| ================================================== |
| Kaleidoscope: Extending the Language: Control Flow |
| ================================================== |
| |
| .. contents:: |
| :local: |
| |
| Chapter 5 Introduction |
| ====================== |
| |
| Welcome to Chapter 5 of the "`Implementing a language with |
| LLVM <index.html>`_" tutorial. Parts 1-4 described the implementation of |
| the simple Kaleidoscope language and included support for generating |
| LLVM IR, followed by optimizations and a JIT compiler. Unfortunately, as |
| presented, Kaleidoscope is mostly useless: it has no control flow other |
| than call and return. This means that you can't have conditional |
| branches in the code, significantly limiting its power. In this episode |
| of "build that compiler", we'll extend Kaleidoscope to have an |
| if/then/else expression plus a simple 'for' loop. |
| |
| If/Then/Else |
| ============ |
| |
| Extending Kaleidoscope to support if/then/else is quite straightforward. |
| It basically requires adding support for this "new" concept to the |
| lexer, parser, AST, and LLVM code emitter. This example is nice, because |
| it shows how easy it is to "grow" a language over time, incrementally |
| extending it as new ideas are discovered. |
| |
| Before we get going on "how" we add this extension, lets talk about |
| "what" we want. The basic idea is that we want to be able to write this |
| sort of thing: |
| |
| :: |
| |
| def fib(x) |
| if x < 3 then |
| 1 |
| else |
| fib(x-1)+fib(x-2); |
| |
| In Kaleidoscope, every construct is an expression: there are no |
| statements. As such, the if/then/else expression needs to return a value |
| like any other. Since we're using a mostly functional form, we'll have |
| it evaluate its conditional, then return the 'then' or 'else' value |
| based on how the condition was resolved. This is very similar to the C |
| "?:" expression. |
| |
| The semantics of the if/then/else expression is that it evaluates the |
| condition to a boolean equality value: 0.0 is considered to be false and |
| everything else is considered to be true. If the condition is true, the |
| first subexpression is evaluated and returned, if the condition is |
| false, the second subexpression is evaluated and returned. Since |
| Kaleidoscope allows side-effects, this behavior is important to nail |
| down. |
| |
| Now that we know what we "want", lets break this down into its |
| constituent pieces. |
| |
| Lexer Extensions for If/Then/Else |
| --------------------------------- |
| |
| The lexer extensions are straightforward. First we add new enum values |
| for the relevant tokens: |
| |
| .. code-block:: c++ |
| |
| // control |
| tok_if = -6, tok_then = -7, tok_else = -8, |
| |
| Once we have that, we recognize the new keywords in the lexer. This is |
| pretty simple stuff: |
| |
| .. code-block:: c++ |
| |
| ... |
| if (IdentifierStr == "def") return tok_def; |
| if (IdentifierStr == "extern") return tok_extern; |
| if (IdentifierStr == "if") return tok_if; |
| if (IdentifierStr == "then") return tok_then; |
| if (IdentifierStr == "else") return tok_else; |
| return tok_identifier; |
| |
| AST Extensions for If/Then/Else |
| ------------------------------- |
| |
| To represent the new expression we add a new AST node for it: |
| |
| .. code-block:: c++ |
| |
| /// IfExprAST - Expression class for if/then/else. |
| class IfExprAST : public ExprAST { |
| ExprAST *Cond, *Then, *Else; |
| public: |
| IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else) |
| : Cond(cond), Then(then), Else(_else) {} |
| virtual Value *Codegen(); |
| }; |
| |
| The AST node just has pointers to the various subexpressions. |
| |
| Parser Extensions for If/Then/Else |
| ---------------------------------- |
| |
| Now that we have the relevant tokens coming from the lexer and we have |
| the AST node to build, our parsing logic is relatively straightforward. |
| First we define a new parsing function: |
| |
| .. code-block:: c++ |
| |
| /// ifexpr ::= 'if' expression 'then' expression 'else' expression |
| static ExprAST *ParseIfExpr() { |
| getNextToken(); // eat the if. |
| |
| // condition. |
| ExprAST *Cond = ParseExpression(); |
| if (!Cond) return 0; |
| |
| if (CurTok != tok_then) |
| return Error("expected then"); |
| getNextToken(); // eat the then |
| |
| ExprAST *Then = ParseExpression(); |
| if (Then == 0) return 0; |
| |
| if (CurTok != tok_else) |
| return Error("expected else"); |
| |
| getNextToken(); |
| |
| ExprAST *Else = ParseExpression(); |
| if (!Else) return 0; |
| |
| return new IfExprAST(Cond, Then, Else); |
| } |
| |
| Next we hook it up as a primary expression: |
| |
| .. code-block:: c++ |
| |
| static ExprAST *ParsePrimary() { |
| switch (CurTok) { |
| default: return Error("unknown token when expecting an expression"); |
| case tok_identifier: return ParseIdentifierExpr(); |
| case tok_number: return ParseNumberExpr(); |
| case '(': return ParseParenExpr(); |
| case tok_if: return ParseIfExpr(); |
| } |
| } |
| |
| LLVM IR for If/Then/Else |
| ------------------------ |
| |
| Now that we have it parsing and building the AST, the final piece is |
| adding LLVM code generation support. This is the most interesting part |
| of the if/then/else example, because this is where it starts to |
| introduce new concepts. All of the code above has been thoroughly |
| described in previous chapters. |
| |
| To motivate the code we want to produce, lets take a look at a simple |
| example. Consider: |
| |
| :: |
| |
| extern foo(); |
| extern bar(); |
| def baz(x) if x then foo() else bar(); |
| |
| If you disable optimizations, the code you'll (soon) get from |
| Kaleidoscope looks like this: |
| |
| .. code-block:: llvm |
| |
| declare double @foo() |
| |
| declare double @bar() |
| |
| define double @baz(double %x) { |
| entry: |
| %ifcond = fcmp one double %x, 0.000000e+00 |
| br i1 %ifcond, label %then, label %else |
| |
| then: ; preds = %entry |
| %calltmp = call double @foo() |
| br label %ifcont |
| |
| else: ; preds = %entry |
| %calltmp1 = call double @bar() |
| br label %ifcont |
| |
| ifcont: ; preds = %else, %then |
| %iftmp = phi double [ %calltmp, %then ], [ %calltmp1, %else ] |
| ret double %iftmp |
| } |
| |
| To visualize the control flow graph, you can use a nifty feature of the |
| LLVM '`opt <http://llvm.org/cmds/opt.html>`_' tool. If you put this LLVM |
| IR into "t.ll" and run "``llvm-as < t.ll | opt -analyze -view-cfg``", `a |
| window will pop up <../ProgrammersManual.html#ViewGraph>`_ and you'll |
| see this graph: |
| |
| .. figure:: LangImpl5-cfg.png |
| :align: center |
| :alt: Example CFG |
| |
| Example CFG |
| |
| Another way to get this is to call "``F->viewCFG()``" or |
| "``F->viewCFGOnly()``" (where F is a "``Function*``") either by |
| inserting actual calls into the code and recompiling or by calling these |
| in the debugger. LLVM has many nice features for visualizing various |
| graphs. |
| |
| Getting back to the generated code, it is fairly simple: the entry block |
| evaluates the conditional expression ("x" in our case here) and compares |
| the result to 0.0 with the "``fcmp one``" instruction ('one' is "Ordered |
| and Not Equal"). Based on the result of this expression, the code jumps |
| to either the "then" or "else" blocks, which contain the expressions for |
| the true/false cases. |
| |
| Once the then/else blocks are finished executing, they both branch back |
| to the 'ifcont' block to execute the code that happens after the |
| if/then/else. In this case the only thing left to do is to return to the |
| caller of the function. The question then becomes: how does the code |
| know which expression to return? |
| |
| The answer to this question involves an important SSA operation: the |
| `Phi |
| operation <http://en.wikipedia.org/wiki/Static_single_assignment_form>`_. |
| If you're not familiar with SSA, `the wikipedia |
| article <http://en.wikipedia.org/wiki/Static_single_assignment_form>`_ |
| is a good introduction and there are various other introductions to it |
| available on your favorite search engine. The short version is that |
| "execution" of the Phi operation requires "remembering" which block |
| control came from. The Phi operation takes on the value corresponding to |
| the input control block. In this case, if control comes in from the |
| "then" block, it gets the value of "calltmp". If control comes from the |
| "else" block, it gets the value of "calltmp1". |
| |
| At this point, you are probably starting to think "Oh no! This means my |
| simple and elegant front-end will have to start generating SSA form in |
| order to use LLVM!". Fortunately, this is not the case, and we strongly |
| advise *not* implementing an SSA construction algorithm in your |
| front-end unless there is an amazingly good reason to do so. In |
| practice, there are two sorts of values that float around in code |
| written for your average imperative programming language that might need |
| Phi nodes: |
| |
| #. Code that involves user variables: ``x = 1; x = x + 1;`` |
| #. Values that are implicit in the structure of your AST, such as the |
| Phi node in this case. |
| |
| In `Chapter 7 <LangImpl7.html>`_ of this tutorial ("mutable variables"), |
| we'll talk about #1 in depth. For now, just believe me that you don't |
| need SSA construction to handle this case. For #2, you have the choice |
| of using the techniques that we will describe for #1, or you can insert |
| Phi nodes directly, if convenient. In this case, it is really really |
| easy to generate the Phi node, so we choose to do it directly. |
| |
| Okay, enough of the motivation and overview, lets generate code! |
| |
| Code Generation for If/Then/Else |
| -------------------------------- |
| |
| In order to generate code for this, we implement the ``Codegen`` method |
| for ``IfExprAST``: |
| |
| .. code-block:: c++ |
| |
| Value *IfExprAST::Codegen() { |
| Value *CondV = Cond->Codegen(); |
| if (CondV == 0) return 0; |
| |
| // Convert condition to a bool by comparing equal to 0.0. |
| CondV = Builder.CreateFCmpONE(CondV, |
| ConstantFP::get(getGlobalContext(), APFloat(0.0)), |
| "ifcond"); |
| |
| This code is straightforward and similar to what we saw before. We emit |
| the expression for the condition, then compare that value to zero to get |
| a truth value as a 1-bit (bool) value. |
| |
| .. code-block:: c++ |
| |
| Function *TheFunction = Builder.GetInsertBlock()->getParent(); |
| |
| // Create blocks for the then and else cases. Insert the 'then' block at the |
| // end of the function. |
| BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction); |
| BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else"); |
| BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont"); |
| |
| Builder.CreateCondBr(CondV, ThenBB, ElseBB); |
| |
| This code creates the basic blocks that are related to the if/then/else |
| statement, and correspond directly to the blocks in the example above. |
| The first line gets the current Function object that is being built. It |
| gets this by asking the builder for the current BasicBlock, and asking |
| that block for its "parent" (the function it is currently embedded |
| into). |
| |
| Once it has that, it creates three blocks. Note that it passes |
| "TheFunction" into the constructor for the "then" block. This causes the |
| constructor to automatically insert the new block into the end of the |
| specified function. The other two blocks are created, but aren't yet |
| inserted into the function. |
| |
| Once the blocks are created, we can emit the conditional branch that |
| chooses between them. Note that creating new blocks does not implicitly |
| affect the IRBuilder, so it is still inserting into the block that the |
| condition went into. Also note that it is creating a branch to the |
| "then" block and the "else" block, even though the "else" block isn't |
| inserted into the function yet. This is all ok: it is the standard way |
| that LLVM supports forward references. |
| |
| .. code-block:: c++ |
| |
| // Emit then value. |
| Builder.SetInsertPoint(ThenBB); |
| |
| Value *ThenV = Then->Codegen(); |
| if (ThenV == 0) return 0; |
| |
| Builder.CreateBr(MergeBB); |
| // Codegen of 'Then' can change the current block, update ThenBB for the PHI. |
| ThenBB = Builder.GetInsertBlock(); |
| |
| After the conditional branch is inserted, we move the builder to start |
| inserting into the "then" block. Strictly speaking, this call moves the |
| insertion point to be at the end of the specified block. However, since |
| the "then" block is empty, it also starts out by inserting at the |
| beginning of the block. :) |
| |
| Once the insertion point is set, we recursively codegen the "then" |
| expression from the AST. To finish off the "then" block, we create an |
| unconditional branch to the merge block. One interesting (and very |
| important) aspect of the LLVM IR is that it `requires all basic blocks |
| to be "terminated" <../LangRef.html#functionstructure>`_ with a `control |
| flow instruction <../LangRef.html#terminators>`_ such as return or |
| branch. This means that all control flow, *including fall throughs* must |
| be made explicit in the LLVM IR. If you violate this rule, the verifier |
| will emit an error. |
| |
| The final line here is quite subtle, but is very important. The basic |
| issue is that when we create the Phi node in the merge block, we need to |
| set up the block/value pairs that indicate how the Phi will work. |
| Importantly, the Phi node expects to have an entry for each predecessor |
| of the block in the CFG. Why then, are we getting the current block when |
| we just set it to ThenBB 5 lines above? The problem is that the "Then" |
| expression may actually itself change the block that the Builder is |
| emitting into if, for example, it contains a nested "if/then/else" |
| expression. Because calling Codegen recursively could arbitrarily change |
| the notion of the current block, we are required to get an up-to-date |
| value for code that will set up the Phi node. |
| |
| .. code-block:: c++ |
| |
| // Emit else block. |
| TheFunction->getBasicBlockList().push_back(ElseBB); |
| Builder.SetInsertPoint(ElseBB); |
| |
| Value *ElseV = Else->Codegen(); |
| if (ElseV == 0) return 0; |
| |
| Builder.CreateBr(MergeBB); |
| // Codegen of 'Else' can change the current block, update ElseBB for the PHI. |
| ElseBB = Builder.GetInsertBlock(); |
| |
| Code generation for the 'else' block is basically identical to codegen |
| for the 'then' block. The only significant difference is the first line, |
| which adds the 'else' block to the function. Recall previously that the |
| 'else' block was created, but not added to the function. Now that the |
| 'then' and 'else' blocks are emitted, we can finish up with the merge |
| code: |
| |
| .. code-block:: c++ |
| |
| // Emit merge block. |
| TheFunction->getBasicBlockList().push_back(MergeBB); |
| Builder.SetInsertPoint(MergeBB); |
| PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, |
| "iftmp"); |
| |
| PN->addIncoming(ThenV, ThenBB); |
| PN->addIncoming(ElseV, ElseBB); |
| return PN; |
| } |
| |
| The first two lines here are now familiar: the first adds the "merge" |
| block to the Function object (it was previously floating, like the else |
| block above). The second block changes the insertion point so that newly |
| created code will go into the "merge" block. Once that is done, we need |
| to create the PHI node and set up the block/value pairs for the PHI. |
| |
| Finally, the CodeGen function returns the phi node as the value computed |
| by the if/then/else expression. In our example above, this returned |
| value will feed into the code for the top-level function, which will |
| create the return instruction. |
| |
| Overall, we now have the ability to execute conditional code in |
| Kaleidoscope. With this extension, Kaleidoscope is a fairly complete |
| language that can calculate a wide variety of numeric functions. Next up |
| we'll add another useful expression that is familiar from non-functional |
| languages... |
| |
| 'for' Loop Expression |
| ===================== |
| |
| Now that we know how to add basic control flow constructs to the |
| language, we have the tools to add more powerful things. Lets add |
| something more aggressive, a 'for' expression: |
| |
| :: |
| |
| extern putchard(char) |
| def printstar(n) |
| for i = 1, i < n, 1.0 in |
| putchard(42); # ascii 42 = '*' |
| |
| # print 100 '*' characters |
| printstar(100); |
| |
| This expression defines a new variable ("i" in this case) which iterates |
| from a starting value, while the condition ("i < n" in this case) is |
| true, incrementing by an optional step value ("1.0" in this case). If |
| the step value is omitted, it defaults to 1.0. While the loop is true, |
| it executes its body expression. Because we don't have anything better |
| to return, we'll just define the loop as always returning 0.0. In the |
| future when we have mutable variables, it will get more useful. |
| |
| As before, lets talk about the changes that we need to Kaleidoscope to |
| support this. |
| |
| Lexer Extensions for the 'for' Loop |
| ----------------------------------- |
| |
| The lexer extensions are the same sort of thing as for if/then/else: |
| |
| .. code-block:: c++ |
| |
| ... in enum Token ... |
| // control |
| tok_if = -6, tok_then = -7, tok_else = -8, |
| tok_for = -9, tok_in = -10 |
| |
| ... in gettok ... |
| if (IdentifierStr == "def") return tok_def; |
| if (IdentifierStr == "extern") return tok_extern; |
| if (IdentifierStr == "if") return tok_if; |
| if (IdentifierStr == "then") return tok_then; |
| if (IdentifierStr == "else") return tok_else; |
| if (IdentifierStr == "for") return tok_for; |
| if (IdentifierStr == "in") return tok_in; |
| return tok_identifier; |
| |
| AST Extensions for the 'for' Loop |
| --------------------------------- |
| |
| The AST node is just as simple. It basically boils down to capturing the |
| variable name and the constituent expressions in the node. |
| |
| .. code-block:: c++ |
| |
| /// ForExprAST - Expression class for for/in. |
| class ForExprAST : public ExprAST { |
| std::string VarName; |
| ExprAST *Start, *End, *Step, *Body; |
| public: |
| ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end, |
| ExprAST *step, ExprAST *body) |
| : VarName(varname), Start(start), End(end), Step(step), Body(body) {} |
| virtual Value *Codegen(); |
| }; |
| |
| Parser Extensions for the 'for' Loop |
| ------------------------------------ |
| |
| The parser code is also fairly standard. The only interesting thing here |
| is handling of the optional step value. The parser code handles it by |
| checking to see if the second comma is present. If not, it sets the step |
| value to null in the AST node: |
| |
| .. code-block:: c++ |
| |
| /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression |
| static ExprAST *ParseForExpr() { |
| getNextToken(); // eat the for. |
| |
| if (CurTok != tok_identifier) |
| return Error("expected identifier after for"); |
| |
| std::string IdName = IdentifierStr; |
| getNextToken(); // eat identifier. |
| |
| if (CurTok != '=') |
| return Error("expected '=' after for"); |
| getNextToken(); // eat '='. |
| |
| |
| ExprAST *Start = ParseExpression(); |
| if (Start == 0) return 0; |
| if (CurTok != ',') |
| return Error("expected ',' after for start value"); |
| getNextToken(); |
| |
| ExprAST *End = ParseExpression(); |
| if (End == 0) return 0; |
| |
| // The step value is optional. |
| ExprAST *Step = 0; |
| if (CurTok == ',') { |
| getNextToken(); |
| Step = ParseExpression(); |
| if (Step == 0) return 0; |
| } |
| |
| if (CurTok != tok_in) |
| return Error("expected 'in' after for"); |
| getNextToken(); // eat 'in'. |
| |
| ExprAST *Body = ParseExpression(); |
| if (Body == 0) return 0; |
| |
| return new ForExprAST(IdName, Start, End, Step, Body); |
| } |
| |
| LLVM IR for the 'for' Loop |
| -------------------------- |
| |
| Now we get to the good part: the LLVM IR we want to generate for this |
| thing. With the simple example above, we get this LLVM IR (note that |
| this dump is generated with optimizations disabled for clarity): |
| |
| .. code-block:: llvm |
| |
| declare double @putchard(double) |
| |
| define double @printstar(double %n) { |
| entry: |
| ; initial value = 1.0 (inlined into phi) |
| br label %loop |
| |
| loop: ; preds = %loop, %entry |
| %i = phi double [ 1.000000e+00, %entry ], [ %nextvar, %loop ] |
| ; body |
| %calltmp = call double @putchard(double 4.200000e+01) |
| ; increment |
| %nextvar = fadd double %i, 1.000000e+00 |
| |
| ; termination test |
| %cmptmp = fcmp ult double %i, %n |
| %booltmp = uitofp i1 %cmptmp to double |
| %loopcond = fcmp one double %booltmp, 0.000000e+00 |
| br i1 %loopcond, label %loop, label %afterloop |
| |
| afterloop: ; preds = %loop |
| ; loop always returns 0.0 |
| ret double 0.000000e+00 |
| } |
| |
| This loop contains all the same constructs we saw before: a phi node, |
| several expressions, and some basic blocks. Lets see how this fits |
| together. |
| |
| Code Generation for the 'for' Loop |
| ---------------------------------- |
| |
| The first part of Codegen is very simple: we just output the start |
| expression for the loop value: |
| |
| .. code-block:: c++ |
| |
| Value *ForExprAST::Codegen() { |
| // Emit the start code first, without 'variable' in scope. |
| Value *StartVal = Start->Codegen(); |
| if (StartVal == 0) return 0; |
| |
| With this out of the way, the next step is to set up the LLVM basic |
| block for the start of the loop body. In the case above, the whole loop |
| body is one block, but remember that the body code itself could consist |
| of multiple blocks (e.g. if it contains an if/then/else or a for/in |
| expression). |
| |
| .. code-block:: c++ |
| |
| // Make the new basic block for the loop header, inserting after current |
| // block. |
| Function *TheFunction = Builder.GetInsertBlock()->getParent(); |
| BasicBlock *PreheaderBB = Builder.GetInsertBlock(); |
| BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction); |
| |
| // Insert an explicit fall through from the current block to the LoopBB. |
| Builder.CreateBr(LoopBB); |
| |
| This code is similar to what we saw for if/then/else. Because we will |
| need it to create the Phi node, we remember the block that falls through |
| into the loop. Once we have that, we create the actual block that starts |
| the loop and create an unconditional branch for the fall-through between |
| the two blocks. |
| |
| .. code-block:: c++ |
| |
| // Start insertion in LoopBB. |
| Builder.SetInsertPoint(LoopBB); |
| |
| // Start the PHI node with an entry for Start. |
| PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, VarName.c_str()); |
| Variable->addIncoming(StartVal, PreheaderBB); |
| |
| Now that the "preheader" for the loop is set up, we switch to emitting |
| code for the loop body. To begin with, we move the insertion point and |
| create the PHI node for the loop induction variable. Since we already |
| know the incoming value for the starting value, we add it to the Phi |
| node. Note that the Phi will eventually get a second value for the |
| backedge, but we can't set it up yet (because it doesn't exist!). |
| |
| .. code-block:: c++ |
| |
| // Within the loop, the variable is defined equal to the PHI node. If it |
| // shadows an existing variable, we have to restore it, so save it now. |
| Value *OldVal = NamedValues[VarName]; |
| NamedValues[VarName] = Variable; |
| |
| // Emit the body of the loop. This, like any other expr, can change the |
| // current BB. Note that we ignore the value computed by the body, but don't |
| // allow an error. |
| if (Body->Codegen() == 0) |
| return 0; |
| |
| Now the code starts to get more interesting. Our 'for' loop introduces a |
| new variable to the symbol table. This means that our symbol table can |
| now contain either function arguments or loop variables. To handle this, |
| before we codegen the body of the loop, we add the loop variable as the |
| current value for its name. Note that it is possible that there is a |
| variable of the same name in the outer scope. It would be easy to make |
| this an error (emit an error and return null if there is already an |
| entry for VarName) but we choose to allow shadowing of variables. In |
| order to handle this correctly, we remember the Value that we are |
| potentially shadowing in ``OldVal`` (which will be null if there is no |
| shadowed variable). |
| |
| Once the loop variable is set into the symbol table, the code |
| recursively codegen's the body. This allows the body to use the loop |
| variable: any references to it will naturally find it in the symbol |
| table. |
| |
| .. code-block:: c++ |
| |
| // Emit the step value. |
| Value *StepVal; |
| if (Step) { |
| StepVal = Step->Codegen(); |
| if (StepVal == 0) return 0; |
| } else { |
| // If not specified, use 1.0. |
| StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0)); |
| } |
| |
| Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar"); |
| |
| Now that the body is emitted, we compute the next value of the iteration |
| variable by adding the step value, or 1.0 if it isn't present. |
| '``NextVar``' will be the value of the loop variable on the next |
| iteration of the loop. |
| |
| .. code-block:: c++ |
| |
| // Compute the end condition. |
| Value *EndCond = End->Codegen(); |
| if (EndCond == 0) return EndCond; |
| |
| // Convert condition to a bool by comparing equal to 0.0. |
| EndCond = Builder.CreateFCmpONE(EndCond, |
| ConstantFP::get(getGlobalContext(), APFloat(0.0)), |
| "loopcond"); |
| |
| Finally, we evaluate the exit value of the loop, to determine whether |
| the loop should exit. This mirrors the condition evaluation for the |
| if/then/else statement. |
| |
| .. code-block:: c++ |
| |
| // Create the "after loop" block and insert it. |
| BasicBlock *LoopEndBB = Builder.GetInsertBlock(); |
| BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction); |
| |
| // Insert the conditional branch into the end of LoopEndBB. |
| Builder.CreateCondBr(EndCond, LoopBB, AfterBB); |
| |
| // Any new code will be inserted in AfterBB. |
| Builder.SetInsertPoint(AfterBB); |
| |
| With the code for the body of the loop complete, we just need to finish |
| up the control flow for it. This code remembers the end block (for the |
| phi node), then creates the block for the loop exit ("afterloop"). Based |
| on the value of the exit condition, it creates a conditional branch that |
| chooses between executing the loop again and exiting the loop. Any |
| future code is emitted in the "afterloop" block, so it sets the |
| insertion position to it. |
| |
| .. code-block:: c++ |
| |
| // Add a new entry to the PHI node for the backedge. |
| Variable->addIncoming(NextVar, LoopEndBB); |
| |
| // Restore the unshadowed variable. |
| if (OldVal) |
| NamedValues[VarName] = OldVal; |
| else |
| NamedValues.erase(VarName); |
| |
| // for expr always returns 0.0. |
| return Constant::getNullValue(Type::getDoubleTy(getGlobalContext())); |
| } |
| |
| The final code handles various cleanups: now that we have the "NextVar" |
| value, we can add the incoming value to the loop PHI node. After that, |
| we remove the loop variable from the symbol table, so that it isn't in |
| scope after the for loop. Finally, code generation of the for loop |
| always returns 0.0, so that is what we return from |
| ``ForExprAST::Codegen``. |
| |
| With this, we conclude the "adding control flow to Kaleidoscope" chapter |
| of the tutorial. In this chapter we added two control flow constructs, |
| and used them to motivate a couple of aspects of the LLVM IR that are |
| important for front-end implementors to know. In the next chapter of our |
| saga, we will get a bit crazier and add `user-defined |
| operators <LangImpl6.html>`_ to our poor innocent language. |
| |
| Full Code Listing |
| ================= |
| |
| Here is the complete code listing for our running example, enhanced with |
| the if/then/else and for expressions.. To build this example, use: |
| |
| .. code-block:: bash |
| |
| # Compile |
| clang++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy |
| # Run |
| ./toy |
| |
| Here is the code: |
| |
| .. code-block:: c++ |
| |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/ExecutionEngine/ExecutionEngine.h" |
| #include "llvm/ExecutionEngine/JIT.h" |
| #include "llvm/IRBuilder.h" |
| #include "llvm/LLVMContext.h" |
| #include "llvm/Module.h" |
| #include "llvm/PassManager.h" |
| #include "llvm/Analysis/Verifier.h" |
| #include "llvm/Analysis/Passes.h" |
| #include "llvm/DataLayout.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Support/TargetSelect.h" |
| #include <cstdio> |
| #include <string> |
| #include <map> |
| #include <vector> |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| // Lexer |
| //===----------------------------------------------------------------------===// |
| |
| // The lexer returns tokens [0-255] if it is an unknown character, otherwise one |
| // of these for known things. |
| enum Token { |
| tok_eof = -1, |
| |
| // commands |
| tok_def = -2, tok_extern = -3, |
| |
| // primary |
| tok_identifier = -4, tok_number = -5, |
| |
| // control |
| tok_if = -6, tok_then = -7, tok_else = -8, |
| tok_for = -9, tok_in = -10 |
| }; |
| |
| static std::string IdentifierStr; // Filled in if tok_identifier |
| static double NumVal; // Filled in if tok_number |
| |
| /// gettok - Return the next token from standard input. |
| static int gettok() { |
| static int LastChar = ' '; |
| |
| // Skip any whitespace. |
| while (isspace(LastChar)) |
| LastChar = getchar(); |
| |
| if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* |
| IdentifierStr = LastChar; |
| while (isalnum((LastChar = getchar()))) |
| IdentifierStr += LastChar; |
| |
| if (IdentifierStr == "def") return tok_def; |
| if (IdentifierStr == "extern") return tok_extern; |
| if (IdentifierStr == "if") return tok_if; |
| if (IdentifierStr == "then") return tok_then; |
| if (IdentifierStr == "else") return tok_else; |
| if (IdentifierStr == "for") return tok_for; |
| if (IdentifierStr == "in") return tok_in; |
| return tok_identifier; |
| } |
| |
| if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ |
| std::string NumStr; |
| do { |
| NumStr += LastChar; |
| LastChar = getchar(); |
| } while (isdigit(LastChar) || LastChar == '.'); |
| |
| NumVal = strtod(NumStr.c_str(), 0); |
| return tok_number; |
| } |
| |
| if (LastChar == '#') { |
| // Comment until end of line. |
| do LastChar = getchar(); |
| while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); |
| |
| if (LastChar != EOF) |
| return gettok(); |
| } |
| |
| // Check for end of file. Don't eat the EOF. |
| if (LastChar == EOF) |
| return tok_eof; |
| |
| // Otherwise, just return the character as its ascii value. |
| int ThisChar = LastChar; |
| LastChar = getchar(); |
| return ThisChar; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Abstract Syntax Tree (aka Parse Tree) |
| //===----------------------------------------------------------------------===// |
| |
| /// ExprAST - Base class for all expression nodes. |
| class ExprAST { |
| public: |
| virtual ~ExprAST() {} |
| virtual Value *Codegen() = 0; |
| }; |
| |
| /// NumberExprAST - Expression class for numeric literals like "1.0". |
| class NumberExprAST : public ExprAST { |
| double Val; |
| public: |
| NumberExprAST(double val) : Val(val) {} |
| virtual Value *Codegen(); |
| }; |
| |
| /// VariableExprAST - Expression class for referencing a variable, like "a". |
| class VariableExprAST : public ExprAST { |
| std::string Name; |
| public: |
| VariableExprAST(const std::string &name) : Name(name) {} |
| virtual Value *Codegen(); |
| }; |
| |
| /// BinaryExprAST - Expression class for a binary operator. |
| class BinaryExprAST : public ExprAST { |
| char Op; |
| ExprAST *LHS, *RHS; |
| public: |
| BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) |
| : Op(op), LHS(lhs), RHS(rhs) {} |
| virtual Value *Codegen(); |
| }; |
| |
| /// CallExprAST - Expression class for function calls. |
| class CallExprAST : public ExprAST { |
| std::string Callee; |
| std::vector<ExprAST*> Args; |
| public: |
| CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) |
| : Callee(callee), Args(args) {} |
| virtual Value *Codegen(); |
| }; |
| |
| /// IfExprAST - Expression class for if/then/else. |
| class IfExprAST : public ExprAST { |
| ExprAST *Cond, *Then, *Else; |
| public: |
| IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else) |
| : Cond(cond), Then(then), Else(_else) {} |
| virtual Value *Codegen(); |
| }; |
| |
| /// ForExprAST - Expression class for for/in. |
| class ForExprAST : public ExprAST { |
| std::string VarName; |
| ExprAST *Start, *End, *Step, *Body; |
| public: |
| ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end, |
| ExprAST *step, ExprAST *body) |
| : VarName(varname), Start(start), End(end), Step(step), Body(body) {} |
| virtual Value *Codegen(); |
| }; |
| |
| /// PrototypeAST - This class represents the "prototype" for a function, |
| /// which captures its name, and its argument names (thus implicitly the number |
| /// of arguments the function takes). |
| class PrototypeAST { |
| std::string Name; |
| std::vector<std::string> Args; |
| public: |
| PrototypeAST(const std::string &name, const std::vector<std::string> &args) |
| : Name(name), Args(args) {} |
| |
| Function *Codegen(); |
| }; |
| |
| /// FunctionAST - This class represents a function definition itself. |
| class FunctionAST { |
| PrototypeAST *Proto; |
| ExprAST *Body; |
| public: |
| FunctionAST(PrototypeAST *proto, ExprAST *body) |
| : Proto(proto), Body(body) {} |
| |
| Function *Codegen(); |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // Parser |
| //===----------------------------------------------------------------------===// |
| |
| /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current |
| /// token the parser is looking at. getNextToken reads another token from the |
| /// lexer and updates CurTok with its results. |
| static int CurTok; |
| static int getNextToken() { |
| return CurTok = gettok(); |
| } |
| |
| /// BinopPrecedence - This holds the precedence for each binary operator that is |
| /// defined. |
| static std::map<char, int> BinopPrecedence; |
| |
| /// GetTokPrecedence - Get the precedence of the pending binary operator token. |
| static int GetTokPrecedence() { |
| if (!isascii(CurTok)) |
| return -1; |
| |
| // Make sure it's a declared binop. |
| int TokPrec = BinopPrecedence[CurTok]; |
| if (TokPrec <= 0) return -1; |
| return TokPrec; |
| } |
| |
| /// Error* - These are little helper functions for error handling. |
| ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} |
| PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } |
| FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } |
| |
| static ExprAST *ParseExpression(); |
| |
| /// identifierexpr |
| /// ::= identifier |
| /// ::= identifier '(' expression* ')' |
| static ExprAST *ParseIdentifierExpr() { |
| std::string IdName = IdentifierStr; |
| |
| getNextToken(); // eat identifier. |
| |
| if (CurTok != '(') // Simple variable ref. |
| return new VariableExprAST(IdName); |
| |
| // Call. |
| getNextToken(); // eat ( |
| std::vector<ExprAST*> Args; |
| if (CurTok != ')') { |
| while (1) { |
| ExprAST *Arg = ParseExpression(); |
| if (!Arg) return 0; |
| Args.push_back(Arg); |
| |
| if (CurTok == ')') break; |
| |
| if (CurTok != ',') |
| return Error("Expected ')' or ',' in argument list"); |
| getNextToken(); |
| } |
| } |
| |
| // Eat the ')'. |
| getNextToken(); |
| |
| return new CallExprAST(IdName, Args); |
| } |
| |
| /// numberexpr ::= number |
| static ExprAST *ParseNumberExpr() { |
| ExprAST *Result = new NumberExprAST(NumVal); |
| getNextToken(); // consume the number |
| return Result; |
| } |
| |
| /// parenexpr ::= '(' expression ')' |
| static ExprAST *ParseParenExpr() { |
| getNextToken(); // eat (. |
| ExprAST *V = ParseExpression(); |
| if (!V) return 0; |
| |
| if (CurTok != ')') |
| return Error("expected ')'"); |
| getNextToken(); // eat ). |
| return V; |
| } |
| |
| /// ifexpr ::= 'if' expression 'then' expression 'else' expression |
| static ExprAST *ParseIfExpr() { |
| getNextToken(); // eat the if. |
| |
| // condition. |
| ExprAST *Cond = ParseExpression(); |
| if (!Cond) return 0; |
| |
| if (CurTok != tok_then) |
| return Error("expected then"); |
| getNextToken(); // eat the then |
| |
| ExprAST *Then = ParseExpression(); |
| if (Then == 0) return 0; |
| |
| if (CurTok != tok_else) |
| return Error("expected else"); |
| |
| getNextToken(); |
| |
| ExprAST *Else = ParseExpression(); |
| if (!Else) return 0; |
| |
| return new IfExprAST(Cond, Then, Else); |
| } |
| |
| /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression |
| static ExprAST *ParseForExpr() { |
| getNextToken(); // eat the for. |
| |
| if (CurTok != tok_identifier) |
| return Error("expected identifier after for"); |
| |
| std::string IdName = IdentifierStr; |
| getNextToken(); // eat identifier. |
| |
| if (CurTok != '=') |
| return Error("expected '=' after for"); |
| getNextToken(); // eat '='. |
| |
| |
| ExprAST *Start = ParseExpression(); |
| if (Start == 0) return 0; |
| if (CurTok != ',') |
| return Error("expected ',' after for start value"); |
| getNextToken(); |
| |
| ExprAST *End = ParseExpression(); |
| if (End == 0) return 0; |
| |
| // The step value is optional. |
| ExprAST *Step = 0; |
| if (CurTok == ',') { |
| getNextToken(); |
| Step = ParseExpression(); |
| if (Step == 0) return 0; |
| } |
| |
| if (CurTok != tok_in) |
| return Error("expected 'in' after for"); |
| getNextToken(); // eat 'in'. |
| |
| ExprAST *Body = ParseExpression(); |
| if (Body == 0) return 0; |
| |
| return new ForExprAST(IdName, Start, End, Step, Body); |
| } |
| |
| /// primary |
| /// ::= identifierexpr |
| /// ::= numberexpr |
| /// ::= parenexpr |
| /// ::= ifexpr |
| /// ::= forexpr |
| static ExprAST *ParsePrimary() { |
| switch (CurTok) { |
| default: return Error("unknown token when expecting an expression"); |
| case tok_identifier: return ParseIdentifierExpr(); |
| case tok_number: return ParseNumberExpr(); |
| case '(': return ParseParenExpr(); |
| case tok_if: return ParseIfExpr(); |
| case tok_for: return ParseForExpr(); |
| } |
| } |
| |
| /// binoprhs |
| /// ::= ('+' primary)* |
| static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { |
| // If this is a binop, find its precedence. |
| while (1) { |
| int TokPrec = GetTokPrecedence(); |
| |
| // If this is a binop that binds at least as tightly as the current binop, |
| // consume it, otherwise we are done. |
| if (TokPrec < ExprPrec) |
| return LHS; |
| |
| // Okay, we know this is a binop. |
| int BinOp = CurTok; |
| getNextToken(); // eat binop |
| |
| // Parse the primary expression after the binary operator. |
| ExprAST *RHS = ParsePrimary(); |
| if (!RHS) return 0; |
| |
| // If BinOp binds less tightly with RHS than the operator after RHS, let |
| // the pending operator take RHS as its LHS. |
| int NextPrec = GetTokPrecedence(); |
| if (TokPrec < NextPrec) { |
| RHS = ParseBinOpRHS(TokPrec+1, RHS); |
| if (RHS == 0) return 0; |
| } |
| |
| // Merge LHS/RHS. |
| LHS = new BinaryExprAST(BinOp, LHS, RHS); |
| } |
| } |
| |
| /// expression |
| /// ::= primary binoprhs |
| /// |
| static ExprAST *ParseExpression() { |
| ExprAST *LHS = ParsePrimary(); |
| if (!LHS) return 0; |
| |
| return ParseBinOpRHS(0, LHS); |
| } |
| |
| /// prototype |
| /// ::= id '(' id* ')' |
| static PrototypeAST *ParsePrototype() { |
| if (CurTok != tok_identifier) |
| return ErrorP("Expected function name in prototype"); |
| |
| std::string FnName = IdentifierStr; |
| getNextToken(); |
| |
| if (CurTok != '(') |
| return ErrorP("Expected '(' in prototype"); |
| |
| std::vector<std::string> ArgNames; |
| while (getNextToken() == tok_identifier) |
| ArgNames.push_back(IdentifierStr); |
| if (CurTok != ')') |
| return ErrorP("Expected ')' in prototype"); |
| |
| // success. |
| getNextToken(); // eat ')'. |
| |
| return new PrototypeAST(FnName, ArgNames); |
| } |
| |
| /// definition ::= 'def' prototype expression |
| static FunctionAST *ParseDefinition() { |
| getNextToken(); // eat def. |
| PrototypeAST *Proto = ParsePrototype(); |
| if (Proto == 0) return 0; |
| |
| if (ExprAST *E = ParseExpression()) |
| return new FunctionAST(Proto, E); |
| return 0; |
| } |
| |
| /// toplevelexpr ::= expression |
| static FunctionAST *ParseTopLevelExpr() { |
| if (ExprAST *E = ParseExpression()) { |
| // Make an anonymous proto. |
| PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); |
| return new FunctionAST(Proto, E); |
| } |
| return 0; |
| } |
| |
| /// external ::= 'extern' prototype |
| static PrototypeAST *ParseExtern() { |
| getNextToken(); // eat extern. |
| return ParsePrototype(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Code Generation |
| //===----------------------------------------------------------------------===// |
| |
| static Module *TheModule; |
| static IRBuilder<> Builder(getGlobalContext()); |
| static std::map<std::string, Value*> NamedValues; |
| static FunctionPassManager *TheFPM; |
| |
| Value *ErrorV(const char *Str) { Error(Str); return 0; } |
| |
| Value *NumberExprAST::Codegen() { |
| return ConstantFP::get(getGlobalContext(), APFloat(Val)); |
| } |
| |
| Value *VariableExprAST::Codegen() { |
| // Look this variable up in the function. |
| Value *V = NamedValues[Name]; |
| return V ? V : ErrorV("Unknown variable name"); |
| } |
| |
| Value *BinaryExprAST::Codegen() { |
| Value *L = LHS->Codegen(); |
| Value *R = RHS->Codegen(); |
| if (L == 0 || R == 0) return 0; |
| |
| switch (Op) { |
| case '+': return Builder.CreateFAdd(L, R, "addtmp"); |
| case '-': return Builder.CreateFSub(L, R, "subtmp"); |
| case '*': return Builder.CreateFMul(L, R, "multmp"); |
| case '<': |
| L = Builder.CreateFCmpULT(L, R, "cmptmp"); |
| // Convert bool 0/1 to double 0.0 or 1.0 |
| return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()), |
| "booltmp"); |
| default: return ErrorV("invalid binary operator"); |
| } |
| } |
| |
| Value *CallExprAST::Codegen() { |
| // Look up the name in the global module table. |
| Function *CalleeF = TheModule->getFunction(Callee); |
| if (CalleeF == 0) |
| return ErrorV("Unknown function referenced"); |
| |
| // If argument mismatch error. |
| if (CalleeF->arg_size() != Args.size()) |
| return ErrorV("Incorrect # arguments passed"); |
| |
| std::vector<Value*> ArgsV; |
| for (unsigned i = 0, e = Args.size(); i != e; ++i) { |
| ArgsV.push_back(Args[i]->Codegen()); |
| if (ArgsV.back() == 0) return 0; |
| } |
| |
| return Builder.CreateCall(CalleeF, ArgsV, "calltmp"); |
| } |
| |
| Value *IfExprAST::Codegen() { |
| Value *CondV = Cond->Codegen(); |
| if (CondV == 0) return 0; |
| |
| // Convert condition to a bool by comparing equal to 0.0. |
| CondV = Builder.CreateFCmpONE(CondV, |
| ConstantFP::get(getGlobalContext(), APFloat(0.0)), |
| "ifcond"); |
| |
| Function *TheFunction = Builder.GetInsertBlock()->getParent(); |
| |
| // Create blocks for the then and else cases. Insert the 'then' block at the |
| // end of the function. |
| BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction); |
| BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else"); |
| BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont"); |
| |
| Builder.CreateCondBr(CondV, ThenBB, ElseBB); |
| |
| // Emit then value. |
| Builder.SetInsertPoint(ThenBB); |
| |
| Value *ThenV = Then->Codegen(); |
| if (ThenV == 0) return 0; |
| |
| Builder.CreateBr(MergeBB); |
| // Codegen of 'Then' can change the current block, update ThenBB for the PHI. |
| ThenBB = Builder.GetInsertBlock(); |
| |
| // Emit else block. |
| TheFunction->getBasicBlockList().push_back(ElseBB); |
| Builder.SetInsertPoint(ElseBB); |
| |
| Value *ElseV = Else->Codegen(); |
| if (ElseV == 0) return 0; |
| |
| Builder.CreateBr(MergeBB); |
| // Codegen of 'Else' can change the current block, update ElseBB for the PHI. |
| ElseBB = Builder.GetInsertBlock(); |
| |
| // Emit merge block. |
| TheFunction->getBasicBlockList().push_back(MergeBB); |
| Builder.SetInsertPoint(MergeBB); |
| PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, |
| "iftmp"); |
| |
| PN->addIncoming(ThenV, ThenBB); |
| PN->addIncoming(ElseV, ElseBB); |
| return PN; |
| } |
| |
| Value *ForExprAST::Codegen() { |
| // Output this as: |
| // ... |
| // start = startexpr |
| // goto loop |
| // loop: |
| // variable = phi [start, loopheader], [nextvariable, loopend] |
| // ... |
| // bodyexpr |
| // ... |
| // loopend: |
| // step = stepexpr |
| // nextvariable = variable + step |
| // endcond = endexpr |
| // br endcond, loop, endloop |
| // outloop: |
| |
| // Emit the start code first, without 'variable' in scope. |
| Value *StartVal = Start->Codegen(); |
| if (StartVal == 0) return 0; |
| |
| // Make the new basic block for the loop header, inserting after current |
| // block. |
| Function *TheFunction = Builder.GetInsertBlock()->getParent(); |
| BasicBlock *PreheaderBB = Builder.GetInsertBlock(); |
| BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction); |
| |
| // Insert an explicit fall through from the current block to the LoopBB. |
| Builder.CreateBr(LoopBB); |
| |
| // Start insertion in LoopBB. |
| Builder.SetInsertPoint(LoopBB); |
| |
| // Start the PHI node with an entry for Start. |
| PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, VarName.c_str()); |
| Variable->addIncoming(StartVal, PreheaderBB); |
| |
| // Within the loop, the variable is defined equal to the PHI node. If it |
| // shadows an existing variable, we have to restore it, so save it now. |
| Value *OldVal = NamedValues[VarName]; |
| NamedValues[VarName] = Variable; |
| |
| // Emit the body of the loop. This, like any other expr, can change the |
| // current BB. Note that we ignore the value computed by the body, but don't |
| // allow an error. |
| if (Body->Codegen() == 0) |
| return 0; |
| |
| // Emit the step value. |
| Value *StepVal; |
| if (Step) { |
| StepVal = Step->Codegen(); |
| if (StepVal == 0) return 0; |
| } else { |
| // If not specified, use 1.0. |
| StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0)); |
| } |
| |
| Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar"); |
| |
| // Compute the end condition. |
| Value *EndCond = End->Codegen(); |
| if (EndCond == 0) return EndCond; |
| |
| // Convert condition to a bool by comparing equal to 0.0. |
| EndCond = Builder.CreateFCmpONE(EndCond, |
| ConstantFP::get(getGlobalContext(), APFloat(0.0)), |
| "loopcond"); |
| |
| // Create the "after loop" block and insert it. |
| BasicBlock *LoopEndBB = Builder.GetInsertBlock(); |
| BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction); |
| |
| // Insert the conditional branch into the end of LoopEndBB. |
| Builder.CreateCondBr(EndCond, LoopBB, AfterBB); |
| |
| // Any new code will be inserted in AfterBB. |
| Builder.SetInsertPoint(AfterBB); |
| |
| // Add a new entry to the PHI node for the backedge. |
| Variable->addIncoming(NextVar, LoopEndBB); |
| |
| // Restore the unshadowed variable. |
| if (OldVal) |
| NamedValues[VarName] = OldVal; |
| else |
| NamedValues.erase(VarName); |
| |
| |
| // for expr always returns 0.0. |
| return Constant::getNullValue(Type::getDoubleTy(getGlobalContext())); |
| } |
| |
| Function *PrototypeAST::Codegen() { |
| // Make the function type: double(double,double) etc. |
| std::vector<Type*> Doubles(Args.size(), |
| Type::getDoubleTy(getGlobalContext())); |
| FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()), |
| Doubles, false); |
| |
| Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule); |
| |
| // If F conflicted, there was already something named 'Name'. If it has a |
| // body, don't allow redefinition or reextern. |
| if (F->getName() != Name) { |
| // Delete the one we just made and get the existing one. |
| F->eraseFromParent(); |
| F = TheModule->getFunction(Name); |
| |
| // If F already has a body, reject this. |
| if (!F->empty()) { |
| ErrorF("redefinition of function"); |
| return 0; |
| } |
| |
| // If F took a different number of args, reject. |
| if (F->arg_size() != Args.size()) { |
| ErrorF("redefinition of function with different # args"); |
| return 0; |
| } |
| } |
| |
| // Set names for all arguments. |
| unsigned Idx = 0; |
| for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); |
| ++AI, ++Idx) { |
| AI->setName(Args[Idx]); |
| |
| // Add arguments to variable symbol table. |
| NamedValues[Args[Idx]] = AI; |
| } |
| |
| return F; |
| } |
| |
| Function *FunctionAST::Codegen() { |
| NamedValues.clear(); |
| |
| Function *TheFunction = Proto->Codegen(); |
| if (TheFunction == 0) |
| return 0; |
| |
| // Create a new basic block to start insertion into. |
| BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction); |
| Builder.SetInsertPoint(BB); |
| |
| if (Value *RetVal = Body->Codegen()) { |
| // Finish off the function. |
| Builder.CreateRet(RetVal); |
| |
| // Validate the generated code, checking for consistency. |
| verifyFunction(*TheFunction); |
| |
| // Optimize the function. |
| TheFPM->run(*TheFunction); |
| |
| return TheFunction; |
| } |
| |
| // Error reading body, remove function. |
| TheFunction->eraseFromParent(); |
| return 0; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Top-Level parsing and JIT Driver |
| //===----------------------------------------------------------------------===// |
| |
| static ExecutionEngine *TheExecutionEngine; |
| |
| static void HandleDefinition() { |
| if (FunctionAST *F = ParseDefinition()) { |
| if (Function *LF = F->Codegen()) { |
| fprintf(stderr, "Read function definition:"); |
| LF->dump(); |
| } |
| } else { |
| // Skip token for error recovery. |
| getNextToken(); |
| } |
| } |
| |
| static void HandleExtern() { |
| if (PrototypeAST *P = ParseExtern()) { |
| if (Function *F = P->Codegen()) { |
| fprintf(stderr, "Read extern: "); |
| F->dump(); |
| } |
| } else { |
| // Skip token for error recovery. |
| getNextToken(); |
| } |
| } |
| |
| static void HandleTopLevelExpression() { |
| // Evaluate a top-level expression into an anonymous function. |
| if (FunctionAST *F = ParseTopLevelExpr()) { |
| if (Function *LF = F->Codegen()) { |
| // JIT the function, returning a function pointer. |
| void *FPtr = TheExecutionEngine->getPointerToFunction(LF); |
| |
| // Cast it to the right type (takes no arguments, returns a double) so we |
| // can call it as a native function. |
| double (*FP)() = (double (*)())(intptr_t)FPtr; |
| fprintf(stderr, "Evaluated to %f\n", FP()); |
| } |
| } else { |
| // Skip token for error recovery. |
| getNextToken(); |
| } |
| } |
| |
| /// top ::= definition | external | expression | ';' |
| static void MainLoop() { |
| while (1) { |
| fprintf(stderr, "ready> "); |
| switch (CurTok) { |
| case tok_eof: return; |
| case ';': getNextToken(); break; // ignore top-level semicolons. |
| case tok_def: HandleDefinition(); break; |
| case tok_extern: HandleExtern(); break; |
| default: HandleTopLevelExpression(); break; |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // "Library" functions that can be "extern'd" from user code. |
| //===----------------------------------------------------------------------===// |
| |
| /// putchard - putchar that takes a double and returns 0. |
| extern "C" |
| double putchard(double X) { |
| putchar((char)X); |
| return 0; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Main driver code. |
| //===----------------------------------------------------------------------===// |
| |
| int main() { |
| InitializeNativeTarget(); |
| LLVMContext &Context = getGlobalContext(); |
| |
| // Install standard binary operators. |
| // 1 is lowest precedence. |
| BinopPrecedence['<'] = 10; |
| BinopPrecedence['+'] = 20; |
| BinopPrecedence['-'] = 20; |
| BinopPrecedence['*'] = 40; // highest. |
| |
| // Prime the first token. |
| fprintf(stderr, "ready> "); |
| getNextToken(); |
| |
| // Make the module, which holds all the code. |
| TheModule = new Module("my cool jit", Context); |
| |
| // Create the JIT. This takes ownership of the module. |
| std::string ErrStr; |
| TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create(); |
| if (!TheExecutionEngine) { |
| fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str()); |
| exit(1); |
| } |
| |
| FunctionPassManager OurFPM(TheModule); |
| |
| // Set up the optimizer pipeline. Start with registering info about how the |
| // target lays out data structures. |
| OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout())); |
| // Provide basic AliasAnalysis support for GVN. |
| OurFPM.add(createBasicAliasAnalysisPass()); |
| // Do simple "peephole" optimizations and bit-twiddling optzns. |
| OurFPM.add(createInstructionCombiningPass()); |
| // Reassociate expressions. |
| OurFPM.add(createReassociatePass()); |
| // Eliminate Common SubExpressions. |
| OurFPM.add(createGVNPass()); |
| // Simplify the control flow graph (deleting unreachable blocks, etc). |
| OurFPM.add(createCFGSimplificationPass()); |
| |
| OurFPM.doInitialization(); |
| |
| // Set the global so the code gen can use this. |
| TheFPM = &OurFPM; |
| |
| // Run the main "interpreter loop" now. |
| MainLoop(); |
| |
| TheFPM = 0; |
| |
| // Print out all of the generated code. |
| TheModule->dump(); |
| |
| return 0; |
| } |
| |
| `Next: Extending the language: user-defined operators <LangImpl6.html>`_ |
| |