVector(), |
| "FPToSI source must be FP or FP vector", &I); |
| Assert1(DestTy->isIntOrIntVector(), |
| "FPToSI result must be integer or integer vector", &I); |
| |
| if (SrcVec && DstVec) |
| Assert1(cast<VectorType>(SrcTy)->getNumElements() == |
| cast<VectorType>(DestTy)->getNumElements(), |
| "FPToSI source and dest vector length mismatch", &I); |
| |
| visitInstruction(I); |
| } |
| |
| void Verifier::visitPtrToIntInst(PtrToIntInst &I) { |
| // Get the source and destination types |
| const Type *SrcTy = I.getOperand(0)->getType(); |
| const Type *DestTy = I.getType(); |
| |
| Assert1(isa<PointerType>(SrcTy), "PtrToInt source must be pointer", &I); |
| Assert1(DestTy->isInteger(), "PtrToInt result must be integral", &I); |
| |
| visitInstruction(I); |
| } |
| |
| void Verifier::visitIntToPtrInst(IntToPtrInst &I) { |
| // Get the source and destination types |
| const Type *SrcTy = I.getOperand(0)->getType(); |
| const Type *DestTy = I.getType(); |
| |
| Assert1(SrcTy->isInteger(), "IntToPtr source must be an integral", &I); |
| Assert1(isa<PointerType>(DestTy), "IntToPtr result must be a pointer",&I); |
| |
| visitInstruction(I); |
| } |
| |
| void Verifier::visitBitCastInst(BitCastInst &I) { |
| // Get the source and destination types |
| const Type *SrcTy = I.getOperand(0)->getType(); |
| const Type *DestTy = I.getType(); |
| |
| // Get the size of the types in bits, we'll need this later |
| unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits(); |
| unsigned DestBitSize = DestTy->getPrimitiveSizeInBits(); |
| |
| // BitCast implies a no-op cast of type only. No bits change. |
| // However, you can't cast pointers to anything but pointers. |
| Assert1(isa<PointerType>(DestTy) == isa<PointerType>(DestTy), |
| "Bitcast requires both operands to be pointer or neither", &I); |
| Assert1(SrcBitSize == DestBitSize, "Bitcast requies types of same width", &I); |
| |
| // Disallow aggregates. |
| Assert1(!SrcTy->isAggregateType(), |
| "Bitcast operand must not be aggregate", &I); |
| Assert1(!DestTy->isAggregateType(), |
| "Bitcast type must not be aggregate", &I); |
| |
| visitInstruction(I); |
| } |
| |
| /// visitPHINode - Ensure that a PHI node is well formed. |
| /// |
| void Verifier::visitPHINode(PHINode &PN) { |
| // Ensure that the PHI nodes are all grouped together at the top of the block. |
| // This can be tested by checking whether the instruction before this is |
| // either nonexistent (because this is begin()) or is a PHI node. If not, |
| // then there is some other instruction before a PHI. |
| Assert2(&PN == &PN.getParent()->front() || |
| isa<PHINode>(--BasicBlock::iterator(&PN)), |
| "PHI nodes not grouped at top of basic block!", |
| &PN, PN.getParent()); |
| |
| // Check that all of the operands of the PHI node have the same type as the |
| // result. |
| for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) |
| Assert1(PN.getType() == PN.getIncomingValue(i)->getType(), |
| "PHI node operands are not the same type as the result!", &PN); |
| |
| // All other PHI node constraints are checked in the visitBasicBlock method. |
| |
| visitInstruction(PN); |
| } |
| |
| void Verifier::VerifyCallSite(CallSite CS) { |
| Instruction *I = CS.getInstruction(); |
| |
| Assert1(isa<PointerType>(CS.getCalledValue()->getType()), |
| "Called function must be a pointer!", I); |
| const PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType()); |
| Assert1(isa<FunctionType>(FPTy->getElementType()), |
| "Called function is not pointer to function type!", I); |
| |
| const FunctionType *FTy = cast<FunctionType>(FPTy->getElementType()); |
| |
| // Verify that the correct number of arguments are being passed |
| if (FTy->isVarArg()) |
| Assert1(CS.arg_size() >= FTy->getNumParams(), |
| "Called function requires more parameters than were provided!",I); |
| else |
| Assert1(CS.arg_size() == FTy->getNumParams(), |
| "Incorrect number of arguments passed to called function!", I); |
| |
| // Verify that all arguments to the call match the function type... |
| for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) |
| Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i), |
| "Call parameter type does not match function signature!", |
| CS.getArgument(i), FTy->getParamType(i), I); |
| |
| const AttrListPtr &Attrs = CS.getAttributes(); |
| |
| Assert1(VerifyAttributeCount(Attrs, CS.arg_size()), |
| "Attributes after last parameter!", I); |
| |
| // Verify call attributes. |
| VerifyFunctionAttrs(FTy, Attrs, I); |
| |
| if (FTy->isVarArg()) |
| // Check attributes on the varargs part. |
| for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) { |
| Attributes Attr = Attrs.getParamAttributes(Idx); |
| |
| VerifyParameterAttrs(Attr, CS.getArgument(Idx-1)->getType(), false, I); |
| |
| Attributes VArgI = Attr & Attribute::VarArgsIncompatible; |
| Assert1(!VArgI, "Attribute " + Attribute::getAsString(VArgI) + |
| " cannot be used for vararg call arguments!", I); |
| } |
| |
| // Verify that there's no metadata unless it's a direct call to an intrinsic. |
| if (!CS.getCalledFunction() || CS.getCalledFunction()->getName().size() < 5 || |
| CS.getCalledFunction()->getName().substr(0, 5) != "llvm.") { |
| Assert1(FTy->getReturnType() != Type::MetadataTy, |
| "Only intrinsics may return metadata", I); |
| for (FunctionType::param_iterator PI = FTy->param_begin(), |
| PE = FTy->param_end(); PI != PE; ++PI) |
| Assert1(PI->get() != Type::MetadataTy, "Function has metadata parameter " |
| "but isn't an intrinsic", I); |
| } |
| |
| visitInstruction(*I); |
| } |
| |
| void Verifier::visitCallInst(CallInst &CI) { |
| VerifyCallSite(&CI); |
| |
| if (Function *F = CI.getCalledFunction()) |
| if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) |
| visitIntrinsicFunctionCall(ID, CI); |
| } |
| |
| void Verifier::visitInvokeInst(InvokeInst &II) { |
| VerifyCallSite(&II); |
| } |
| |
| /// visitBinaryOperator - Check that both arguments to the binary operator are |
| /// of the same type! |
| /// |
| void Verifier::visitBinaryOperator(BinaryOperator &B) { |
| Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(), |
| "Both operands to a binary operator are not of the same type!", &B); |
| |
| switch (B.getOpcode()) { |
| // Check that integer arithmetic operators are only used with |
| // integral operands. |
| case Instruction::Add: |
| case Instruction::Sub: |
| case Instruction::Mul: |
| case Instruction::SDiv: |
| case Instruction::UDiv: |
| case Instruction::SRem: |
| case Instruction::URem: |
| Assert1(B.getType()->isIntOrIntVector(), |
| "Integer arithmetic operators only work with integral types!", &B); |
| Assert1(B.getType() == B.getOperand(0)->getType(), |
| "Integer arithmetic operators must have same type " |
| "for operands and result!", &B); |
| break; |
| // Check that floating-point arithmetic operators are only used with |
| // floating-point operands. |
| case Instruction::FAdd: |
| case Instruction::FSub: |
| case Instruction::FMul: |
| case Instruction::FDiv: |
| case Instruction::FRem: |
| Assert1(B.getType()->isFPOrFPVector(), |
| "Floating-point arithmetic operators only work with " |
| "floating-point types!", &B); |
| Assert1(B.getType() == B.getOperand(0)->getType(), |
| "Floating-point arithmetic operators must have same type " |
| "for operands and result!", &B); |
| break; |
| // Check that logical operators are only used with integral operands. |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: |
| Assert1(B.getType()->isIntOrIntVector(), |
| "Logical operators only work with integral types!", &B); |
| Assert1(B.getType() == B.getOperand(0)->getType(), |
| "Logical operators must have same type for operands and result!", |
| &B); |
| break; |
| case Instruction::Shl: |
| case Instruction::LShr: |
| case Instruction::AShr: |
| Assert1(B.getType()->isIntOrIntVector(), |
| "Shifts only work with integral types!", &B); |
| Assert1(B.getType() == B.getOperand(0)->getType(), |
| "Shift return type must be same as operands!", &B); |
| break; |
| default: |
| assert(0 && "Unknown BinaryOperator opcode!"); |
| } |
| |
| visitInstruction(B); |
| } |
| |
| void Verifier::visitICmpInst(ICmpInst& IC) { |
| // Check that the operands are the same type |
| const Type* Op0Ty = IC.getOperand(0)->getType(); |
| const Type* Op1Ty = IC.getOperand(1)->getType(); |
| Assert1(Op0Ty == Op1Ty, |
| "Both operands to ICmp instruction are not of the same type!", &IC); |
| // Check that the operands are the right type |
| Assert1(Op0Ty->isIntOrIntVector() || isa<PointerType>(Op0Ty), |
| "Invalid operand types for ICmp instruction", &IC); |
| |
| visitInstruction(IC); |
| } |
| |
| void Verifier::visitFCmpInst(FCmpInst& FC) { |
| // Check that the operands are the same type |
| const Type* Op0Ty = FC.getOperand(0)->getType(); |
| const Type* Op1Ty = FC.getOperand(1)->getType(); |
| Assert1(Op0Ty == Op1Ty, |
| "Both operands to FCmp instruction are not of the same type!", &FC); |
| // Check that the operands are the right type |
| Assert1(Op0Ty->isFPOrFPVector(), |
| "Invalid operand types for FCmp instruction", &FC); |
| visitInstruction(FC); |
| } |
| |
| void Verifier::visitExtractElementInst(ExtractElementInst &EI) { |
| Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0), |
| EI.getOperand(1)), |
| "Invalid extractelement operands!", &EI); |
| visitInstruction(EI); |
| } |
| |
| void Verifier::visitInsertElementInst(InsertElementInst &IE) { |
| Assert1(InsertElementInst::isValidOperands(IE.getOperand(0), |
| IE.getOperand(1), |
| IE.getOperand(2)), |
| "Invalid insertelement operands!", &IE); |
| visitInstruction(IE); |
| } |
| |
| void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { |
| Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), |
| SV.getOperand(2)), |
| "Invalid shufflevector operands!", &SV); |
| |
| const VectorType *VTy = dyn_cast<VectorType>(SV.getOperand(0)->getType()); |
| Assert1(VTy, "Operands are not a vector type", &SV); |
| |
| // Check to see if Mask is valid. |
| if (const ConstantVector *MV = dyn_cast<ConstantVector>(SV.getOperand(2))) { |
| for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) { |
| if (ConstantInt* CI = dyn_cast<ConstantInt>(MV->getOperand(i))) { |
| Assert1(!CI->uge(VTy->getNumElements()*2), |
| "Invalid shufflevector shuffle mask!", &SV); |
| } else { |
| Assert1(isa<UndefValue>(MV->getOperand(i)), |
| "Invalid shufflevector shuffle mask!", &SV); |
| } |
| } |
| } else { |
| Assert1(isa<UndefValue>(SV.getOperand(2)) || |
| isa<ConstantAggregateZero>(SV.getOperand(2)), |
| "Invalid shufflevector shuffle mask!", &SV); |
| } |
| |
| visitInstruction(SV); |
| } |
| |
| void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { |
| SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end()); |
| const Type *ElTy = |
| GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(), |
| Idxs.begin(), Idxs.end()); |
| Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP); |
| Assert2(isa<PointerType>(GEP.getType()) && |
| cast<PointerType>(GEP.getType())->getElementType() == ElTy, |
| "GEP is not of right type for indices!", &GEP, ElTy); |
| visitInstruction(GEP); |
| } |
| |
| void Verifier::visitLoadInst(LoadInst &LI) { |
| const Type *ElTy = |
| cast<PointerType>(LI.getOperand(0)->getType())->getElementType(); |
| Assert2(ElTy == LI.getType(), |
| "Load result type does not match pointer operand type!", &LI, ElTy); |
| Assert1(ElTy != Type::MetadataTy, "Can't load metadata!", &LI); |
| visitInstruction(LI); |
| } |
| |
| void Verifier::visitStoreInst(StoreInst &SI) { |
| const Type *ElTy = |
| cast<PointerType>(SI.getOperand(1)->getType())->getElementType(); |
| Assert2(ElTy == SI.getOperand(0)->getType(), |
| "Stored value type does not match pointer operand type!", &SI, ElTy); |
| Assert1(ElTy != Type::MetadataTy, "Can't store metadata!", &SI); |
| visitInstruction(SI); |
| } |
| |
| void Verifier::visitAllocationInst(AllocationInst &AI) { |
| const PointerType *PTy = AI.getType(); |
| Assert1(PTy->getAddressSpace() == 0, |
| "Allocation instruction pointer not in the generic address space!", |
| &AI); |
| Assert1(PTy->getElementType()->isSized(), "Cannot allocate unsized type", |
| &AI); |
| visitInstruction(AI); |
| } |
| |
| void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { |
| Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), |
| EVI.idx_begin(), EVI.idx_end()) == |
| EVI.getType(), |
| "Invalid ExtractValueInst operands!", &EVI); |
| |
| visitInstruction(EVI); |
| } |
| |
| void Verifier::visitInsertValueInst(InsertValueInst &IVI) { |
| Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), |
| IVI.idx_begin(), IVI.idx_end()) == |
| IVI.getOperand(1)->getType(), |
| "Invalid InsertValueInst operands!", &IVI); |
| |
| visitInstruction(IVI); |
| } |
| |
| /// verifyInstruction - Verify that an instruction is well formed. |
| /// |
| void Verifier::visitInstruction(Instruction &I) { |
| BasicBlock *BB = I.getParent(); |
| Assert1(BB, "Instruction not embedded in basic block!", &I); |
| |
| if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential |
| for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); |
| UI != UE; ++UI) |
| Assert1(*UI != (User*)&I || !DT->isReachableFromEntry(BB), |
| "Only PHI nodes may reference their own value!", &I); |
| } |
| |
| // Verify that if this is a terminator that it is at the end of the block. |
| if (isa<TerminatorInst>(I)) |
| Assert1(BB->getTerminator() == &I, "Terminator not at end of block!", &I); |
| |
| |
| // Check that void typed values don't have names |
| Assert1(I.getType() != Type::VoidTy || !I.hasName(), |
| "Instruction has a name, but provides a void value!", &I); |
| |
| // Check that the return value of the instruction is either void or a legal |
| // value type. |
| Assert1(I.getType() == Type::VoidTy || I.getType()->isFirstClassType() |
| || ((isa<CallInst>(I) || isa<InvokeInst>(I)) |
| && isa<StructType>(I.getType())), |
| "Instruction returns a non-scalar type!", &I); |
| |
| // Check that the instruction doesn't produce metadata or metadata*. Calls |
| // all already checked against the callee type. |
| Assert1(I.getType() != Type::MetadataTy || |
| isa<CallInst>(I) || isa<InvokeInst>(I), |
| "Invalid use of metadata!", &I); |
| |
| if (const PointerType *PTy = dyn_cast<PointerType>(I.getType())) |
| Assert1(PTy->getElementType() != Type::MetadataTy, |
| "Instructions may not produce pointer to metadata.", &I); |
| |
| |
| // Check that all uses of the instruction, if they are instructions |
| // themselves, actually have parent basic blocks. If the use is not an |
| // instruction, it is an error! |
| for (User::use_iterator UI = I.use_begin(), UE = I.use_end(); |
| UI != UE; ++UI) { |
| Assert1(isa<Instruction>(*UI), "Use of instruction is not an instruction!", |
| *UI); |
| Instruction *Used = cast<Instruction>(*UI); |
| Assert2(Used->getParent() != 0, "Instruction referencing instruction not" |
| " embedded in a basic block!", &I, Used); |
| } |
| |
| for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { |
| Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I); |
| |
| // Check to make sure that only first-class-values are operands to |
| // instructions. |
| if (!I.getOperand(i)->getType()->isFirstClassType()) { |
| Assert1(0, "Instruction operands must be first-class values!", &I); |
| } |
| |
| if (const PointerType *PTy = |
| dyn_cast<PointerType>(I.getOperand(i)->getType())) |
| Assert1(PTy->getElementType() != Type::MetadataTy, |
| "Invalid use of metadata pointer.", &I); |
| |
| if (Function *F = dyn_cast<Function>(I.getOperand(i))) { |
| // Check to make sure that the "address of" an intrinsic function is never |
| // taken. |
| Assert1(!F->isIntrinsic() || (i == 0 && isa<CallInst>(I)), |
| "Cannot take the address of an intrinsic!", &I); |
| Assert1(F->getParent() == Mod, "Referencing function in another module!", |
| &I); |
| } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { |
| Assert1(OpBB->getParent() == BB->getParent(), |
| "Referring to a basic block in another function!", &I); |
| } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { |
| Assert1(OpArg->getParent() == BB->getParent(), |
| "Referring to an argument in another function!", &I); |
| } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { |
| Assert1(GV->getParent() == Mod, "Referencing global in another module!", |
| &I); |
| } else if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) { |
| BasicBlock *OpBlock = Op->getParent(); |
| |
| // Check that a definition dominates all of its uses. |
| if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { |
| // Invoke results are only usable in the normal destination, not in the |
| // exceptional destination. |
| BasicBlock *NormalDest = II->getNormalDest(); |
| |
| Assert2(NormalDest != II->getUnwindDest(), |
| "No uses of invoke possible due to dominance structure!", |
| Op, &I); |
| |
| // PHI nodes differ from other nodes because they actually "use" the |
| // value in the predecessor basic blocks they correspond to. |
| BasicBlock *UseBlock = BB; |
| if (isa<PHINode>(I)) |
| UseBlock = cast<BasicBlock>(I.getOperand(i+1)); |
| |
| if (isa<PHINode>(I) && UseBlock == OpBlock) { |
| // Special case of a phi node in the normal destination or the unwind |
| // destination. |
| Assert2(BB == NormalDest || !DT->isReachableFromEntry(UseBlock), |
| "Invoke result not available in the unwind destination!", |
| Op, &I); |
| } else { |
| Assert2(DT->dominates(NormalDest, UseBlock) || |
| !DT->isReachableFromEntry(UseBlock), |
| "Invoke result does not dominate all uses!", Op, &I); |
| |
| // If the normal successor of an invoke instruction has multiple |
| // predecessors, then the normal edge from the invoke is critical, |
| // so the invoke value can only be live if the destination block |
| // dominates all of it's predecessors (other than the invoke). |
| if (!NormalDest->getSinglePredecessor() && |
| DT->isReachableFromEntry(UseBlock)) |
| // If it is used by something non-phi, then the other case is that |
| // 'NormalDest' dominates all of its predecessors other than the |
| // invoke. In this case, the invoke value can still be used. |
| for (pred_iterator PI = pred_begin(NormalDest), |
| E = pred_end(NormalDest); PI != E; ++PI) |
| if (*PI != II->getParent() && !DT->dominates(NormalDest, *PI) && |
| DT->isReachableFromEntry(*PI)) { |
| CheckFailed("Invoke result does not dominate all uses!", Op,&I); |
| return; |
| } |
| } |
| } else if (isa<PHINode>(I)) { |
| // PHI nodes are more difficult than other nodes because they actually |
| // "use" the value in the predecessor basic blocks they correspond to. |
| BasicBlock *PredBB = cast<BasicBlock>(I.getOperand(i+1)); |
| Assert2(DT->dominates(OpBlock, PredBB) || |
| !DT->isReachableFromEntry(PredBB), |
| "Instruction does not dominate all uses!", Op, &I); |
| } else { |
| if (OpBlock == BB) { |
| // If they are in the same basic block, make sure that the definition |
| // comes before the use. |
| Assert2(InstsInThisBlock.count(Op) || !DT->isReachableFromEntry(BB), |
| "Instruction does not dominate all uses!", Op, &I); |
| } |
| |
| // Definition must dominate use unless use is unreachable! |
| Assert2(InstsInThisBlock.count(Op) || DT->dominates(Op, &I) || |
| !DT->isReachableFromEntry(BB), |
| "Instruction does not dominate all uses!", Op, &I); |
| } |
| } else if (isa<InlineAsm>(I.getOperand(i))) { |
| Assert1(i == 0 && (isa<CallInst>(I) || isa<InvokeInst>(I)), |
| "Cannot take the address of an inline asm!", &I); |
| } |
| } |
| InstsInThisBlock.insert(&I); |
| } |
| |
| // Flags used by TableGen to mark intrinsic parameters with the |
| // LLVMExtendedElementVectorType and LLVMTruncatedElementVectorType classes. |
| static const unsigned ExtendedElementVectorType = 0x40000000; |
| static const unsigned TruncatedElementVectorType = 0x20000000; |
| |
| /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways. |
| /// |
| void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) { |
| Function *IF = CI.getCalledFunction(); |
| Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!", |
| IF); |
| |
| #define GET_INTRINSIC_VERIFIER |
| #include "llvm/Intrinsics.gen" |
| #undef GET_INTRINSIC_VERIFIER |
| |
| switch (ID) { |
| default: |
| break; |
| case Intrinsic::dbg_declare: // llvm.dbg.declare |
| if (Constant *C = dyn_cast<Constant>(CI.getOperand(1))) |
| Assert1(C && !isa<ConstantPointerNull>(C), |
| "invalid llvm.dbg.declare intrinsic call", &CI); |
| break; |
| case Intrinsic::memcpy: |
| case Intrinsic::memmove: |
| case Intrinsic::memset: |
| Assert1(isa<ConstantInt>(CI.getOperand(4)), |
| "alignment argument of memory intrinsics must be a constant int", |
| &CI); |
| break; |
| case Intrinsic::gcroot: |
| case Intrinsic::gcwrite: |
| case Intrinsic::gcread: |
| if (ID == Intrinsic::gcroot) { |
| AllocaInst *AI = |
| dyn_cast<AllocaInst>(CI.getOperand(1)->stripPointerCasts()); |
| Assert1(AI && isa<PointerType>(AI->getType()->getElementType()), |
| "llvm.gcroot parameter #1 must be a pointer alloca.", &CI); |
| Assert1(isa<Constant>(CI.getOperand(2)), |
| "llvm.gcroot parameter #2 must be a constant.", &CI); |
| } |
| |
| Assert1(CI.getParent()->getParent()->hasGC(), |
| "Enclosing function does not use GC.", &CI); |
| break; |
| case Intrinsic::init_trampoline: |
| Assert1(isa<Function>(CI.getOperand(2)->stripPointerCasts()), |
| "llvm.init_trampoline parameter #2 must resolve to a function.", |
| &CI); |
| break; |
| case Intrinsic::prefetch: |
| Assert1(isa<ConstantInt>(CI.getOperand(2)) && |
| isa<ConstantInt>(CI.getOperand(3)) && |
| cast<ConstantInt>(CI.getOperand(2))->getZExtValue() < 2 && |
| cast<ConstantInt>(CI.getOperand(3))->getZExtValue() < 4, |
| "invalid arguments to llvm.prefetch", |
| &CI); |
| break; |
| case Intrinsic::stackprotector: |
| Assert1(isa<AllocaInst>(CI.getOperand(2)->stripPointerCasts()), |
| "llvm.stackprotector parameter #2 must resolve to an alloca.", |
| &CI); |
| break; |
| } |
| } |
| |
| /// Produce a string to identify an intrinsic parameter or return value. |
| /// The ArgNo value numbers the return values from 0 to NumRets-1 and the |
| /// parameters beginning with NumRets. |
| /// |
| static std::string IntrinsicParam(unsigned ArgNo, unsigned NumRets) { |
| if (ArgNo < NumRets) { |
| if (NumRets == 1) |
| return "Intrinsic result type"; |
| else |
| return "Intrinsic result type #" + utostr(ArgNo); |
| } else |
| return "Intrinsic parameter #" + utostr(ArgNo - NumRets); |
| } |
| |
| bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty, |
| int VT, unsigned ArgNo, std::string &Suffix) { |
| const FunctionType *FTy = F->getFunctionType(); |
| |
| unsigned NumElts = 0; |
| const Type *EltTy = Ty; |
| const VectorType *VTy = dyn_cast<VectorType>(Ty); |
| if (VTy) { |
| EltTy = VTy->getElementType(); |
| NumElts = VTy->getNumElements(); |
| } |
| |
| const Type *RetTy = FTy->getReturnType(); |
| const StructType *ST = dyn_cast<StructType>(RetTy); |
| unsigned NumRets = 1; |
| if (ST) |
| NumRets = ST->getNumElements(); |
| |
| if (VT < 0) { |
| int Match = ~VT; |
| |
| // Check flags that indicate a type that is an integral vector type with |
| // elements that are larger or smaller than the elements of the matched |
| // type. |
| if ((Match & (ExtendedElementVectorType | |
| TruncatedElementVectorType)) != 0) { |
| const IntegerType *IEltTy = dyn_cast<IntegerType>(EltTy); |
| if (!VTy || !IEltTy) { |
| CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not " |
| "an integral vector type.", F); |
| return false; |
| } |
| // Adjust the current Ty (in the opposite direction) rather than |
| // the type being matched against. |
| if ((Match & ExtendedElementVectorType) != 0) { |
| if ((IEltTy->getBitWidth() & 1) != 0) { |
| CheckFailed(IntrinsicParam(ArgNo, NumRets) + " vector " |
| "element bit-width is odd.", F); |
| return false; |
| } |
| Ty = VectorType::getTruncatedElementVectorType(VTy); |
| } else |
| Ty = VectorType::getExtendedElementVectorType(VTy); |
| Match &= ~(ExtendedElementVectorType | TruncatedElementVectorType); |
| } |
| |
| if (Match <= static_cast<int>(NumRets - 1)) { |
| if (ST) |
| RetTy = ST->getElementType(Match); |
| |
| if (Ty != RetTy) { |
| CheckFailed(IntrinsicParam(ArgNo, NumRets) + " does not " |
| "match return type.", F); |
| return false; |
| } |
| } else { |
| if (Ty != FTy->getParamType(Match - 1)) { |
| CheckFailed(IntrinsicParam(ArgNo, NumRets) + " does not " |
| "match parameter %" + utostr(Match - 1) + ".", F); |
| return false; |
| } |
| } |
| } else if (VT == MVT::iAny) { |
| if (!EltTy->isInteger()) { |
| CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not " |
| "an integer type.", F); |
| return false; |
| } |
| |
| unsigned GotBits = cast<IntegerType>(EltTy)->getBitWidth(); |
| Suffix += "."; |
| |
| if (EltTy != Ty) |
| Suffix += "v" + utostr(NumElts); |
| |
| Suffix += "i" + utostr(GotBits); |
| |
| // Check some constraints on various intrinsics. |
| switch (ID) { |
| default: break; // Not everything needs to be checked. |
| case Intrinsic::bswap: |
| if (GotBits < 16 || GotBits % 16 != 0) { |
| CheckFailed("Intrinsic requires even byte width argument", F); |
| return false; |
| } |
| break; |
| } |
| } else if (VT == MVT::fAny) { |
| if (!EltTy->isFloatingPoint()) { |
| CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not " |
| "a floating-point type.", F); |
| return false; |
| } |
| |
| Suffix += "."; |
| |
| if (EltTy != Ty) |
| Suffix += "v" + utostr(NumElts); |
| |
| Suffix += MVT::getMVT(EltTy).getMVTString(); |
| } else if (VT == MVT::iPTR) { |
| if (!isa<PointerType>(Ty)) { |
| CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not a " |
| "pointer and a pointer is required.", F); |
| return false; |
| } |
| } else if (VT == MVT::iPTRAny) { |
| // Outside of TableGen, we don't distinguish iPTRAny (to any address space) |
| // and iPTR. In the verifier, we can not distinguish which case we have so |
| // allow either case to be legal. |
| if (const PointerType* PTyp = dyn_cast<PointerType>(Ty)) { |
| Suffix += ".p" + utostr(PTyp->getAddressSpace()) + |
| MVT::getMVT(PTyp->getElementType()).getMVTString(); |
| } else { |
| CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not a " |
| "pointer and a pointer is required.", F); |
| return false; |
| } |
| } else if (MVT((MVT::SimpleValueType)VT).isVector()) { |
| MVT VVT = MVT((MVT::SimpleValueType)VT); |
| |
| // If this is a vector argument, verify the number and type of elements. |
| if (VVT.getVectorElementType() != MVT::getMVT(EltTy)) { |
| CheckFailed("Intrinsic prototype has incorrect vector element type!", F); |
| return false; |
| } |
| |
| if (VVT.getVectorNumElements() != NumElts) { |
| CheckFailed("Intrinsic prototype has incorrect number of " |
| "vector elements!", F); |
| return false; |
| } |
| } else if (MVT((MVT::SimpleValueType)VT).getTypeForMVT() != EltTy) { |
| CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is wrong!", F); |
| return false; |
| } else if (EltTy != Ty) { |
| CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is a vector " |
| "and a scalar is required.", F); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// VerifyIntrinsicPrototype - TableGen emits calls to this function into |
| /// Intrinsics.gen. This implements a little state machine that verifies the |
| /// prototype of intrinsics. |
| void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F, |
| unsigned RetNum, |
| unsigned ParamNum, ...) { |
| va_list VA; |
| va_start(VA, ParamNum); |
| const FunctionType *FTy = F->getFunctionType(); |
| |
| // For overloaded intrinsics, the Suffix of the function name must match the |
| // types of the arguments. This variable keeps track of the expected |
| // suffix, to be checked at the end. |
| std::string Suffix; |
| |
| if (FTy->getNumParams() + FTy->isVarArg() != ParamNum) { |
| CheckFailed("Intrinsic prototype has incorrect number of arguments!", F); |
| return; |
| } |
| |
| const Type *Ty = FTy->getReturnType(); |
| const StructType *ST = dyn_cast<StructType>(Ty); |
| |
| // Verify the return types. |
| if (ST && ST->getNumElements() != RetNum) { |
| CheckFailed("Intrinsic prototype has incorrect number of return types!", F); |
| return; |
| } |
| |
| for (unsigned ArgNo = 0; ArgNo < RetNum; ++ArgNo) { |
| int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative. |
| |
| if (ST) Ty = ST->getElementType(ArgNo); |
| |
| if (!PerformTypeCheck(ID, F, Ty, VT, ArgNo, Suffix)) |
| break; |
| } |
| |
| // Verify the parameter types. |
| for (unsigned ArgNo = 0; ArgNo < ParamNum; ++ArgNo) { |
| int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative. |
| |
| if (VT == MVT::isVoid && ArgNo > 0) { |
| if (!FTy->isVarArg()) |
| CheckFailed("Intrinsic prototype has no '...'!", F); |
| break; |
| } |
| |
| if (!PerformTypeCheck(ID, F, FTy->getParamType(ArgNo), VT, ArgNo + RetNum, |
| Suffix)) |
| break; |
| } |
| |
| va_end(VA); |
| |
| // For intrinsics without pointer arguments, if we computed a Suffix then the |
| // intrinsic is overloaded and we need to make sure that the name of the |
| // function is correct. We add the suffix to the name of the intrinsic and |
| // compare against the given function name. If they are not the same, the |
| // function name is invalid. This ensures that overloading of intrinsics |
| // uses a sane and consistent naming convention. Note that intrinsics with |
| // pointer argument may or may not be overloaded so we will check assuming it |
| // has a suffix and not. |
| if (!Suffix.empty()) { |
| std::string Name(Intrinsic::getName(ID)); |
| if (Name + Suffix != F->getName()) { |
| CheckFailed("Overloaded intrinsic has incorrect suffix: '" + |
| F->getName().substr(Name.length()) + "'. It should be '" + |
| Suffix + "'", F); |
| } |
| } |
| |
| // Check parameter attributes. |
| Assert1(F->getAttributes() == Intrinsic::getAttributes(ID), |
| "Intrinsic has wrong parameter attributes!", F); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Implement the public interfaces to this file... |
| //===----------------------------------------------------------------------===// |
| |
| FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) { |
| return new Verifier(action); |
| } |
| |
| |
| // verifyFunction - Create |
| bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) { |
| Function &F = const_cast<Function&>(f); |
| assert(!F.isDeclaration() && "Cannot verify external functions"); |
| |
| ExistingModuleProvider MP(F.getParent()); |
| FunctionPassManager FPM(&MP); |
| Verifier *V = new Verifier(action); |
| FPM.add(V); |
| FPM.run(F); |
| MP.releaseModule(); |
| return V->Broken; |
| } |
| |
| /// verifyModule - Check a module for errors, printing messages on stderr. |
| /// Return true if the module is corrupt. |
| /// |
| bool llvm::verifyModule(const Module &M, VerifierFailureAction action, |
| std::string *ErrorInfo) { |
| PassManager PM; |
| Verifier *V = new Verifier(action); |
| PM.add(V); |
| PM.run(const_cast<Module&>(M)); |
| |
| if (ErrorInfo && V->Broken) |
| *ErrorInfo = V->msgs.str(); |
| return V->Broken; |
| } |
| |
| // vim: sw=2 |