| //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements the SelectionDAG class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "SDNodeDbgValue.h" |
| #include "SDNodeOrdering.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/Assembly/Writer.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/DebugInfo.h" |
| #include "llvm/IR/CallingConv.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalAlias.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/ManagedStatic.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/Mutex.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetIntrinsicInfo.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/Target/TargetSelectionDAGInfo.h" |
| #include <algorithm> |
| #include <cmath> |
| using namespace llvm; |
| |
| /// makeVTList - Return an instance of the SDVTList struct initialized with the |
| /// specified members. |
| static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { |
| SDVTList Res = {VTs, NumVTs}; |
| return Res; |
| } |
| |
| // Default null implementations of the callbacks. |
| void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} |
| void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} |
| |
| //===----------------------------------------------------------------------===// |
| // ConstantFPSDNode Class |
| //===----------------------------------------------------------------------===// |
| |
| /// isExactlyValue - We don't rely on operator== working on double values, as |
| /// it returns true for things that are clearly not equal, like -0.0 and 0.0. |
| /// As such, this method can be used to do an exact bit-for-bit comparison of |
| /// two floating point values. |
| bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { |
| return getValueAPF().bitwiseIsEqual(V); |
| } |
| |
| bool ConstantFPSDNode::isValueValidForType(EVT VT, |
| const APFloat& Val) { |
| assert(VT.isFloatingPoint() && "Can only convert between FP types"); |
| |
| // convert modifies in place, so make a copy. |
| APFloat Val2 = APFloat(Val); |
| bool losesInfo; |
| (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), |
| APFloat::rmNearestTiesToEven, |
| &losesInfo); |
| return !losesInfo; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ISD Namespace |
| //===----------------------------------------------------------------------===// |
| |
| /// isBuildVectorAllOnes - Return true if the specified node is a |
| /// BUILD_VECTOR where all of the elements are ~0 or undef. |
| bool ISD::isBuildVectorAllOnes(const SDNode *N) { |
| // Look through a bit convert. |
| if (N->getOpcode() == ISD::BITCAST) |
| N = N->getOperand(0).getNode(); |
| |
| if (N->getOpcode() != ISD::BUILD_VECTOR) return false; |
| |
| unsigned i = 0, e = N->getNumOperands(); |
| |
| // Skip over all of the undef values. |
| while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF) |
| ++i; |
| |
| // Do not accept an all-undef vector. |
| if (i == e) return false; |
| |
| // Do not accept build_vectors that aren't all constants or which have non-~0 |
| // elements. We have to be a bit careful here, as the type of the constant |
| // may not be the same as the type of the vector elements due to type |
| // legalization (the elements are promoted to a legal type for the target and |
| // a vector of a type may be legal when the base element type is not). |
| // We only want to check enough bits to cover the vector elements, because |
| // we care if the resultant vector is all ones, not whether the individual |
| // constants are. |
| SDValue NotZero = N->getOperand(i); |
| unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { |
| if (CN->getAPIntValue().countTrailingOnes() < EltSize) |
| return false; |
| } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { |
| if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) |
| return false; |
| } else |
| return false; |
| |
| // Okay, we have at least one ~0 value, check to see if the rest match or are |
| // undefs. Even with the above element type twiddling, this should be OK, as |
| // the same type legalization should have applied to all the elements. |
| for (++i; i != e; ++i) |
| if (N->getOperand(i) != NotZero && |
| N->getOperand(i).getOpcode() != ISD::UNDEF) |
| return false; |
| return true; |
| } |
| |
| |
| /// isBuildVectorAllZeros - Return true if the specified node is a |
| /// BUILD_VECTOR where all of the elements are 0 or undef. |
| bool ISD::isBuildVectorAllZeros(const SDNode *N) { |
| // Look through a bit convert. |
| if (N->getOpcode() == ISD::BITCAST) |
| N = N->getOperand(0).getNode(); |
| |
| if (N->getOpcode() != ISD::BUILD_VECTOR) return false; |
| |
| unsigned i = 0, e = N->getNumOperands(); |
| |
| // Skip over all of the undef values. |
| while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF) |
| ++i; |
| |
| // Do not accept an all-undef vector. |
| if (i == e) return false; |
| |
| // Do not accept build_vectors that aren't all constants or which have non-0 |
| // elements. |
| SDValue Zero = N->getOperand(i); |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Zero)) { |
| if (!CN->isNullValue()) |
| return false; |
| } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Zero)) { |
| if (!CFPN->getValueAPF().isPosZero()) |
| return false; |
| } else |
| return false; |
| |
| // Okay, we have at least one 0 value, check to see if the rest match or are |
| // undefs. |
| for (++i; i != e; ++i) |
| if (N->getOperand(i) != Zero && |
| N->getOperand(i).getOpcode() != ISD::UNDEF) |
| return false; |
| return true; |
| } |
| |
| /// isScalarToVector - Return true if the specified node is a |
| /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low |
| /// element is not an undef. |
| bool ISD::isScalarToVector(const SDNode *N) { |
| if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) |
| return true; |
| |
| if (N->getOpcode() != ISD::BUILD_VECTOR) |
| return false; |
| if (N->getOperand(0).getOpcode() == ISD::UNDEF) |
| return false; |
| unsigned NumElems = N->getNumOperands(); |
| if (NumElems == 1) |
| return false; |
| for (unsigned i = 1; i < NumElems; ++i) { |
| SDValue V = N->getOperand(i); |
| if (V.getOpcode() != ISD::UNDEF) |
| return false; |
| } |
| return true; |
| } |
| |
| /// allOperandsUndef - Return true if the node has at least one operand |
| /// and all operands of the specified node are ISD::UNDEF. |
| bool ISD::allOperandsUndef(const SDNode *N) { |
| // Return false if the node has no operands. |
| // This is "logically inconsistent" with the definition of "all" but |
| // is probably the desired behavior. |
| if (N->getNumOperands() == 0) |
| return false; |
| |
| for (unsigned i = 0, e = N->getNumOperands(); i != e ; ++i) |
| if (N->getOperand(i).getOpcode() != ISD::UNDEF) |
| return false; |
| |
| return true; |
| } |
| |
| /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X) |
| /// when given the operation for (X op Y). |
| ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { |
| // To perform this operation, we just need to swap the L and G bits of the |
| // operation. |
| unsigned OldL = (Operation >> 2) & 1; |
| unsigned OldG = (Operation >> 1) & 1; |
| return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits |
| (OldL << 1) | // New G bit |
| (OldG << 2)); // New L bit. |
| } |
| |
| /// getSetCCInverse - Return the operation corresponding to !(X op Y), where |
| /// 'op' is a valid SetCC operation. |
| ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { |
| unsigned Operation = Op; |
| if (isInteger) |
| Operation ^= 7; // Flip L, G, E bits, but not U. |
| else |
| Operation ^= 15; // Flip all of the condition bits. |
| |
| if (Operation > ISD::SETTRUE2) |
| Operation &= ~8; // Don't let N and U bits get set. |
| |
| return ISD::CondCode(Operation); |
| } |
| |
| |
| /// isSignedOp - For an integer comparison, return 1 if the comparison is a |
| /// signed operation and 2 if the result is an unsigned comparison. Return zero |
| /// if the operation does not depend on the sign of the input (setne and seteq). |
| static int isSignedOp(ISD::CondCode Opcode) { |
| switch (Opcode) { |
| default: llvm_unreachable("Illegal integer setcc operation!"); |
| case ISD::SETEQ: |
| case ISD::SETNE: return 0; |
| case ISD::SETLT: |
| case ISD::SETLE: |
| case ISD::SETGT: |
| case ISD::SETGE: return 1; |
| case ISD::SETULT: |
| case ISD::SETULE: |
| case ISD::SETUGT: |
| case ISD::SETUGE: return 2; |
| } |
| } |
| |
| /// getSetCCOrOperation - Return the result of a logical OR between different |
| /// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function |
| /// returns SETCC_INVALID if it is not possible to represent the resultant |
| /// comparison. |
| ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, |
| bool isInteger) { |
| if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) |
| // Cannot fold a signed integer setcc with an unsigned integer setcc. |
| return ISD::SETCC_INVALID; |
| |
| unsigned Op = Op1 | Op2; // Combine all of the condition bits. |
| |
| // If the N and U bits get set then the resultant comparison DOES suddenly |
| // care about orderedness, and is true when ordered. |
| if (Op > ISD::SETTRUE2) |
| Op &= ~16; // Clear the U bit if the N bit is set. |
| |
| // Canonicalize illegal integer setcc's. |
| if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT |
| Op = ISD::SETNE; |
| |
| return ISD::CondCode(Op); |
| } |
| |
| /// getSetCCAndOperation - Return the result of a logical AND between different |
| /// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This |
| /// function returns zero if it is not possible to represent the resultant |
| /// comparison. |
| ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, |
| bool isInteger) { |
| if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) |
| // Cannot fold a signed setcc with an unsigned setcc. |
| return ISD::SETCC_INVALID; |
| |
| // Combine all of the condition bits. |
| ISD::CondCode Result = ISD::CondCode(Op1 & Op2); |
| |
| // Canonicalize illegal integer setcc's. |
| if (isInteger) { |
| switch (Result) { |
| default: break; |
| case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT |
| case ISD::SETOEQ: // SETEQ & SETU[LG]E |
| case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE |
| case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE |
| case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE |
| } |
| } |
| |
| return Result; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SDNode Profile Support |
| //===----------------------------------------------------------------------===// |
| |
| /// AddNodeIDOpcode - Add the node opcode to the NodeID data. |
| /// |
| static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { |
| ID.AddInteger(OpC); |
| } |
| |
| /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them |
| /// solely with their pointer. |
| static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { |
| ID.AddPointer(VTList.VTs); |
| } |
| |
| /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. |
| /// |
| static void AddNodeIDOperands(FoldingSetNodeID &ID, |
| const SDValue *Ops, unsigned NumOps) { |
| for (; NumOps; --NumOps, ++Ops) { |
| ID.AddPointer(Ops->getNode()); |
| ID.AddInteger(Ops->getResNo()); |
| } |
| } |
| |
| /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. |
| /// |
| static void AddNodeIDOperands(FoldingSetNodeID &ID, |
| const SDUse *Ops, unsigned NumOps) { |
| for (; NumOps; --NumOps, ++Ops) { |
| ID.AddPointer(Ops->getNode()); |
| ID.AddInteger(Ops->getResNo()); |
| } |
| } |
| |
| static void AddNodeIDNode(FoldingSetNodeID &ID, |
| unsigned short OpC, SDVTList VTList, |
| const SDValue *OpList, unsigned N) { |
| AddNodeIDOpcode(ID, OpC); |
| AddNodeIDValueTypes(ID, VTList); |
| AddNodeIDOperands(ID, OpList, N); |
| } |
| |
| /// AddNodeIDCustom - If this is an SDNode with special info, add this info to |
| /// the NodeID data. |
| static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { |
| switch (N->getOpcode()) { |
| case ISD::TargetExternalSymbol: |
| case ISD::ExternalSymbol: |
| llvm_unreachable("Should only be used on nodes with operands"); |
| default: break; // Normal nodes don't need extra info. |
| case ISD::TargetConstant: |
| case ISD::Constant: |
| ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue()); |
| break; |
| case ISD::TargetConstantFP: |
| case ISD::ConstantFP: { |
| ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); |
| break; |
| } |
| case ISD::TargetGlobalAddress: |
| case ISD::GlobalAddress: |
| case ISD::TargetGlobalTLSAddress: |
| case ISD::GlobalTLSAddress: { |
| const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); |
| ID.AddPointer(GA->getGlobal()); |
| ID.AddInteger(GA->getOffset()); |
| ID.AddInteger(GA->getTargetFlags()); |
| ID.AddInteger(GA->getAddressSpace()); |
| break; |
| } |
| case ISD::BasicBlock: |
| ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); |
| break; |
| case ISD::Register: |
| ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); |
| break; |
| case ISD::RegisterMask: |
| ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); |
| break; |
| case ISD::SRCVALUE: |
| ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); |
| break; |
| case ISD::FrameIndex: |
| case ISD::TargetFrameIndex: |
| ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); |
| break; |
| case ISD::JumpTable: |
| case ISD::TargetJumpTable: |
| ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); |
| ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); |
| break; |
| case ISD::ConstantPool: |
| case ISD::TargetConstantPool: { |
| const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); |
| ID.AddInteger(CP->getAlignment()); |
| ID.AddInteger(CP->getOffset()); |
| if (CP->isMachineConstantPoolEntry()) |
| CP->getMachineCPVal()->addSelectionDAGCSEId(ID); |
| else |
| ID.AddPointer(CP->getConstVal()); |
| ID.AddInteger(CP->getTargetFlags()); |
| break; |
| } |
| case ISD::TargetIndex: { |
| const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); |
| ID.AddInteger(TI->getIndex()); |
| ID.AddInteger(TI->getOffset()); |
| ID.AddInteger(TI->getTargetFlags()); |
| break; |
| } |
| case ISD::LOAD: { |
| const LoadSDNode *LD = cast<LoadSDNode>(N); |
| ID.AddInteger(LD->getMemoryVT().getRawBits()); |
| ID.AddInteger(LD->getRawSubclassData()); |
| ID.AddInteger(LD->getPointerInfo().getAddrSpace()); |
| break; |
| } |
| case ISD::STORE: { |
| const StoreSDNode *ST = cast<StoreSDNode>(N); |
| ID.AddInteger(ST->getMemoryVT().getRawBits()); |
| ID.AddInteger(ST->getRawSubclassData()); |
| ID.AddInteger(ST->getPointerInfo().getAddrSpace()); |
| break; |
| } |
| case ISD::ATOMIC_CMP_SWAP: |
| case ISD::ATOMIC_SWAP: |
| case ISD::ATOMIC_LOAD_ADD: |
| case ISD::ATOMIC_LOAD_SUB: |
| case ISD::ATOMIC_LOAD_AND: |
| case ISD::ATOMIC_LOAD_OR: |
| case ISD::ATOMIC_LOAD_XOR: |
| case ISD::ATOMIC_LOAD_NAND: |
| case ISD::ATOMIC_LOAD_MIN: |
| case ISD::ATOMIC_LOAD_MAX: |
| case ISD::ATOMIC_LOAD_UMIN: |
| case ISD::ATOMIC_LOAD_UMAX: |
| case ISD::ATOMIC_LOAD: |
| case ISD::ATOMIC_STORE: { |
| const AtomicSDNode *AT = cast<AtomicSDNode>(N); |
| ID.AddInteger(AT->getMemoryVT().getRawBits()); |
| ID.AddInteger(AT->getRawSubclassData()); |
| ID.AddInteger(AT->getPointerInfo().getAddrSpace()); |
| break; |
| } |
| case ISD::PREFETCH: { |
| const MemSDNode *PF = cast<MemSDNode>(N); |
| ID.AddInteger(PF->getPointerInfo().getAddrSpace()); |
| break; |
| } |
| case ISD::VECTOR_SHUFFLE: { |
| const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); |
| for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); |
| i != e; ++i) |
| ID.AddInteger(SVN->getMaskElt(i)); |
| break; |
| } |
| case ISD::TargetBlockAddress: |
| case ISD::BlockAddress: { |
| const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); |
| ID.AddPointer(BA->getBlockAddress()); |
| ID.AddInteger(BA->getOffset()); |
| ID.AddInteger(BA->getTargetFlags()); |
| break; |
| } |
| } // end switch (N->getOpcode()) |
| |
| // Target specific memory nodes could also have address spaces to check. |
| if (N->isTargetMemoryOpcode()) |
| ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); |
| } |
| |
| /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID |
| /// data. |
| static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { |
| AddNodeIDOpcode(ID, N->getOpcode()); |
| // Add the return value info. |
| AddNodeIDValueTypes(ID, N->getVTList()); |
| // Add the operand info. |
| AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands()); |
| |
| // Handle SDNode leafs with special info. |
| AddNodeIDCustom(ID, N); |
| } |
| |
| /// encodeMemSDNodeFlags - Generic routine for computing a value for use in |
| /// the CSE map that carries volatility, temporalness, indexing mode, and |
| /// extension/truncation information. |
| /// |
| static inline unsigned |
| encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile, |
| bool isNonTemporal, bool isInvariant) { |
| assert((ConvType & 3) == ConvType && |
| "ConvType may not require more than 2 bits!"); |
| assert((AM & 7) == AM && |
| "AM may not require more than 3 bits!"); |
| return ConvType | |
| (AM << 2) | |
| (isVolatile << 5) | |
| (isNonTemporal << 6) | |
| (isInvariant << 7); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SelectionDAG Class |
| //===----------------------------------------------------------------------===// |
| |
| /// doNotCSE - Return true if CSE should not be performed for this node. |
| static bool doNotCSE(SDNode *N) { |
| if (N->getValueType(0) == MVT::Glue) |
| return true; // Never CSE anything that produces a flag. |
| |
| switch (N->getOpcode()) { |
| default: break; |
| case ISD::HANDLENODE: |
| case ISD::EH_LABEL: |
| return true; // Never CSE these nodes. |
| } |
| |
| // Check that remaining values produced are not flags. |
| for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) |
| if (N->getValueType(i) == MVT::Glue) |
| return true; // Never CSE anything that produces a flag. |
| |
| return false; |
| } |
| |
| /// RemoveDeadNodes - This method deletes all unreachable nodes in the |
| /// SelectionDAG. |
| void SelectionDAG::RemoveDeadNodes() { |
| // Create a dummy node (which is not added to allnodes), that adds a reference |
| // to the root node, preventing it from being deleted. |
| HandleSDNode Dummy(getRoot()); |
| |
| SmallVector<SDNode*, 128> DeadNodes; |
| |
| // Add all obviously-dead nodes to the DeadNodes worklist. |
| for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I) |
| if (I->use_empty()) |
| DeadNodes.push_back(I); |
| |
| RemoveDeadNodes(DeadNodes); |
| |
| // If the root changed (e.g. it was a dead load, update the root). |
| setRoot(Dummy.getValue()); |
| } |
| |
| /// RemoveDeadNodes - This method deletes the unreachable nodes in the |
| /// given list, and any nodes that become unreachable as a result. |
| void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { |
| |
| // Process the worklist, deleting the nodes and adding their uses to the |
| // worklist. |
| while (!DeadNodes.empty()) { |
| SDNode *N = DeadNodes.pop_back_val(); |
| |
| for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) |
| DUL->NodeDeleted(N, 0); |
| |
| // Take the node out of the appropriate CSE map. |
| RemoveNodeFromCSEMaps(N); |
| |
| // Next, brutally remove the operand list. This is safe to do, as there are |
| // no cycles in the graph. |
| for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { |
| SDUse &Use = *I++; |
| SDNode *Operand = Use.getNode(); |
| Use.set(SDValue()); |
| |
| // Now that we removed this operand, see if there are no uses of it left. |
| if (Operand->use_empty()) |
| DeadNodes.push_back(Operand); |
| } |
| |
| DeallocateNode(N); |
| } |
| } |
| |
| void SelectionDAG::RemoveDeadNode(SDNode *N){ |
| SmallVector<SDNode*, 16> DeadNodes(1, N); |
| |
| // Create a dummy node that adds a reference to the root node, preventing |
| // it from being deleted. (This matters if the root is an operand of the |
| // dead node.) |
| HandleSDNode Dummy(getRoot()); |
| |
| RemoveDeadNodes(DeadNodes); |
| } |
| |
| void SelectionDAG::DeleteNode(SDNode *N) { |
| // First take this out of the appropriate CSE map. |
| RemoveNodeFromCSEMaps(N); |
| |
| // Finally, remove uses due to operands of this node, remove from the |
| // AllNodes list, and delete the node. |
| DeleteNodeNotInCSEMaps(N); |
| } |
| |
| void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { |
| assert(N != AllNodes.begin() && "Cannot delete the entry node!"); |
| assert(N->use_empty() && "Cannot delete a node that is not dead!"); |
| |
| // Drop all of the operands and decrement used node's use counts. |
| N->DropOperands(); |
| |
| DeallocateNode(N); |
| } |
| |
| void SelectionDAG::DeallocateNode(SDNode *N) { |
| if (N->OperandsNeedDelete) |
| delete[] N->OperandList; |
| |
| // Set the opcode to DELETED_NODE to help catch bugs when node |
| // memory is reallocated. |
| N->NodeType = ISD::DELETED_NODE; |
| |
| NodeAllocator.Deallocate(AllNodes.remove(N)); |
| |
| // Remove the ordering of this node. |
| Ordering->remove(N); |
| |
| // If any of the SDDbgValue nodes refer to this SDNode, invalidate them. |
| ArrayRef<SDDbgValue*> DbgVals = DbgInfo->getSDDbgValues(N); |
| for (unsigned i = 0, e = DbgVals.size(); i != e; ++i) |
| DbgVals[i]->setIsInvalidated(); |
| } |
| |
| /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that |
| /// correspond to it. This is useful when we're about to delete or repurpose |
| /// the node. We don't want future request for structurally identical nodes |
| /// to return N anymore. |
| bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { |
| bool Erased = false; |
| switch (N->getOpcode()) { |
| case ISD::HANDLENODE: return false; // noop. |
| case ISD::CONDCODE: |
| assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && |
| "Cond code doesn't exist!"); |
| Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0; |
| CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0; |
| break; |
| case ISD::ExternalSymbol: |
| Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); |
| break; |
| case ISD::TargetExternalSymbol: { |
| ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); |
| Erased = TargetExternalSymbols.erase( |
| std::pair<std::string,unsigned char>(ESN->getSymbol(), |
| ESN->getTargetFlags())); |
| break; |
| } |
| case ISD::VALUETYPE: { |
| EVT VT = cast<VTSDNode>(N)->getVT(); |
| if (VT.isExtended()) { |
| Erased = ExtendedValueTypeNodes.erase(VT); |
| } else { |
| Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0; |
| ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0; |
| } |
| break; |
| } |
| default: |
| // Remove it from the CSE Map. |
| assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); |
| assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); |
| Erased = CSEMap.RemoveNode(N); |
| break; |
| } |
| #ifndef NDEBUG |
| // Verify that the node was actually in one of the CSE maps, unless it has a |
| // flag result (which cannot be CSE'd) or is one of the special cases that are |
| // not subject to CSE. |
| if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && |
| !N->isMachineOpcode() && !doNotCSE(N)) { |
| N->dump(this); |
| dbgs() << "\n"; |
| llvm_unreachable("Node is not in map!"); |
| } |
| #endif |
| return Erased; |
| } |
| |
| /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE |
| /// maps and modified in place. Add it back to the CSE maps, unless an identical |
| /// node already exists, in which case transfer all its users to the existing |
| /// node. This transfer can potentially trigger recursive merging. |
| /// |
| void |
| SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { |
| // For node types that aren't CSE'd, just act as if no identical node |
| // already exists. |
| if (!doNotCSE(N)) { |
| SDNode *Existing = CSEMap.GetOrInsertNode(N); |
| if (Existing != N) { |
| // If there was already an existing matching node, use ReplaceAllUsesWith |
| // to replace the dead one with the existing one. This can cause |
| // recursive merging of other unrelated nodes down the line. |
| ReplaceAllUsesWith(N, Existing); |
| |
| // N is now dead. Inform the listeners and delete it. |
| for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) |
| DUL->NodeDeleted(N, Existing); |
| DeleteNodeNotInCSEMaps(N); |
| return; |
| } |
| } |
| |
| // If the node doesn't already exist, we updated it. Inform listeners. |
| for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) |
| DUL->NodeUpdated(N); |
| } |
| |
| /// FindModifiedNodeSlot - Find a slot for the specified node if its operands |
| /// were replaced with those specified. If this node is never memoized, |
| /// return null, otherwise return a pointer to the slot it would take. If a |
| /// node already exists with these operands, the slot will be non-null. |
| SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, |
| void *&InsertPos) { |
| if (doNotCSE(N)) |
| return 0; |
| |
| SDValue Ops[] = { Op }; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1); |
| AddNodeIDCustom(ID, N); |
| SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos); |
| return Node; |
| } |
| |
| /// FindModifiedNodeSlot - Find a slot for the specified node if its operands |
| /// were replaced with those specified. If this node is never memoized, |
| /// return null, otherwise return a pointer to the slot it would take. If a |
| /// node already exists with these operands, the slot will be non-null. |
| SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, |
| SDValue Op1, SDValue Op2, |
| void *&InsertPos) { |
| if (doNotCSE(N)) |
| return 0; |
| |
| SDValue Ops[] = { Op1, Op2 }; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2); |
| AddNodeIDCustom(ID, N); |
| SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos); |
| return Node; |
| } |
| |
| |
| /// FindModifiedNodeSlot - Find a slot for the specified node if its operands |
| /// were replaced with those specified. If this node is never memoized, |
| /// return null, otherwise return a pointer to the slot it would take. If a |
| /// node already exists with these operands, the slot will be non-null. |
| SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, |
| const SDValue *Ops,unsigned NumOps, |
| void *&InsertPos) { |
| if (doNotCSE(N)) |
| return 0; |
| |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps); |
| AddNodeIDCustom(ID, N); |
| SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos); |
| return Node; |
| } |
| |
| #ifndef NDEBUG |
| /// VerifyNodeCommon - Sanity check the given node. Aborts if it is invalid. |
| static void VerifyNodeCommon(SDNode *N) { |
| switch (N->getOpcode()) { |
| default: |
| break; |
| case ISD::BUILD_PAIR: { |
| EVT VT = N->getValueType(0); |
| assert(N->getNumValues() == 1 && "Too many results!"); |
| assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && |
| "Wrong return type!"); |
| assert(N->getNumOperands() == 2 && "Wrong number of operands!"); |
| assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && |
| "Mismatched operand types!"); |
| assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && |
| "Wrong operand type!"); |
| assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && |
| "Wrong return type size"); |
| break; |
| } |
| case ISD::BUILD_VECTOR: { |
| assert(N->getNumValues() == 1 && "Too many results!"); |
| assert(N->getValueType(0).isVector() && "Wrong return type!"); |
| assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && |
| "Wrong number of operands!"); |
| EVT EltVT = N->getValueType(0).getVectorElementType(); |
| for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { |
| assert((I->getValueType() == EltVT || |
| (EltVT.isInteger() && I->getValueType().isInteger() && |
| EltVT.bitsLE(I->getValueType()))) && |
| "Wrong operand type!"); |
| assert(I->getValueType() == N->getOperand(0).getValueType() && |
| "Operands must all have the same type"); |
| } |
| break; |
| } |
| } |
| } |
| |
| /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. |
| static void VerifySDNode(SDNode *N) { |
| // The SDNode allocators cannot be used to allocate nodes with fields that are |
| // not present in an SDNode! |
| assert(!isa<MemSDNode>(N) && "Bad MemSDNode!"); |
| assert(!isa<ShuffleVectorSDNode>(N) && "Bad ShuffleVectorSDNode!"); |
| assert(!isa<ConstantSDNode>(N) && "Bad ConstantSDNode!"); |
| assert(!isa<ConstantFPSDNode>(N) && "Bad ConstantFPSDNode!"); |
| assert(!isa<GlobalAddressSDNode>(N) && "Bad GlobalAddressSDNode!"); |
| assert(!isa<FrameIndexSDNode>(N) && "Bad FrameIndexSDNode!"); |
| assert(!isa<JumpTableSDNode>(N) && "Bad JumpTableSDNode!"); |
| assert(!isa<ConstantPoolSDNode>(N) && "Bad ConstantPoolSDNode!"); |
| assert(!isa<BasicBlockSDNode>(N) && "Bad BasicBlockSDNode!"); |
| assert(!isa<SrcValueSDNode>(N) && "Bad SrcValueSDNode!"); |
| assert(!isa<MDNodeSDNode>(N) && "Bad MDNodeSDNode!"); |
| assert(!isa<RegisterSDNode>(N) && "Bad RegisterSDNode!"); |
| assert(!isa<BlockAddressSDNode>(N) && "Bad BlockAddressSDNode!"); |
| assert(!isa<EHLabelSDNode>(N) && "Bad EHLabelSDNode!"); |
| assert(!isa<ExternalSymbolSDNode>(N) && "Bad ExternalSymbolSDNode!"); |
| assert(!isa<CondCodeSDNode>(N) && "Bad CondCodeSDNode!"); |
| assert(!isa<CvtRndSatSDNode>(N) && "Bad CvtRndSatSDNode!"); |
| assert(!isa<VTSDNode>(N) && "Bad VTSDNode!"); |
| assert(!isa<MachineSDNode>(N) && "Bad MachineSDNode!"); |
| |
| VerifyNodeCommon(N); |
| } |
| |
| /// VerifyMachineNode - Sanity check the given MachineNode. Aborts if it is |
| /// invalid. |
| static void VerifyMachineNode(SDNode *N) { |
| // The MachineNode allocators cannot be used to allocate nodes with fields |
| // that are not present in a MachineNode! |
| // Currently there are no such nodes. |
| |
| VerifyNodeCommon(N); |
| } |
| #endif // NDEBUG |
| |
| /// getEVTAlignment - Compute the default alignment value for the |
| /// given type. |
| /// |
| unsigned SelectionDAG::getEVTAlignment(EVT VT) const { |
| Type *Ty = VT == MVT::iPTR ? |
| PointerType::get(Type::getInt8Ty(*getContext()), 0) : |
| VT.getTypeForEVT(*getContext()); |
| |
| return TLI.getDataLayout()->getABITypeAlignment(Ty); |
| } |
| |
| // EntryNode could meaningfully have debug info if we can find it... |
| SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) |
| : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()), |
| TTI(0), OptLevel(OL), EntryNode(ISD::EntryToken, DebugLoc(), |
| getVTList(MVT::Other)), |
| Root(getEntryNode()), Ordering(0), UpdateListeners(0) { |
| AllNodes.push_back(&EntryNode); |
| Ordering = new SDNodeOrdering(); |
| DbgInfo = new SDDbgInfo(); |
| } |
| |
| void SelectionDAG::init(MachineFunction &mf, const TargetTransformInfo *tti) { |
| MF = &mf; |
| TTI = tti; |
| Context = &mf.getFunction()->getContext(); |
| } |
| |
| SelectionDAG::~SelectionDAG() { |
| assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); |
| allnodes_clear(); |
| delete Ordering; |
| delete DbgInfo; |
| } |
| |
| void SelectionDAG::allnodes_clear() { |
| assert(&*AllNodes.begin() == &EntryNode); |
| AllNodes.remove(AllNodes.begin()); |
| while (!AllNodes.empty()) |
| DeallocateNode(AllNodes.begin()); |
| } |
| |
| void SelectionDAG::clear() { |
| allnodes_clear(); |
| OperandAllocator.Reset(); |
| CSEMap.clear(); |
| |
| ExtendedValueTypeNodes.clear(); |
| ExternalSymbols.clear(); |
| TargetExternalSymbols.clear(); |
| std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), |
| static_cast<CondCodeSDNode*>(0)); |
| std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), |
| static_cast<SDNode*>(0)); |
| |
| EntryNode.UseList = 0; |
| AllNodes.push_back(&EntryNode); |
| Root = getEntryNode(); |
| Ordering->clear(); |
| DbgInfo->clear(); |
| } |
| |
| SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) { |
| return VT.bitsGT(Op.getValueType()) ? |
| getNode(ISD::ANY_EXTEND, DL, VT, Op) : |
| getNode(ISD::TRUNCATE, DL, VT, Op); |
| } |
| |
| SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) { |
| return VT.bitsGT(Op.getValueType()) ? |
| getNode(ISD::SIGN_EXTEND, DL, VT, Op) : |
| getNode(ISD::TRUNCATE, DL, VT, Op); |
| } |
| |
| SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) { |
| return VT.bitsGT(Op.getValueType()) ? |
| getNode(ISD::ZERO_EXTEND, DL, VT, Op) : |
| getNode(ISD::TRUNCATE, DL, VT, Op); |
| } |
| |
| SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) { |
| assert(!VT.isVector() && |
| "getZeroExtendInReg should use the vector element type instead of " |
| "the vector type!"); |
| if (Op.getValueType() == VT) return Op; |
| unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits(); |
| APInt Imm = APInt::getLowBitsSet(BitWidth, |
| VT.getSizeInBits()); |
| return getNode(ISD::AND, DL, Op.getValueType(), Op, |
| getConstant(Imm, Op.getValueType())); |
| } |
| |
| /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). |
| /// |
| SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) { |
| EVT EltVT = VT.getScalarType(); |
| SDValue NegOne = |
| getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT); |
| return getNode(ISD::XOR, DL, VT, Val, NegOne); |
| } |
| |
| SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) { |
| EVT EltVT = VT.getScalarType(); |
| assert((EltVT.getSizeInBits() >= 64 || |
| (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && |
| "getConstant with a uint64_t value that doesn't fit in the type!"); |
| return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT); |
| } |
| |
| SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) { |
| return getConstant(*ConstantInt::get(*Context, Val), VT, isT); |
| } |
| |
| SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) { |
| assert(VT.isInteger() && "Cannot create FP integer constant!"); |
| |
| EVT EltVT = VT.getScalarType(); |
| const ConstantInt *Elt = &Val; |
| |
| // In some cases the vector type is legal but the element type is illegal and |
| // needs to be promoted, for example v8i8 on ARM. In this case, promote the |
| // inserted value (the type does not need to match the vector element type). |
| // Any extra bits introduced will be truncated away. |
| if (VT.isVector() && TLI.getTypeAction(*getContext(), EltVT) == |
| TargetLowering::TypePromoteInteger) { |
| EltVT = TLI.getTypeToTransformTo(*getContext(), EltVT); |
| APInt NewVal = Elt->getValue().zext(EltVT.getSizeInBits()); |
| Elt = ConstantInt::get(*getContext(), NewVal); |
| } |
| |
| assert(Elt->getBitWidth() == EltVT.getSizeInBits() && |
| "APInt size does not match type size!"); |
| unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0); |
| ID.AddPointer(Elt); |
| void *IP = 0; |
| SDNode *N = NULL; |
| if ((N = CSEMap.FindNodeOrInsertPos(ID, IP))) |
| if (!VT.isVector()) |
| return SDValue(N, 0); |
| |
| if (!N) { |
| N = new (NodeAllocator) ConstantSDNode(isT, Elt, EltVT); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| } |
| |
| SDValue Result(N, 0); |
| if (VT.isVector()) { |
| SmallVector<SDValue, 8> Ops; |
| Ops.assign(VT.getVectorNumElements(), Result); |
| Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size()); |
| } |
| return Result; |
| } |
| |
| SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) { |
| return getConstant(Val, TLI.getPointerTy(), isTarget); |
| } |
| |
| |
| SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) { |
| return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget); |
| } |
| |
| SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){ |
| assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); |
| |
| EVT EltVT = VT.getScalarType(); |
| |
| // Do the map lookup using the actual bit pattern for the floating point |
| // value, so that we don't have problems with 0.0 comparing equal to -0.0, and |
| // we don't have issues with SNANs. |
| unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0); |
| ID.AddPointer(&V); |
| void *IP = 0; |
| SDNode *N = NULL; |
| if ((N = CSEMap.FindNodeOrInsertPos(ID, IP))) |
| if (!VT.isVector()) |
| return SDValue(N, 0); |
| |
| if (!N) { |
| N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| } |
| |
| SDValue Result(N, 0); |
| if (VT.isVector()) { |
| SmallVector<SDValue, 8> Ops; |
| Ops.assign(VT.getVectorNumElements(), Result); |
| // FIXME DebugLoc info might be appropriate here |
| Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size()); |
| } |
| return Result; |
| } |
| |
| SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) { |
| EVT EltVT = VT.getScalarType(); |
| if (EltVT==MVT::f32) |
| return getConstantFP(APFloat((float)Val), VT, isTarget); |
| else if (EltVT==MVT::f64) |
| return getConstantFP(APFloat(Val), VT, isTarget); |
| else if (EltVT==MVT::f80 || EltVT==MVT::f128 || EltVT==MVT::ppcf128 || |
| EltVT==MVT::f16) { |
| bool ignored; |
| APFloat apf = APFloat(Val); |
| apf.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, |
| &ignored); |
| return getConstantFP(apf, VT, isTarget); |
| } else |
| llvm_unreachable("Unsupported type in getConstantFP"); |
| } |
| |
| SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, DebugLoc DL, |
| EVT VT, int64_t Offset, |
| bool isTargetGA, |
| unsigned char TargetFlags) { |
| assert((TargetFlags == 0 || isTargetGA) && |
| "Cannot set target flags on target-independent globals"); |
| |
| // Truncate (with sign-extension) the offset value to the pointer size. |
| unsigned BitWidth = TLI.getPointerTy().getSizeInBits(); |
| if (BitWidth < 64) |
| Offset = SignExtend64(Offset, BitWidth); |
| |
| const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); |
| if (!GVar) { |
| // If GV is an alias then use the aliasee for determining thread-localness. |
| if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) |
| GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false)); |
| } |
| |
| unsigned Opc; |
| if (GVar && GVar->isThreadLocal()) |
| Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; |
| else |
| Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; |
| |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); |
| ID.AddPointer(GV); |
| ID.AddInteger(Offset); |
| ID.AddInteger(TargetFlags); |
| ID.AddInteger(GV->getType()->getAddressSpace()); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL, GV, VT, |
| Offset, TargetFlags); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { |
| unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); |
| ID.AddInteger(FI); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, |
| unsigned char TargetFlags) { |
| assert((TargetFlags == 0 || isTarget) && |
| "Cannot set target flags on target-independent jump tables"); |
| unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); |
| ID.AddInteger(JTI); |
| ID.AddInteger(TargetFlags); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget, |
| TargetFlags); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, |
| unsigned Alignment, int Offset, |
| bool isTarget, |
| unsigned char TargetFlags) { |
| assert((TargetFlags == 0 || isTarget) && |
| "Cannot set target flags on target-independent globals"); |
| if (Alignment == 0) |
| Alignment = TLI.getDataLayout()->getPrefTypeAlignment(C->getType()); |
| unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); |
| ID.AddInteger(Alignment); |
| ID.AddInteger(Offset); |
| ID.AddPointer(C); |
| ID.AddInteger(TargetFlags); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset, |
| Alignment, TargetFlags); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| |
| SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, |
| unsigned Alignment, int Offset, |
| bool isTarget, |
| unsigned char TargetFlags) { |
| assert((TargetFlags == 0 || isTarget) && |
| "Cannot set target flags on target-independent globals"); |
| if (Alignment == 0) |
| Alignment = TLI.getDataLayout()->getPrefTypeAlignment(C->getType()); |
| unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); |
| ID.AddInteger(Alignment); |
| ID.AddInteger(Offset); |
| C->addSelectionDAGCSEId(ID); |
| ID.AddInteger(TargetFlags); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset, |
| Alignment, TargetFlags); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, |
| unsigned char TargetFlags) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), 0, 0); |
| ID.AddInteger(Index); |
| ID.AddInteger(Offset); |
| ID.AddInteger(TargetFlags); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| SDNode *N = new (NodeAllocator) TargetIndexSDNode(Index, VT, Offset, |
| TargetFlags); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0); |
| ID.AddPointer(MBB); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getValueType(EVT VT) { |
| if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= |
| ValueTypeNodes.size()) |
| ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); |
| |
| SDNode *&N = VT.isExtended() ? |
| ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; |
| |
| if (N) return SDValue(N, 0); |
| N = new (NodeAllocator) VTSDNode(VT); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { |
| SDNode *&N = ExternalSymbols[Sym]; |
| if (N) return SDValue(N, 0); |
| N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, |
| unsigned char TargetFlags) { |
| SDNode *&N = |
| TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym, |
| TargetFlags)]; |
| if (N) return SDValue(N, 0); |
| N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { |
| if ((unsigned)Cond >= CondCodeNodes.size()) |
| CondCodeNodes.resize(Cond+1); |
| |
| if (CondCodeNodes[Cond] == 0) { |
| CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond); |
| CondCodeNodes[Cond] = N; |
| AllNodes.push_back(N); |
| } |
| |
| return SDValue(CondCodeNodes[Cond], 0); |
| } |
| |
| // commuteShuffle - swaps the values of N1 and N2, and swaps all indices in |
| // the shuffle mask M that point at N1 to point at N2, and indices that point |
| // N2 to point at N1. |
| static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) { |
| std::swap(N1, N2); |
| int NElts = M.size(); |
| for (int i = 0; i != NElts; ++i) { |
| if (M[i] >= NElts) |
| M[i] -= NElts; |
| else if (M[i] >= 0) |
| M[i] += NElts; |
| } |
| } |
| |
| SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1, |
| SDValue N2, const int *Mask) { |
| assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE"); |
| assert(VT.isVector() && N1.getValueType().isVector() && |
| "Vector Shuffle VTs must be a vectors"); |
| assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType() |
| && "Vector Shuffle VTs must have same element type"); |
| |
| // Canonicalize shuffle undef, undef -> undef |
| if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF) |
| return getUNDEF(VT); |
| |
| // Validate that all indices in Mask are within the range of the elements |
| // input to the shuffle. |
| unsigned NElts = VT.getVectorNumElements(); |
| SmallVector<int, 8> MaskVec; |
| for (unsigned i = 0; i != NElts; ++i) { |
| assert(Mask[i] < (int)(NElts * 2) && "Index out of range"); |
| MaskVec.push_back(Mask[i]); |
| } |
| |
| // Canonicalize shuffle v, v -> v, undef |
| if (N1 == N2) { |
| N2 = getUNDEF(VT); |
| for (unsigned i = 0; i != NElts; ++i) |
| if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts; |
| } |
| |
| // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. |
| if (N1.getOpcode() == ISD::UNDEF) |
| commuteShuffle(N1, N2, MaskVec); |
| |
| // Canonicalize all index into lhs, -> shuffle lhs, undef |
| // Canonicalize all index into rhs, -> shuffle rhs, undef |
| bool AllLHS = true, AllRHS = true; |
| bool N2Undef = N2.getOpcode() == ISD::UNDEF; |
| for (unsigned i = 0; i != NElts; ++i) { |
| if (MaskVec[i] >= (int)NElts) { |
| if (N2Undef) |
| MaskVec[i] = -1; |
| else |
| AllLHS = false; |
| } else if (MaskVec[i] >= 0) { |
| AllRHS = false; |
| } |
| } |
| if (AllLHS && AllRHS) |
| return getUNDEF(VT); |
| if (AllLHS && !N2Undef) |
| N2 = getUNDEF(VT); |
| if (AllRHS) { |
| N1 = getUNDEF(VT); |
| commuteShuffle(N1, N2, MaskVec); |
| } |
| |
| // If Identity shuffle, or all shuffle in to undef, return that node. |
| bool AllUndef = true; |
| bool Identity = true; |
| for (unsigned i = 0; i != NElts; ++i) { |
| if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false; |
| if (MaskVec[i] >= 0) AllUndef = false; |
| } |
| if (Identity && NElts == N1.getValueType().getVectorNumElements()) |
| return N1; |
| if (AllUndef) |
| return getUNDEF(VT); |
| |
| FoldingSetNodeID ID; |
| SDValue Ops[2] = { N1, N2 }; |
| AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2); |
| for (unsigned i = 0; i != NElts; ++i) |
| ID.AddInteger(MaskVec[i]); |
| |
| void* IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| // Allocate the mask array for the node out of the BumpPtrAllocator, since |
| // SDNode doesn't have access to it. This memory will be "leaked" when |
| // the node is deallocated, but recovered when the NodeAllocator is released. |
| int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); |
| memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int)); |
| |
| ShuffleVectorSDNode *N = |
| new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl, |
| SDValue Val, SDValue DTy, |
| SDValue STy, SDValue Rnd, SDValue Sat, |
| ISD::CvtCode Code) { |
| // If the src and dest types are the same and the conversion is between |
| // integer types of the same sign or two floats, no conversion is necessary. |
| if (DTy == STy && |
| (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF)) |
| return Val; |
| |
| FoldingSetNodeID ID; |
| SDValue Ops[] = { Val, DTy, STy, Rnd, Sat }; |
| AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5); |
| void* IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5, |
| Code); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0); |
| ID.AddInteger(RegNo); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), 0, 0); |
| ID.AddPointer(RegMask); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| SDNode *N = new (NodeAllocator) RegisterMaskSDNode(RegMask); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) { |
| FoldingSetNodeID ID; |
| SDValue Ops[] = { Root }; |
| AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1); |
| ID.AddPointer(Label); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| |
| SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, |
| int64_t Offset, |
| bool isTarget, |
| unsigned char TargetFlags) { |
| unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; |
| |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); |
| ID.AddPointer(BA); |
| ID.AddInteger(Offset); |
| ID.AddInteger(TargetFlags); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, Offset, |
| TargetFlags); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getSrcValue(const Value *V) { |
| assert((!V || V->getType()->isPointerTy()) && |
| "SrcValue is not a pointer?"); |
| |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0); |
| ID.AddPointer(V); |
| |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| SDNode *N = new (NodeAllocator) SrcValueSDNode(V); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| /// getMDNode - Return an MDNodeSDNode which holds an MDNode. |
| SDValue SelectionDAG::getMDNode(const MDNode *MD) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0); |
| ID.AddPointer(MD); |
| |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| SDNode *N = new (NodeAllocator) MDNodeSDNode(MD); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| |
| /// getShiftAmountOperand - Return the specified value casted to |
| /// the target's desired shift amount type. |
| SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { |
| EVT OpTy = Op.getValueType(); |
| MVT ShTy = TLI.getShiftAmountTy(LHSTy); |
| if (OpTy == ShTy || OpTy.isVector()) return Op; |
| |
| ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ? ISD::TRUNCATE : ISD::ZERO_EXTEND; |
| return getNode(Opcode, Op.getDebugLoc(), ShTy, Op); |
| } |
| |
| /// CreateStackTemporary - Create a stack temporary, suitable for holding the |
| /// specified value type. |
| SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { |
| MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo(); |
| unsigned ByteSize = VT.getStoreSize(); |
| Type *Ty = VT.getTypeForEVT(*getContext()); |
| unsigned StackAlign = |
| std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), minAlign); |
| |
| int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false); |
| return getFrameIndex(FrameIdx, TLI.getPointerTy()); |
| } |
| |
| /// CreateStackTemporary - Create a stack temporary suitable for holding |
| /// either of the specified value types. |
| SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { |
| unsigned Bytes = std::max(VT1.getStoreSizeInBits(), |
| VT2.getStoreSizeInBits())/8; |
| Type *Ty1 = VT1.getTypeForEVT(*getContext()); |
| Type *Ty2 = VT2.getTypeForEVT(*getContext()); |
| const DataLayout *TD = TLI.getDataLayout(); |
| unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1), |
| TD->getPrefTypeAlignment(Ty2)); |
| |
| MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo(); |
| int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false); |
| return getFrameIndex(FrameIdx, TLI.getPointerTy()); |
| } |
| |
| SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, |
| SDValue N2, ISD::CondCode Cond, DebugLoc dl) { |
| // These setcc operations always fold. |
| switch (Cond) { |
| default: break; |
| case ISD::SETFALSE: |
| case ISD::SETFALSE2: return getConstant(0, VT); |
| case ISD::SETTRUE: |
| case ISD::SETTRUE2: return getConstant(1, VT); |
| |
| case ISD::SETOEQ: |
| case ISD::SETOGT: |
| case ISD::SETOGE: |
| case ISD::SETOLT: |
| case ISD::SETOLE: |
| case ISD::SETONE: |
| case ISD::SETO: |
| case ISD::SETUO: |
| case ISD::SETUEQ: |
| case ISD::SETUNE: |
| assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!"); |
| break; |
| } |
| |
| if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) { |
| const APInt &C2 = N2C->getAPIntValue(); |
| if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { |
| const APInt &C1 = N1C->getAPIntValue(); |
| |
| switch (Cond) { |
| default: llvm_unreachable("Unknown integer setcc!"); |
| case ISD::SETEQ: return getConstant(C1 == C2, VT); |
| case ISD::SETNE: return getConstant(C1 != C2, VT); |
| case ISD::SETULT: return getConstant(C1.ult(C2), VT); |
| case ISD::SETUGT: return getConstant(C1.ugt(C2), VT); |
| case ISD::SETULE: return getConstant(C1.ule(C2), VT); |
| case ISD::SETUGE: return getConstant(C1.uge(C2), VT); |
| case ISD::SETLT: return getConstant(C1.slt(C2), VT); |
| case ISD::SETGT: return getConstant(C1.sgt(C2), VT); |
| case ISD::SETLE: return getConstant(C1.sle(C2), VT); |
| case ISD::SETGE: return getConstant(C1.sge(C2), VT); |
| } |
| } |
| } |
| if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) { |
| if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) { |
| APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF()); |
| switch (Cond) { |
| default: break; |
| case ISD::SETEQ: if (R==APFloat::cmpUnordered) |
| return getUNDEF(VT); |
| // fall through |
| case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT); |
| case ISD::SETNE: if (R==APFloat::cmpUnordered) |
| return getUNDEF(VT); |
| // fall through |
| case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan || |
| R==APFloat::cmpLessThan, VT); |
| case ISD::SETLT: if (R==APFloat::cmpUnordered) |
| return getUNDEF(VT); |
| // fall through |
| case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT); |
| case ISD::SETGT: if (R==APFloat::cmpUnordered) |
| return getUNDEF(VT); |
| // fall through |
| case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT); |
| case ISD::SETLE: if (R==APFloat::cmpUnordered) |
| return getUNDEF(VT); |
| // fall through |
| case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan || |
| R==APFloat::cmpEqual, VT); |
| case ISD::SETGE: if (R==APFloat::cmpUnordered) |
| return getUNDEF(VT); |
| // fall through |
| case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan || |
| R==APFloat::cmpEqual, VT); |
| case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, VT); |
| case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, VT); |
| case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered || |
| R==APFloat::cmpEqual, VT); |
| case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT); |
| case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered || |
| R==APFloat::cmpLessThan, VT); |
| case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan || |
| R==APFloat::cmpUnordered, VT); |
| case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT); |
| case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT); |
| } |
| } else { |
| // Ensure that the constant occurs on the RHS. |
| return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond)); |
| } |
| } |
| |
| // Could not fold it. |
| return SDValue(); |
| } |
| |
| /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We |
| /// use this predicate to simplify operations downstream. |
| bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { |
| // This predicate is not safe for vector operations. |
| if (Op.getValueType().isVector()) |
| return false; |
| |
| unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits(); |
| return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth); |
| } |
| |
| /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use |
| /// this predicate to simplify operations downstream. Mask is known to be zero |
| /// for bits that V cannot have. |
| bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask, |
| unsigned Depth) const { |
| APInt KnownZero, KnownOne; |
| ComputeMaskedBits(Op, KnownZero, KnownOne, Depth); |
| assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| return (KnownZero & Mask) == Mask; |
| } |
| |
| /// ComputeMaskedBits - Determine which of the bits specified in Mask are |
| /// known to be either zero or one and return them in the KnownZero/KnownOne |
| /// bitsets. This code only analyzes bits in Mask, in order to short-circuit |
| /// processing. |
| void SelectionDAG::ComputeMaskedBits(SDValue Op, APInt &KnownZero, |
| APInt &KnownOne, unsigned Depth) const { |
| unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits(); |
| |
| KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything. |
| if (Depth == 6) |
| return; // Limit search depth. |
| |
| APInt KnownZero2, KnownOne2; |
| |
| switch (Op.getOpcode()) { |
| case ISD::Constant: |
| // We know all of the bits for a constant! |
| KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); |
| KnownZero = ~KnownOne; |
| return; |
| case ISD::AND: |
| // If either the LHS or the RHS are Zero, the result is zero. |
| ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1); |
| ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); |
| assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| |
| // Output known-1 bits are only known if set in both the LHS & RHS. |
| KnownOne &= KnownOne2; |
| // Output known-0 are known to be clear if zero in either the LHS | RHS. |
| KnownZero |= KnownZero2; |
| return; |
| case ISD::OR: |
| ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1); |
| ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); |
| assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| |
| // Output known-0 bits are only known if clear in both the LHS & RHS. |
| KnownZero &= KnownZero2; |
| // Output known-1 are known to be set if set in either the LHS | RHS. |
| KnownOne |= KnownOne2; |
| return; |
| case ISD::XOR: { |
| ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1); |
| ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); |
| assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| |
| // Output known-0 bits are known if clear or set in both the LHS & RHS. |
| APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); |
| // Output known-1 are known to be set if set in only one of the LHS, RHS. |
| KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); |
| KnownZero = KnownZeroOut; |
| return; |
| } |
| case ISD::MUL: { |
| ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1); |
| ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); |
| assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| |
| // If low bits are zero in either operand, output low known-0 bits. |
| // Also compute a conserative estimate for high known-0 bits. |
| // More trickiness is possible, but this is sufficient for the |
| // interesting case of alignment computation. |
| KnownOne.clearAllBits(); |
| unsigned TrailZ = KnownZero.countTrailingOnes() + |
| KnownZero2.countTrailingOnes(); |
| unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + |
| KnownZero2.countLeadingOnes(), |
| BitWidth) - BitWidth; |
| |
| TrailZ = std::min(TrailZ, BitWidth); |
| LeadZ = std::min(LeadZ, BitWidth); |
| KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | |
| APInt::getHighBitsSet(BitWidth, LeadZ); |
| return; |
| } |
| case ISD::UDIV: { |
| // For the purposes of computing leading zeros we can conservatively |
| // treat a udiv as a logical right shift by the power of 2 known to |
| // be less than the denominator. |
| ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); |
| unsigned LeadZ = KnownZero2.countLeadingOnes(); |
| |
| KnownOne2.clearAllBits(); |
| KnownZero2.clearAllBits(); |
| ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1); |
| unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); |
| if (RHSUnknownLeadingOnes != BitWidth) |
| LeadZ = std::min(BitWidth, |
| LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); |
| |
| KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); |
| return; |
| } |
| case ISD::SELECT: |
| ComputeMaskedBits(Op.getOperand(2), KnownZero, KnownOne, Depth+1); |
| ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1); |
| assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| |
| // Only known if known in both the LHS and RHS. |
| KnownOne &= KnownOne2; |
| KnownZero &= KnownZero2; |
| return; |
| case ISD::SELECT_CC: |
| ComputeMaskedBits(Op.getOperand(3), KnownZero, KnownOne, Depth+1); |
| ComputeMaskedBits(Op.getOperand(2), KnownZero2, KnownOne2, Depth+1); |
| assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| |
| // Only known if known in both the LHS and RHS. |
| KnownOne &= KnownOne2; |
| KnownZero &= KnownZero2; |
| return; |
| case ISD::SADDO: |
| case ISD::UADDO: |
| case ISD::SSUBO: |
| case ISD::USUBO: |
| case ISD::SMULO: |
| case ISD::UMULO: |
| if (Op.getResNo() != 1) |
| return; |
| // The boolean result conforms to getBooleanContents. Fall through. |
| case ISD::SETCC: |
| // If we know the result of a setcc has the top bits zero, use this info. |
| if (TLI.getBooleanContents(Op.getValueType().isVector()) == |
| TargetLowering::ZeroOrOneBooleanContent && BitWidth > 1) |
| KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1); |
| return; |
| case ISD::SHL: |
| // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 |
| if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| unsigned ShAmt = SA->getZExtValue(); |
| |
| // If the shift count is an invalid immediate, don't do anything. |
| if (ShAmt >= BitWidth) |
| return; |
| |
| ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); |
| assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| KnownZero <<= ShAmt; |
| KnownOne <<= ShAmt; |
| // low bits known zero. |
| KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt); |
| } |
| return; |
| case ISD::SRL: |
| // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 |
| if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| unsigned ShAmt = SA->getZExtValue(); |
| |
| // If the shift count is an invalid immediate, don't do anything. |
| if (ShAmt >= BitWidth) |
| return; |
| |
| ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); |
| assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| KnownZero = KnownZero.lshr(ShAmt); |
| KnownOne = KnownOne.lshr(ShAmt); |
| |
| APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); |
| KnownZero |= HighBits; // High bits known zero. |
| } |
| return; |
| case ISD::SRA: |
| if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| unsigned ShAmt = SA->getZExtValue(); |
| |
| // If the shift count is an invalid immediate, don't do anything. |
| if (ShAmt >= BitWidth) |
| return; |
| |
| // If any of the demanded bits are produced by the sign extension, we also |
| // demand the input sign bit. |
| APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); |
| |
| ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); |
| assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| KnownZero = KnownZero.lshr(ShAmt); |
| KnownOne = KnownOne.lshr(ShAmt); |
| |
| // Handle the sign bits. |
| APInt SignBit = APInt::getSignBit(BitWidth); |
| SignBit = SignBit.lshr(ShAmt); // Adjust to where it is now in the mask. |
| |
| if (KnownZero.intersects(SignBit)) { |
| KnownZero |= HighBits; // New bits are known zero. |
| } else if (KnownOne.intersects(SignBit)) { |
| KnownOne |= HighBits; // New bits are known one. |
| } |
| } |
| return; |
| case ISD::SIGN_EXTEND_INREG: { |
| EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); |
| unsigned EBits = EVT.getScalarType().getSizeInBits(); |
| |
| // Sign extension. Compute the demanded bits in the result that are not |
| // present in the input. |
| APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); |
| |
| APInt InSignBit = APInt::getSignBit(EBits); |
| APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); |
| |
| // If the sign extended bits are demanded, we know that the sign |
| // bit is demanded. |
| InSignBit = InSignBit.zext(BitWidth); |
| if (NewBits.getBoolValue()) |
| InputDemandedBits |= InSignBit; |
| |
| ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); |
| KnownOne &= InputDemandedBits; |
| KnownZero &= InputDemandedBits; |
| assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| |
| // If the sign bit of the input is known set or clear, then we know the |
| // top bits of the result. |
| if (KnownZero.intersects(InSignBit)) { // Input sign bit known clear |
| KnownZero |= NewBits; |
| KnownOne &= ~NewBits; |
| } else if (KnownOne.intersects(InSignBit)) { // Input sign bit known set |
| KnownOne |= NewBits; |
| KnownZero &= ~NewBits; |
| } else { // Input sign bit unknown |
| KnownZero &= ~NewBits; |
| KnownOne &= ~NewBits; |
| } |
| return; |
| } |
| case ISD::CTTZ: |
| case ISD::CTTZ_ZERO_UNDEF: |
| case ISD::CTLZ: |
| case ISD::CTLZ_ZERO_UNDEF: |
| case ISD::CTPOP: { |
| unsigned LowBits = Log2_32(BitWidth)+1; |
| KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); |
| KnownOne.clearAllBits(); |
| return; |
| } |
| case ISD::LOAD: { |
| LoadSDNode *LD = cast<LoadSDNode>(Op); |
| if (ISD::isZEXTLoad(Op.getNode())) { |
| EVT VT = LD->getMemoryVT(); |
| unsigned MemBits = VT.getScalarType().getSizeInBits(); |
| KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits); |
| } else if (const MDNode *Ranges = LD->getRanges()) { |
| computeMaskedBitsLoad(*Ranges, KnownZero); |
| } |
| return; |
| } |
| case ISD::ZERO_EXTEND: { |
| EVT InVT = Op.getOperand(0).getValueType(); |
| unsigned InBits = InVT.getScalarType().getSizeInBits(); |
| APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits); |
| KnownZero = KnownZero.trunc(InBits); |
| KnownOne = KnownOne.trunc(InBits); |
| ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); |
| KnownZero = KnownZero.zext(BitWidth); |
| KnownOne = KnownOne.zext(BitWidth); |
| KnownZero |= NewBits; |
| return; |
| } |
| case ISD::SIGN_EXTEND: { |
| EVT InVT = Op.getOperand(0).getValueType(); |
| unsigned InBits = InVT.getScalarType().getSizeInBits(); |
| APInt InSignBit = APInt::getSignBit(InBits); |
| APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits); |
| |
| KnownZero = KnownZero.trunc(InBits); |
| KnownOne = KnownOne.trunc(InBits); |
| ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); |
| |
| // Note if the sign bit is known to be zero or one. |
| bool SignBitKnownZero = KnownZero.isNegative(); |
| bool SignBitKnownOne = KnownOne.isNegative(); |
| assert(!(SignBitKnownZero && SignBitKnownOne) && |
| "Sign bit can't be known to be both zero and one!"); |
| |
| KnownZero = KnownZero.zext(BitWidth); |
| KnownOne = KnownOne.zext(BitWidth); |
| |
| // If the sign bit is known zero or one, the top bits match. |
| if (SignBitKnownZero) |
| KnownZero |= NewBits; |
| else if (SignBitKnownOne) |
| KnownOne |= NewBits; |
| return; |
| } |
| case ISD::ANY_EXTEND: { |
| EVT InVT = Op.getOperand(0).getValueType(); |
| unsigned InBits = InVT.getScalarType().getSizeInBits(); |
| KnownZero = KnownZero.trunc(InBits); |
| KnownOne = KnownOne.trunc(InBits); |
| ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); |
| KnownZero = KnownZero.zext(BitWidth); |
| KnownOne = KnownOne.zext(BitWidth); |
| return; |
| } |
| case ISD::TRUNCATE: { |
| EVT InVT = Op.getOperand(0).getValueType(); |
| unsigned InBits = InVT.getScalarType().getSizeInBits(); |
| KnownZero = KnownZero.zext(InBits); |
| KnownOne = KnownOne.zext(InBits); |
| ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); |
| assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| KnownZero = KnownZero.trunc(BitWidth); |
| KnownOne = KnownOne.trunc(BitWidth); |
| break; |
| } |
| case ISD::AssertZext: { |
| EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); |
| APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); |
| ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); |
| KnownZero |= (~InMask); |
| KnownOne &= (~KnownZero); |
| return; |
| } |
| case ISD::FGETSIGN: |
| // All bits are zero except the low bit. |
| KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1); |
| return; |
| |
| case ISD::SUB: { |
| if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) { |
| // We know that the top bits of C-X are clear if X contains less bits |
| // than C (i.e. no wrap-around can happen). For example, 20-X is |
| // positive if we can prove that X is >= 0 and < 16. |
| if (CLHS->getAPIntValue().isNonNegative()) { |
| unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros(); |
| // NLZ can't be BitWidth with no sign bit |
| APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); |
| ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1); |
| |
| // If all of the MaskV bits are known to be zero, then we know the |
| // output top bits are zero, because we now know that the output is |
| // from [0-C]. |
| if ((KnownZero2 & MaskV) == MaskV) { |
| unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros(); |
| // Top bits known zero. |
| KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); |
| } |
| } |
| } |
| } |
| // fall through |
| case ISD::ADD: |
| case ISD::ADDE: { |
| // Output known-0 bits are known if clear or set in both the low clear bits |
| // common to both LHS & RHS. For example, 8+(X<<3) is known to have the |
| // low 3 bits clear. |
| ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); |
| assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| unsigned KnownZeroOut = KnownZero2.countTrailingOnes(); |
| |
| ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1); |
| assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| KnownZeroOut = std::min(KnownZeroOut, |
| KnownZero2.countTrailingOnes()); |
| |
| if (Op.getOpcode() == ISD::ADD) { |
| KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut); |
| return; |
| } |
| |
| // With ADDE, a carry bit may be added in, so we can only use this |
| // information if we know (at least) that the low two bits are clear. We |
| // then return to the caller that the low bit is unknown but that other bits |
| // are known zero. |
| if (KnownZeroOut >= 2) // ADDE |
| KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroOut); |
| return; |
| } |
| case ISD::SREM: |
| if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| const APInt &RA = Rem->getAPIntValue().abs(); |
| if (RA.isPowerOf2()) { |
| APInt LowBits = RA - 1; |
| APInt Mask2 = LowBits | APInt::getSignBit(BitWidth); |
| ComputeMaskedBits(Op.getOperand(0), KnownZero2,KnownOne2,Depth+1); |
| |
| // The low bits of the first operand are unchanged by the srem. |
| KnownZero = KnownZero2 & LowBits; |
| KnownOne = KnownOne2 & LowBits; |
| |
| // If the first operand is non-negative or has all low bits zero, then |
| // the upper bits are all zero. |
| if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) |
| KnownZero |= ~LowBits; |
| |
| // If the first operand is negative and not all low bits are zero, then |
| // the upper bits are all one. |
| if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) |
| KnownOne |= ~LowBits; |
| assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); |
| } |
| } |
| return; |
| case ISD::UREM: { |
| if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| const APInt &RA = Rem->getAPIntValue(); |
| if (RA.isPowerOf2()) { |
| APInt LowBits = (RA - 1); |
| KnownZero |= ~LowBits; |
| ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne,Depth+1); |
| assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); |
| break; |
| } |
| } |
| |
| // Since the result is less than or equal to either operand, any leading |
| // zero bits in either operand must also exist in the result. |
| ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); |
| ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1); |
| |
| uint32_t Leaders = std::max(KnownZero.countLeadingOnes(), |
| KnownZero2.countLeadingOnes()); |
| KnownOne.clearAllBits(); |
| KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); |
| return; |
| } |
| case ISD::FrameIndex: |
| case ISD::TargetFrameIndex: |
| if (unsigned Align = InferPtrAlignment(Op)) { |
| // The low bits are known zero if the pointer is aligned. |
| KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align)); |
| return; |
| } |
| break; |
| |
| default: |
| if (Op.getOpcode() < ISD::BUILTIN_OP_END) |
| break; |
| // Fallthrough |
| case ISD::INTRINSIC_WO_CHAIN: |
| case ISD::INTRINSIC_W_CHAIN: |
| case ISD::INTRINSIC_VOID: |
| // Allow the target to implement this method for its nodes. |
| TLI.computeMaskedBitsForTargetNode(Op, KnownZero, KnownOne, *this, Depth); |
| return; |
| } |
| } |
| |
| /// ComputeNumSignBits - Return the number of times the sign bit of the |
| /// register is replicated into the other bits. We know that at least 1 bit |
| /// is always equal to the sign bit (itself), but other cases can give us |
| /// information. For example, immediately after an "SRA X, 2", we know that |
| /// the top 3 bits are all equal to each other, so we return 3. |
| unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{ |
| EVT VT = Op.getValueType(); |
| assert(VT.isInteger() && "Invalid VT!"); |
| unsigned VTBits = VT.getScalarType().getSizeInBits(); |
| unsigned Tmp, Tmp2; |
| unsigned FirstAnswer = 1; |
| |
| if (Depth == 6) |
| return 1; // Limit search depth. |
| |
| switch (Op.getOpcode()) { |
| default: break; |
| case ISD::AssertSext: |
| Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); |
| return VTBits-Tmp+1; |
| case ISD::AssertZext: |
| Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); |
| return VTBits-Tmp; |
| |
| case ISD::Constant: { |
| const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue(); |
| return Val.getNumSignBits(); |
| } |
| |
| case ISD::SIGN_EXTEND: |
| Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); |
| return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp; |
| |
| case ISD::SIGN_EXTEND_INREG: |
| // Max of the input and what this extends. |
| Tmp = |
| cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits(); |
| Tmp = VTBits-Tmp+1; |
| |
| Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| return std::max(Tmp, Tmp2); |
| |
| case ISD::SRA: |
| Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| // SRA X, C -> adds C sign bits. |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| Tmp += C->getZExtValue(); |
| if (Tmp > VTBits) Tmp = VTBits; |
| } |
| return Tmp; |
| case ISD::SHL: |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| // shl destroys sign bits. |
| Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| if (C->getZExtValue() >= VTBits || // Bad shift. |
| C->getZExtValue() >= Tmp) break; // Shifted all sign bits out. |
| return Tmp - C->getZExtValue(); |
| } |
| break; |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: // NOT is handled here. |
| // Logical binary ops preserve the number of sign bits at the worst. |
| Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| if (Tmp != 1) { |
| Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); |
| FirstAnswer = std::min(Tmp, Tmp2); |
| // We computed what we know about the sign bits as our first |
| // answer. Now proceed to the generic code that uses |
| // ComputeMaskedBits, and pick whichever answer is better. |
| } |
| break; |
| |
| case ISD::SELECT: |
| Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1); |
| if (Tmp == 1) return 1; // Early out. |
| Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1); |
| return std::min(Tmp, Tmp2); |
| |
| case ISD::SADDO: |
| case ISD::UADDO: |
| case ISD::SSUBO: |
| case ISD::USUBO: |
| case ISD::SMULO: |
| case ISD::UMULO: |
| if (Op.getResNo() != 1) |
| break; |
| // The boolean result conforms to getBooleanContents. Fall through. |
| case ISD::SETCC: |
| // If setcc returns 0/-1, all bits are sign bits. |
| if (TLI.getBooleanContents(Op.getValueType().isVector()) == |
| TargetLowering::ZeroOrNegativeOneBooleanContent) |
| return VTBits; |
| break; |
| case ISD::ROTL: |
| case ISD::ROTR: |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| unsigned RotAmt = C->getZExtValue() & (VTBits-1); |
| |
| // Handle rotate right by N like a rotate left by 32-N. |
| if (Op.getOpcode() == ISD::ROTR) |
| RotAmt = (VTBits-RotAmt) & (VTBits-1); |
| |
| // If we aren't rotating out all of the known-in sign bits, return the |
| // number that are left. This handles rotl(sext(x), 1) for example. |
| Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| if (Tmp > RotAmt+1) return Tmp-RotAmt; |
| } |
| break; |
| case ISD::ADD: |
| // Add can have at most one carry bit. Thus we know that the output |
| // is, at worst, one more bit than the inputs. |
| Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| if (Tmp == 1) return 1; // Early out. |
| |
| // Special case decrementing a value (ADD X, -1): |
| if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) |
| if (CRHS->isAllOnesValue()) { |
| APInt KnownZero, KnownOne; |
| ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); |
| |
| // If the input is known to be 0 or 1, the output is 0/-1, which is all |
| // sign bits set. |
| if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue()) |
| return VTBits; |
| |
| // If we are subtracting one from a positive number, there is no carry |
| // out of the result. |
| if (KnownZero.isNegative()) |
| return Tmp; |
| } |
| |
| Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); |
| if (Tmp2 == 1) return 1; |
| return std::min(Tmp, Tmp2)-1; |
| |
| case ISD::SUB: |
| Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); |
| if (Tmp2 == 1) return 1; |
| |
| // Handle NEG. |
| if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) |
| if (CLHS->isNullValue()) { |
| APInt KnownZero, KnownOne; |
| ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1); |
| // If the input is known to be 0 or 1, the output is 0/-1, which is all |
| // sign bits set. |
| if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue()) |
| return VTBits; |
| |
| // If the input is known to be positive (the sign bit is known clear), |
| // the output of the NEG has the same number of sign bits as the input. |
| if (KnownZero.isNegative()) |
| return Tmp2; |
| |
| // Otherwise, we treat this like a SUB. |
| } |
| |
| // Sub can have at most one carry bit. Thus we know that the output |
| // is, at worst, one more bit than the inputs. |
| Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| if (Tmp == 1) return 1; // Early out. |
| return std::min(Tmp, Tmp2)-1; |
| case ISD::TRUNCATE: |
| // FIXME: it's tricky to do anything useful for this, but it is an important |
| // case for targets like X86. |
| break; |
| } |
| |
| // Handle LOADX separately here. EXTLOAD case will fallthrough. |
| if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { |
| unsigned ExtType = LD->getExtensionType(); |
| switch (ExtType) { |
| default: break; |
| case ISD::SEXTLOAD: // '17' bits known |
| Tmp = LD->getMemoryVT().getScalarType().getSizeInBits(); |
| return VTBits-Tmp+1; |
| case ISD::ZEXTLOAD: // '16' bits known |
| Tmp = LD->getMemoryVT().getScalarType().getSizeInBits(); |
| return VTBits-Tmp; |
| } |
| } |
| |
| // Allow the target to implement this method for its nodes. |
| if (Op.getOpcode() >= ISD::BUILTIN_OP_END || |
| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
| Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || |
| Op.getOpcode() == ISD::INTRINSIC_VOID) { |
| unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth); |
| if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits); |
| } |
| |
| // Finally, if we can prove that the top bits of the result are 0's or 1's, |
| // use this information. |
| APInt KnownZero, KnownOne; |
| ComputeMaskedBits(Op, KnownZero, KnownOne, Depth); |
| |
| APInt Mask; |
| if (KnownZero.isNegative()) { // sign bit is 0 |
| Mask = KnownZero; |
| } else if (KnownOne.isNegative()) { // sign bit is 1; |
| Mask = KnownOne; |
| } else { |
| // Nothing known. |
| return FirstAnswer; |
| } |
| |
| // Okay, we know that the sign bit in Mask is set. Use CLZ to determine |
| // the number of identical bits in the top of the input value. |
| Mask = ~Mask; |
| Mask <<= Mask.getBitWidth()-VTBits; |
| // Return # leading zeros. We use 'min' here in case Val was zero before |
| // shifting. We don't want to return '64' as for an i32 "0". |
| return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros())); |
| } |
| |
| /// isBaseWithConstantOffset - Return true if the specified operand is an |
| /// ISD::ADD with a ConstantSDNode on the right-hand side, or if it is an |
| /// ISD::OR with a ConstantSDNode that is guaranteed to have the same |
| /// semantics as an ADD. This handles the equivalence: |
| /// X|Cst == X+Cst iff X&Cst = 0. |
| bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { |
| if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || |
| !isa<ConstantSDNode>(Op.getOperand(1))) |
| return false; |
| |
| if (Op.getOpcode() == ISD::OR && |
| !MaskedValueIsZero(Op.getOperand(0), |
| cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue())) |
| return false; |
| |
| return true; |
| } |
| |
| |
| bool SelectionDAG::isKnownNeverNaN(SDValue Op) const { |
| // If we're told that NaNs won't happen, assume they won't. |
| if (getTarget().Options.NoNaNsFPMath) |
| return true; |
| |
| // If the value is a constant, we can obviously see if it is a NaN or not. |
| if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) |
| return !C->getValueAPF().isNaN(); |
| |
| // TODO: Recognize more cases here. |
| |
| return false; |
| } |
| |
| bool SelectionDAG::isKnownNeverZero(SDValue Op) const { |
| // If the value is a constant, we can obviously see if it is a zero or not. |
| if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) |
| return !C->isZero(); |
| |
| // TODO: Recognize more cases here. |
| switch (Op.getOpcode()) { |
| default: break; |
| case ISD::OR: |
| if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) |
| return !C->isNullValue(); |
| break; |
| } |
| |
| return false; |
| } |
| |
| bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { |
| // Check the obvious case. |
| if (A == B) return true; |
| |
| // For for negative and positive zero. |
| if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) |
| if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) |
| if (CA->isZero() && CB->isZero()) return true; |
| |
| // Otherwise they may not be equal. |
| return false; |
| } |
| |
| /// getNode - Gets or creates the specified node. |
| /// |
| SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT)); |
| CSEMap.InsertNode(N, IP); |
| |
| AllNodes.push_back(N); |
| #ifndef NDEBUG |
| VerifySDNode(N); |
| #endif |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, |
| EVT VT, SDValue Operand) { |
| // Constant fold unary operations with an integer constant operand. |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) { |
| const APInt &Val = C->getAPIntValue(); |
| switch (Opcode) { |
| default: break; |
| case ISD::SIGN_EXTEND: |
| return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), VT); |
| case ISD::ANY_EXTEND: |
| case ISD::ZERO_EXTEND: |
| case ISD::TRUNCATE: |
| return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), VT); |
| case ISD::UINT_TO_FP: |
| case ISD::SINT_TO_FP: { |
| APFloat apf(EVTToAPFloatSemantics(VT), |
| APInt::getNullValue(VT.getSizeInBits())); |
| (void)apf.convertFromAPInt(Val, |
| Opcode==ISD::SINT_TO_FP, |
| APFloat::rmNearestTiesToEven); |
| return getConstantFP(apf, VT); |
| } |
| case ISD::BITCAST: |
| if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) |
| return getConstantFP(APFloat(APFloat::IEEEsingle, Val), VT); |
| else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) |
| return getConstantFP(APFloat(APFloat::IEEEdouble, Val), VT); |
| break; |
| case ISD::BSWAP: |
| return getConstant(Val.byteSwap(), VT); |
| case ISD::CTPOP: |
| return getConstant(Val.countPopulation(), VT); |
| case ISD::CTLZ: |
| case ISD::CTLZ_ZERO_UNDEF: |
| return getConstant(Val.countLeadingZeros(), VT); |
| case ISD::CTTZ: |
| case ISD::CTTZ_ZERO_UNDEF: |
| return getConstant(Val.countTrailingZeros(), VT); |
| } |
| } |
| |
| // Constant fold unary operations with a floating point constant operand. |
| if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) { |
| APFloat V = C->getValueAPF(); // make copy |
| switch (Opcode) { |
| case ISD::FNEG: |
| V.changeSign(); |
| return getConstantFP(V, VT); |
| case ISD::FABS: |
| V.clearSign(); |
| return getConstantFP(V, VT); |
| case ISD::FCEIL: { |
| APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); |
| if (fs == APFloat::opOK || fs == APFloat::opInexact) |
| return getConstantFP(V, VT); |
| break; |
| } |
| case ISD::FTRUNC: { |
| APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); |
| if (fs == APFloat::opOK || fs == APFloat::opInexact) |
| return getConstantFP(V, VT); |
| break; |
| } |
| case ISD::FFLOOR: { |
| APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); |
| if (fs == APFloat::opOK || fs == APFloat::opInexact) |
| return getConstantFP(V, VT); |
| break; |
| } |
| case ISD::FP_EXTEND: { |
| bool ignored; |
| // This can return overflow, underflow, or inexact; we don't care. |
| // FIXME need to be more flexible about rounding mode. |
| (void)V.convert(EVTToAPFloatSemantics(VT), |
| APFloat::rmNearestTiesToEven, &ignored); |
| return getConstantFP(V, VT); |
| } |
| case ISD::FP_TO_SINT: |
| case ISD::FP_TO_UINT: { |
| integerPart x[2]; |
| bool ignored; |
| assert(integerPartWidth >= 64); |
| // FIXME need to be more flexible about rounding mode. |
| APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(), |
| Opcode==ISD::FP_TO_SINT, |
| APFloat::rmTowardZero, &ignored); |
| if (s==APFloat::opInvalidOp) // inexact is OK, in fact usual |
| break; |
| APInt api(VT.getSizeInBits(), x); |
| return getConstant(api, VT); |
| } |
| case ISD::BITCAST: |
| if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) |
| return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT); |
| else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) |
| return getConstant(V.bitcastToAPInt().getZExtValue(), VT); |
| break; |
| } |
| } |
| |
| unsigned OpOpcode = Operand.getNode()->getOpcode(); |
| switch (Opcode) { |
| case ISD::TokenFactor: |
| case ISD::MERGE_VALUES: |
| case ISD::CONCAT_VECTORS: |
| return Operand; // Factor, merge or concat of one node? No need. |
| case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); |
| case ISD::FP_EXTEND: |
| assert(VT.isFloatingPoint() && |
| Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); |
| if (Operand.getValueType() == VT) return Operand; // noop conversion. |
| assert((!VT.isVector() || |
| VT.getVectorNumElements() == |
| Operand.getValueType().getVectorNumElements()) && |
| "Vector element count mismatch!"); |
| if (Operand.getOpcode() == ISD::UNDEF) |
| return getUNDEF(VT); |
| break; |
| case ISD::SIGN_EXTEND: |
| assert(VT.isInteger() && Operand.getValueType().isInteger() && |
| "Invalid SIGN_EXTEND!"); |
| if (Operand.getValueType() == VT) return Operand; // noop extension |
| assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) && |
| "Invalid sext node, dst < src!"); |
| assert((!VT.isVector() || |
| VT.getVectorNumElements() == |
| Operand.getValueType().getVectorNumElements()) && |
| "Vector element count mismatch!"); |
| if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) |
| return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0)); |
| else if (OpOpcode == ISD::UNDEF) |
| // sext(undef) = 0, because the top bits will all be the same. |
| return getConstant(0, VT); |
| break; |
| case ISD::ZERO_EXTEND: |
| assert(VT.isInteger() && Operand.getValueType().isInteger() && |
| "Invalid ZERO_EXTEND!"); |
| if (Operand.getValueType() == VT) return Operand; // noop extension |
| assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) && |
| "Invalid zext node, dst < src!"); |
| assert((!VT.isVector() || |
| VT.getVectorNumElements() == |
| Operand.getValueType().getVectorNumElements()) && |
| "Vector element count mismatch!"); |
| if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) |
| return getNode(ISD::ZERO_EXTEND, DL, VT, |
| Operand.getNode()->getOperand(0)); |
| else if (OpOpcode == ISD::UNDEF) |
| // zext(undef) = 0, because the top bits will be zero. |
| return getConstant(0, VT); |
| break; |
| case ISD::ANY_EXTEND: |
| assert(VT.isInteger() && Operand.getValueType().isInteger() && |
| "Invalid ANY_EXTEND!"); |
| if (Operand.getValueType() == VT) return Operand; // noop extension |
| assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) && |
| "Invalid anyext node, dst < src!"); |
| assert((!VT.isVector() || |
| VT.getVectorNumElements() == |
| Operand.getValueType().getVectorNumElements()) && |
| "Vector element count mismatch!"); |
| |
| if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || |
| OpOpcode == ISD::ANY_EXTEND) |
| // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) |
| return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0)); |
| else if (OpOpcode == ISD::UNDEF) |
| return getUNDEF(VT); |
| |
| // (ext (trunx x)) -> x |
| if (OpOpcode == ISD::TRUNCATE) { |
| SDValue OpOp = Operand.getNode()->getOperand(0); |
| if (OpOp.getValueType() == VT) |
| return OpOp; |
| } |
| break; |
| case ISD::TRUNCATE: |
| assert(VT.isInteger() && Operand.getValueType().isInteger() && |
| "Invalid TRUNCATE!"); |
| if (Operand.getValueType() == VT) return Operand; // noop truncate |
| assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) && |
| "Invalid truncate node, src < dst!"); |
| assert((!VT.isVector() || |
| VT.getVectorNumElements() == |
| Operand.getValueType().getVectorNumElements()) && |
| "Vector element count mismatch!"); |
| if (OpOpcode == ISD::TRUNCATE) |
| return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0)); |
| if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || |
| OpOpcode == ISD::ANY_EXTEND) { |
| // If the source is smaller than the dest, we still need an extend. |
| if (Operand.getNode()->getOperand(0).getValueType().getScalarType() |
| .bitsLT(VT.getScalarType())) |
| return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0)); |
| if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT)) |
| return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0)); |
| return Operand.getNode()->getOperand(0); |
| } |
| if (OpOpcode == ISD::UNDEF) |
| return getUNDEF(VT); |
| break; |
| case ISD::BITCAST: |
| // Basic sanity checking. |
| assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits() |
| && "Cannot BITCAST between types of different sizes!"); |
| if (VT == Operand.getValueType()) return Operand; // noop conversion. |
| if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) |
| return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); |
| if (OpOpcode == ISD::UNDEF) |
| return getUNDEF(VT); |
| break; |
| case ISD::SCALAR_TO_VECTOR: |
| assert(VT.isVector() && !Operand.getValueType().isVector() && |
| (VT.getVectorElementType() == Operand.getValueType() || |
| (VT.getVectorElementType().isInteger() && |
| Operand.getValueType().isInteger() && |
| VT.getVectorElementType().bitsLE(Operand.getValueType()))) && |
| "Illegal SCALAR_TO_VECTOR node!"); |
| if (OpOpcode == ISD::UNDEF) |
| return getUNDEF(VT); |
| // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. |
| if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && |
| isa<ConstantSDNode>(Operand.getOperand(1)) && |
| Operand.getConstantOperandVal(1) == 0 && |
| Operand.getOperand(0).getValueType() == VT) |
| return Operand.getOperand(0); |
| break; |
| case ISD::FNEG: |
| // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 |
| if (getTarget().Options.UnsafeFPMath && OpOpcode == ISD::FSUB) |
| return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1), |
| Operand.getNode()->getOperand(0)); |
| if (OpOpcode == ISD::FNEG) // --X -> X |
| return Operand.getNode()->getOperand(0); |
| break; |
| case ISD::FABS: |
| if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) |
| return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0)); |
| break; |
| } |
| |
| SDNode *N; |
| SDVTList VTs = getVTList(VT); |
| if (VT != MVT::Glue) { // Don't CSE flag producing nodes |
| FoldingSetNodeID ID; |
| SDValue Ops[1] = { Operand }; |
| AddNodeIDNode(ID, Opcode, VTs, Ops, 1); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand); |
| CSEMap.InsertNode(N, IP); |
| } else { |
| N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand); |
| } |
| |
| AllNodes.push_back(N); |
| #ifndef NDEBUG |
| VerifySDNode(N); |
| #endif |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, EVT VT, |
| SDNode *Cst1, SDNode *Cst2) { |
| SmallVector<std::pair<ConstantSDNode *, ConstantSDNode *>, 4> Inputs; |
| SmallVector<SDValue, 4> Outputs; |
| EVT SVT = VT.getScalarType(); |
| |
| ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1); |
| ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2); |
| if (Scalar1 && Scalar2) { |
| // Scalar instruction. |
| Inputs.push_back(std::make_pair(Scalar1, Scalar2)); |
| } else { |
| // For vectors extract each constant element into Inputs so we can constant |
| // fold them individually. |
| BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1); |
| BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2); |
| if (!BV1 || !BV2) |
| return SDValue(); |
| |
| assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!"); |
| |
| for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) { |
| ConstantSDNode *V1 = dyn_cast<ConstantSDNode>(BV1->getOperand(I)); |
| ConstantSDNode *V2 = dyn_cast<ConstantSDNode>(BV2->getOperand(I)); |
| if (!V1 || !V2) // Not a constant, bail. |
| return SDValue(); |
| |
| // Avoid BUILD_VECTOR nodes that perform implicit truncation. |
| // FIXME: This is valid and could be handled by truncating the APInts. |
| if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) |
| return SDValue(); |
| |
| Inputs.push_back(std::make_pair(V1, V2)); |
| } |
| } |
| |
| // We have a number of constant values, constant fold them element by element. |
| for (unsigned I = 0, E = Inputs.size(); I != E; ++I) { |
| const APInt &C1 = Inputs[I].first->getAPIntValue(); |
| const APInt &C2 = Inputs[I].second->getAPIntValue(); |
| |
| switch (Opcode) { |
| case ISD::ADD: |
| Outputs.push_back(getConstant(C1 + C2, SVT)); |
| break; |
| case ISD::SUB: |
| Outputs.push_back(getConstant(C1 - C2, SVT)); |
| break; |
| case ISD::MUL: |
| Outputs.push_back(getConstant(C1 * C2, SVT)); |
| break; |
| case ISD::UDIV: |
| if (!C2.getBoolValue()) |
| return SDValue(); |
| Outputs.push_back(getConstant(C1.udiv(C2), SVT)); |
| break; |
| case ISD::UREM: |
| if (!C2.getBoolValue()) |
| return SDValue(); |
| Outputs.push_back(getConstant(C1.urem(C2), SVT)); |
| break; |
| case ISD::SDIV: |
| if (!C2.getBoolValue()) |
| return SDValue(); |
| Outputs.push_back(getConstant(C1.sdiv(C2), SVT)); |
| break; |
| case ISD::SREM: |
| if (!C2.getBoolValue()) |
| return SDValue(); |
| Outputs.push_back(getConstant(C1.srem(C2), SVT)); |
| break; |
| case ISD::AND: |
| Outputs.push_back(getConstant(C1 & C2, SVT)); |
| break; |
| case ISD::OR: |
| Outputs.push_back(getConstant(C1 | C2, SVT)); |
| break; |
| case ISD::XOR: |
| Outputs.push_back(getConstant(C1 ^ C2, SVT)); |
| break; |
| case ISD::SHL: |
| Outputs.push_back(getConstant(C1 << C2, SVT)); |
| break; |
| case ISD::SRL: |
| Outputs.push_back(getConstant(C1.lshr(C2), SVT)); |
| break; |
| case ISD::SRA: |
| Outputs.push_back(getConstant(C1.ashr(C2), SVT)); |
| break; |
| case ISD::ROTL: |
| Outputs.push_back(getConstant(C1.rotl(C2), SVT)); |
| break; |
| case ISD::ROTR: |
| Outputs.push_back(getConstant(C1.rotr(C2), SVT)); |
| break; |
| default: |
| return SDValue(); |
| } |
| } |
| |
| // Handle the scalar case first. |
| if (Outputs.size() == 1) |
| return Outputs.back(); |
| |
| // Otherwise build a big vector out of the scalar elements we generated. |
| return getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, Outputs.data(), |
| Outputs.size()); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT, SDValue N1, |
| SDValue N2) { |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); |
| ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); |
| switch (Opcode) { |
| default: break; |
| case ISD::TokenFactor: |
| assert(VT == MVT::Other && N1.getValueType() == MVT::Other && |
| N2.getValueType() == MVT::Other && "Invalid token factor!"); |
| // Fold trivial token factors. |
| if (N1.getOpcode() == ISD::EntryToken) return N2; |
| if (N2.getOpcode() == ISD::EntryToken) return N1; |
| if (N1 == N2) return N1; |
| break; |
| case ISD::CONCAT_VECTORS: |
| // Concat of UNDEFs is UNDEF. |
| if (N1.getOpcode() == ISD::UNDEF && |
| N2.getOpcode() == ISD::UNDEF) |
| return getUNDEF(VT); |
| |
| // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to |
| // one big BUILD_VECTOR. |
| if (N1.getOpcode() == ISD::BUILD_VECTOR && |
| N2.getOpcode() == ISD::BUILD_VECTOR) { |
| SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), |
| N1.getNode()->op_end()); |
| Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end()); |
| return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size()); |
| } |
| break; |
| case ISD::AND: |
| assert(VT.isInteger() && "This operator does not apply to FP types!"); |
| assert(N1.getValueType() == N2.getValueType() && |
| N1.getValueType() == VT && "Binary operator types must match!"); |
| // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's |
| // worth handling here. |
| if (N2C && N2C->isNullValue()) |
| return N2; |
| if (N2C && N2C->isAllOnesValue()) // X & -1 -> X |
| return N1; |
| break; |
| case ISD::OR: |
| case ISD::XOR: |
| case ISD::ADD: |
| case ISD::SUB: |
| assert(VT.isInteger() && "This operator does not apply to FP types!"); |
| assert(N1.getValueType() == N2.getValueType() && |
| N1.getValueType() == VT && "Binary operator types must match!"); |
| // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so |
| // it's worth handling here. |
| if (N2C && N2C->isNullValue()) |
| return N1; |
| break; |
| case ISD::UDIV: |
| case ISD::UREM: |
| case ISD::MULHU: |
| case ISD::MULHS: |
| case ISD::MUL: |
| case ISD::SDIV: |
| case ISD::SREM: |
| assert(VT.isInteger() && "This operator does not apply to FP types!"); |
| assert(N1.getValueType() == N2.getValueType() && |
| N1.getValueType() == VT && "Binary operator types must match!"); |
| break; |
| case ISD::FADD: |
| case ISD::FSUB: |
| case ISD::FMUL: |
| case ISD::FDIV: |
| case ISD::FREM: |
| if (getTarget().Options.UnsafeFPMath) { |
| if (Opcode == ISD::FADD) { |
| // 0+x --> x |
| if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) |
| if (CFP->getValueAPF().isZero()) |
| return N2; |
| // x+0 --> x |
| if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2)) |
| if (CFP->getValueAPF().isZero()) |
| return N1; |
| } else if (Opcode == ISD::FSUB) { |
| // x-0 --> x |
| if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2)) |
| if (CFP->getValueAPF().isZero()) |
| return N1; |
| } else if (Opcode == ISD::FMUL) { |
| ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1); |
| SDValue V = N2; |
| |
| // If the first operand isn't the constant, try the second |
| if (!CFP) { |
| CFP = dyn_cast<ConstantFPSDNode>(N2); |
| V = N1; |
| } |
| |
| if (CFP) { |
| // 0*x --> 0 |
| if (CFP->isZero()) |
| return SDValue(CFP,0); |
| // 1*x --> x |
| if (CFP->isExactlyValue(1.0)) |
| return V; |
| } |
| } |
| } |
| assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); |
| assert(N1.getValueType() == N2.getValueType() && |
| N1.getValueType() == VT && "Binary operator types must match!"); |
| break; |
| case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. |
| assert(N1.getValueType() == VT && |
| N1.getValueType().isFloatingPoint() && |
| N2.getValueType().isFloatingPoint() && |
| "Invalid FCOPYSIGN!"); |
| break; |
| case ISD::SHL: |
| case ISD::SRA: |
| case ISD::SRL: |
| case ISD::ROTL: |
| case ISD::ROTR: |
| assert(VT == N1.getValueType() && |
| "Shift operators return type must be the same as their first arg"); |
| assert(VT.isInteger() && N2.getValueType().isInteger() && |
| "Shifts only work on integers"); |
| // Verify that the shift amount VT is bit enough to hold valid shift |
| // amounts. This catches things like trying to shift an i1024 value by an |
| // i8, which is easy to fall into in generic code that uses |
| // TLI.getShiftAmount(). |
| assert(N2.getValueType().getSizeInBits() >= |
| Log2_32_Ceil(N1.getValueType().getSizeInBits()) && |
| "Invalid use of small shift amount with oversized value!"); |
| |
| // Always fold shifts of i1 values so the code generator doesn't need to |
| // handle them. Since we know the size of the shift has to be less than the |
| // size of the value, the shift/rotate count is guaranteed to be zero. |
| if (VT == MVT::i1) |
| return N1; |
| if (N2C && N2C->isNullValue()) |
| return N1; |
| break; |
| case ISD::FP_ROUND_INREG: { |
| EVT EVT = cast<VTSDNode>(N2)->getVT(); |
| assert(VT == N1.getValueType() && "Not an inreg round!"); |
| assert(VT.isFloatingPoint() && EVT.isFloatingPoint() && |
| "Cannot FP_ROUND_INREG integer types"); |
| assert(EVT.isVector() == VT.isVector() && |
| "FP_ROUND_INREG type should be vector iff the operand " |
| "type is vector!"); |
| assert((!EVT.isVector() || |
| EVT.getVectorNumElements() == VT.getVectorNumElements()) && |
| "Vector element counts must match in FP_ROUND_INREG"); |
| assert(EVT.bitsLE(VT) && "Not rounding down!"); |
| (void)EVT; |
| if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding. |
| break; |
| } |
| case ISD::FP_ROUND: |
| assert(VT.isFloatingPoint() && |
| N1.getValueType().isFloatingPoint() && |
| VT.bitsLE(N1.getValueType()) && |
| isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!"); |
| if (N1.getValueType() == VT) return N1; // noop conversion. |
| break; |
| case ISD::AssertSext: |
| case ISD::AssertZext: { |
| EVT EVT = cast<VTSDNode>(N2)->getVT(); |
| assert(VT == N1.getValueType() && "Not an inreg extend!"); |
| assert(VT.isInteger() && EVT.isInteger() && |
| "Cannot *_EXTEND_INREG FP types"); |
| assert(!EVT.isVector() && |
| "AssertSExt/AssertZExt type should be the vector element type " |
| "rather than the vector type!"); |
| assert(EVT.bitsLE(VT) && "Not extending!"); |
| if (VT == EVT) return N1; // noop assertion. |
| break; |
| } |
| case ISD::SIGN_EXTEND_INREG: { |
| EVT EVT = cast<VTSDNode>(N2)->getVT(); |
| assert(VT == N1.getValueType() && "Not an inreg extend!"); |
| assert(VT.isInteger() && EVT.isInteger() && |
| "Cannot *_EXTEND_INREG FP types"); |
| assert(EVT.isVector() == VT.isVector() && |
| "SIGN_EXTEND_INREG type should be vector iff the operand " |
| "type is vector!"); |
| assert((!EVT.isVector() || |
| EVT.getVectorNumElements() == VT.getVectorNumElements()) && |
| "Vector element counts must match in SIGN_EXTEND_INREG"); |
| assert(EVT.bitsLE(VT) && "Not extending!"); |
| if (EVT == VT) return N1; // Not actually extending |
| |
| if (N1C) { |
| APInt Val = N1C->getAPIntValue(); |
| unsigned FromBits = EVT.getScalarType().getSizeInBits(); |
| Val <<= Val.getBitWidth()-FromBits; |
| Val = Val.ashr(Val.getBitWidth()-FromBits); |
| return getConstant(Val, VT); |
| } |
| break; |
| } |
| case ISD::EXTRACT_VECTOR_ELT: |
| // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF. |
| if (N1.getOpcode() == ISD::UNDEF) |
| return getUNDEF(VT); |
| |
| // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is |
| // expanding copies of large vectors from registers. |
| if (N2C && |
| N1.getOpcode() == ISD::CONCAT_VECTORS && |
| N1.getNumOperands() > 0) { |
| unsigned Factor = |
| N1.getOperand(0).getValueType().getVectorNumElements(); |
| return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, |
| N1.getOperand(N2C->getZExtValue() / Factor), |
| getConstant(N2C->getZExtValue() % Factor, |
| N2.getValueType())); |
| } |
| |
| // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is |
| // expanding large vector constants. |
| if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) { |
| SDValue Elt = N1.getOperand(N2C->getZExtValue()); |
| |
| if (VT != Elt.getValueType()) |
| // If the vector element type is not legal, the BUILD_VECTOR operands |
| // are promoted and implicitly truncated, and the result implicitly |
| // extended. Make that explicit here. |
| Elt = getAnyExtOrTrunc(Elt, DL, VT); |
| |
| return Elt; |
| } |
| |
| // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector |
| // operations are lowered to scalars. |
| if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { |
| // If the indices are the same, return the inserted element else |
| // if the indices are known different, extract the element from |
| // the original vector. |
| SDValue N1Op2 = N1.getOperand(2); |
| ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode()); |
| |
| if (N1Op2C && N2C) { |
| if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { |
| if (VT == N1.getOperand(1).getValueType()) |
| return N1.getOperand(1); |
| else |
| return getSExtOrTrunc(N1.getOperand(1), DL, VT); |
| } |
| |
| return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); |
| } |
| } |
| break; |
| case ISD::EXTRACT_ELEMENT: |
| assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); |
| assert(!N1.getValueType().isVector() && !VT.isVector() && |
| (N1.getValueType().isInteger() == VT.isInteger()) && |
| N1.getValueType() != VT && |
| "Wrong types for EXTRACT_ELEMENT!"); |
| |
| // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding |
| // 64-bit integers into 32-bit parts. Instead of building the extract of |
| // the BUILD_PAIR, only to have legalize rip it apart, just do it now. |
| if (N1.getOpcode() == ISD::BUILD_PAIR) |
| return N1.getOperand(N2C->getZExtValue()); |
| |
| // EXTRACT_ELEMENT of a constant int is also very common. |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { |
| unsigned ElementSize = VT.getSizeInBits(); |
| unsigned Shift = ElementSize * N2C->getZExtValue(); |
| APInt ShiftedVal = C->getAPIntValue().lshr(Shift); |
| return getConstant(ShiftedVal.trunc(ElementSize), VT); |
| } |
| break; |
| case ISD::EXTRACT_SUBVECTOR: { |
| SDValue Index = N2; |
| if (VT.isSimple() && N1.getValueType().isSimple()) { |
| assert(VT.isVector() && N1.getValueType().isVector() && |
| "Extract subvector VTs must be a vectors!"); |
| assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType() && |
| "Extract subvector VTs must have the same element type!"); |
| assert(VT.getSimpleVT() <= N1.getValueType().getSimpleVT() && |
| "Extract subvector must be from larger vector to smaller vector!"); |
| |
| if (isa<ConstantSDNode>(Index.getNode())) { |
| assert((VT.getVectorNumElements() + |
| cast<ConstantSDNode>(Index.getNode())->getZExtValue() |
| <= N1.getValueType().getVectorNumElements()) |
| && "Extract subvector overflow!"); |
| } |
| |
| // Trivial extraction. |
| if (VT.getSimpleVT() == N1.getValueType().getSimpleVT()) |
| return N1; |
| } |
| break; |
| } |
| } |
| |
| // Perform trivial constant folding. |
| SDValue SV = FoldConstantArithmetic(Opcode, VT, N1.getNode(), N2.getNode()); |
| if (SV.getNode()) return SV; |
| |
| // Canonicalize constant to RHS if commutative. |
| if (N1C && !N2C && isCommutativeBinOp(Opcode)) { |
| std::swap(N1C, N2C); |
| std::swap(N1, N2); |
| } |
| |
| // Constant fold FP operations. |
| ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); |
| ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); |
| if (N1CFP) { |
| if (!N2CFP && isCommutativeBinOp(Opcode)) { |
| // Canonicalize constant to RHS if commutative. |
| std::swap(N1CFP, N2CFP); |
| std::swap(N1, N2); |
| } else if (N2CFP) { |
| APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF(); |
| APFloat::opStatus s; |
| switch (Opcode) { |
| case ISD::FADD: |
| s = V1.add(V2, APFloat::rmNearestTiesToEven); |
| if (s != APFloat::opInvalidOp) |
| return getConstantFP(V1, VT); |
| break; |
| case ISD::FSUB: |
| s = V1.subtract(V2, APFloat::rmNearestTiesToEven); |
| if (s!=APFloat::opInvalidOp) |
| return getConstantFP(V1, VT); |
| break; |
| case ISD::FMUL: |
| s = V1.multiply(V2, APFloat::rmNearestTiesToEven); |
| if (s!=APFloat::opInvalidOp) |
| return getConstantFP(V1, VT); |
| break; |
| case ISD::FDIV: |
| s = V1.divide(V2, APFloat::rmNearestTiesToEven); |
| if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero) |
| return getConstantFP(V1, VT); |
| break; |
| case ISD::FREM : |
| s = V1.mod(V2, APFloat::rmNearestTiesToEven); |
| if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero) |
| return getConstantFP(V1, VT); |
| break; |
| case ISD::FCOPYSIGN: |
| V1.copySign(V2); |
| return getConstantFP(V1, VT); |
| default: break; |
| } |
| } |
| |
| if (Opcode == ISD::FP_ROUND) { |
| APFloat V = N1CFP->getValueAPF(); // make copy |
| bool ignored; |
| // This can return overflow, underflow, or inexact; we don't care. |
| // FIXME need to be more flexible about rounding mode. |
| (void)V.convert(EVTToAPFloatSemantics(VT), |
| APFloat::rmNearestTiesToEven, &ignored); |
| return getConstantFP(V, VT); |
| } |
| } |
| |
| // Canonicalize an UNDEF to the RHS, even over a constant. |
| if (N1.getOpcode() == ISD::UNDEF) { |
| if (isCommutativeBinOp(Opcode)) { |
| std::swap(N1, N2); |
| } else { |
| switch (Opcode) { |
| case ISD::FP_ROUND_INREG: |
| case ISD::SIGN_EXTEND_INREG: |
| case ISD::SUB: |
| case ISD::FSUB: |
| case ISD::FDIV: |
| case ISD::FREM: |
| case ISD::SRA: |
| return N1; // fold op(undef, arg2) -> undef |
| case ISD::UDIV: |
| case ISD::SDIV: |
| case ISD::UREM: |
| case ISD::SREM: |
| case ISD::SRL: |
| case ISD::SHL: |
| if (!VT.isVector()) |
| return getConstant(0, VT); // fold op(undef, arg2) -> 0 |
| // For vectors, we can't easily build an all zero vector, just return |
| // the LHS. |
| return N2; |
| } |
| } |
| } |
| |
| // Fold a bunch of operators when the RHS is undef. |
| if (N2.getOpcode() == ISD::UNDEF) { |
| switch (Opcode) { |
| case ISD::XOR: |
| if (N1.getOpcode() == ISD::UNDEF) |
| // Handle undef ^ undef -> 0 special case. This is a common |
| // idiom (misuse). |
| return getConstant(0, VT); |
| // fallthrough |
| case ISD::ADD: |
| case ISD::ADDC: |
| case ISD::ADDE: |
| case ISD::SUB: |
| case ISD::UDIV: |
| case ISD::SDIV: |
| case ISD::UREM: |
| case ISD::SREM: |
| return N2; // fold op(arg1, undef) -> undef |
| case ISD::FADD: |
| case ISD::FSUB: |
| case ISD::FMUL: |
| case ISD::FDIV: |
| case ISD::FREM: |
| if (getTarget().Options.UnsafeFPMath) |
| return N2; |
| break; |
| case ISD::MUL: |
| case ISD::AND: |
| case ISD::SRL: |
| case ISD::SHL: |
| if (!VT.isVector()) |
| return getConstant(0, VT); // fold op(arg1, undef) -> 0 |
| // For vectors, we can't easily build an all zero vector, just return |
| // the LHS. |
| return N1; |
| case ISD::OR: |
| if (!VT.isVector()) |
| return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT); |
| // For vectors, we can't easily build an all one vector, just return |
| // the LHS. |
| return N1; |
| case ISD::SRA: |
| return N1; |
| } |
| } |
| |
| // Memoize this node if possible. |
| SDNode *N; |
| SDVTList VTs = getVTList(VT); |
| if (VT != MVT::Glue) { |
| SDValue Ops[] = { N1, N2 }; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opcode, VTs, Ops, 2); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2); |
| CSEMap.InsertNode(N, IP); |
| } else { |
| N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2); |
| } |
| |
| AllNodes.push_back(N); |
| #ifndef NDEBUG |
| VerifySDNode(N); |
| #endif |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT, |
| SDValue N1, SDValue N2, SDValue N3) { |
| // Perform various simplifications. |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); |
| switch (Opcode) { |
| case ISD::CONCAT_VECTORS: |
| // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to |
| // one big BUILD_VECTOR. |
| if (N1.getOpcode() == ISD::BUILD_VECTOR && |
| N2.getOpcode() == ISD::BUILD_VECTOR && |
| N3.getOpcode() == ISD::BUILD_VECTOR) { |
| SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), |
| N1.getNode()->op_end()); |
| Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end()); |
| Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end()); |
| return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size()); |
| } |
| break; |
| case ISD::SETCC: { |
| // Use FoldSetCC to simplify SETCC's. |
| SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL); |
| if (Simp.getNode()) return Simp; |
| break; |
| } |
| case ISD::SELECT: |
| if (N1C) { |
| if (N1C->getZExtValue()) |
| return N2; // select true, X, Y -> X |
| return N3; // select false, X, Y -> Y |
| } |
| |
| if (N2 == N3) return N2; // select C, X, X -> X |
| break; |
| case ISD::VECTOR_SHUFFLE: |
| llvm_unreachable("should use getVectorShuffle constructor!"); |
| case ISD::INSERT_SUBVECTOR: { |
| SDValue Index = N3; |
| if (VT.isSimple() && N1.getValueType().isSimple() |
| && N2.getValueType().isSimple()) { |
| assert(VT.isVector() && N1.getValueType().isVector() && |
| N2.getValueType().isVector() && |
| "Insert subvector VTs must be a vectors"); |
| assert(VT == N1.getValueType() && |
| "Dest and insert subvector source types must match!"); |
| assert(N2.getValueType().getSimpleVT() <= N1.getValueType().getSimpleVT() && |
| "Insert subvector must be from smaller vector to larger vector!"); |
| if (isa<ConstantSDNode>(Index.getNode())) { |
| assert((N2.getValueType().getVectorNumElements() + |
| cast<ConstantSDNode>(Index.getNode())->getZExtValue() |
| <= VT.getVectorNumElements()) |
| && "Insert subvector overflow!"); |
| } |
| |
| // Trivial insertion. |
| if (VT.getSimpleVT() == N2.getValueType().getSimpleVT()) |
| return N2; |
| } |
| break; |
| } |
| case ISD::BITCAST: |
| // Fold bit_convert nodes from a type to themselves. |
| if (N1.getValueType() == VT) |
| return N1; |
| break; |
| } |
| |
| // Memoize node if it doesn't produce a flag. |
| SDNode *N; |
| SDVTList VTs = getVTList(VT); |
| if (VT != MVT::Glue) { |
| SDValue Ops[] = { N1, N2, N3 }; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opcode, VTs, Ops, 3); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3); |
| CSEMap.InsertNode(N, IP); |
| } else { |
| N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3); |
| } |
| |
| AllNodes.push_back(N); |
| #ifndef NDEBUG |
| VerifySDNode(N); |
| #endif |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT, |
| SDValue N1, SDValue N2, SDValue N3, |
| SDValue N4) { |
| SDValue Ops[] = { N1, N2, N3, N4 }; |
| return getNode(Opcode, DL, VT, Ops, 4); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT, |
| SDValue N1, SDValue N2, SDValue N3, |
| SDValue N4, SDValue N5) { |
| SDValue Ops[] = { N1, N2, N3, N4, N5 }; |
| return getNode(Opcode, DL, VT, Ops, 5); |
| } |
| |
| /// getStackArgumentTokenFactor - Compute a TokenFactor to force all |
| /// the incoming stack arguments to be loaded from the stack. |
| SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { |
| SmallVector<SDValue, 8> ArgChains; |
| |
| // Include the original chain at the beginning of the list. When this is |
| // used by target LowerCall hooks, this helps legalize find the |
| // CALLSEQ_BEGIN node. |
| ArgChains.push_back(Chain); |
| |
| // Add a chain value for each stack argument. |
| for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), |
| UE = getEntryNode().getNode()->use_end(); U != UE; ++U) |
| if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) |
| if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) |
| if (FI->getIndex() < 0) |
| ArgChains.push_back(SDValue(L, 1)); |
| |
| // Build a tokenfactor for all the chains. |
| return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other, |
| &ArgChains[0], ArgChains.size()); |
| } |
| |
| /// getMemsetValue - Vectorized representation of the memset value |
| /// operand. |
| static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, |
| DebugLoc dl) { |
| assert(Value.getOpcode() != ISD::UNDEF); |
| |
| unsigned NumBits = VT.getScalarType().getSizeInBits(); |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { |
| assert(C->getAPIntValue().getBitWidth() == 8); |
| APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); |
| if (VT.isInteger()) |
| return DAG.getConstant(Val, VT); |
| return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), VT); |
| } |
| |
| Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value); |
| if (NumBits > 8) { |
| // Use a multiplication with 0x010101... to extend the input to the |
| // required length. |
| APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); |
| Value = DAG.getNode(ISD::MUL, dl, VT, Value, DAG.getConstant(Magic, VT)); |
| } |
| |
| return Value; |
| } |
| |
| /// getMemsetStringVal - Similar to getMemsetValue. Except this is only |
| /// used when a memcpy is turned into a memset when the source is a constant |
| /// string ptr. |
| static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG, |
| const TargetLowering &TLI, StringRef Str) { |
| // Handle vector with all elements zero. |
| if (Str.empty()) { |
| if (VT.isInteger()) |
| return DAG.getConstant(0, VT); |
| else if (VT == MVT::f32 || VT == MVT::f64) |
| return DAG.getConstantFP(0.0, VT); |
| else if (VT.isVector()) { |
| unsigned NumElts = VT.getVectorNumElements(); |
| MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; |
| return DAG.getNode(ISD::BITCAST, dl, VT, |
| DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(), |
| EltVT, NumElts))); |
| } else |
| llvm_unreachable("Expected type!"); |
| } |
| |
| assert(!VT.isVector() && "Can't handle vector type here!"); |
| unsigned NumVTBits = VT.getSizeInBits(); |
| unsigned NumVTBytes = NumVTBits / 8; |
| unsigned NumBytes = std::min(NumVTBytes, unsigned(Str.size())); |
| |
| APInt Val(NumVTBits, 0); |
| if (TLI.isLittleEndian()) { |
| for (unsigned i = 0; i != NumBytes; ++i) |
| Val |= (uint64_t)(unsigned char)Str[i] << i*8; |
| } else { |
| for (unsigned i = 0; i != NumBytes; ++i) |
| Val |= (uint64_t)(unsigned char)Str[i] << (NumVTBytes-i-1)*8; |
| } |
| |
| // If the "cost" of materializing the integer immediate is 1 or free, then |
| // it is cost effective to turn the load into the immediate. |
| const TargetTransformInfo *TTI = DAG.getTargetTransformInfo(); |
| if (TTI->getIntImmCost(Val, VT.getTypeForEVT(*DAG.getContext())) < 2) |
| return DAG.getConstant(Val, VT); |
| return SDValue(0, 0); |
| } |
| |
| /// getMemBasePlusOffset - Returns base and offset node for the |
| /// |
| static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset, |
| SelectionDAG &DAG) { |
| EVT VT = Base.getValueType(); |
| return DAG.getNode(ISD::ADD, Base.getDebugLoc(), |
| VT, Base, DAG.getConstant(Offset, VT)); |
| } |
| |
| /// isMemSrcFromString - Returns true if memcpy source is a string constant. |
| /// |
| static bool isMemSrcFromString(SDValue Src, StringRef &Str) { |
| unsigned SrcDelta = 0; |
| GlobalAddressSDNode *G = NULL; |
| if (Src.getOpcode() == ISD::GlobalAddress) |
| G = cast<GlobalAddressSDNode>(Src); |
| else if (Src.getOpcode() == ISD::ADD && |
| Src.getOperand(0).getOpcode() == ISD::GlobalAddress && |
| Src.getOperand(1).getOpcode() == ISD::Constant) { |
| G = cast<GlobalAddressSDNode>(Src.getOperand(0)); |
| SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); |
| } |
| if (!G) |
| return false; |
| |
| return getConstantStringInfo(G->getGlobal(), Str, SrcDelta, false); |
| } |
| |
| /// FindOptimalMemOpLowering - Determines the optimial series memory ops |
| /// to replace the memset / memcpy. Return true if the number of memory ops |
| /// is below the threshold. It returns the types of the sequence of |
| /// memory ops to perform memset / memcpy by reference. |
| static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps, |
| unsigned Limit, uint64_t Size, |
| unsigned DstAlign, unsigned SrcAlign, |
| bool IsMemset, |
| bool ZeroMemset, |
| bool MemcpyStrSrc, |
| bool AllowOverlap, |
| SelectionDAG &DAG, |
| const TargetLowering &TLI) { |
| assert((SrcAlign == 0 || SrcAlign >= DstAlign) && |
| "Expecting memcpy / memset source to meet alignment requirement!"); |
| // If 'SrcAlign' is zero, that means the memory operation does not need to |
| // load the value, i.e. memset or memcpy from constant string. Otherwise, |
| // it's the inferred alignment of the source. 'DstAlign', on the other hand, |
| // is the specified alignment of the memory operation. If it is zero, that |
| // means it's possible to change the alignment of the destination. |
| // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does |
| // not need to be loaded. |
| EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign, |
| IsMemset, ZeroMemset, MemcpyStrSrc, |
| DAG.getMachineFunction()); |
| |
| if (VT == MVT::Other) { |
| if (DstAlign >= TLI.getDataLayout()->getPointerPrefAlignment() || |
| TLI.allowsUnalignedMemoryAccesses(VT)) { |
| VT = TLI.getPointerTy(); |
| } else { |
| switch (DstAlign & 7) { |
| case 0: VT = MVT::i64; break; |
| case 4: VT = MVT::i32; break; |
| case 2: VT = MVT::i16; break; |
| default: VT = MVT::i8; break; |
| } |
| } |
| |
| MVT LVT = MVT::i64; |
| while (!TLI.isTypeLegal(LVT)) |
| LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); |
| assert(LVT.isInteger()); |
| |
| if (VT.bitsGT(LVT)) |
| VT = LVT; |
| } |
| |
| unsigned NumMemOps = 0; |
| while (Size != 0) { |
| unsigned VTSize = VT.getSizeInBits() / 8; |
| while (VTSize > Size) { |
| // For now, only use non-vector load / store's for the left-over pieces. |
| EVT NewVT = VT; |
| unsigned NewVTSize; |
| |
| bool Found = false; |
| if (VT.isVector() || VT.isFloatingPoint()) { |
| NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; |
| if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) && |
| TLI.isSafeMemOpType(NewVT.getSimpleVT())) |
| Found = true; |
| else if (NewVT == MVT::i64 && |
| TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) && |
| TLI.isSafeMemOpType(MVT::f64)) { |
| // i64 is usually not legal on 32-bit targets, but f64 may be. |
| NewVT = MVT::f64; |
| Found = true; |
| } |
| } |
| |
| if (!Found) { |
| do { |
| NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); |
| if (NewVT == MVT::i8) |
| break; |
| } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT())); |
| } |
| NewVTSize = NewVT.getSizeInBits() / 8; |
| |
| // If the new VT cannot cover all of the remaining bits, then consider |
| // issuing a (or a pair of) unaligned and overlapping load / store. |
| // FIXME: Only does this for 64-bit or more since we don't have proper |
| // cost model for unaligned load / store. |
| bool Fast; |
| if (NumMemOps && AllowOverlap && |
| VTSize >= 8 && NewVTSize < Size && |
| TLI.allowsUnalignedMemoryAccesses(VT, &Fast) && Fast) |
| VTSize = Size; |
| else { |
| VT = NewVT; |
| VTSize = NewVTSize; |
| } |
| } |
| |
| if (++NumMemOps > Limit) |
| return false; |
| |
| MemOps.push_back(VT); |
| Size -= VTSize; |
| } |
| |
| return true; |
| } |
| |
| static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl, |
| SDValue Chain, SDValue Dst, |
| SDValue Src, uint64_t Size, |
| unsigned Align, bool isVol, |
| bool AlwaysInline, |
| MachinePointerInfo DstPtrInfo, |
| MachinePointerInfo SrcPtrInfo) { |
| // Turn a memcpy of undef to nop. |
| if (Src.getOpcode() == ISD::UNDEF) |
| return Chain; |
| |
| // Expand memcpy to a series of load and store ops if the size operand falls |
| // below a certain threshold. |
| // TODO: In the AlwaysInline case, if the size is big then generate a loop |
| // rather than maybe a humongous number of loads and stores. |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| std::vector<EVT> MemOps; |
| bool DstAlignCanChange = false; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| bool OptSize = |
| MF.getFunction()->getAttributes(). |
| hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize); |
| FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); |
| if (FI && !MFI->isFixedObjectIndex(FI->getIndex())) |
| DstAlignCanChange = true; |
| unsigned SrcAlign = DAG.InferPtrAlignment(Src); |
| if (Align > SrcAlign) |
| SrcAlign = Align; |
| StringRef Str; |
| bool CopyFromStr = isMemSrcFromString(Src, Str); |
| bool isZeroStr = CopyFromStr && Str.empty(); |
| unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); |
| |
| if (!FindOptimalMemOpLowering(MemOps, Limit, Size, |
| (DstAlignCanChange ? 0 : Align), |
| (isZeroStr ? 0 : SrcAlign), |
| false, false, CopyFromStr, true, DAG, TLI)) |
| return SDValue(); |
| |
| if (DstAlignCanChange) { |
| Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); |
| unsigned NewAlign = (unsigned) TLI.getDataLayout()->getABITypeAlignment(Ty); |
| |
| // Don't promote to an alignment that would require dynamic stack |
| // realignment. |
| const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo(); |
| if (!TRI->needsStackRealignment(MF)) |
| while (NewAlign > Align && |
| TLI.getDataLayout()->exceedsNaturalStackAlignment(NewAlign)) |
| NewAlign /= 2; |
| |
| if (NewAlign > Align) { |
| // Give the stack frame object a larger alignment if needed. |
| if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign) |
| MFI->setObjectAlignment(FI->getIndex(), NewAlign); |
| Align = NewAlign; |
| } |
| } |
| |
| SmallVector<SDValue, 8> OutChains; |
| unsigned NumMemOps = MemOps.size(); |
| uint64_t SrcOff = 0, DstOff = 0; |
| for (unsigned i = 0; i != NumMemOps; ++i) { |
| EVT VT = MemOps[i]; |
| unsigned VTSize = VT.getSizeInBits() / 8; |
| SDValue Value, Store; |
| |
| if (VTSize > Size) { |
| // Issuing an unaligned load / store pair that overlaps with the previous |
| // pair. Adjust the offset accordingly. |
| assert(i == NumMemOps-1 && i != 0); |
| SrcOff -= VTSize - Size; |
| DstOff -= VTSize - Size; |
| } |
| |
| if (CopyFromStr && |
| (isZeroStr || (VT.isInteger() && !VT.isVector()))) { |
| // It's unlikely a store of a vector immediate can be done in a single |
| // instruction. It would require a load from a constantpool first. |
| // We only handle zero vectors here. |
| // FIXME: Handle other cases where store of vector immediate is done in |
| // a single instruction. |
| Value = getMemsetStringVal(VT, dl, DAG, TLI, Str.substr(SrcOff)); |
| if (Value.getNode()) |
| Store = DAG.getStore(Chain, dl, Value, |
| getMemBasePlusOffset(Dst, DstOff, DAG), |
| DstPtrInfo.getWithOffset(DstOff), isVol, |
| false, Align); |
| } |
| |
| if (!Store.getNode()) { |
| // The type might not be legal for the target. This should only happen |
| // if the type is smaller than a legal type, as on PPC, so the right |
| // thing to do is generate a LoadExt/StoreTrunc pair. These simplify |
| // to Load/Store if NVT==VT. |
| // FIXME does the case above also need this? |
| EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); |
| assert(NVT.bitsGE(VT)); |
| Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, |
| getMemBasePlusOffset(Src, SrcOff, DAG), |
| SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false, |
| MinAlign(SrcAlign, SrcOff)); |
| Store = DAG.getTruncStore(Chain, dl, Value, |
| getMemBasePlusOffset(Dst, DstOff, DAG), |
| DstPtrInfo.getWithOffset(DstOff), VT, isVol, |
| false, Align); |
| } |
| OutChains.push_back(Store); |
| SrcOff += VTSize; |
| DstOff += VTSize; |
| Size -= VTSize; |
| } |
| |
| return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| &OutChains[0], OutChains.size()); |
| } |
| |
| static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl, |
| SDValue Chain, SDValue Dst, |
| SDValue Src, uint64_t Size, |
| unsigned Align, bool isVol, |
| bool AlwaysInline, |
| MachinePointerInfo DstPtrInfo, |
| MachinePointerInfo SrcPtrInfo) { |
| // Turn a memmove of undef to nop. |
| if (Src.getOpcode() == ISD::UNDEF) |
| return Chain; |
| |
| // Expand memmove to a series of load and store ops if the size operand falls |
| // below a certain threshold. |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| std::vector<EVT> MemOps; |
| bool DstAlignCanChange = false; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| bool OptSize = MF.getFunction()->getAttributes(). |
| hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize); |
| FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); |
| if (FI && !MFI->isFixedObjectIndex(FI->getIndex())) |
| DstAlignCanChange = true; |
| unsigned SrcAlign = DAG.InferPtrAlignment(Src); |
| if (Align > SrcAlign) |
| SrcAlign = Align; |
| unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); |
| |
| if (!FindOptimalMemOpLowering(MemOps, Limit, Size, |
| (DstAlignCanChange ? 0 : Align), SrcAlign, |
| false, false, false, false, DAG, TLI)) |
| return SDValue(); |
| |
| if (DstAlignCanChange) { |
| Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); |
| unsigned NewAlign = (unsigned) TLI.getDataLayout()->getABITypeAlignment(Ty); |
| if (NewAlign > Align) { |
| // Give the stack frame object a larger alignment if needed. |
| if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign) |
| MFI->setObjectAlignment(FI->getIndex(), NewAlign); |
| Align = NewAlign; |
| } |
| } |
| |
| uint64_t SrcOff = 0, DstOff = 0; |
| SmallVector<SDValue, 8> LoadValues; |
| SmallVector<SDValue, 8> LoadChains; |
| SmallVector<SDValue, 8> OutChains; |
| unsigned NumMemOps = MemOps.size(); |
| for (unsigned i = 0; i < NumMemOps; i++) { |
| EVT VT = MemOps[i]; |
| unsigned VTSize = VT.getSizeInBits() / 8; |
| SDValue Value, Store; |
| |
| Value = DAG.getLoad(VT, dl, Chain, |
| getMemBasePlusOffset(Src, SrcOff, DAG), |
| SrcPtrInfo.getWithOffset(SrcOff), isVol, |
| false, false, SrcAlign); |
| LoadValues.push_back(Value); |
| LoadChains.push_back(Value.getValue(1)); |
| SrcOff += VTSize; |
| } |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| &LoadChains[0], LoadChains.size()); |
| OutChains.clear(); |
| for (unsigned i = 0; i < NumMemOps; i++) { |
| EVT VT = MemOps[i]; |
| unsigned VTSize = VT.getSizeInBits() / 8; |
| SDValue Value, Store; |
| |
| Store = DAG.getStore(Chain, dl, LoadValues[i], |
| getMemBasePlusOffset(Dst, DstOff, DAG), |
| DstPtrInfo.getWithOffset(DstOff), isVol, false, Align); |
| OutChains.push_back(Store); |
| DstOff += VTSize; |
| } |
| |
| return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| &OutChains[0], OutChains.size()); |
| } |
| |
| static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl, |
| SDValue Chain, SDValue Dst, |
| SDValue Src, uint64_t Size, |
| unsigned Align, bool isVol, |
| MachinePointerInfo DstPtrInfo) { |
| // Turn a memset of undef to nop. |
| if (Src.getOpcode() == ISD::UNDEF) |
| return Chain; |
| |
| // Expand memset to a series of load/store ops if the size operand |
| // falls below a certain threshold. |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| std::vector<EVT> MemOps; |
| bool DstAlignCanChange = false; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| bool OptSize = MF.getFunction()->getAttributes(). |
| hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize); |
| FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); |
| if (FI && !MFI->isFixedObjectIndex(FI->getIndex())) |
| DstAlignCanChange = true; |
| bool IsZeroVal = |
| isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); |
| if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize), |
| Size, (DstAlignCanChange ? 0 : Align), 0, |
| true, IsZeroVal, false, true, DAG, TLI)) |
| return SDValue(); |
| |
| if (DstAlignCanChange) { |
| Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); |
| unsigned NewAlign = (unsigned) TLI.getDataLayout()->getABITypeAlignment(Ty); |
| if (NewAlign > Align) { |
| // Give the stack frame object a larger alignment if needed. |
| if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign) |
| MFI->setObjectAlignment(FI->getIndex(), NewAlign); |
| Align = NewAlign; |
| } |
| } |
| |
| SmallVector<SDValue, 8> OutChains; |
| uint64_t DstOff = 0; |
| unsigned NumMemOps = MemOps.size(); |
| |
| // Find the largest store and generate the bit pattern for it. |
| EVT LargestVT = MemOps[0]; |
| for (unsigned i = 1; i < NumMemOps; i++) |
| if (MemOps[i].bitsGT(LargestVT)) |
| LargestVT = MemOps[i]; |
| SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); |
| |
| for (unsigned i = 0; i < NumMemOps; i++) { |
| EVT VT = MemOps[i]; |
| unsigned VTSize = VT.getSizeInBits() / 8; |
| if (VTSize > Size) { |
| // Issuing an unaligned load / store pair that overlaps with the previous |
| // pair. Adjust the offset accordingly. |
| assert(i == NumMemOps-1 && i != 0); |
| DstOff -= VTSize - Size; |
| } |
| |
| // If this store is smaller than the largest store see whether we can get |
| // the smaller value for free with a truncate. |
| SDValue Value = MemSetValue; |
| if (VT.bitsLT(LargestVT)) { |
| if (!LargestVT.isVector() && !VT.isVector() && |
| TLI.isTruncateFree(LargestVT, VT)) |
| Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); |
| else |
| Value = getMemsetValue(Src, VT, DAG, dl); |
| } |
| assert(Value.getValueType() == VT && "Value with wrong type."); |
| SDValue Store = DAG.getStore(Chain, dl, Value, |
| getMemBasePlusOffset(Dst, DstOff, DAG), |
| DstPtrInfo.getWithOffset(DstOff), |
| isVol, false, Align); |
| OutChains.push_back(Store); |
| DstOff += VT.getSizeInBits() / 8; |
| Size -= VTSize; |
| } |
| |
| return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| &OutChains[0], OutChains.size()); |
| } |
| |
| SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst, |
| SDValue Src, SDValue Size, |
| unsigned Align, bool isVol, bool AlwaysInline, |
| MachinePointerInfo DstPtrInfo, |
| MachinePointerInfo SrcPtrInfo) { |
| assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); |
| |
| // Check to see if we should lower the memcpy to loads and stores first. |
| // For cases within the target-specified limits, this is the best choice. |
| ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); |
| if (ConstantSize) { |
| // Memcpy with size zero? Just return the original chain. |
| if (ConstantSize->isNullValue()) |
| return Chain; |
| |
| SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, |
| ConstantSize->getZExtValue(),Align, |
| isVol, false, DstPtrInfo, SrcPtrInfo); |
| if (Result.getNode()) |
| return Result; |
| } |
| |
| // Then check to see if we should lower the memcpy with target-specific |
| // code. If the target chooses to do this, this is the next best. |
| SDValue Result = |
| TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align, |
| isVol, AlwaysInline, |
| DstPtrInfo, SrcPtrInfo); |
| if (Result.getNode()) |
| return Result; |
| |
| // If we really need inline code and the target declined to provide it, |
| // use a (potentially long) sequence of loads and stores. |
| if (AlwaysInline) { |
| assert(ConstantSize && "AlwaysInline requires a constant size!"); |
| return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, |
| ConstantSize->getZExtValue(), Align, isVol, |
| true, DstPtrInfo, SrcPtrInfo); |
| } |
| |
| // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc |
| // memcpy is not guaranteed to be safe. libc memcpys aren't required to |
| // respect volatile, so they may do things like read or write memory |
| // beyond the given memory regions. But fixing this isn't easy, and most |
| // people don't care. |
| |
| // Emit a library call. |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| Entry.Ty = TLI.getDataLayout()->getIntPtrType(*getContext()); |
| Entry.Node = Dst; Args.push_back(Entry); |
| Entry.Node = Src; Args.push_back(Entry); |
| Entry.Node = Size; Args.push_back(Entry); |
| // FIXME: pass in DebugLoc |
| TargetLowering:: |
| CallLoweringInfo CLI(Chain, Type::getVoidTy(*getContext()), |
| false, false, false, false, 0, |
| TLI.getLibcallCallingConv(RTLIB::MEMCPY), |
| /*isTailCall=*/false, |
| /*doesNotReturn=*/false, /*isReturnValueUsed=*/false, |
| getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY), |
| TLI.getPointerTy()), |
| Args, *this, dl); |
| std::pair<SDValue,SDValue> CallResult = TLI.LowerCallTo(CLI); |
| |
| return CallResult.second; |
| } |
| |
| SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst, |
| SDValue Src, SDValue Size, |
| unsigned Align, bool isVol, |
| MachinePointerInfo DstPtrInfo, |
| MachinePointerInfo SrcPtrInfo) { |
| assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); |
| |
| // Check to see if we should lower the memmove to loads and stores first. |
| // For cases within the target-specified limits, this is the best choice. |
| ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); |
| if (ConstantSize) { |
| // Memmove with size zero? Just return the original chain. |
| if (ConstantSize->isNullValue()) |
| return Chain; |
| |
| SDValue Result = |
| getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src, |
| ConstantSize->getZExtValue(), Align, isVol, |
| false, DstPtrInfo, SrcPtrInfo); |
| if (Result.getNode()) |
| return Result; |
| } |
| |
| // Then check to see if we should lower the memmove with target-specific |
| // code. If the target chooses to do this, this is the next best. |
| SDValue Result = |
| TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol, |
| DstPtrInfo, SrcPtrInfo); |
| if (Result.getNode()) |
| return Result; |
| |
| // FIXME: If the memmove is volatile, lowering it to plain libc memmove may |
| // not be safe. See memcpy above for more details. |
| |
| // Emit a library call. |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| Entry.Ty = TLI.getDataLayout()->getIntPtrType(*getContext()); |
| Entry.Node = Dst; Args.push_back(Entry); |
| Entry.Node = Src; Args.push_back(Entry); |
| Entry.Node = Size; Args.push_back(Entry); |
| // FIXME: pass in DebugLoc |
| TargetLowering:: |
| CallLoweringInfo CLI(Chain, Type::getVoidTy(*getContext()), |
| false, false, false, false, 0, |
| TLI.getLibcallCallingConv(RTLIB::MEMMOVE), |
| /*isTailCall=*/false, |
| /*doesNotReturn=*/false, /*isReturnValueUsed=*/false, |
| getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE), |
| TLI.getPointerTy()), |
| Args, *this, dl); |
| std::pair<SDValue,SDValue> CallResult = TLI.LowerCallTo(CLI); |
| |
| return CallResult.second; |
| } |
| |
| SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst, |
| SDValue Src, SDValue Size, |
| unsigned Align, bool isVol, |
| MachinePointerInfo DstPtrInfo) { |
| assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); |
| |
| // Check to see if we should lower the memset to stores first. |
| // For cases within the target-specified limits, this is the best choice. |
| ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); |
| if (ConstantSize) { |
| // Memset with size zero? Just return the original chain. |
| if (ConstantSize->isNullValue()) |
| return Chain; |
| |
| SDValue Result = |
| getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), |
| Align, isVol, DstPtrInfo); |
| |
| if (Result.getNode()) |
| return Result; |
| } |
| |
| // Then check to see if we should lower the memset with target-specific |
| // code. If the target chooses to do this, this is the next best. |
| SDValue Result = |
| TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol, |
| DstPtrInfo); |
| if (Result.getNode()) |
| return Result; |
| |
| // Emit a library call. |
| Type *IntPtrTy = TLI.getDataLayout()->getIntPtrType(*getContext()); |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| Entry.Node = Dst; Entry.Ty = IntPtrTy; |
| Args.push_back(Entry); |
| // Extend or truncate the argument to be an i32 value for the call. |
| if (Src.getValueType().bitsGT(MVT::i32)) |
| Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src); |
| else |
| Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src); |
| Entry.Node = Src; |
| Entry.Ty = Type::getInt32Ty(*getContext()); |
| Entry.isSExt = true; |
| Args.push_back(Entry); |
| Entry.Node = Size; |
| Entry.Ty = IntPtrTy; |
| Entry.isSExt = false; |
| Args.push_back(Entry); |
| // FIXME: pass in DebugLoc |
| TargetLowering:: |
| CallLoweringInfo CLI(Chain, Type::getVoidTy(*getContext()), |
| false, false, false, false, 0, |
| TLI.getLibcallCallingConv(RTLIB::MEMSET), |
| /*isTailCall=*/false, |
| /*doesNotReturn*/false, /*isReturnValueUsed=*/false, |
| getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET), |
| TLI.getPointerTy()), |
| Args, *this, dl); |
| std::pair<SDValue,SDValue> CallResult = TLI.LowerCallTo(CLI); |
| |
| return CallResult.second; |
| } |
| |
| SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT, |
| SDValue Chain, SDValue Ptr, SDValue Cmp, |
| SDValue Swp, MachinePointerInfo PtrInfo, |
| unsigned Alignment, |
| AtomicOrdering Ordering, |
| SynchronizationScope SynchScope) { |
| if (Alignment == 0) // Ensure that codegen never sees alignment 0 |
| Alignment = getEVTAlignment(MemVT); |
| |
| MachineFunction &MF = getMachineFunction(); |
| |
| // All atomics are load and store, except for ATMOIC_LOAD and ATOMIC_STORE. |
| // For now, atomics are considered to be volatile always. |
| // FIXME: Volatile isn't really correct; we should keep track of atomic |
| // orderings in the memoperand. |
| unsigned Flags = MachineMemOperand::MOVolatile; |
| if (Opcode != ISD::ATOMIC_STORE) |
| Flags |= MachineMemOperand::MOLoad; |
| if (Opcode != ISD::ATOMIC_LOAD) |
| Flags |= MachineMemOperand::MOStore; |
| |
| MachineMemOperand *MMO = |
| MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment); |
| |
| return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO, |
| Ordering, SynchScope); |
| } |
| |
| SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT, |
| SDValue Chain, |
| SDValue Ptr, SDValue Cmp, |
| SDValue Swp, MachineMemOperand *MMO, |
| AtomicOrdering Ordering, |
| SynchronizationScope SynchScope) { |
| assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op"); |
| assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); |
| |
| EVT VT = Cmp.getValueType(); |
| |
| SDVTList VTs = getVTList(VT, MVT::Other); |
| FoldingSetNodeID ID; |
| ID.AddInteger(MemVT.getRawBits()); |
| SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; |
| AddNodeIDNode(ID, Opcode, VTs, Ops, 4); |
| ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); |
| void* IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) { |
| cast<AtomicSDNode>(E)->refineAlignment(MMO); |
| return SDValue(E, 0); |
| } |
| SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, |
| Ptr, Cmp, Swp, MMO, Ordering, |
| SynchScope); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT, |
| SDValue Chain, |
| SDValue Ptr, SDValue Val, |
| const Value* PtrVal, |
| unsigned Alignment, |
| AtomicOrdering Ordering, |
| SynchronizationScope SynchScope) { |
| if (Alignment == 0) // Ensure that codegen never sees alignment 0 |
| Alignment = getEVTAlignment(MemVT); |
| |
| MachineFunction &MF = getMachineFunction(); |
| // An atomic store does not load. An atomic load does not store. |
| // (An atomicrmw obviously both loads and stores.) |
| // For now, atomics are considered to be volatile always, and they are |
| // chained as such. |
| // FIXME: Volatile isn't really correct; we should keep track of atomic |
| // orderings in the memoperand. |
| unsigned Flags = MachineMemOperand::MOVolatile; |
| if (Opcode != ISD::ATOMIC_STORE) |
| Flags |= MachineMemOperand::MOLoad; |
| if (Opcode != ISD::ATOMIC_LOAD) |
| Flags |= MachineMemOperand::MOStore; |
| |
| MachineMemOperand *MMO = |
| MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags, |
| MemVT.getStoreSize(), Alignment); |
| |
| return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO, |
| Ordering, SynchScope); |
| } |
| |
| SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT, |
| SDValue Chain, |
| SDValue Ptr, SDValue Val, |
| MachineMemOperand *MMO, |
| AtomicOrdering Ordering, |
| SynchronizationScope SynchScope) { |
| assert((Opcode == ISD::ATOMIC_LOAD_ADD || |
| Opcode == ISD::ATOMIC_LOAD_SUB || |
| Opcode == ISD::ATOMIC_LOAD_AND || |
| Opcode == ISD::ATOMIC_LOAD_OR || |
| Opcode == ISD::ATOMIC_LOAD_XOR || |
| Opcode == ISD::ATOMIC_LOAD_NAND || |
| Opcode == ISD::ATOMIC_LOAD_MIN || |
| Opcode == ISD::ATOMIC_LOAD_MAX || |
| Opcode == ISD::ATOMIC_LOAD_UMIN || |
| Opcode == ISD::ATOMIC_LOAD_UMAX || |
| Opcode == ISD::ATOMIC_SWAP || |
| Opcode == ISD::ATOMIC_STORE) && |
| "Invalid Atomic Op"); |
| |
| EVT VT = Val.getValueType(); |
| |
| SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : |
| getVTList(VT, MVT::Other); |
| FoldingSetNodeID ID; |
| ID.AddInteger(MemVT.getRawBits()); |
| SDValue Ops[] = {Chain, Ptr, Val}; |
| AddNodeIDNode(ID, Opcode, VTs, Ops, 3); |
| ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); |
| void* IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) { |
| cast<AtomicSDNode>(E)->refineAlignment(MMO); |
| return SDValue(E, 0); |
| } |
| SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, |
| Ptr, Val, MMO, |
| Ordering, SynchScope); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT, |
| EVT VT, SDValue Chain, |
| SDValue Ptr, |
| const Value* PtrVal, |
| unsigned Alignment, |
| AtomicOrdering Ordering, |
| SynchronizationScope SynchScope) { |
| if (Alignment == 0) // Ensure that codegen never sees alignment 0 |
| Alignment = getEVTAlignment(MemVT); |
| |
| MachineFunction &MF = getMachineFunction(); |
| // An atomic store does not load. An atomic load does not store. |
| // (An atomicrmw obviously both loads and stores.) |
| // For now, atomics are considered to be volatile always, and they are |
| // chained as such. |
| // FIXME: Volatile isn't really correct; we should keep track of atomic |
| // orderings in the memoperand. |
| unsigned Flags = MachineMemOperand::MOVolatile; |
| if (Opcode != ISD::ATOMIC_STORE) |
| Flags |= MachineMemOperand::MOLoad; |
| if (Opcode != ISD::ATOMIC_LOAD) |
| Flags |= MachineMemOperand::MOStore; |
| |
| MachineMemOperand *MMO = |
| MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags, |
| MemVT.getStoreSize(), Alignment); |
| |
| return getAtomic(Opcode, dl, MemVT, VT, Chain, Ptr, MMO, |
| Ordering, SynchScope); |
| } |
| |
| SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT, |
| EVT VT, SDValue Chain, |
| SDValue Ptr, |
| MachineMemOperand *MMO, |
| AtomicOrdering Ordering, |
| SynchronizationScope SynchScope) { |
| assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); |
| |
| SDVTList VTs = getVTList(VT, MVT::Other); |
| FoldingSetNodeID ID; |
| ID.AddInteger(MemVT.getRawBits()); |
| SDValue Ops[] = {Chain, Ptr}; |
| AddNodeIDNode(ID, Opcode, VTs, Ops, 2); |
| ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); |
| void* IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) { |
| cast<AtomicSDNode>(E)->refineAlignment(MMO); |
| return SDValue(E, 0); |
| } |
| SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, |
| Ptr, MMO, Ordering, SynchScope); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| /// getMergeValues - Create a MERGE_VALUES node from the given operands. |
| SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps, |
| DebugLoc dl) { |
| if (NumOps == 1) |
| return Ops[0]; |
| |
| SmallVector<EVT, 4> VTs; |
| VTs.reserve(NumOps); |
| for (unsigned i = 0; i < NumOps; ++i) |
| VTs.push_back(Ops[i].getValueType()); |
| return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps), |
| Ops, NumOps); |
| } |
| |
| SDValue |
| SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, |
| const EVT *VTs, unsigned NumVTs, |
| const SDValue *Ops, unsigned NumOps, |
| EVT MemVT, MachinePointerInfo PtrInfo, |
| unsigned Align, bool Vol, |
| bool ReadMem, bool WriteMem) { |
| return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps, |
| MemVT, PtrInfo, Align, Vol, |
| ReadMem, WriteMem); |
| } |
| |
| SDValue |
| SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList, |
| const SDValue *Ops, unsigned NumOps, |
| EVT MemVT, MachinePointerInfo PtrInfo, |
| unsigned Align, bool Vol, |
| bool ReadMem, bool WriteMem) { |
| if (Align == 0) // Ensure that codegen never sees alignment 0 |
| Align = getEVTAlignment(MemVT); |
| |
| MachineFunction &MF = getMachineFunction(); |
| unsigned Flags = 0; |
| if (WriteMem) |
| Flags |= MachineMemOperand::MOStore; |
| if (ReadMem) |
| Flags |= MachineMemOperand::MOLoad; |
| if (Vol) |
| Flags |= MachineMemOperand::MOVolatile; |
| MachineMemOperand *MMO = |
| MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Align); |
| |
| return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO); |
| } |
| |
| SDValue |
| SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList, |
| const SDValue *Ops, unsigned NumOps, |
| EVT MemVT, MachineMemOperand *MMO) { |
| assert((Opcode == ISD::INTRINSIC_VOID || |
| Opcode == ISD::INTRINSIC_W_CHAIN || |
| Opcode == ISD::PREFETCH || |
| Opcode == ISD::LIFETIME_START || |
| Opcode == ISD::LIFETIME_END || |
| (Opcode <= INT_MAX && |
| (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && |
| "Opcode is not a memory-accessing opcode!"); |
| |
| // Memoize the node unless it returns a flag. |
| MemIntrinsicSDNode *N; |
| if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps); |
| ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) { |
| cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); |
| return SDValue(E, 0); |
| } |
| |
| N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, |
| MemVT, MMO); |
| CSEMap.InsertNode(N, IP); |
| } else { |
| N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, |
| MemVT, MMO); |
| } |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a |
| /// MachinePointerInfo record from it. This is particularly useful because the |
| /// code generator has many cases where it doesn't bother passing in a |
| /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". |
| static MachinePointerInfo InferPointerInfo(SDValue Ptr, int64_t Offset = 0) { |
| // If this is FI+Offset, we can model it. |
| if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) |
| return MachinePointerInfo::getFixedStack(FI->getIndex(), Offset); |
| |
| // If this is (FI+Offset1)+Offset2, we can model it. |
| if (Ptr.getOpcode() != ISD::ADD || |
| !isa<ConstantSDNode>(Ptr.getOperand(1)) || |
| !isa<FrameIndexSDNode>(Ptr.getOperand(0))) |
| return MachinePointerInfo(); |
| |
| int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); |
| return MachinePointerInfo::getFixedStack(FI, Offset+ |
| cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); |
| } |
| |
| /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a |
| /// MachinePointerInfo record from it. This is particularly useful because the |
| /// code generator has many cases where it doesn't bother passing in a |
| /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". |
| static MachinePointerInfo InferPointerInfo(SDValue Ptr, SDValue OffsetOp) { |
| // If the 'Offset' value isn't a constant, we can't handle this. |
| if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) |
| return InferPointerInfo(Ptr, OffsetNode->getSExtValue()); |
| if (OffsetOp.getOpcode() == ISD::UNDEF) |
| return InferPointerInfo(Ptr); |
| return MachinePointerInfo(); |
| } |
| |
| |
| SDValue |
| SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, |
| EVT VT, DebugLoc dl, SDValue Chain, |
| SDValue Ptr, SDValue Offset, |
| MachinePointerInfo PtrInfo, EVT MemVT, |
| bool isVolatile, bool isNonTemporal, bool isInvariant, |
| unsigned Alignment, const MDNode *TBAAInfo, |
| const MDNode *Ranges) { |
| assert(Chain.getValueType() == MVT::Other && |
| "Invalid chain type"); |
| if (Alignment == 0) // Ensure that codegen never sees alignment 0 |
| Alignment = getEVTAlignment(VT); |
| |
| unsigned Flags = MachineMemOperand::MOLoad; |
| if (isVolatile) |
| Flags |= MachineMemOperand::MOVolatile; |
| if (isNonTemporal) |
| Flags |= MachineMemOperand::MONonTemporal; |
| if (isInvariant) |
| Flags |= MachineMemOperand::MOInvariant; |
| |
| // If we don't have a PtrInfo, infer the trivial frame index case to simplify |
| // clients. |
| if (PtrInfo.V == 0) |
| PtrInfo = InferPointerInfo(Ptr, Offset); |
| |
| MachineFunction &MF = getMachineFunction(); |
| MachineMemOperand *MMO = |
| MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment, |
| TBAAInfo, Ranges); |
| return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); |
| } |
| |
| SDValue |
| SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, |
| EVT VT, DebugLoc dl, SDValue Chain, |
| SDValue Ptr, SDValue Offset, EVT MemVT, |
| MachineMemOperand *MMO) { |
| if (VT == MemVT) { |
| ExtType = ISD::NON_EXTLOAD; |
| } else if (ExtType == ISD::NON_EXTLOAD) { |
| assert(VT == MemVT && "Non-extending load from different memory type!"); |
| } else { |
| // Extending load. |
| assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && |
| "Should only be an extending load, not truncating!"); |
| assert(VT.isInteger() == MemVT.isInteger() && |
| "Cannot convert from FP to Int or Int -> FP!"); |
| assert(VT.isVector() == MemVT.isVector() && |
| "Cannot use trunc store to convert to or from a vector!"); |
| assert((!VT.isVector() || |
| VT.getVectorNumElements() == MemVT.getVectorNumElements()) && |
| "Cannot use trunc store to change the number of vector elements!"); |
| } |
| |
| bool Indexed = AM != ISD::UNINDEXED; |
| assert((Indexed || Offset.getOpcode() == ISD::UNDEF) && |
| "Unindexed load with an offset!"); |
| |
| SDVTList VTs = Indexed ? |
| getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); |
| SDValue Ops[] = { Chain, Ptr, Offset }; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3); |
| ID.AddInteger(MemVT.getRawBits()); |
| ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(), |
| MMO->isNonTemporal(), |
| MMO->isInvariant())); |
| ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) { |
| cast<LoadSDNode>(E)->refineAlignment(MMO); |
| return SDValue(E, 0); |
| } |
| SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType, |
| MemVT, MMO); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl, |
| SDValue Chain, SDValue Ptr, |
| MachinePointerInfo PtrInfo, |
| bool isVolatile, bool isNonTemporal, |
| bool isInvariant, unsigned Alignment, |
| const MDNode *TBAAInfo, |
| const MDNode *Ranges) { |
| SDValue Undef = getUNDEF(Ptr.getValueType()); |
| return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, |
| PtrInfo, VT, isVolatile, isNonTemporal, isInvariant, Alignment, |
| TBAAInfo, Ranges); |
| } |
| |
| SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT, |
| SDValue Chain, SDValue Ptr, |
| MachinePointerInfo PtrInfo, EVT MemVT, |
| bool isVolatile, bool isNonTemporal, |
| unsigned Alignment, const MDNode *TBAAInfo) { |
| SDValue Undef = getUNDEF(Ptr.getValueType()); |
| return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, |
| PtrInfo, MemVT, isVolatile, isNonTemporal, false, Alignment, |
| TBAAInfo); |
| } |
| |
| |
| SDValue |
| SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base, |
| SDValue Offset, ISD::MemIndexedMode AM) { |
| LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); |
| assert(LD->getOffset().getOpcode() == ISD::UNDEF && |
| "Load is already a indexed load!"); |
| return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, |
| LD->getChain(), Base, Offset, LD->getPointerInfo(), |
| LD->getMemoryVT(), LD->isVolatile(), LD->isNonTemporal(), |
| false, LD->getAlignment()); |
| } |
| |
| SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val, |
| SDValue Ptr, MachinePointerInfo PtrInfo, |
| bool isVolatile, bool isNonTemporal, |
| unsigned Alignment, const MDNode *TBAAInfo) { |
| assert(Chain.getValueType() == MVT::Other && |
| "Invalid chain type"); |
| if (Alignment == 0) // Ensure that codegen never sees alignment 0 |
| Alignment = getEVTAlignment(Val.getValueType()); |
| |
| unsigned Flags = MachineMemOperand::MOStore; |
| if (isVolatile) |
| Flags |= MachineMemOperand::MOVolatile; |
| if (isNonTemporal) |
| Flags |= MachineMemOperand::MONonTemporal; |
| |
| if (PtrInfo.V == 0) |
| PtrInfo = InferPointerInfo(Ptr); |
| |
| MachineFunction &MF = getMachineFunction(); |
| MachineMemOperand *MMO = |
| MF.getMachineMemOperand(PtrInfo, Flags, |
| Val.getValueType().getStoreSize(), Alignment, |
| TBAAInfo); |
| |
| return getStore(Chain, dl, Val, Ptr, MMO); |
| } |
| |
| SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val, |
| SDValue Ptr, MachineMemOperand *MMO) { |
| assert(Chain.getValueType() == MVT::Other && |
| "Invalid chain type"); |
| EVT VT = Val.getValueType(); |
| SDVTList VTs = getVTList(MVT::Other); |
| SDValue Undef = getUNDEF(Ptr.getValueType()); |
| SDValue Ops[] = { Chain, Val, Ptr, Undef }; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4); |
| ID.AddInteger(VT.getRawBits()); |
| ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(), |
| MMO->isNonTemporal(), MMO->isInvariant())); |
| ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) { |
| cast<StoreSDNode>(E)->refineAlignment(MMO); |
| return SDValue(E, 0); |
| } |
| SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, |
| false, VT, MMO); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val, |
| SDValue Ptr, MachinePointerInfo PtrInfo, |
| EVT SVT,bool isVolatile, bool isNonTemporal, |
| unsigned Alignment, |
| const MDNode *TBAAInfo) { |
| assert(Chain.getValueType() == MVT::Other && |
| "Invalid chain type"); |
| if (Alignment == 0) // Ensure that codegen never sees alignment 0 |
| Alignment = getEVTAlignment(SVT); |
| |
| unsigned Flags = MachineMemOperand::MOStore; |
| if (isVolatile) |
| Flags |= MachineMemOperand::MOVolatile; |
| if (isNonTemporal) |
| Flags |= MachineMemOperand::MONonTemporal; |
| |
| if (PtrInfo.V == 0) |
| PtrInfo = InferPointerInfo(Ptr); |
| |
| MachineFunction &MF = getMachineFunction(); |
| MachineMemOperand *MMO = |
| MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment, |
| TBAAInfo); |
| |
| return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); |
| } |
| |
| SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val, |
| SDValue Ptr, EVT SVT, |
| MachineMemOperand *MMO) { |
| EVT VT = Val.getValueType(); |
| |
| assert(Chain.getValueType() == MVT::Other && |
| "Invalid chain type"); |
| if (VT == SVT) |
| return getStore(Chain, dl, Val, Ptr, MMO); |
| |
| assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && |
| "Should only be a truncating store, not extending!"); |
| assert(VT.isInteger() == SVT.isInteger() && |
| "Can't do FP-INT conversion!"); |
| assert(VT.isVector() == SVT.isVector() && |
| "Cannot use trunc store to convert to or from a vector!"); |
| assert((!VT.isVector() || |
| VT.getVectorNumElements() == SVT.getVectorNumElements()) && |
| "Cannot use trunc store to change the number of vector elements!"); |
| |
| SDVTList VTs = getVTList(MVT::Other); |
| SDValue Undef = getUNDEF(Ptr.getValueType()); |
| SDValue Ops[] = { Chain, Val, Ptr, Undef }; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4); |
| ID.AddInteger(SVT.getRawBits()); |
| ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(), |
| MMO->isNonTemporal(), MMO->isInvariant())); |
| ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) { |
| cast<StoreSDNode>(E)->refineAlignment(MMO); |
| return SDValue(E, 0); |
| } |
| SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, |
| true, SVT, MMO); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue |
| SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base, |
| SDValue Offset, ISD::MemIndexedMode AM) { |
| StoreSDNode *ST = cast<StoreSDNode>(OrigStore); |
| assert(ST->getOffset().getOpcode() == ISD::UNDEF && |
| "Store is already a indexed store!"); |
| SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); |
| SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4); |
| ID.AddInteger(ST->getMemoryVT().getRawBits()); |
| ID.AddInteger(ST->getRawSubclassData()); |
| ID.AddInteger(ST->getPointerInfo().getAddrSpace()); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM, |
| ST->isTruncatingStore(), |
| ST->getMemoryVT(), |
| ST->getMemOperand()); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl, |
| SDValue Chain, SDValue Ptr, |
| SDValue SV, |
| unsigned Align) { |
| SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, MVT::i32) }; |
| return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 4); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT, |
| const SDUse *Ops, unsigned NumOps) { |
| switch (NumOps) { |
| case 0: return getNode(Opcode, DL, VT); |
| case 1: return getNode(Opcode, DL, VT, Ops[0]); |
| case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); |
| case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); |
| default: break; |
| } |
| |
| // Copy from an SDUse array into an SDValue array for use with |
| // the regular getNode logic. |
| SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps); |
| return getNode(Opcode, DL, VT, &NewOps[0], NumOps); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT, |
| const SDValue *Ops, unsigned NumOps) { |
| switch (NumOps) { |
| case 0: return getNode(Opcode, DL, VT); |
| case 1: return getNode(Opcode, DL, VT, Ops[0]); |
| case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); |
| case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); |
| default: break; |
| } |
| |
| switch (Opcode) { |
| default: break; |
| case ISD::SELECT_CC: { |
| assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); |
| assert(Ops[0].getValueType() == Ops[1].getValueType() && |
| "LHS and RHS of condition must have same type!"); |
| assert(Ops[2].getValueType() == Ops[3].getValueType() && |
| "True and False arms of SelectCC must have same type!"); |
| assert(Ops[2].getValueType() == VT && |
| "select_cc node must be of same type as true and false value!"); |
| break; |
| } |
| case ISD::BR_CC: { |
| assert(NumOps == 5 && "BR_CC takes 5 operands!"); |
| assert(Ops[2].getValueType() == Ops[3].getValueType() && |
| "LHS/RHS of comparison should match types!"); |
| break; |
| } |
| } |
| |
| // Memoize nodes. |
| SDNode *N; |
| SDVTList VTs = getVTList(VT); |
| |
| if (VT != MVT::Glue) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps); |
| void *IP = 0; |
| |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps); |
| CSEMap.InsertNode(N, IP); |
| } else { |
| N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps); |
| } |
| |
| AllNodes.push_back(N); |
| #ifndef NDEBUG |
| VerifySDNode(N); |
| #endif |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, |
| const std::vector<EVT> &ResultTys, |
| const SDValue *Ops, unsigned NumOps) { |
| return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()), |
| Ops, NumOps); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, |
| const EVT *VTs, unsigned NumVTs, |
| const SDValue *Ops, unsigned NumOps) { |
| if (NumVTs == 1) |
| return getNode(Opcode, DL, VTs[0], Ops, NumOps); |
| return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList, |
| const SDValue *Ops, unsigned NumOps) { |
| if (VTList.NumVTs == 1) |
| return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps); |
| |
| #if 0 |
| switch (Opcode) { |
| // FIXME: figure out how to safely handle things like |
| // int foo(int x) { return 1 << (x & 255); } |
| // int bar() { return foo(256); } |
| case ISD::SRA_PARTS: |
| case ISD::SRL_PARTS: |
| case ISD::SHL_PARTS: |
| if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && |
| cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) |
| return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); |
| else if (N3.getOpcode() == ISD::AND) |
| if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { |
| // If the and is only masking out bits that cannot effect the shift, |
| // eliminate the and. |
| unsigned NumBits = VT.getScalarType().getSizeInBits()*2; |
| if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) |
| return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); |
| } |
| break; |
| } |
| #endif |
| |
| // Memoize the node unless it returns a flag. |
| SDNode *N; |
| if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| if (NumOps == 1) { |
| N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]); |
| } else if (NumOps == 2) { |
| N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]); |
| } else if (NumOps == 3) { |
| N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], |
| Ops[2]); |
| } else { |
| N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps); |
| } |
| CSEMap.InsertNode(N, IP); |
| } else { |
| if (NumOps == 1) { |
| N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]); |
| } else if (NumOps == 2) { |
| N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]); |
| } else if (NumOps == 3) { |
| N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], |
| Ops[2]); |
| } else { |
| N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps); |
| } |
| } |
| AllNodes.push_back(N); |
| #ifndef NDEBUG |
| VerifySDNode(N); |
| #endif |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) { |
| return getNode(Opcode, DL, VTList, 0, 0); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList, |
| SDValue N1) { |
| SDValue Ops[] = { N1 }; |
| return getNode(Opcode, DL, VTList, Ops, 1); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList, |
| SDValue N1, SDValue N2) { |
| SDValue Ops[] = { N1, N2 }; |
| return getNode(Opcode, DL, VTList, Ops, 2); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList, |
| SDValue N1, SDValue N2, SDValue N3) { |
| SDValue Ops[] = { N1, N2, N3 }; |
| return getNode(Opcode, DL, VTList, Ops, 3); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList, |
| SDValue N1, SDValue N2, SDValue N3, |
| SDValue N4) { |
| SDValue Ops[] = { N1, N2, N3, N4 }; |
| return getNode(Opcode, DL, VTList, Ops, 4); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList, |
| SDValue N1, SDValue N2, SDValue N3, |
| SDValue N4, SDValue N5) { |
| SDValue Ops[] = { N1, N2, N3, N4, N5 }; |
| return getNode(Opcode, DL, VTList, Ops, 5); |
| } |
| |
| SDVTList SelectionDAG::getVTList(EVT VT) { |
| return makeVTList(SDNode::getValueTypeList(VT), 1); |
| } |
| |
| SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { |
| for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(), |
| E = VTList.rend(); I != E; ++I) |
| if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2) |
| return *I; |
| |
| EVT *Array = Allocator.Allocate<EVT>(2); |
| Array[0] = VT1; |
| Array[1] = VT2; |
| SDVTList Result = makeVTList(Array, 2); |
| VTList.push_back(Result); |
| return Result; |
| } |
| |
| SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { |
| for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(), |
| E = VTList.rend(); I != E; ++I) |
| if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 && |
| I->VTs[2] == VT3) |
| return *I; |
| |
| EVT *Array = Allocator.Allocate<EVT>(3); |
| Array[0] = VT1; |
| Array[1] = VT2; |
| Array[2] = VT3; |
| SDVTList Result = makeVTList(Array, 3); |
| VTList.push_back(Result); |
| return Result; |
| } |
| |
| SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { |
| for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(), |
| E = VTList.rend(); I != E; ++I) |
| if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 && |
| I->VTs[2] == VT3 && I->VTs[3] == VT4) |
| return *I; |
| |
| EVT *Array = Allocator.Allocate<EVT>(4); |
| Array[0] = VT1; |
| Array[1] = VT2; |
| Array[2] = VT3; |
| Array[3] = VT4; |
| SDVTList Result = makeVTList(Array, 4); |
| VTList.push_back(Result); |
| return Result; |
| } |
| |
| SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) { |
| switch (NumVTs) { |
| case 0: llvm_unreachable("Cannot have nodes without results!"); |
| case 1: return getVTList(VTs[0]); |
| case 2: return getVTList(VTs[0], VTs[1]); |
| case 3: return getVTList(VTs[0], VTs[1], VTs[2]); |
| case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]); |
| default: break; |
| } |
| |
| for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(), |
| E = VTList.rend(); I != E; ++I) { |
| if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1]) |
| continue; |
| |
| if (std::equal(&VTs[2], &VTs[NumVTs], &I->VTs[2])) |
| return *I; |
| } |
| |
| EVT *Array = Allocator.Allocate<EVT>(NumVTs); |
| std::copy(VTs, VTs+NumVTs, Array); |
| SDVTList Result = makeVTList(Array, NumVTs); |
| VTList.push_back(Result); |
| return Result; |
| } |
| |
| |
| /// UpdateNodeOperands - *Mutate* the specified node in-place to have the |
| /// specified operands. If the resultant node already exists in the DAG, |
| /// this does not modify the specified node, instead it returns the node that |
| /// already exists. If the resultant node does not exist in the DAG, the |
| /// input node is returned. As a degenerate case, if you specify the same |
| /// input operands as the node already has, the input node is returned. |
| SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { |
| assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); |
| |
| // Check to see if there is no change. |
| if (Op == N->getOperand(0)) return N; |
| |
| // See if the modified node already exists. |
| void *InsertPos = 0; |
| if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) |
| return Existing; |
| |
| // Nope it doesn't. Remove the node from its current place in the maps. |
| if (InsertPos) |
| if (!RemoveNodeFromCSEMaps(N)) |
| InsertPos = 0; |
| |
| // Now we update the operands. |
| N->OperandList[0].set(Op); |
| |
| // If this gets put into a CSE map, add it. |
| if (InsertPos) CSEMap.InsertNode(N, InsertPos); |
| return N; |
| } |
| |
| SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { |
| assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); |
| |
| // Check to see if there is no change. |
| if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) |
| return N; // No operands changed, just return the input node. |
| |
| // See if the modified node already exists. |
| void *InsertPos = 0; |
| if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) |
| return Existing; |
| |
| // Nope it doesn't. Remove the node from its current place in the maps. |
| if (InsertPos) |
| if (!RemoveNodeFromCSEMaps(N)) |
| InsertPos = 0; |
| |
| // Now we update the operands. |
| if (N->OperandList[0] != Op1) |
| N->OperandList[0].set(Op1); |
| if (N->OperandList[1] != Op2) |
| N->OperandList[1].set(Op2); |
| |
| // If this gets put into a CSE map, add it. |
| if (InsertPos) CSEMap.InsertNode(N, InsertPos); |
| return N; |
| } |
| |
| SDNode *SelectionDAG:: |
| UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { |
| SDValue Ops[] = { Op1, Op2, Op3 }; |
| return UpdateNodeOperands(N, Ops, 3); |
| } |
| |
| SDNode *SelectionDAG:: |
| UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, |
| SDValue Op3, SDValue Op4) { |
| SDValue Ops[] = { Op1, Op2, Op3, Op4 }; |
| return UpdateNodeOperands(N, Ops, 4); |
| } |
| |
| SDNode *SelectionDAG:: |
| UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, |
| SDValue Op3, SDValue Op4, SDValue Op5) { |
| SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; |
| return UpdateNodeOperands(N, Ops, 5); |
| } |
| |
| SDNode *SelectionDAG:: |
| UpdateNodeOperands(SDNode *N, const SDValue *Ops, unsigned NumOps) { |
| assert(N->getNumOperands() == NumOps && |
| "Update with wrong number of operands"); |
| |
| // Check to see if there is no change. |
| bool AnyChange = false; |
| for (unsigned i = 0; i != NumOps; ++i) { |
| if (Ops[i] != N->getOperand(i)) { |
| AnyChange = true; |
| break; |
| } |
| } |
| |
| // No operands changed, just return the input node. |
| if (!AnyChange) return N; |
| |
| // See if the modified node already exists. |
| void *InsertPos = 0; |
| if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos)) |
| return Existing; |
| |
| // Nope it doesn't. Remove the node from its current place in the maps. |
| if (InsertPos) |
| if (!RemoveNodeFromCSEMaps(N)) |
| InsertPos = 0; |
| |
| // Now we update the operands. |
| for (unsigned i = 0; i != NumOps; ++i) |
| if (N->OperandList[i] != Ops[i]) |
| N->OperandList[i].set(Ops[i]); |
| |
| // If this gets put into a CSE map, add it. |
| if (InsertPos) CSEMap.InsertNode(N, InsertPos); |
| return N; |
| } |
| |
| /// DropOperands - Release the operands and set this node to have |
| /// zero operands. |
| void SDNode::DropOperands() { |
| // Unlike the code in MorphNodeTo that does this, we don't need to |
| // watch for dead nodes here. |
| for (op_iterator I = op_begin(), E = op_end(); I != E; ) { |
| SDUse &Use = *I++; |
| Use.set(SDValue()); |
| } |
| } |
| |
| /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a |
| /// machine opcode. |
| /// |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, |
| EVT VT) { |
| SDVTList VTs = getVTList(VT); |
| return SelectNodeTo(N, MachineOpc, VTs, 0, 0); |
| } |
| |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, |
| EVT VT, SDValue Op1) { |
| SDVTList VTs = getVTList(VT); |
| SDValue Ops[] = { Op1 }; |
| return SelectNodeTo(N, MachineOpc, VTs, Ops, 1); |
| } |
| |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, |
| EVT VT, SDValue Op1, |
| SDValue Op2) { |
| SDVTList VTs = getVTList(VT); |
| SDValue Ops[] = { Op1, Op2 }; |
| return SelectNodeTo(N, MachineOpc, VTs, Ops, 2); |
| } |
| |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, |
| EVT VT, SDValue Op1, |
| SDValue Op2, SDValue Op3) { |
| SDVTList VTs = getVTList(VT); |
| SDValue Ops[] = { Op1, Op2, Op3 }; |
| return SelectNodeTo(N, MachineOpc, VTs, Ops, 3); |
| } |
| |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, |
| EVT VT, const SDValue *Ops, |
| unsigned NumOps) { |
| SDVTList VTs = getVTList(VT); |
| return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps); |
| } |
| |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, |
| EVT VT1, EVT VT2, const SDValue *Ops, |
| unsigned NumOps) { |
| SDVTList VTs = getVTList(VT1, VT2); |
| return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps); |
| } |
| |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, |
| EVT VT1, EVT VT2) { |
| SDVTList VTs = getVTList(VT1, VT2); |
| return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0); |
| } |
| |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, |
| EVT VT1, EVT VT2, EVT VT3, |
| const SDValue *Ops, unsigned NumOps) { |
| SDVTList VTs = getVTList(VT1, VT2, VT3); |
| return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps); |
| } |
| |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, |
| EVT VT1, EVT VT2, EVT VT3, EVT VT4, |
| const SDValue *Ops, unsigned NumOps) { |
| SDVTList VTs = getVTList(VT1, VT2, VT3, VT4); |
| return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps); |
| } |
| |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, |
| EVT VT1, EVT VT2, |
| SDValue Op1) { |
| SDVTList VTs = getVTList(VT1, VT2); |
| SDValue Ops[] = { Op1 }; |
| return SelectNodeTo(N, MachineOpc, VTs, Ops, 1); |
| } |
| |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, |
| EVT VT1, EVT VT2, |
| SDValue Op1, SDValue Op2) { |
| SDVTList VTs = getVTList(VT1, VT2); |
| SDValue Ops[] = { Op1, Op2 }; |
| return SelectNodeTo(N, MachineOpc, VTs, Ops, 2); |
| } |
| |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, |
| EVT VT1, EVT VT2, |
| SDValue Op1, SDValue Op2, |
| SDValue Op3) { |
| SDVTList VTs = getVTList(VT1, VT2); |
| SDValue Ops[] = { Op1, Op2, Op3 }; |
| return SelectNodeTo(N, MachineOpc, VTs, Ops, 3); |
| } |
| |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, |
| EVT VT1, EVT VT2, EVT VT3, |
| SDValue Op1, SDValue Op2, |
| SDValue Op3) { |
| SDVTList VTs = getVTList(VT1, VT2, VT3); |
| SDValue Ops[] = { Op1, Op2, Op3 }; |
| return SelectNodeTo(N, MachineOpc, VTs, Ops, 3); |
| } |
| |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, |
| SDVTList VTs, const SDValue *Ops, |
| unsigned NumOps) { |
| N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps); |
| // Reset the NodeID to -1. |
| N->setNodeId(-1); |
| return N; |
| } |
| |
| /// UpdadeDebugLocOnMergedSDNode - If the opt level is -O0 then it throws away |
| /// the line number information on the merged node since it is not possible to |
| /// preserve the information that operation is associated with multiple lines. |
| /// This will make the debugger working better at -O0, were there is a higher |
| /// probability having other instructions associated with that line. |
| /// |
| SDNode *SelectionDAG::UpdadeDebugLocOnMergedSDNode(SDNode *N, DebugLoc OLoc) { |
| DebugLoc NLoc = N->getDebugLoc(); |
| if (!(NLoc.isUnknown()) && (OptLevel == CodeGenOpt::None) && (OLoc != NLoc)) { |
| N->setDebugLoc(DebugLoc()); |
| } |
| return N; |
| } |
| |
| /// MorphNodeTo - This *mutates* the specified node to have the specified |
| /// return type, opcode, and operands. |
| /// |
| /// Note that MorphNodeTo returns the resultant node. If there is already a |
| /// node of the specified opcode and operands, it returns that node instead of |
| /// the current one. Note that the DebugLoc need not be the same. |
| /// |
| /// Using MorphNodeTo is faster than creating a new node and swapping it in |
| /// with ReplaceAllUsesWith both because it often avoids allocating a new |
| /// node, and because it doesn't require CSE recalculation for any of |
| /// the node's users. |
| /// |
| SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, |
| SDVTList VTs, const SDValue *Ops, |
| unsigned NumOps) { |
| // If an identical node already exists, use it. |
| void *IP = 0; |
| if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, VTs, Ops, NumOps); |
| if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return UpdadeDebugLocOnMergedSDNode(ON, N->getDebugLoc()); |
| } |
| |
| if (!RemoveNodeFromCSEMaps(N)) |
| IP = 0; |
| |
| // Start the morphing. |
| N->NodeType = Opc; |
| N->ValueList = VTs.VTs; |
| N->NumValues = VTs.NumVTs; |
| |
| // Clear the operands list, updating used nodes to remove this from their |
| // use list. Keep track of any operands that become dead as a result. |
| SmallPtrSet<SDNode*, 16> DeadNodeSet; |
| for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { |
| SDUse &Use = *I++; |
| SDNode *Used = Use.getNode(); |
| Use.set(SDValue()); |
| if (Used->use_empty()) |
| DeadNodeSet.insert(Used); |
| } |
| |
| if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) { |
| // Initialize the memory references information. |
| MN->setMemRefs(0, 0); |
| // If NumOps is larger than the # of operands we can have in a |
| // MachineSDNode, reallocate the operand list. |
| if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) { |
| if (MN->OperandsNeedDelete) |
| delete[] MN->OperandList; |
| if (NumOps > array_lengthof(MN->LocalOperands)) |
| // We're creating a final node that will live unmorphed for the |
| // remainder of the current SelectionDAG iteration, so we can allocate |
| // the operands directly out of a pool with no recycling metadata. |
| MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps), |
| Ops, NumOps); |
| else |
| MN->InitOperands(MN->LocalOperands, Ops, NumOps); |
| MN->OperandsNeedDelete = false; |
| } else |
| MN->InitOperands(MN->OperandList, Ops, NumOps); |
| } else { |
| // If NumOps is larger than the # of operands we currently have, reallocate |
| // the operand list. |
| if (NumOps > N->NumOperands) { |
| if (N->OperandsNeedDelete) |
| delete[] N->OperandList; |
| N->InitOperands(new SDUse[NumOps], Ops, NumOps); |
| N->OperandsNeedDelete = true; |
| } else |
| N->InitOperands(N->OperandList, Ops, NumOps); |
| } |
| |
| // Delete any nodes that are still dead after adding the uses for the |
| // new operands. |
| if (!DeadNodeSet.empty()) { |
| SmallVector<SDNode *, 16> DeadNodes; |
| for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(), |
| E = DeadNodeSet.end(); I != E; ++I) |
| if ((*I)->use_empty()) |
| DeadNodes.push_back(*I); |
| RemoveDeadNodes(DeadNodes); |
| } |
| |
| if (IP) |
| CSEMap.InsertNode(N, IP); // Memoize the new node. |
| return N; |
| } |
| |
| |
| /// getMachineNode - These are used for target selectors to create a new node |
| /// with specified return type(s), MachineInstr opcode, and operands. |
| /// |
| /// Note that getMachineNode returns the resultant node. If there is already a |
| /// node of the specified opcode and operands, it returns that node instead of |
| /// the current one. |
| MachineSDNode * |
| SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) { |
| SDVTList VTs = getVTList(VT); |
| return getMachineNode(Opcode, dl, VTs, 0, 0); |
| } |
| |
| MachineSDNode * |
| SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) { |
| SDVTList VTs = getVTList(VT); |
| SDValue Ops[] = { Op1 }; |
| return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops)); |
| } |
| |
| MachineSDNode * |
| SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, |
| SDValue Op1, SDValue Op2) { |
| SDVTList VTs = getVTList(VT); |
| SDValue Ops[] = { Op1, Op2 }; |
| return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops)); |
| } |
| |
| MachineSDNode * |
| SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, |
| SDValue Op1, SDValue Op2, SDValue Op3) { |
| SDVTList VTs = getVTList(VT); |
| SDValue Ops[] = { Op1, Op2, Op3 }; |
| return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops)); |
| } |
| |
| MachineSDNode * |
| SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, |
| const SDValue *Ops, unsigned NumOps) { |
| SDVTList VTs = getVTList(VT); |
| return getMachineNode(Opcode, dl, VTs, Ops, NumOps); |
| } |
| |
| MachineSDNode * |
| SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) { |
| SDVTList VTs = getVTList(VT1, VT2); |
| return getMachineNode(Opcode, dl, VTs, 0, 0); |
| } |
| |
| MachineSDNode * |
| SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, |
| EVT VT1, EVT VT2, SDValue Op1) { |
| SDVTList VTs = getVTList(VT1, VT2); |
| SDValue Ops[] = { Op1 }; |
| return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops)); |
| } |
| |
| MachineSDNode * |
| SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, |
| EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) { |
| SDVTList VTs = getVTList(VT1, VT2); |
| SDValue Ops[] = { Op1, Op2 }; |
| return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops)); |
| } |
| |
| MachineSDNode * |
| SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, |
| EVT VT1, EVT VT2, SDValue Op1, |
| SDValue Op2, SDValue Op3) { |
| SDVTList VTs = getVTList(VT1, VT2); |
| SDValue Ops[] = { Op1, Op2, Op3 }; |
| return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops)); |
| } |
| |
| MachineSDNode * |
| SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, |
| EVT VT1, EVT VT2, |
| const SDValue *Ops, unsigned NumOps) { |
| SDVTList VTs = getVTList(VT1, VT2); |
| return getMachineNode(Opcode, dl, VTs, Ops, NumOps); |
| } |
| |
| MachineSDNode * |
| SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, |
| EVT VT1, EVT VT2, EVT VT3, |
| SDValue Op1, SDValue Op2) { |
| SDVTList VTs = getVTList(VT1, VT2, VT3); |
| SDValue Ops[] = { Op1, Op2 }; |
| return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops)); |
| } |
| |
| MachineSDNode * |
| SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, |
| EVT VT1, EVT VT2, EVT VT3, |
| SDValue Op1, SDValue Op2, SDValue Op3) { |
| SDVTList VTs = getVTList(VT1, VT2, VT3); |
| SDValue Ops[] = { Op1, Op2, Op3 }; |
| return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops)); |
| } |
| |
| MachineSDNode * |
| SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, |
| EVT VT1, EVT VT2, EVT VT3, |
| const SDValue *Ops, unsigned NumOps) { |
| SDVTList VTs = getVTList(VT1, VT2, VT3); |
| return getMachineNode(Opcode, dl, VTs, Ops, NumOps); |
| } |
| |
| MachineSDNode * |
| SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, |
| EVT VT2, EVT VT3, EVT VT4, |
| const SDValue *Ops, unsigned NumOps) { |
| SDVTList VTs = getVTList(VT1, VT2, VT3, VT4); |
| return getMachineNode(Opcode, dl, VTs, Ops, NumOps); |
| } |
| |
| MachineSDNode * |
| SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, |
| const std::vector<EVT> &ResultTys, |
| const SDValue *Ops, unsigned NumOps) { |
| SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size()); |
| return getMachineNode(Opcode, dl, VTs, Ops, NumOps); |
| } |
| |
| MachineSDNode * |
| SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs, |
| const SDValue *Ops, unsigned NumOps) { |
| bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; |
| MachineSDNode *N; |
| void *IP = 0; |
| |
| if (DoCSE) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps); |
| IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) { |
| return cast<MachineSDNode>(UpdadeDebugLocOnMergedSDNode(E, DL)); |
| } |
| } |
| |
| // Allocate a new MachineSDNode. |
| N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs); |
| |
| // Initialize the operands list. |
| if (NumOps > array_lengthof(N->LocalOperands)) |
| // We're creating a final node that will live unmorphed for the |
| // remainder of the current SelectionDAG iteration, so we can allocate |
| // the operands directly out of a pool with no recycling metadata. |
| N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps), |
| Ops, NumOps); |
| else |
| N->InitOperands(N->LocalOperands, Ops, NumOps); |
| N->OperandsNeedDelete = false; |
| |
| if (DoCSE) |
| CSEMap.InsertNode(N, IP); |
| |
| AllNodes.push_back(N); |
| #ifndef NDEBUG |
| VerifyMachineNode(N); |
| #endif |
| return N; |
| } |
| |
| /// getTargetExtractSubreg - A convenience function for creating |
| /// TargetOpcode::EXTRACT_SUBREG nodes. |
| SDValue |
| SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT, |
| SDValue Operand) { |
| SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32); |
| SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, |
| VT, Operand, SRIdxVal); |
| return SDValue(Subreg, 0); |
| } |
| |
| /// getTargetInsertSubreg - A convenience function for creating |
| /// TargetOpcode::INSERT_SUBREG nodes. |
| SDValue |
| SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT, |
| SDValue Operand, SDValue Subreg) { |
| SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32); |
| SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, |
| VT, Operand, Subreg, SRIdxVal); |
| return SDValue(Result, 0); |
| } |
| |
| /// getNodeIfExists - Get the specified node if it's already available, or |
| /// else return NULL. |
| SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, |
| const SDValue *Ops, unsigned NumOps) { |
| if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return E; |
| } |
| return NULL; |
| } |
| |
| /// getDbgValue - Creates a SDDbgValue node. |
| /// |
| SDDbgValue * |
| SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off, |
| DebugLoc DL, unsigned O) { |
| return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O); |
| } |
| |
| SDDbgValue * |
| SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off, |
| DebugLoc DL, unsigned O) { |
| return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O); |
| } |
| |
| SDDbgValue * |
| SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off, |
| DebugLoc DL, unsigned O) { |
| return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O); |
| } |
| |
| namespace { |
| |
| /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node |
| /// pointed to by a use iterator is deleted, increment the use iterator |
| /// so that it doesn't dangle. |
| /// |
| class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { |
| SDNode::use_iterator &UI; |
| SDNode::use_iterator &UE; |
| |
| virtual void NodeDeleted(SDNode *N, SDNode *E) { |
| // Increment the iterator as needed. |
| while (UI != UE && N == *UI) |
| ++UI; |
| } |
| |
| public: |
| RAUWUpdateListener(SelectionDAG &d, |
| SDNode::use_iterator &ui, |
| SDNode::use_iterator &ue) |
| : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} |
| }; |
| |
| } |
| |
| /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. |
| /// This can cause recursive merging of nodes in the DAG. |
| /// |
| /// This version assumes From has a single result value. |
| /// |
| void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { |
| SDNode *From = FromN.getNode(); |
| assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && |
| "Cannot replace with this method!"); |
| assert(From != To.getNode() && "Cannot replace uses of with self"); |
| |
| // Iterate over all the existing uses of From. New uses will be added |
| // to the beginning of the use list, which we avoid visiting. |
| // This specifically avoids visiting uses of From that arise while the |
| // replacement is happening, because any such uses would be the result |
| // of CSE: If an existing node looks like From after one of its operands |
| // is replaced by To, we don't want to replace of all its users with To |
| // too. See PR3018 for more info. |
| SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); |
| RAUWUpdateListener Listener(*this, UI, UE); |
| while (UI != UE) { |
| SDNode *User = *UI; |
| |
| // This node is about to morph, remove its old self from the CSE maps. |
| RemoveNodeFromCSEMaps(User); |
| |
| // A user can appear in a use list multiple times, and when this |
| // happens the uses are usually next to each other in the list. |
| // To help reduce the number of CSE recomputations, process all |
| // the uses of this user that we can find this way. |
| do { |
| SDUse &Use = UI.getUse(); |
| ++UI; |
| Use.set(To); |
| } while (UI != UE && *UI == User); |
| |
| // Now that we have modified User, add it back to the CSE maps. If it |
| // already exists there, recursively merge the results together. |
| AddModifiedNodeToCSEMaps(User); |
| } |
| |
| // If we just RAUW'd the root, take note. |
| if (FromN == getRoot()) |
| setRoot(To); |
| } |
| |
| /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. |
| /// This can cause recursive merging of nodes in the DAG. |
| /// |
| /// This version assumes that for each value of From, there is a |
| /// corresponding value in To in the same position with the same type. |
| /// |
| void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { |
| #ifndef NDEBUG |
| for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) |
| assert((!From->hasAnyUseOfValue(i) || |
| From->getValueType(i) == To->getValueType(i)) && |
| "Cannot use this version of ReplaceAllUsesWith!"); |
| #endif |
| |
| // Handle the trivial case. |
| if (From == To) |
| return; |
| |
| // Iterate over just the existing users of From. See the comments in |
| // the ReplaceAllUsesWith above. |
| SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); |
| RAUWUpdateListener Listener(*this, UI, UE); |
| while (UI != UE) { |
| SDNode *User = *UI; |
| |
| // This node is about to morph, remove its old self from the CSE maps. |
| RemoveNodeFromCSEMaps(User); |
| |
| // A user can appear in a use list multiple times, and when this |
| // happens the uses are usually next to each other in the list. |
| // To help reduce the number of CSE recomputations, process all |
| // the uses of this user that we can find this way. |
| do { |
| SDUse &Use = UI.getUse(); |
| ++UI; |
| Use.setNode(To); |
| } while (UI != UE && *UI == User); |
| |
| // Now that we have modified User, add it back to the CSE maps. If it |
| // already exists there, recursively merge the results together. |
| AddModifiedNodeToCSEMaps(User); |
| } |
| |
| // If we just RAUW'd the root, take note. |
| if (From == getRoot().getNode()) |
| setRoot(SDValue(To, getRoot().getResNo())); |
| } |
| |
| /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. |
| /// This can cause recursive merging of nodes in the DAG. |
| /// |
| /// This version can replace From with any result values. To must match the |
| /// number and types of values returned by From. |
| void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { |
| if (From->getNumValues() == 1) // Handle the simple case efficiently. |
| return ReplaceAllUsesWith(SDValue(From, 0), To[0]); |
| |
| // Iterate over just the existing users of From. See the comments in |
| // the ReplaceAllUsesWith above. |
| SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); |
| RAUWUpdateListener Listener(*this, UI, UE); |
| while (UI != UE) { |
| SDNode *User = *UI; |
| |
| // This node is about to morph, remove its old self from the CSE maps. |
| RemoveNodeFromCSEMaps(User); |
| |
| // A user can appear in a use list multiple times, and when this |
| // happens the uses are usually next to each other in the list. |
| // To help reduce the number of CSE recomputations, process all |
| // the uses of this user that we can find this way. |
| do { |
| SDUse &Use = UI.getUse(); |
| const SDValue &ToOp = To[Use.getResNo()]; |
| ++UI; |
| Use.set(ToOp); |
| } while (UI != UE && *UI == User); |
| |
| // Now that we have modified User, add it back to the CSE maps. If it |
| // already exists there, recursively merge the results together. |
| AddModifiedNodeToCSEMaps(User); |
| } |
| |
| // If we just RAUW'd the root, take note. |
| if (From == getRoot().getNode()) |
| setRoot(SDValue(To[getRoot().getResNo()])); |
| } |
| |
| /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving |
| /// uses of other values produced by From.getNode() alone. The Deleted |
| /// vector is handled the same way as for ReplaceAllUsesWith. |
| void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ |
| // Handle the really simple, really trivial case efficiently. |
| if (From == To) return; |
| |
| // Handle the simple, trivial, case efficiently. |
| if (From.getNode()->getNumValues() == 1) { |
| ReplaceAllUsesWith(From, To); |
| return; |
| } |
| |
| // Iterate over just the existing users of From. See the comments in |
| // the ReplaceAllUsesWith above. |
| SDNode::use_iterator UI = From.getNode()->use_begin(), |
| UE = From.getNode()->use_end(); |
| RAUWUpdateListener Listener(*this, UI, UE); |
| while (UI != UE) { |
| SDNode *User = *UI; |
| bool UserRemovedFromCSEMaps = false; |
| |
| // A user can appear in a use list multiple times, and when this |
| // happens the uses are usually next to each other in the list. |
| // To help reduce the number of CSE recomputations, process all |
| // the uses of this user that we can find this way. |
| do { |
| SDUse &Use = UI.getUse(); |
| |
| // Skip uses of different values from the same node. |
| if (Use.getResNo() != From.getResNo()) { |
| ++UI; |
| continue; |
| } |
| |
| // If this node hasn't been modified yet, it's still in the CSE maps, |
| // so remove its old self from the CSE maps. |
| if (!UserRemovedFromCSEMaps) { |
| RemoveNodeFromCSEMaps(User); |
| UserRemovedFromCSEMaps = true; |
| } |
| |
| ++UI; |
| Use.set(To); |
| } while (UI != UE && *UI == User); |
| |
| // We are iterating over all uses of the From node, so if a use |
| // doesn't use the specific value, no changes are made. |
| if (!UserRemovedFromCSEMaps) |
| continue; |
| |
| // Now that we have modified User, add it back to the CSE maps. If it |
| // already exists there, recursively merge the results together. |
| AddModifiedNodeToCSEMaps(User); |
| } |
| |
| // If we just RAUW'd the root, take note. |
| if (From == getRoot()) |
| setRoot(To); |
| } |
| |
| namespace { |
| /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith |
| /// to record information about a use. |
| struct UseMemo { |
| SDNode *User; |
| unsigned Index; |
| SDUse *Use; |
| }; |
| |
| /// operator< - Sort Memos by User. |
| bool operator<(const UseMemo &L, const UseMemo &R) { |
| return (intptr_t)L.User < (intptr_t)R.User; |
| } |
| } |
| |
| /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving |
| /// uses of other values produced by From.getNode() alone. The same value |
| /// may appear in both the From and To list. The Deleted vector is |
| /// handled the same way as for ReplaceAllUsesWith. |
| void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, |
| const SDValue *To, |
| unsigned Num){ |
| // Handle the simple, trivial case efficiently. |
| if (Num == 1) |
| return ReplaceAllUsesOfValueWith(*From, *To); |
| |
| // Read up all the uses and make records of them. This helps |
| // processing new uses that are introduced during the |
| // replacement process. |
| SmallVector<UseMemo, 4> Uses; |
| for (unsigned i = 0; i != Num; ++i) { |
| unsigned FromResNo = From[i].getResNo(); |
| SDNode *FromNode = From[i].getNode(); |
| for (SDNode::use_iterator UI = FromNode->use_begin(), |
| E = FromNode->use_end(); UI != E; ++UI) { |
| SDUse &Use = UI.getUse(); |
| if (Use.getResNo() == FromResNo) { |
| UseMemo Memo = { *UI, i, &Use }; |
| Uses.push_back(Memo); |
| } |
| } |
| } |
| |
| // Sort the uses, so that all the uses from a given User are together. |
| std::sort(Uses.begin(), Uses.end()); |
| |
| for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); |
| UseIndex != UseIndexEnd; ) { |
| // We know that this user uses some value of From. If it is the right |
| // value, update it. |
| SDNode *User = Uses[UseIndex].User; |
| |
| // This node is about to morph, remove its old self from the CSE maps. |
| RemoveNodeFromCSEMaps(User); |
| |
| // The Uses array is sorted, so all the uses for a given User |
| // are next to each other in the list. |
| // To help reduce the number of CSE recomputations, process all |
| // the uses of this user that we can find this way. |
| do { |
| unsigned i = Uses[UseIndex].Index; |
| SDUse &Use = *Uses[UseIndex].Use; |
| ++UseIndex; |
| |
| Use.set(To[i]); |
| } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); |
| |
| // Now that we have modified User, add it back to the CSE maps. If it |
| // already exists there, recursively merge the results together. |
| AddModifiedNodeToCSEMaps(User); |
| } |
| } |
| |
| /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG |
| /// based on their topological order. It returns the maximum id and a vector |
| /// of the SDNodes* in assigned order by reference. |
| unsigned SelectionDAG::AssignTopologicalOrder() { |
| |
| unsigned DAGSize = 0; |
| |
| // SortedPos tracks the progress of the algorithm. Nodes before it are |
| // sorted, nodes after it are unsorted. When the algorithm completes |
| // it is at the end of the list. |
| allnodes_iterator SortedPos = allnodes_begin(); |
| |
| // Visit all the nodes. Move nodes with no operands to the front of |
| // the list immediately. Annotate nodes that do have operands with their |
| // operand count. Before we do this, the Node Id fields of the nodes |
| // may contain arbitrary values. After, the Node Id fields for nodes |
| // before SortedPos will contain the topological sort index, and the |
| // Node Id fields for nodes At SortedPos and after will contain the |
| // count of outstanding operands. |
| for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { |
| SDNode *N = I++; |
| checkForCycles(N); |
| unsigned Degree = N->getNumOperands(); |
| if (Degree == 0) { |
| // A node with no uses, add it to the result array immediately. |
| N->setNodeId(DAGSize++); |
| allnodes_iterator Q = N; |
| if (Q != SortedPos) |
| SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); |
| assert(SortedPos != AllNodes.end() && "Overran node list"); |
| ++SortedPos; |
| } else { |
| // Temporarily use the Node Id as scratch space for the degree count. |
| N->setNodeId(Degree); |
| } |
| } |
| |
| // Visit all the nodes. As we iterate, move nodes into sorted order, |
| // such that by the time the end is reached all nodes will be sorted. |
| for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) { |
| SDNode *N = I; |
| checkForCycles(N); |
| // N is in sorted position, so all its uses have one less operand |
| // that needs to be sorted. |
| for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); |
| UI != UE; ++UI) { |
| SDNode *P = *UI; |
| unsigned Degree = P->getNodeId(); |
| assert(Degree != 0 && "Invalid node degree"); |
| --Degree; |
| if (Degree == 0) { |
| // All of P's operands are sorted, so P may sorted now. |
| P->setNodeId(DAGSize++); |
| if (P != SortedPos) |
| SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); |
| assert(SortedPos != AllNodes.end() && "Overran node list"); |
| ++SortedPos; |
| } else { |
| // Update P's outstanding operand count. |
| P->setNodeId(Degree); |
| } |
| } |
| if (I == SortedPos) { |
| #ifndef NDEBUG |
| SDNode *S = ++I; |
| dbgs() << "Overran sorted position:\n"; |
| S->dumprFull(); |
| #endif |
| llvm_unreachable(0); |
| } |
| } |
| |
| assert(SortedPos == AllNodes.end() && |
| "Topological sort incomplete!"); |
| assert(AllNodes.front().getOpcode() == ISD::EntryToken && |
| "First node in topological sort is not the entry token!"); |
| assert(AllNodes.front().getNodeId() == 0 && |
| "First node in topological sort has non-zero id!"); |
| assert(AllNodes.front().getNumOperands() == 0 && |
| "First node in topological sort has operands!"); |
| assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && |
| "Last node in topologic sort has unexpected id!"); |
| assert(AllNodes.back().use_empty() && |
| "Last node in topologic sort has users!"); |
| assert(DAGSize == allnodes_size() && "Node count mismatch!"); |
| return DAGSize; |
| } |
| |
| /// AssignOrdering - Assign an order to the SDNode. |
| void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) { |
| assert(SD && "Trying to assign an order to a null node!"); |
| Ordering->add(SD, Order); |
| } |
| |
| /// GetOrdering - Get the order for the SDNode. |
| unsigned SelectionDAG::GetOrdering(const SDNode *SD) const { |
| assert(SD && "Trying to get the order of a null node!"); |
| return Ordering->getOrder(SD); |
| } |
| |
| /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the |
| /// value is produced by SD. |
| void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { |
| DbgInfo->add(DB, SD, isParameter); |
| if (SD) |
| SD->setHasDebugValue(true); |
| } |
| |
| /// TransferDbgValues - Transfer SDDbgValues. |
| void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) { |
| if (From == To || !From.getNode()->getHasDebugValue()) |
| return; |
| SDNode *FromNode = From.getNode(); |
| SDNode *ToNode = To.getNode(); |
| ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode); |
| SmallVector<SDDbgValue *, 2> ClonedDVs; |
| for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end(); |
| I != E; ++I) { |
| SDDbgValue *Dbg = *I; |
| if (Dbg->getKind() == SDDbgValue::SDNODE) { |
| SDDbgValue *Clone = getDbgValue(Dbg->getMDPtr(), ToNode, To.getResNo(), |
| Dbg->getOffset(), Dbg->getDebugLoc(), |
| Dbg->getOrder()); |
| ClonedDVs.push_back(Clone); |
| } |
| } |
| for (SmallVector<SDDbgValue *, 2>::iterator I = ClonedDVs.begin(), |
| E = ClonedDVs.end(); I != E; ++I) |
| AddDbgValue(*I, ToNode, false); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SDNode Class |
| //===----------------------------------------------------------------------===// |
| |
| HandleSDNode::~HandleSDNode() { |
| DropOperands(); |
| } |
| |
| GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, DebugLoc DL, |
| const GlobalValue *GA, |
| EVT VT, int64_t o, unsigned char TF) |
| : SDNode(Opc, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { |
| TheGlobal = GA; |
| } |
| |
| MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt, |
| MachineMemOperand *mmo) |
| : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) { |
| SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(), |
| MMO->isNonTemporal(), MMO->isInvariant()); |
| assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!"); |
| assert(isNonTemporal() == MMO->isNonTemporal() && |
| "Non-temporal encoding error!"); |
| assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!"); |
| } |
| |
| MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, |
| const SDValue *Ops, unsigned NumOps, EVT memvt, |
| MachineMemOperand *mmo) |
| : SDNode(Opc, dl, VTs, Ops, NumOps), |
| MemoryVT(memvt), MMO(mmo) { |
| SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(), |
| MMO->isNonTemporal(), MMO->isInvariant()); |
| assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!"); |
| assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!"); |
| } |
| |
| /// Profile - Gather unique data for the node. |
| /// |
| void SDNode::Profile(FoldingSetNodeID &ID) const { |
| AddNodeIDNode(ID, this); |
| } |
| |
| namespace { |
| struct EVTArray { |
| std::vector<EVT> VTs; |
| |
| EVTArray() { |
| VTs.reserve(MVT::LAST_VALUETYPE); |
| for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) |
| VTs.push_back(MVT((MVT::SimpleValueType)i)); |
| } |
| }; |
| } |
| |
| static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs; |
| static ManagedStatic<EVTArray> SimpleVTArray; |
| static ManagedStatic<sys::SmartMutex<true> > VTMutex; |
| |
| /// getValueTypeList - Return a pointer to the specified value type. |
| /// |
| const EVT *SDNode::getValueTypeList(EVT VT) { |
| if (VT.isExtended()) { |
| sys::SmartScopedLock<true> Lock(*VTMutex); |
| return &(*EVTs->insert(VT).first); |
| } else { |
| assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && |
| "Value type out of range!"); |
| return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; |
| } |
| } |
| |
| /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the |
| /// indicated value. This method ignores uses of other values defined by this |
| /// operation. |
| bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { |
| assert(Value < getNumValues() && "Bad value!"); |
| |
| // TODO: Only iterate over uses of a given value of the node |
| for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { |
| if (UI.getUse().getResNo() == Value) { |
| if (NUses == 0) |
| return false; |
| --NUses; |
| } |
| } |
| |
| // Found exactly the right number of uses? |
| return NUses == 0; |
| } |
| |
| |
| /// hasAnyUseOfValue - Return true if there are any use of the indicated |
| /// value. This method ignores uses of other values defined by this operation. |
| bool SDNode::hasAnyUseOfValue(unsigned Value) const { |
| assert(Value < getNumValues() && "Bad value!"); |
| |
| for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) |
| if (UI.getUse().getResNo() == Value) |
| return true; |
| |
| return false; |
| } |
| |
| |
| /// isOnlyUserOf - Return true if this node is the only use of N. |
| /// |
| bool SDNode::isOnlyUserOf(SDNode *N) const { |
| bool Seen = false; |
| for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { |
| SDNode *User = *I; |
| if (User == this) |
| Seen = true; |
| else |
| return false; |
| } |
| |
| return Seen; |
| } |
| |
| /// isOperand - Return true if this node is an operand of N. |
| /// |
| bool SDValue::isOperandOf(SDNode *N) const { |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) |
| if (*this == N->getOperand(i)) |
| return true; |
| return false; |
| } |
| |
| bool SDNode::isOperandOf(SDNode *N) const { |
| for (unsigned i = 0, e = N->NumOperands; i != e; ++i) |
| if (this == N->OperandList[i].getNode()) |
| return true; |
| return false; |
| } |
| |
| /// reachesChainWithoutSideEffects - Return true if this operand (which must |
| /// be a chain) reaches the specified operand without crossing any |
| /// side-effecting instructions on any chain path. In practice, this looks |
| /// through token factors and non-volatile loads. In order to remain efficient, |
| /// this only looks a couple of nodes in, it does not do an exhaustive search. |
| bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, |
| unsigned Depth) const { |
| if (*this == Dest) return true; |
| |
| // Don't search too deeply, we just want to be able to see through |
| // TokenFactor's etc. |
| if (Depth == 0) return false; |
| |
| // If this is a token factor, all inputs to the TF happen in parallel. If any |
| // of the operands of the TF does not reach dest, then we cannot do the xform. |
| if (getOpcode() == ISD::TokenFactor) { |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) |
| if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1)) |
| return false; |
| return true; |
| } |
| |
| // Loads don't have side effects, look through them. |
| if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { |
| if (!Ld->isVolatile()) |
| return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); |
| } |
| return false; |
| } |
| |
| /// hasPredecessor - Return true if N is a predecessor of this node. |
| /// N is either an operand of this node, or can be reached by recursively |
| /// traversing up the operands. |
| /// NOTE: This is an expensive method. Use it carefully. |
| bool SDNode::hasPredecessor(const SDNode *N) const { |
| SmallPtrSet<const SDNode *, 32> Visited; |
| SmallVector<const SDNode *, 16> Worklist; |
| return hasPredecessorHelper(N, Visited, Worklist); |
| } |
| |
| bool SDNode::hasPredecessorHelper(const SDNode *N, |
| SmallPtrSet<const SDNode *, 32> &Visited, |
| SmallVector<const SDNode *, 16> &Worklist) const { |
| if (Visited.empty()) { |
| Worklist.push_back(this); |
| } else { |
| // Take a look in the visited set. If we've already encountered this node |
| // we needn't search further. |
| if (Visited.count(N)) |
| return true; |
| } |
| |
| // Haven't visited N yet. Continue the search. |
| while (!Worklist.empty()) { |
| const SDNode *M = Worklist.pop_back_val(); |
| for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { |
| SDNode *Op = M->getOperand(i).getNode(); |
| if (Visited.insert(Op)) |
| Worklist.push_back(Op); |
| if (Op == N) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| uint64_t SDNode::getConstantOperandVal(unsigned Num) const { |
| assert(Num < NumOperands && "Invalid child # of SDNode!"); |
| return cast<ConstantSDNode>(OperandList[Num])->getZExtValue(); |
| } |
| |
| SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { |
| assert(N->getNumValues() == 1 && |
| "Can't unroll a vector with multiple results!"); |
| |
| EVT VT = N->getValueType(0); |
| unsigned NE = VT.getVectorNumElements(); |
| EVT EltVT = VT.getVectorElementType(); |
| DebugLoc dl = N->getDebugLoc(); |
| |
| SmallVector<SDValue, 8> Scalars; |
| SmallVector<SDValue, 4> Operands(N->getNumOperands()); |
| |
| // If ResNE is 0, fully unroll the vector op. |
| if (ResNE == 0) |
| ResNE = NE; |
| else if (NE > ResNE) |
| NE = ResNE; |
| |
| unsigned i; |
| for (i= 0; i != NE; ++i) { |
| for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { |
| SDValue Operand = N->getOperand(j); |
| EVT OperandVT = Operand.getValueType(); |
| if (OperandVT.isVector()) { |
| // A vector operand; extract a single element. |
| EVT OperandEltVT = OperandVT.getVectorElementType(); |
| Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, |
| OperandEltVT, |
| Operand, |
| getConstant(i, TLI.getPointerTy())); |
| } else { |
| // A scalar operand; just use it as is. |
| Operands[j] = Operand; |
| } |
| } |
| |
| switch (N->getOpcode()) { |
| default: |
| Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, |
| &Operands[0], Operands.size())); |
| break; |
| case ISD::VSELECT: |
| Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, |
| &Operands[0], Operands.size())); |
| break; |
| case ISD::SHL: |
| case ISD::SRA: |
| case ISD::SRL: |
| case ISD::ROTL: |
| case ISD::ROTR: |
| Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], |
| getShiftAmountOperand(Operands[0].getValueType(), |
| Operands[1]))); |
| break; |
| case ISD::SIGN_EXTEND_INREG: |
| case ISD::FP_ROUND_INREG: { |
| EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); |
| Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, |
| Operands[0], |
| getValueType(ExtVT))); |
| } |
| } |
| } |
| |
| for (; i < ResNE; ++i) |
| Scalars.push_back(getUNDEF(EltVT)); |
| |
| return getNode(ISD::BUILD_VECTOR, dl, |
| EVT::getVectorVT(*getContext(), EltVT, ResNE), |
| &Scalars[0], Scalars.size()); |
| } |
| |
| |
| /// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a |
| /// location that is 'Dist' units away from the location that the 'Base' load |
| /// is loading from. |
| bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base, |
| unsigned Bytes, int Dist) const { |
| if (LD->getChain() != Base->getChain()) |
| return false; |
| EVT VT = LD->getValueType(0); |
| if (VT.getSizeInBits() / 8 != Bytes) |
| return false; |
| |
| SDValue Loc = LD->getOperand(1); |
| SDValue BaseLoc = Base->getOperand(1); |
| if (Loc.getOpcode() == ISD::FrameIndex) { |
| if (BaseLoc.getOpcode() != ISD::FrameIndex) |
| return false; |
| const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo(); |
| int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); |
| int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); |
| int FS = MFI->getObjectSize(FI); |
| int BFS = MFI->getObjectSize(BFI); |
| if (FS != BFS || FS != (int)Bytes) return false; |
| return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes); |
| } |
| |
| // Handle X+C |
| if (isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc && |
| cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes) |
| return true; |
| |
| const GlobalValue *GV1 = NULL; |
| const GlobalValue *GV2 = NULL; |
| int64_t Offset1 = 0; |
| int64_t Offset2 = 0; |
| bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); |
| bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); |
| if (isGA1 && isGA2 && GV1 == GV2) |
| return Offset1 == (Offset2 + Dist*Bytes); |
| return false; |
| } |
| |
| |
| /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if |
| /// it cannot be inferred. |
| unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const { |
| // If this is a GlobalAddress + cst, return the alignment. |
| const GlobalValue *GV; |
| int64_t GVOffset = 0; |
| if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { |
| unsigned PtrWidth = TLI.getPointerTy().getSizeInBits(); |
| APInt KnownZero(PtrWidth, 0), KnownOne(PtrWidth, 0); |
| llvm::ComputeMaskedBits(const_cast<GlobalValue*>(GV), KnownZero, KnownOne, |
| TLI.getDataLayout()); |
| unsigned AlignBits = KnownZero.countTrailingOnes(); |
| unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0; |
| if (Align) |
| return MinAlign(Align, GVOffset); |
| } |
| |
| // If this is a direct reference to a stack slot, use information about the |
| // stack slot's alignment. |
| int FrameIdx = 1 << 31; |
| int64_t FrameOffset = 0; |
| if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { |
| FrameIdx = FI->getIndex(); |
| } else if (isBaseWithConstantOffset(Ptr) && |
| isa<FrameIndexSDNode>(Ptr.getOperand(0))) { |
| // Handle FI+Cst |
| FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); |
| FrameOffset = Ptr.getConstantOperandVal(1); |
| } |
| |
| if (FrameIdx != (1 << 31)) { |
| const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo(); |
| unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx), |
| FrameOffset); |
| return FIInfoAlign; |
| } |
| |
| return 0; |
| } |
| |
| // getAddressSpace - Return the address space this GlobalAddress belongs to. |
| unsigned GlobalAddressSDNode::getAddressSpace() const { |
| return getGlobal()->getType()->getAddressSpace(); |
| } |
| |
| |
| Type *ConstantPoolSDNode::getType() const { |
| if (isMachineConstantPoolEntry()) |
| return Val.MachineCPVal->getType(); |
| return Val.ConstVal->getType(); |
| } |
| |
| bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, |
| APInt &SplatUndef, |
| unsigned &SplatBitSize, |
| bool &HasAnyUndefs, |
| unsigned MinSplatBits, |
| bool isBigEndian) { |
| EVT VT = getValueType(0); |
| assert(VT.isVector() && "Expected a vector type"); |
| unsigned sz = VT.getSizeInBits(); |
| if (MinSplatBits > sz) |
| return false; |
| |
| SplatValue = APInt(sz, 0); |
| SplatUndef = APInt(sz, 0); |
| |
| // Get the bits. Bits with undefined values (when the corresponding element |
| // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared |
| // in SplatValue. If any of the values are not constant, give up and return |
| // false. |
| unsigned int nOps = getNumOperands(); |
| assert(nOps > 0 && "isConstantSplat has 0-size build vector"); |
| unsigned EltBitSize = VT.getVectorElementType().getSizeInBits(); |
| |
| for (unsigned j = 0; j < nOps; ++j) { |
| unsigned i = isBigEndian ? nOps-1-j : j; |
| SDValue OpVal = getOperand(i); |
| unsigned BitPos = j * EltBitSize; |
| |
| if (OpVal.getOpcode() == ISD::UNDEF) |
| SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize); |
| else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) |
| SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize). |
| zextOrTrunc(sz) << BitPos; |
| else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) |
| SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos; |
| else |
| return false; |
| } |
| |
| // The build_vector is all constants or undefs. Find the smallest element |
| // size that splats the vector. |
| |
| HasAnyUndefs = (SplatUndef != 0); |
| while (sz > 8) { |
| |
| unsigned HalfSize = sz / 2; |
| APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); |
| APInt LowValue = SplatValue.trunc(HalfSize); |
| APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); |
| APInt LowUndef = SplatUndef.trunc(HalfSize); |
| |
| // If the two halves do not match (ignoring undef bits), stop here. |
| if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || |
| MinSplatBits > HalfSize) |
| break; |
| |
| SplatValue = HighValue | LowValue; |
| SplatUndef = HighUndef & LowUndef; |
| |
| sz = HalfSize; |
| } |
| |
| SplatBitSize = sz; |
| return true; |
| } |
| |
| bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { |
| // Find the first non-undef value in the shuffle mask. |
| unsigned i, e; |
| for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) |
| /* search */; |
| |
| assert(i != e && "VECTOR_SHUFFLE node with all undef indices!"); |
| |
| // Make sure all remaining elements are either undef or the same as the first |
| // non-undef value. |
| for (int Idx = Mask[i]; i != e; ++i) |
| if (Mask[i] >= 0 && Mask[i] != Idx) |
| return false; |
| return true; |
| } |
| |
| #ifdef XDEBUG |
| static void checkForCyclesHelper(const SDNode *N, |
| SmallPtrSet<const SDNode*, 32> &Visited, |
| SmallPtrSet<const SDNode*, 32> &Checked) { |
| // If this node has already been checked, don't check it again. |
| if (Checked.count(N)) |
| return; |
| |
| // If a node has already been visited on this depth-first walk, reject it as |
| // a cycle. |
| if (!Visited.insert(N)) { |
| dbgs() << "Offending node:\n"; |
| N->dumprFull(); |
| errs() << "Detected cycle in SelectionDAG\n"; |
| abort(); |
| } |
| |
| for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i) |
| checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked); |
| |
| Checked.insert(N); |
| Visited.erase(N); |
| } |
| #endif |
| |
| void llvm::checkForCycles(const llvm::SDNode *N) { |
| #ifdef XDEBUG |
| assert(N && "Checking nonexistant SDNode"); |
| SmallPtrSet<const SDNode*, 32> visited; |
| SmallPtrSet<const SDNode*, 32> checked; |
| checkForCyclesHelper(N, visited, checked); |
| #endif |
| } |
| |
| void llvm::checkForCycles(const llvm::SelectionDAG *DAG) { |
| checkForCycles(DAG->getRoot().getNode()); |
| } |