| //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements routines for translating from LLVM IR into SelectionDAG IR. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "isel" |
| #include "SelectionDAGBuilder.h" |
| #include "SDNodeDbgValue.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/BranchProbabilityInfo.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/CodeGen/Analysis.h" |
| #include "llvm/CodeGen/FastISel.h" |
| #include "llvm/CodeGen/FunctionLoweringInfo.h" |
| #include "llvm/CodeGen/GCMetadata.h" |
| #include "llvm/CodeGen/GCStrategy.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/DebugInfo.h" |
| #include "llvm/IR/CallingConv.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/IntegersSubsetMapping.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetFrameLowering.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetIntrinsicInfo.h" |
| #include "llvm/Target/TargetLibraryInfo.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| /// LimitFloatPrecision - Generate low-precision inline sequences for |
| /// some float libcalls (6, 8 or 12 bits). |
| static unsigned LimitFloatPrecision; |
| |
| static cl::opt<unsigned, true> |
| LimitFPPrecision("limit-float-precision", |
| cl::desc("Generate low-precision inline sequences " |
| "for some float libcalls"), |
| cl::location(LimitFloatPrecision), |
| cl::init(0)); |
| |
| // Limit the width of DAG chains. This is important in general to prevent |
| // prevent DAG-based analysis from blowing up. For example, alias analysis and |
| // load clustering may not complete in reasonable time. It is difficult to |
| // recognize and avoid this situation within each individual analysis, and |
| // future analyses are likely to have the same behavior. Limiting DAG width is |
| // the safe approach, and will be especially important with global DAGs. |
| // |
| // MaxParallelChains default is arbitrarily high to avoid affecting |
| // optimization, but could be lowered to improve compile time. Any ld-ld-st-st |
| // sequence over this should have been converted to llvm.memcpy by the |
| // frontend. It easy to induce this behavior with .ll code such as: |
| // %buffer = alloca [4096 x i8] |
| // %data = load [4096 x i8]* %argPtr |
| // store [4096 x i8] %data, [4096 x i8]* %buffer |
| static const unsigned MaxParallelChains = 64; |
| |
| static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, |
| const SDValue *Parts, unsigned NumParts, |
| MVT PartVT, EVT ValueVT, const Value *V); |
| |
| /// getCopyFromParts - Create a value that contains the specified legal parts |
| /// combined into the value they represent. If the parts combine to a type |
| /// larger then ValueVT then AssertOp can be used to specify whether the extra |
| /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT |
| /// (ISD::AssertSext). |
| static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL, |
| const SDValue *Parts, |
| unsigned NumParts, MVT PartVT, EVT ValueVT, |
| const Value *V, |
| ISD::NodeType AssertOp = ISD::DELETED_NODE) { |
| if (ValueVT.isVector()) |
| return getCopyFromPartsVector(DAG, DL, Parts, NumParts, |
| PartVT, ValueVT, V); |
| |
| assert(NumParts > 0 && "No parts to assemble!"); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| SDValue Val = Parts[0]; |
| |
| if (NumParts > 1) { |
| // Assemble the value from multiple parts. |
| if (ValueVT.isInteger()) { |
| unsigned PartBits = PartVT.getSizeInBits(); |
| unsigned ValueBits = ValueVT.getSizeInBits(); |
| |
| // Assemble the power of 2 part. |
| unsigned RoundParts = NumParts & (NumParts - 1) ? |
| 1 << Log2_32(NumParts) : NumParts; |
| unsigned RoundBits = PartBits * RoundParts; |
| EVT RoundVT = RoundBits == ValueBits ? |
| ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); |
| SDValue Lo, Hi; |
| |
| EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); |
| |
| if (RoundParts > 2) { |
| Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, |
| PartVT, HalfVT, V); |
| Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, |
| RoundParts / 2, PartVT, HalfVT, V); |
| } else { |
| Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); |
| Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); |
| } |
| |
| if (TLI.isBigEndian()) |
| std::swap(Lo, Hi); |
| |
| Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); |
| |
| if (RoundParts < NumParts) { |
| // Assemble the trailing non-power-of-2 part. |
| unsigned OddParts = NumParts - RoundParts; |
| EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); |
| Hi = getCopyFromParts(DAG, DL, |
| Parts + RoundParts, OddParts, PartVT, OddVT, V); |
| |
| // Combine the round and odd parts. |
| Lo = Val; |
| if (TLI.isBigEndian()) |
| std::swap(Lo, Hi); |
| EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); |
| Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); |
| Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, |
| DAG.getConstant(Lo.getValueType().getSizeInBits(), |
| TLI.getPointerTy())); |
| Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); |
| Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); |
| } |
| } else if (PartVT.isFloatingPoint()) { |
| // FP split into multiple FP parts (for ppcf128) |
| assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && |
| "Unexpected split"); |
| SDValue Lo, Hi; |
| Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); |
| Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); |
| if (TLI.isBigEndian()) |
| std::swap(Lo, Hi); |
| Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); |
| } else { |
| // FP split into integer parts (soft fp) |
| assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && |
| !PartVT.isVector() && "Unexpected split"); |
| EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); |
| Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); |
| } |
| } |
| |
| // There is now one part, held in Val. Correct it to match ValueVT. |
| EVT PartEVT = Val.getValueType(); |
| |
| if (PartEVT == ValueVT) |
| return Val; |
| |
| if (PartEVT.isInteger() && ValueVT.isInteger()) { |
| if (ValueVT.bitsLT(PartEVT)) { |
| // For a truncate, see if we have any information to |
| // indicate whether the truncated bits will always be |
| // zero or sign-extension. |
| if (AssertOp != ISD::DELETED_NODE) |
| Val = DAG.getNode(AssertOp, DL, PartEVT, Val, |
| DAG.getValueType(ValueVT)); |
| return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); |
| } |
| return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); |
| } |
| |
| if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { |
| // FP_ROUND's are always exact here. |
| if (ValueVT.bitsLT(Val.getValueType())) |
| return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, |
| DAG.getTargetConstant(1, TLI.getPointerTy())); |
| |
| return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); |
| } |
| |
| if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) |
| return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); |
| |
| llvm_unreachable("Unknown mismatch!"); |
| } |
| |
| /// getCopyFromPartsVector - Create a value that contains the specified legal |
| /// parts combined into the value they represent. If the parts combine to a |
| /// type larger then ValueVT then AssertOp can be used to specify whether the |
| /// extra bits are known to be zero (ISD::AssertZext) or sign extended from |
| /// ValueVT (ISD::AssertSext). |
| static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, |
| const SDValue *Parts, unsigned NumParts, |
| MVT PartVT, EVT ValueVT, const Value *V) { |
| assert(ValueVT.isVector() && "Not a vector value"); |
| assert(NumParts > 0 && "No parts to assemble!"); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| SDValue Val = Parts[0]; |
| |
| // Handle a multi-element vector. |
| if (NumParts > 1) { |
| EVT IntermediateVT; |
| MVT RegisterVT; |
| unsigned NumIntermediates; |
| unsigned NumRegs = |
| TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, |
| NumIntermediates, RegisterVT); |
| assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); |
| NumParts = NumRegs; // Silence a compiler warning. |
| assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); |
| assert(RegisterVT == Parts[0].getSimpleValueType() && |
| "Part type doesn't match part!"); |
| |
| // Assemble the parts into intermediate operands. |
| SmallVector<SDValue, 8> Ops(NumIntermediates); |
| if (NumIntermediates == NumParts) { |
| // If the register was not expanded, truncate or copy the value, |
| // as appropriate. |
| for (unsigned i = 0; i != NumParts; ++i) |
| Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, |
| PartVT, IntermediateVT, V); |
| } else if (NumParts > 0) { |
| // If the intermediate type was expanded, build the intermediate |
| // operands from the parts. |
| assert(NumParts % NumIntermediates == 0 && |
| "Must expand into a divisible number of parts!"); |
| unsigned Factor = NumParts / NumIntermediates; |
| for (unsigned i = 0; i != NumIntermediates; ++i) |
| Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, |
| PartVT, IntermediateVT, V); |
| } |
| |
| // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the |
| // intermediate operands. |
| Val = DAG.getNode(IntermediateVT.isVector() ? |
| ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, |
| ValueVT, &Ops[0], NumIntermediates); |
| } |
| |
| // There is now one part, held in Val. Correct it to match ValueVT. |
| EVT PartEVT = Val.getValueType(); |
| |
| if (PartEVT == ValueVT) |
| return Val; |
| |
| if (PartEVT.isVector()) { |
| // If the element type of the source/dest vectors are the same, but the |
| // parts vector has more elements than the value vector, then we have a |
| // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the |
| // elements we want. |
| if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { |
| assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && |
| "Cannot narrow, it would be a lossy transformation"); |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, |
| DAG.getIntPtrConstant(0)); |
| } |
| |
| // Vector/Vector bitcast. |
| if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) |
| return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); |
| |
| assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && |
| "Cannot handle this kind of promotion"); |
| // Promoted vector extract |
| bool Smaller = ValueVT.bitsLE(PartEVT); |
| return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), |
| DL, ValueVT, Val); |
| |
| } |
| |
| // Trivial bitcast if the types are the same size and the destination |
| // vector type is legal. |
| if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && |
| TLI.isTypeLegal(ValueVT)) |
| return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); |
| |
| // Handle cases such as i8 -> <1 x i1> |
| if (ValueVT.getVectorNumElements() != 1) { |
| LLVMContext &Ctx = *DAG.getContext(); |
| Twine ErrMsg("non-trivial scalar-to-vector conversion"); |
| if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) { |
| if (const CallInst *CI = dyn_cast<CallInst>(I)) |
| if (isa<InlineAsm>(CI->getCalledValue())) |
| ErrMsg = ErrMsg + ", possible invalid constraint for vector type"; |
| Ctx.emitError(I, ErrMsg); |
| } else { |
| Ctx.emitError(ErrMsg); |
| } |
| report_fatal_error("Cannot handle scalar-to-vector conversion!"); |
| } |
| |
| if (ValueVT.getVectorNumElements() == 1 && |
| ValueVT.getVectorElementType() != PartEVT) { |
| bool Smaller = ValueVT.bitsLE(PartEVT); |
| Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), |
| DL, ValueVT.getScalarType(), Val); |
| } |
| |
| return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); |
| } |
| |
| static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl, |
| SDValue Val, SDValue *Parts, unsigned NumParts, |
| MVT PartVT, const Value *V); |
| |
| /// getCopyToParts - Create a series of nodes that contain the specified value |
| /// split into legal parts. If the parts contain more bits than Val, then, for |
| /// integers, ExtendKind can be used to specify how to generate the extra bits. |
| static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL, |
| SDValue Val, SDValue *Parts, unsigned NumParts, |
| MVT PartVT, const Value *V, |
| ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { |
| EVT ValueVT = Val.getValueType(); |
| |
| // Handle the vector case separately. |
| if (ValueVT.isVector()) |
| return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); |
| |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| unsigned PartBits = PartVT.getSizeInBits(); |
| unsigned OrigNumParts = NumParts; |
| assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); |
| |
| if (NumParts == 0) |
| return; |
| |
| assert(!ValueVT.isVector() && "Vector case handled elsewhere"); |
| EVT PartEVT = PartVT; |
| if (PartEVT == ValueVT) { |
| assert(NumParts == 1 && "No-op copy with multiple parts!"); |
| Parts[0] = Val; |
| return; |
| } |
| |
| if (NumParts * PartBits > ValueVT.getSizeInBits()) { |
| // If the parts cover more bits than the value has, promote the value. |
| if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { |
| assert(NumParts == 1 && "Do not know what to promote to!"); |
| Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); |
| } else { |
| assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && |
| ValueVT.isInteger() && |
| "Unknown mismatch!"); |
| ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); |
| Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); |
| if (PartVT == MVT::x86mmx) |
| Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); |
| } |
| } else if (PartBits == ValueVT.getSizeInBits()) { |
| // Different types of the same size. |
| assert(NumParts == 1 && PartEVT != ValueVT); |
| Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); |
| } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { |
| // If the parts cover less bits than value has, truncate the value. |
| assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && |
| ValueVT.isInteger() && |
| "Unknown mismatch!"); |
| ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); |
| Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); |
| if (PartVT == MVT::x86mmx) |
| Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); |
| } |
| |
| // The value may have changed - recompute ValueVT. |
| ValueVT = Val.getValueType(); |
| assert(NumParts * PartBits == ValueVT.getSizeInBits() && |
| "Failed to tile the value with PartVT!"); |
| |
| if (NumParts == 1) { |
| if (PartEVT != ValueVT) { |
| LLVMContext &Ctx = *DAG.getContext(); |
| Twine ErrMsg("scalar-to-vector conversion failed"); |
| if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) { |
| if (const CallInst *CI = dyn_cast<CallInst>(I)) |
| if (isa<InlineAsm>(CI->getCalledValue())) |
| ErrMsg = ErrMsg + ", possible invalid constraint for vector type"; |
| Ctx.emitError(I, ErrMsg); |
| } else { |
| Ctx.emitError(ErrMsg); |
| } |
| } |
| |
| Parts[0] = Val; |
| return; |
| } |
| |
| // Expand the value into multiple parts. |
| if (NumParts & (NumParts - 1)) { |
| // The number of parts is not a power of 2. Split off and copy the tail. |
| assert(PartVT.isInteger() && ValueVT.isInteger() && |
| "Do not know what to expand to!"); |
| unsigned RoundParts = 1 << Log2_32(NumParts); |
| unsigned RoundBits = RoundParts * PartBits; |
| unsigned OddParts = NumParts - RoundParts; |
| SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, |
| DAG.getIntPtrConstant(RoundBits)); |
| getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); |
| |
| if (TLI.isBigEndian()) |
| // The odd parts were reversed by getCopyToParts - unreverse them. |
| std::reverse(Parts + RoundParts, Parts + NumParts); |
| |
| NumParts = RoundParts; |
| ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); |
| Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); |
| } |
| |
| // The number of parts is a power of 2. Repeatedly bisect the value using |
| // EXTRACT_ELEMENT. |
| Parts[0] = DAG.getNode(ISD::BITCAST, DL, |
| EVT::getIntegerVT(*DAG.getContext(), |
| ValueVT.getSizeInBits()), |
| Val); |
| |
| for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { |
| for (unsigned i = 0; i < NumParts; i += StepSize) { |
| unsigned ThisBits = StepSize * PartBits / 2; |
| EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); |
| SDValue &Part0 = Parts[i]; |
| SDValue &Part1 = Parts[i+StepSize/2]; |
| |
| Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, |
| ThisVT, Part0, DAG.getIntPtrConstant(1)); |
| Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, |
| ThisVT, Part0, DAG.getIntPtrConstant(0)); |
| |
| if (ThisBits == PartBits && ThisVT != PartVT) { |
| Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); |
| Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); |
| } |
| } |
| } |
| |
| if (TLI.isBigEndian()) |
| std::reverse(Parts, Parts + OrigNumParts); |
| } |
| |
| |
| /// getCopyToPartsVector - Create a series of nodes that contain the specified |
| /// value split into legal parts. |
| static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL, |
| SDValue Val, SDValue *Parts, unsigned NumParts, |
| MVT PartVT, const Value *V) { |
| EVT ValueVT = Val.getValueType(); |
| assert(ValueVT.isVector() && "Not a vector"); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| |
| if (NumParts == 1) { |
| EVT PartEVT = PartVT; |
| if (PartEVT == ValueVT) { |
| // Nothing to do. |
| } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { |
| // Bitconvert vector->vector case. |
| Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); |
| } else if (PartVT.isVector() && |
| PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && |
| PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { |
| EVT ElementVT = PartVT.getVectorElementType(); |
| // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in |
| // undef elements. |
| SmallVector<SDValue, 16> Ops; |
| for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) |
| Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, |
| ElementVT, Val, DAG.getIntPtrConstant(i))); |
| |
| for (unsigned i = ValueVT.getVectorNumElements(), |
| e = PartVT.getVectorNumElements(); i != e; ++i) |
| Ops.push_back(DAG.getUNDEF(ElementVT)); |
| |
| Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); |
| |
| // FIXME: Use CONCAT for 2x -> 4x. |
| |
| //SDValue UndefElts = DAG.getUNDEF(VectorTy); |
| //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); |
| } else if (PartVT.isVector() && |
| PartEVT.getVectorElementType().bitsGE( |
| ValueVT.getVectorElementType()) && |
| PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { |
| |
| // Promoted vector extract |
| bool Smaller = PartEVT.bitsLE(ValueVT); |
| Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), |
| DL, PartVT, Val); |
| } else{ |
| // Vector -> scalar conversion. |
| assert(ValueVT.getVectorNumElements() == 1 && |
| "Only trivial vector-to-scalar conversions should get here!"); |
| Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, |
| PartVT, Val, DAG.getIntPtrConstant(0)); |
| |
| bool Smaller = ValueVT.bitsLE(PartVT); |
| Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), |
| DL, PartVT, Val); |
| } |
| |
| Parts[0] = Val; |
| return; |
| } |
| |
| // Handle a multi-element vector. |
| EVT IntermediateVT; |
| MVT RegisterVT; |
| unsigned NumIntermediates; |
| unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, |
| IntermediateVT, |
| NumIntermediates, RegisterVT); |
| unsigned NumElements = ValueVT.getVectorNumElements(); |
| |
| assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); |
| NumParts = NumRegs; // Silence a compiler warning. |
| assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); |
| |
| // Split the vector into intermediate operands. |
| SmallVector<SDValue, 8> Ops(NumIntermediates); |
| for (unsigned i = 0; i != NumIntermediates; ++i) { |
| if (IntermediateVT.isVector()) |
| Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, |
| IntermediateVT, Val, |
| DAG.getIntPtrConstant(i * (NumElements / NumIntermediates))); |
| else |
| Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, |
| IntermediateVT, Val, DAG.getIntPtrConstant(i)); |
| } |
| |
| // Split the intermediate operands into legal parts. |
| if (NumParts == NumIntermediates) { |
| // If the register was not expanded, promote or copy the value, |
| // as appropriate. |
| for (unsigned i = 0; i != NumParts; ++i) |
| getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); |
| } else if (NumParts > 0) { |
| // If the intermediate type was expanded, split each the value into |
| // legal parts. |
| assert(NumParts % NumIntermediates == 0 && |
| "Must expand into a divisible number of parts!"); |
| unsigned Factor = NumParts / NumIntermediates; |
| for (unsigned i = 0; i != NumIntermediates; ++i) |
| getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); |
| } |
| } |
| |
| namespace { |
| /// RegsForValue - This struct represents the registers (physical or virtual) |
| /// that a particular set of values is assigned, and the type information |
| /// about the value. The most common situation is to represent one value at a |
| /// time, but struct or array values are handled element-wise as multiple |
| /// values. The splitting of aggregates is performed recursively, so that we |
| /// never have aggregate-typed registers. The values at this point do not |
| /// necessarily have legal types, so each value may require one or more |
| /// registers of some legal type. |
| /// |
| struct RegsForValue { |
| /// ValueVTs - The value types of the values, which may not be legal, and |
| /// may need be promoted or synthesized from one or more registers. |
| /// |
| SmallVector<EVT, 4> ValueVTs; |
| |
| /// RegVTs - The value types of the registers. This is the same size as |
| /// ValueVTs and it records, for each value, what the type of the assigned |
| /// register or registers are. (Individual values are never synthesized |
| /// from more than one type of register.) |
| /// |
| /// With virtual registers, the contents of RegVTs is redundant with TLI's |
| /// getRegisterType member function, however when with physical registers |
| /// it is necessary to have a separate record of the types. |
| /// |
| SmallVector<MVT, 4> RegVTs; |
| |
| /// Regs - This list holds the registers assigned to the values. |
| /// Each legal or promoted value requires one register, and each |
| /// expanded value requires multiple registers. |
| /// |
| SmallVector<unsigned, 4> Regs; |
| |
| RegsForValue() {} |
| |
| RegsForValue(const SmallVector<unsigned, 4> ®s, |
| MVT regvt, EVT valuevt) |
| : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} |
| |
| RegsForValue(LLVMContext &Context, const TargetLowering &tli, |
| unsigned Reg, Type *Ty) { |
| ComputeValueVTs(tli, Ty, ValueVTs); |
| |
| for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { |
| EVT ValueVT = ValueVTs[Value]; |
| unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); |
| MVT RegisterVT = tli.getRegisterType(Context, ValueVT); |
| for (unsigned i = 0; i != NumRegs; ++i) |
| Regs.push_back(Reg + i); |
| RegVTs.push_back(RegisterVT); |
| Reg += NumRegs; |
| } |
| } |
| |
| /// areValueTypesLegal - Return true if types of all the values are legal. |
| bool areValueTypesLegal(const TargetLowering &TLI) { |
| for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { |
| MVT RegisterVT = RegVTs[Value]; |
| if (!TLI.isTypeLegal(RegisterVT)) |
| return false; |
| } |
| return true; |
| } |
| |
| /// append - Add the specified values to this one. |
| void append(const RegsForValue &RHS) { |
| ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); |
| RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); |
| Regs.append(RHS.Regs.begin(), RHS.Regs.end()); |
| } |
| |
| /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from |
| /// this value and returns the result as a ValueVTs value. This uses |
| /// Chain/Flag as the input and updates them for the output Chain/Flag. |
| /// If the Flag pointer is NULL, no flag is used. |
| SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, |
| DebugLoc dl, |
| SDValue &Chain, SDValue *Flag, |
| const Value *V = 0) const; |
| |
| /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the |
| /// specified value into the registers specified by this object. This uses |
| /// Chain/Flag as the input and updates them for the output Chain/Flag. |
| /// If the Flag pointer is NULL, no flag is used. |
| void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, |
| SDValue &Chain, SDValue *Flag, const Value *V) const; |
| |
| /// AddInlineAsmOperands - Add this value to the specified inlineasm node |
| /// operand list. This adds the code marker, matching input operand index |
| /// (if applicable), and includes the number of values added into it. |
| void AddInlineAsmOperands(unsigned Kind, |
| bool HasMatching, unsigned MatchingIdx, |
| SelectionDAG &DAG, |
| std::vector<SDValue> &Ops) const; |
| }; |
| } |
| |
| /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from |
| /// this value and returns the result as a ValueVT value. This uses |
| /// Chain/Flag as the input and updates them for the output Chain/Flag. |
| /// If the Flag pointer is NULL, no flag is used. |
| SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, |
| FunctionLoweringInfo &FuncInfo, |
| DebugLoc dl, |
| SDValue &Chain, SDValue *Flag, |
| const Value *V) const { |
| // A Value with type {} or [0 x %t] needs no registers. |
| if (ValueVTs.empty()) |
| return SDValue(); |
| |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| |
| // Assemble the legal parts into the final values. |
| SmallVector<SDValue, 4> Values(ValueVTs.size()); |
| SmallVector<SDValue, 8> Parts; |
| for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { |
| // Copy the legal parts from the registers. |
| EVT ValueVT = ValueVTs[Value]; |
| unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); |
| MVT RegisterVT = RegVTs[Value]; |
| |
| Parts.resize(NumRegs); |
| for (unsigned i = 0; i != NumRegs; ++i) { |
| SDValue P; |
| if (Flag == 0) { |
| P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); |
| } else { |
| P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); |
| *Flag = P.getValue(2); |
| } |
| |
| Chain = P.getValue(1); |
| Parts[i] = P; |
| |
| // If the source register was virtual and if we know something about it, |
| // add an assert node. |
| if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || |
| !RegisterVT.isInteger() || RegisterVT.isVector()) |
| continue; |
| |
| const FunctionLoweringInfo::LiveOutInfo *LOI = |
| FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); |
| if (!LOI) |
| continue; |
| |
| unsigned RegSize = RegisterVT.getSizeInBits(); |
| unsigned NumSignBits = LOI->NumSignBits; |
| unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); |
| |
| // FIXME: We capture more information than the dag can represent. For |
| // now, just use the tightest assertzext/assertsext possible. |
| bool isSExt = true; |
| EVT FromVT(MVT::Other); |
| if (NumSignBits == RegSize) |
| isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 |
| else if (NumZeroBits >= RegSize-1) |
| isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 |
| else if (NumSignBits > RegSize-8) |
| isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 |
| else if (NumZeroBits >= RegSize-8) |
| isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 |
| else if (NumSignBits > RegSize-16) |
| isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 |
| else if (NumZeroBits >= RegSize-16) |
| isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 |
| else if (NumSignBits > RegSize-32) |
| isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 |
| else if (NumZeroBits >= RegSize-32) |
| isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 |
| else |
| continue; |
| |
| // Add an assertion node. |
| assert(FromVT != MVT::Other); |
| Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, |
| RegisterVT, P, DAG.getValueType(FromVT)); |
| } |
| |
| Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), |
| NumRegs, RegisterVT, ValueVT, V); |
| Part += NumRegs; |
| Parts.clear(); |
| } |
| |
| return DAG.getNode(ISD::MERGE_VALUES, dl, |
| DAG.getVTList(&ValueVTs[0], ValueVTs.size()), |
| &Values[0], ValueVTs.size()); |
| } |
| |
| /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the |
| /// specified value into the registers specified by this object. This uses |
| /// Chain/Flag as the input and updates them for the output Chain/Flag. |
| /// If the Flag pointer is NULL, no flag is used. |
| void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, |
| SDValue &Chain, SDValue *Flag, |
| const Value *V) const { |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| |
| // Get the list of the values's legal parts. |
| unsigned NumRegs = Regs.size(); |
| SmallVector<SDValue, 8> Parts(NumRegs); |
| for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { |
| EVT ValueVT = ValueVTs[Value]; |
| unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); |
| MVT RegisterVT = RegVTs[Value]; |
| ISD::NodeType ExtendKind = |
| TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND; |
| |
| getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), |
| &Parts[Part], NumParts, RegisterVT, V, ExtendKind); |
| Part += NumParts; |
| } |
| |
| // Copy the parts into the registers. |
| SmallVector<SDValue, 8> Chains(NumRegs); |
| for (unsigned i = 0; i != NumRegs; ++i) { |
| SDValue Part; |
| if (Flag == 0) { |
| Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); |
| } else { |
| Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); |
| *Flag = Part.getValue(1); |
| } |
| |
| Chains[i] = Part.getValue(0); |
| } |
| |
| if (NumRegs == 1 || Flag) |
| // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is |
| // flagged to it. That is the CopyToReg nodes and the user are considered |
| // a single scheduling unit. If we create a TokenFactor and return it as |
| // chain, then the TokenFactor is both a predecessor (operand) of the |
| // user as well as a successor (the TF operands are flagged to the user). |
| // c1, f1 = CopyToReg |
| // c2, f2 = CopyToReg |
| // c3 = TokenFactor c1, c2 |
| // ... |
| // = op c3, ..., f2 |
| Chain = Chains[NumRegs-1]; |
| else |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); |
| } |
| |
| /// AddInlineAsmOperands - Add this value to the specified inlineasm node |
| /// operand list. This adds the code marker and includes the number of |
| /// values added into it. |
| void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, |
| unsigned MatchingIdx, |
| SelectionDAG &DAG, |
| std::vector<SDValue> &Ops) const { |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| |
| unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); |
| if (HasMatching) |
| Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); |
| else if (!Regs.empty() && |
| TargetRegisterInfo::isVirtualRegister(Regs.front())) { |
| // Put the register class of the virtual registers in the flag word. That |
| // way, later passes can recompute register class constraints for inline |
| // assembly as well as normal instructions. |
| // Don't do this for tied operands that can use the regclass information |
| // from the def. |
| const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); |
| const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); |
| Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); |
| } |
| |
| SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); |
| Ops.push_back(Res); |
| |
| for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { |
| unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); |
| MVT RegisterVT = RegVTs[Value]; |
| for (unsigned i = 0; i != NumRegs; ++i) { |
| assert(Reg < Regs.size() && "Mismatch in # registers expected"); |
| Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); |
| } |
| } |
| } |
| |
| void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, |
| const TargetLibraryInfo *li) { |
| AA = &aa; |
| GFI = gfi; |
| LibInfo = li; |
| TD = DAG.getTarget().getDataLayout(); |
| Context = DAG.getContext(); |
| LPadToCallSiteMap.clear(); |
| } |
| |
| /// clear - Clear out the current SelectionDAG and the associated |
| /// state and prepare this SelectionDAGBuilder object to be used |
| /// for a new block. This doesn't clear out information about |
| /// additional blocks that are needed to complete switch lowering |
| /// or PHI node updating; that information is cleared out as it is |
| /// consumed. |
| void SelectionDAGBuilder::clear() { |
| NodeMap.clear(); |
| UnusedArgNodeMap.clear(); |
| PendingLoads.clear(); |
| PendingExports.clear(); |
| CurDebugLoc = DebugLoc(); |
| HasTailCall = false; |
| } |
| |
| /// clearDanglingDebugInfo - Clear the dangling debug information |
| /// map. This function is separated from the clear so that debug |
| /// information that is dangling in a basic block can be properly |
| /// resolved in a different basic block. This allows the |
| /// SelectionDAG to resolve dangling debug information attached |
| /// to PHI nodes. |
| void SelectionDAGBuilder::clearDanglingDebugInfo() { |
| DanglingDebugInfoMap.clear(); |
| } |
| |
| /// getRoot - Return the current virtual root of the Selection DAG, |
| /// flushing any PendingLoad items. This must be done before emitting |
| /// a store or any other node that may need to be ordered after any |
| /// prior load instructions. |
| /// |
| SDValue SelectionDAGBuilder::getRoot() { |
| if (PendingLoads.empty()) |
| return DAG.getRoot(); |
| |
| if (PendingLoads.size() == 1) { |
| SDValue Root = PendingLoads[0]; |
| DAG.setRoot(Root); |
| PendingLoads.clear(); |
| return Root; |
| } |
| |
| // Otherwise, we have to make a token factor node. |
| SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, |
| &PendingLoads[0], PendingLoads.size()); |
| PendingLoads.clear(); |
| DAG.setRoot(Root); |
| return Root; |
| } |
| |
| /// getControlRoot - Similar to getRoot, but instead of flushing all the |
| /// PendingLoad items, flush all the PendingExports items. It is necessary |
| /// to do this before emitting a terminator instruction. |
| /// |
| SDValue SelectionDAGBuilder::getControlRoot() { |
| SDValue Root = DAG.getRoot(); |
| |
| if (PendingExports.empty()) |
| return Root; |
| |
| // Turn all of the CopyToReg chains into one factored node. |
| if (Root.getOpcode() != ISD::EntryToken) { |
| unsigned i = 0, e = PendingExports.size(); |
| for (; i != e; ++i) { |
| assert(PendingExports[i].getNode()->getNumOperands() > 1); |
| if (PendingExports[i].getNode()->getOperand(0) == Root) |
| break; // Don't add the root if we already indirectly depend on it. |
| } |
| |
| if (i == e) |
| PendingExports.push_back(Root); |
| } |
| |
| Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, |
| &PendingExports[0], |
| PendingExports.size()); |
| PendingExports.clear(); |
| DAG.setRoot(Root); |
| return Root; |
| } |
| |
| void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { |
| if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. |
| DAG.AssignOrdering(Node, SDNodeOrder); |
| |
| for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) |
| AssignOrderingToNode(Node->getOperand(I).getNode()); |
| } |
| |
| void SelectionDAGBuilder::visit(const Instruction &I) { |
| // Set up outgoing PHI node register values before emitting the terminator. |
| if (isa<TerminatorInst>(&I)) |
| HandlePHINodesInSuccessorBlocks(I.getParent()); |
| |
| CurDebugLoc = I.getDebugLoc(); |
| |
| visit(I.getOpcode(), I); |
| |
| if (!isa<TerminatorInst>(&I) && !HasTailCall) |
| CopyToExportRegsIfNeeded(&I); |
| |
| CurDebugLoc = DebugLoc(); |
| } |
| |
| void SelectionDAGBuilder::visitPHI(const PHINode &) { |
| llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); |
| } |
| |
| void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { |
| // Note: this doesn't use InstVisitor, because it has to work with |
| // ConstantExpr's in addition to instructions. |
| switch (Opcode) { |
| default: llvm_unreachable("Unknown instruction type encountered!"); |
| // Build the switch statement using the Instruction.def file. |
| #define HANDLE_INST(NUM, OPCODE, CLASS) \ |
| case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; |
| #include "llvm/IR/Instruction.def" |
| } |
| |
| // Assign the ordering to the freshly created DAG nodes. |
| if (NodeMap.count(&I)) { |
| ++SDNodeOrder; |
| AssignOrderingToNode(getValue(&I).getNode()); |
| } |
| } |
| |
| // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, |
| // generate the debug data structures now that we've seen its definition. |
| void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, |
| SDValue Val) { |
| DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; |
| if (DDI.getDI()) { |
| const DbgValueInst *DI = DDI.getDI(); |
| DebugLoc dl = DDI.getdl(); |
| unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); |
| MDNode *Variable = DI->getVariable(); |
| uint64_t Offset = DI->getOffset(); |
| SDDbgValue *SDV; |
| if (Val.getNode()) { |
| if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { |
| SDV = DAG.getDbgValue(Variable, Val.getNode(), |
| Val.getResNo(), Offset, dl, DbgSDNodeOrder); |
| DAG.AddDbgValue(SDV, Val.getNode(), false); |
| } |
| } else |
| DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); |
| DanglingDebugInfoMap[V] = DanglingDebugInfo(); |
| } |
| } |
| |
| /// getValue - Return an SDValue for the given Value. |
| SDValue SelectionDAGBuilder::getValue(const Value *V) { |
| // If we already have an SDValue for this value, use it. It's important |
| // to do this first, so that we don't create a CopyFromReg if we already |
| // have a regular SDValue. |
| SDValue &N = NodeMap[V]; |
| if (N.getNode()) return N; |
| |
| // If there's a virtual register allocated and initialized for this |
| // value, use it. |
| DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); |
| if (It != FuncInfo.ValueMap.end()) { |
| unsigned InReg = It->second; |
| RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); |
| SDValue Chain = DAG.getEntryNode(); |
| N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL, V); |
| resolveDanglingDebugInfo(V, N); |
| return N; |
| } |
| |
| // Otherwise create a new SDValue and remember it. |
| SDValue Val = getValueImpl(V); |
| NodeMap[V] = Val; |
| resolveDanglingDebugInfo(V, Val); |
| return Val; |
| } |
| |
| /// getNonRegisterValue - Return an SDValue for the given Value, but |
| /// don't look in FuncInfo.ValueMap for a virtual register. |
| SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { |
| // If we already have an SDValue for this value, use it. |
| SDValue &N = NodeMap[V]; |
| if (N.getNode()) return N; |
| |
| // Otherwise create a new SDValue and remember it. |
| SDValue Val = getValueImpl(V); |
| NodeMap[V] = Val; |
| resolveDanglingDebugInfo(V, Val); |
| return Val; |
| } |
| |
| /// getValueImpl - Helper function for getValue and getNonRegisterValue. |
| /// Create an SDValue for the given value. |
| SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { |
| if (const Constant *C = dyn_cast<Constant>(V)) { |
| EVT VT = TLI.getValueType(V->getType(), true); |
| |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) |
| return DAG.getConstant(*CI, VT); |
| |
| if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) |
| return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT); |
| |
| if (isa<ConstantPointerNull>(C)) |
| return DAG.getConstant(0, TLI.getPointerTy()); |
| |
| if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) |
| return DAG.getConstantFP(*CFP, VT); |
| |
| if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) |
| return DAG.getUNDEF(VT); |
| |
| if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { |
| visit(CE->getOpcode(), *CE); |
| SDValue N1 = NodeMap[V]; |
| assert(N1.getNode() && "visit didn't populate the NodeMap!"); |
| return N1; |
| } |
| |
| if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { |
| SmallVector<SDValue, 4> Constants; |
| for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); |
| OI != OE; ++OI) { |
| SDNode *Val = getValue(*OI).getNode(); |
| // If the operand is an empty aggregate, there are no values. |
| if (!Val) continue; |
| // Add each leaf value from the operand to the Constants list |
| // to form a flattened list of all the values. |
| for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) |
| Constants.push_back(SDValue(Val, i)); |
| } |
| |
| return DAG.getMergeValues(&Constants[0], Constants.size(), |
| getCurDebugLoc()); |
| } |
| |
| if (const ConstantDataSequential *CDS = |
| dyn_cast<ConstantDataSequential>(C)) { |
| SmallVector<SDValue, 4> Ops; |
| for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { |
| SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); |
| // Add each leaf value from the operand to the Constants list |
| // to form a flattened list of all the values. |
| for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) |
| Ops.push_back(SDValue(Val, i)); |
| } |
| |
| if (isa<ArrayType>(CDS->getType())) |
| return DAG.getMergeValues(&Ops[0], Ops.size(), getCurDebugLoc()); |
| return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), |
| VT, &Ops[0], Ops.size()); |
| } |
| |
| if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { |
| assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && |
| "Unknown struct or array constant!"); |
| |
| SmallVector<EVT, 4> ValueVTs; |
| ComputeValueVTs(TLI, C->getType(), ValueVTs); |
| unsigned NumElts = ValueVTs.size(); |
| if (NumElts == 0) |
| return SDValue(); // empty struct |
| SmallVector<SDValue, 4> Constants(NumElts); |
| for (unsigned i = 0; i != NumElts; ++i) { |
| EVT EltVT = ValueVTs[i]; |
| if (isa<UndefValue>(C)) |
| Constants[i] = DAG.getUNDEF(EltVT); |
| else if (EltVT.isFloatingPoint()) |
| Constants[i] = DAG.getConstantFP(0, EltVT); |
| else |
| Constants[i] = DAG.getConstant(0, EltVT); |
| } |
| |
| return DAG.getMergeValues(&Constants[0], NumElts, |
| getCurDebugLoc()); |
| } |
| |
| if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) |
| return DAG.getBlockAddress(BA, VT); |
| |
| VectorType *VecTy = cast<VectorType>(V->getType()); |
| unsigned NumElements = VecTy->getNumElements(); |
| |
| // Now that we know the number and type of the elements, get that number of |
| // elements into the Ops array based on what kind of constant it is. |
| SmallVector<SDValue, 16> Ops; |
| if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { |
| for (unsigned i = 0; i != NumElements; ++i) |
| Ops.push_back(getValue(CV->getOperand(i))); |
| } else { |
| assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); |
| EVT EltVT = TLI.getValueType(VecTy->getElementType()); |
| |
| SDValue Op; |
| if (EltVT.isFloatingPoint()) |
| Op = DAG.getConstantFP(0, EltVT); |
| else |
| Op = DAG.getConstant(0, EltVT); |
| Ops.assign(NumElements, Op); |
| } |
| |
| // Create a BUILD_VECTOR node. |
| return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), |
| VT, &Ops[0], Ops.size()); |
| } |
| |
| // If this is a static alloca, generate it as the frameindex instead of |
| // computation. |
| if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { |
| DenseMap<const AllocaInst*, int>::iterator SI = |
| FuncInfo.StaticAllocaMap.find(AI); |
| if (SI != FuncInfo.StaticAllocaMap.end()) |
| return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); |
| } |
| |
| // If this is an instruction which fast-isel has deferred, select it now. |
| if (const Instruction *Inst = dyn_cast<Instruction>(V)) { |
| unsigned InReg = FuncInfo.InitializeRegForValue(Inst); |
| RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); |
| SDValue Chain = DAG.getEntryNode(); |
| return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL, V); |
| } |
| |
| llvm_unreachable("Can't get register for value!"); |
| } |
| |
| void SelectionDAGBuilder::visitRet(const ReturnInst &I) { |
| SDValue Chain = getControlRoot(); |
| SmallVector<ISD::OutputArg, 8> Outs; |
| SmallVector<SDValue, 8> OutVals; |
| |
| if (!FuncInfo.CanLowerReturn) { |
| unsigned DemoteReg = FuncInfo.DemoteRegister; |
| const Function *F = I.getParent()->getParent(); |
| |
| // Emit a store of the return value through the virtual register. |
| // Leave Outs empty so that LowerReturn won't try to load return |
| // registers the usual way. |
| SmallVector<EVT, 1> PtrValueVTs; |
| ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), |
| PtrValueVTs); |
| |
| SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); |
| SDValue RetOp = getValue(I.getOperand(0)); |
| |
| SmallVector<EVT, 4> ValueVTs; |
| SmallVector<uint64_t, 4> Offsets; |
| ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); |
| unsigned NumValues = ValueVTs.size(); |
| |
| SmallVector<SDValue, 4> Chains(NumValues); |
| for (unsigned i = 0; i != NumValues; ++i) { |
| SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), |
| RetPtr.getValueType(), RetPtr, |
| DAG.getIntPtrConstant(Offsets[i])); |
| Chains[i] = |
| DAG.getStore(Chain, getCurDebugLoc(), |
| SDValue(RetOp.getNode(), RetOp.getResNo() + i), |
| // FIXME: better loc info would be nice. |
| Add, MachinePointerInfo(), false, false, 0); |
| } |
| |
| Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), |
| MVT::Other, &Chains[0], NumValues); |
| } else if (I.getNumOperands() != 0) { |
| SmallVector<EVT, 4> ValueVTs; |
| ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); |
| unsigned NumValues = ValueVTs.size(); |
| if (NumValues) { |
| SDValue RetOp = getValue(I.getOperand(0)); |
| for (unsigned j = 0, f = NumValues; j != f; ++j) { |
| EVT VT = ValueVTs[j]; |
| |
| ISD::NodeType ExtendKind = ISD::ANY_EXTEND; |
| |
| const Function *F = I.getParent()->getParent(); |
| if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, |
| Attribute::SExt)) |
| ExtendKind = ISD::SIGN_EXTEND; |
| else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, |
| Attribute::ZExt)) |
| ExtendKind = ISD::ZERO_EXTEND; |
| |
| if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) |
| VT = TLI.getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind); |
| |
| unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); |
| MVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); |
| SmallVector<SDValue, 4> Parts(NumParts); |
| getCopyToParts(DAG, getCurDebugLoc(), |
| SDValue(RetOp.getNode(), RetOp.getResNo() + j), |
| &Parts[0], NumParts, PartVT, &I, ExtendKind); |
| |
| // 'inreg' on function refers to return value |
| ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); |
| if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, |
| Attribute::InReg)) |
| Flags.setInReg(); |
| |
| // Propagate extension type if any |
| if (ExtendKind == ISD::SIGN_EXTEND) |
| Flags.setSExt(); |
| else if (ExtendKind == ISD::ZERO_EXTEND) |
| Flags.setZExt(); |
| |
| for (unsigned i = 0; i < NumParts; ++i) { |
| Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), |
| /*isfixed=*/true, 0, 0)); |
| OutVals.push_back(Parts[i]); |
| } |
| } |
| } |
| } |
| |
| bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); |
| CallingConv::ID CallConv = |
| DAG.getMachineFunction().getFunction()->getCallingConv(); |
| Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, |
| Outs, OutVals, getCurDebugLoc(), DAG); |
| |
| // Verify that the target's LowerReturn behaved as expected. |
| assert(Chain.getNode() && Chain.getValueType() == MVT::Other && |
| "LowerReturn didn't return a valid chain!"); |
| |
| // Update the DAG with the new chain value resulting from return lowering. |
| DAG.setRoot(Chain); |
| } |
| |
| /// CopyToExportRegsIfNeeded - If the given value has virtual registers |
| /// created for it, emit nodes to copy the value into the virtual |
| /// registers. |
| void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { |
| // Skip empty types |
| if (V->getType()->isEmptyTy()) |
| return; |
| |
| DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); |
| if (VMI != FuncInfo.ValueMap.end()) { |
| assert(!V->use_empty() && "Unused value assigned virtual registers!"); |
| CopyValueToVirtualRegister(V, VMI->second); |
| } |
| } |
| |
| /// ExportFromCurrentBlock - If this condition isn't known to be exported from |
| /// the current basic block, add it to ValueMap now so that we'll get a |
| /// CopyTo/FromReg. |
| void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { |
| // No need to export constants. |
| if (!isa<Instruction>(V) && !isa<Argument>(V)) return; |
| |
| // Already exported? |
| if (FuncInfo.isExportedInst(V)) return; |
| |
| unsigned Reg = FuncInfo.InitializeRegForValue(V); |
| CopyValueToVirtualRegister(V, Reg); |
| } |
| |
| bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, |
| const BasicBlock *FromBB) { |
| // The operands of the setcc have to be in this block. We don't know |
| // how to export them from some other block. |
| if (const Instruction *VI = dyn_cast<Instruction>(V)) { |
| // Can export from current BB. |
| if (VI->getParent() == FromBB) |
| return true; |
| |
| // Is already exported, noop. |
| return FuncInfo.isExportedInst(V); |
| } |
| |
| // If this is an argument, we can export it if the BB is the entry block or |
| // if it is already exported. |
| if (isa<Argument>(V)) { |
| if (FromBB == &FromBB->getParent()->getEntryBlock()) |
| return true; |
| |
| // Otherwise, can only export this if it is already exported. |
| return FuncInfo.isExportedInst(V); |
| } |
| |
| // Otherwise, constants can always be exported. |
| return true; |
| } |
| |
| /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. |
| uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, |
| const MachineBasicBlock *Dst) const { |
| BranchProbabilityInfo *BPI = FuncInfo.BPI; |
| if (!BPI) |
| return 0; |
| const BasicBlock *SrcBB = Src->getBasicBlock(); |
| const BasicBlock *DstBB = Dst->getBasicBlock(); |
| return BPI->getEdgeWeight(SrcBB, DstBB); |
| } |
| |
| void SelectionDAGBuilder:: |
| addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, |
| uint32_t Weight /* = 0 */) { |
| if (!Weight) |
| Weight = getEdgeWeight(Src, Dst); |
| Src->addSuccessor(Dst, Weight); |
| } |
| |
| |
| static bool InBlock(const Value *V, const BasicBlock *BB) { |
| if (const Instruction *I = dyn_cast<Instruction>(V)) |
| return I->getParent() == BB; |
| return true; |
| } |
| |
| /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. |
| /// This function emits a branch and is used at the leaves of an OR or an |
| /// AND operator tree. |
| /// |
| void |
| SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, |
| MachineBasicBlock *TBB, |
| MachineBasicBlock *FBB, |
| MachineBasicBlock *CurBB, |
| MachineBasicBlock *SwitchBB) { |
| const BasicBlock *BB = CurBB->getBasicBlock(); |
| |
| // If the leaf of the tree is a comparison, merge the condition into |
| // the caseblock. |
| if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { |
| // The operands of the cmp have to be in this block. We don't know |
| // how to export them from some other block. If this is the first block |
| // of the sequence, no exporting is needed. |
| if (CurBB == SwitchBB || |
| (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && |
| isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { |
| ISD::CondCode Condition; |
| if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { |
| Condition = getICmpCondCode(IC->getPredicate()); |
| } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { |
| Condition = getFCmpCondCode(FC->getPredicate()); |
| if (TM.Options.NoNaNsFPMath) |
| Condition = getFCmpCodeWithoutNaN(Condition); |
| } else { |
| Condition = ISD::SETEQ; // silence warning. |
| llvm_unreachable("Unknown compare instruction"); |
| } |
| |
| CaseBlock CB(Condition, BOp->getOperand(0), |
| BOp->getOperand(1), NULL, TBB, FBB, CurBB); |
| SwitchCases.push_back(CB); |
| return; |
| } |
| } |
| |
| // Create a CaseBlock record representing this branch. |
| CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), |
| NULL, TBB, FBB, CurBB); |
| SwitchCases.push_back(CB); |
| } |
| |
| /// FindMergedConditions - If Cond is an expression like |
| void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, |
| MachineBasicBlock *TBB, |
| MachineBasicBlock *FBB, |
| MachineBasicBlock *CurBB, |
| MachineBasicBlock *SwitchBB, |
| unsigned Opc) { |
| // If this node is not part of the or/and tree, emit it as a branch. |
| const Instruction *BOp = dyn_cast<Instruction>(Cond); |
| if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || |
| (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || |
| BOp->getParent() != CurBB->getBasicBlock() || |
| !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || |
| !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { |
| EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); |
| return; |
| } |
| |
| // Create TmpBB after CurBB. |
| MachineFunction::iterator BBI = CurBB; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); |
| CurBB->getParent()->insert(++BBI, TmpBB); |
| |
| if (Opc == Instruction::Or) { |
| // Codegen X | Y as: |
| // jmp_if_X TBB |
| // jmp TmpBB |
| // TmpBB: |
| // jmp_if_Y TBB |
| // jmp FBB |
| // |
| |
| // Emit the LHS condition. |
| FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); |
| |
| // Emit the RHS condition into TmpBB. |
| FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); |
| } else { |
| assert(Opc == Instruction::And && "Unknown merge op!"); |
| // Codegen X & Y as: |
| // jmp_if_X TmpBB |
| // jmp FBB |
| // TmpBB: |
| // jmp_if_Y TBB |
| // jmp FBB |
| // |
| // This requires creation of TmpBB after CurBB. |
| |
| // Emit the LHS condition. |
| FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); |
| |
| // Emit the RHS condition into TmpBB. |
| FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); |
| } |
| } |
| |
| /// If the set of cases should be emitted as a series of branches, return true. |
| /// If we should emit this as a bunch of and/or'd together conditions, return |
| /// false. |
| bool |
| SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ |
| if (Cases.size() != 2) return true; |
| |
| // If this is two comparisons of the same values or'd or and'd together, they |
| // will get folded into a single comparison, so don't emit two blocks. |
| if ((Cases[0].CmpLHS == Cases[1].CmpLHS && |
| Cases[0].CmpRHS == Cases[1].CmpRHS) || |
| (Cases[0].CmpRHS == Cases[1].CmpLHS && |
| Cases[0].CmpLHS == Cases[1].CmpRHS)) { |
| return false; |
| } |
| |
| // Handle: (X != null) | (Y != null) --> (X|Y) != 0 |
| // Handle: (X == null) & (Y == null) --> (X|Y) == 0 |
| if (Cases[0].CmpRHS == Cases[1].CmpRHS && |
| Cases[0].CC == Cases[1].CC && |
| isa<Constant>(Cases[0].CmpRHS) && |
| cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { |
| if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) |
| return false; |
| if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void SelectionDAGBuilder::visitBr(const BranchInst &I) { |
| MachineBasicBlock *BrMBB = FuncInfo.MBB; |
| |
| // Update machine-CFG edges. |
| MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; |
| |
| // Figure out which block is immediately after the current one. |
| MachineBasicBlock *NextBlock = 0; |
| MachineFunction::iterator BBI = BrMBB; |
| if (++BBI != FuncInfo.MF->end()) |
| NextBlock = BBI; |
| |
| if (I.isUnconditional()) { |
| // Update machine-CFG edges. |
| BrMBB->addSuccessor(Succ0MBB); |
| |
| // If this is not a fall-through branch, emit the branch. |
| if (Succ0MBB != NextBlock) |
| DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), |
| MVT::Other, getControlRoot(), |
| DAG.getBasicBlock(Succ0MBB))); |
| |
| return; |
| } |
| |
| // If this condition is one of the special cases we handle, do special stuff |
| // now. |
| const Value *CondVal = I.getCondition(); |
| MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; |
| |
| // If this is a series of conditions that are or'd or and'd together, emit |
| // this as a sequence of branches instead of setcc's with and/or operations. |
| // As long as jumps are not expensive, this should improve performance. |
| // For example, instead of something like: |
| // cmp A, B |
| // C = seteq |
| // cmp D, E |
| // F = setle |
| // or C, F |
| // jnz foo |
| // Emit: |
| // cmp A, B |
| // je foo |
| // cmp D, E |
| // jle foo |
| // |
| if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { |
| if (!TLI.isJumpExpensive() && |
| BOp->hasOneUse() && |
| (BOp->getOpcode() == Instruction::And || |
| BOp->getOpcode() == Instruction::Or)) { |
| FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, |
| BOp->getOpcode()); |
| // If the compares in later blocks need to use values not currently |
| // exported from this block, export them now. This block should always |
| // be the first entry. |
| assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); |
| |
| // Allow some cases to be rejected. |
| if (ShouldEmitAsBranches(SwitchCases)) { |
| for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { |
| ExportFromCurrentBlock(SwitchCases[i].CmpLHS); |
| ExportFromCurrentBlock(SwitchCases[i].CmpRHS); |
| } |
| |
| // Emit the branch for this block. |
| visitSwitchCase(SwitchCases[0], BrMBB); |
| SwitchCases.erase(SwitchCases.begin()); |
| return; |
| } |
| |
| // Okay, we decided not to do this, remove any inserted MBB's and clear |
| // SwitchCases. |
| for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) |
| FuncInfo.MF->erase(SwitchCases[i].ThisBB); |
| |
| SwitchCases.clear(); |
| } |
| } |
| |
| // Create a CaseBlock record representing this branch. |
| CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), |
| NULL, Succ0MBB, Succ1MBB, BrMBB); |
| |
| // Use visitSwitchCase to actually insert the fast branch sequence for this |
| // cond branch. |
| visitSwitchCase(CB, BrMBB); |
| } |
| |
| /// visitSwitchCase - Emits the necessary code to represent a single node in |
| /// the binary search tree resulting from lowering a switch instruction. |
| void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, |
| MachineBasicBlock *SwitchBB) { |
| SDValue Cond; |
| SDValue CondLHS = getValue(CB.CmpLHS); |
| DebugLoc dl = getCurDebugLoc(); |
| |
| // Build the setcc now. |
| if (CB.CmpMHS == NULL) { |
| // Fold "(X == true)" to X and "(X == false)" to !X to |
| // handle common cases produced by branch lowering. |
| if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && |
| CB.CC == ISD::SETEQ) |
| Cond = CondLHS; |
| else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && |
| CB.CC == ISD::SETEQ) { |
| SDValue True = DAG.getConstant(1, CondLHS.getValueType()); |
| Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); |
| } else |
| Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); |
| } else { |
| assert(CB.CC == ISD::SETCC_INVALID && |
| "Condition is undefined for to-the-range belonging check."); |
| |
| const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); |
| const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); |
| |
| SDValue CmpOp = getValue(CB.CmpMHS); |
| EVT VT = CmpOp.getValueType(); |
| |
| if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(false)) { |
| Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), |
| ISD::SETULE); |
| } else { |
| SDValue SUB = DAG.getNode(ISD::SUB, dl, |
| VT, CmpOp, DAG.getConstant(Low, VT)); |
| Cond = DAG.getSetCC(dl, MVT::i1, SUB, |
| DAG.getConstant(High-Low, VT), ISD::SETULE); |
| } |
| } |
| |
| // Update successor info |
| addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); |
| // TrueBB and FalseBB are always different unless the incoming IR is |
| // degenerate. This only happens when running llc on weird IR. |
| if (CB.TrueBB != CB.FalseBB) |
| addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); |
| |
| // Set NextBlock to be the MBB immediately after the current one, if any. |
| // This is used to avoid emitting unnecessary branches to the next block. |
| MachineBasicBlock *NextBlock = 0; |
| MachineFunction::iterator BBI = SwitchBB; |
| if (++BBI != FuncInfo.MF->end()) |
| NextBlock = BBI; |
| |
| // If the lhs block is the next block, invert the condition so that we can |
| // fall through to the lhs instead of the rhs block. |
| if (CB.TrueBB == NextBlock) { |
| std::swap(CB.TrueBB, CB.FalseBB); |
| SDValue True = DAG.getConstant(1, Cond.getValueType()); |
| Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); |
| } |
| |
| SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, |
| MVT::Other, getControlRoot(), Cond, |
| DAG.getBasicBlock(CB.TrueBB)); |
| |
| // Insert the false branch. Do this even if it's a fall through branch, |
| // this makes it easier to do DAG optimizations which require inverting |
| // the branch condition. |
| BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, |
| DAG.getBasicBlock(CB.FalseBB)); |
| |
| DAG.setRoot(BrCond); |
| } |
| |
| /// visitJumpTable - Emit JumpTable node in the current MBB |
| void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { |
| // Emit the code for the jump table |
| assert(JT.Reg != -1U && "Should lower JT Header first!"); |
| EVT PTy = TLI.getPointerTy(); |
| SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), |
| JT.Reg, PTy); |
| SDValue Table = DAG.getJumpTable(JT.JTI, PTy); |
| SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), |
| MVT::Other, Index.getValue(1), |
| Table, Index); |
| DAG.setRoot(BrJumpTable); |
| } |
| |
| /// visitJumpTableHeader - This function emits necessary code to produce index |
| /// in the JumpTable from switch case. |
| void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, |
| JumpTableHeader &JTH, |
| MachineBasicBlock *SwitchBB) { |
| // Subtract the lowest switch case value from the value being switched on and |
| // conditional branch to default mbb if the result is greater than the |
| // difference between smallest and largest cases. |
| SDValue SwitchOp = getValue(JTH.SValue); |
| EVT VT = SwitchOp.getValueType(); |
| SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, |
| DAG.getConstant(JTH.First, VT)); |
| |
| // The SDNode we just created, which holds the value being switched on minus |
| // the smallest case value, needs to be copied to a virtual register so it |
| // can be used as an index into the jump table in a subsequent basic block. |
| // This value may be smaller or larger than the target's pointer type, and |
| // therefore require extension or truncating. |
| SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); |
| |
| unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); |
| SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), |
| JumpTableReg, SwitchOp); |
| JT.Reg = JumpTableReg; |
| |
| // Emit the range check for the jump table, and branch to the default block |
| // for the switch statement if the value being switched on exceeds the largest |
| // case in the switch. |
| SDValue CMP = DAG.getSetCC(getCurDebugLoc(), |
| TLI.getSetCCResultType(Sub.getValueType()), Sub, |
| DAG.getConstant(JTH.Last-JTH.First,VT), |
| ISD::SETUGT); |
| |
| // Set NextBlock to be the MBB immediately after the current one, if any. |
| // This is used to avoid emitting unnecessary branches to the next block. |
| MachineBasicBlock *NextBlock = 0; |
| MachineFunction::iterator BBI = SwitchBB; |
| |
| if (++BBI != FuncInfo.MF->end()) |
| NextBlock = BBI; |
| |
| SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), |
| MVT::Other, CopyTo, CMP, |
| DAG.getBasicBlock(JT.Default)); |
| |
| if (JT.MBB != NextBlock) |
| BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, |
| DAG.getBasicBlock(JT.MBB)); |
| |
| DAG.setRoot(BrCond); |
| } |
| |
| /// visitBitTestHeader - This function emits necessary code to produce value |
| /// suitable for "bit tests" |
| void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, |
| MachineBasicBlock *SwitchBB) { |
| // Subtract the minimum value |
| SDValue SwitchOp = getValue(B.SValue); |
| EVT VT = SwitchOp.getValueType(); |
| SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, |
| DAG.getConstant(B.First, VT)); |
| |
| // Check range |
| SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), |
| TLI.getSetCCResultType(Sub.getValueType()), |
| Sub, DAG.getConstant(B.Range, VT), |
| ISD::SETUGT); |
| |
| // Determine the type of the test operands. |
| bool UsePtrType = false; |
| if (!TLI.isTypeLegal(VT)) |
| UsePtrType = true; |
| else { |
| for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) |
| if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { |
| // Switch table case range are encoded into series of masks. |
| // Just use pointer type, it's guaranteed to fit. |
| UsePtrType = true; |
| break; |
| } |
| } |
| if (UsePtrType) { |
| VT = TLI.getPointerTy(); |
| Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT); |
| } |
| |
| B.RegVT = VT.getSimpleVT(); |
| B.Reg = FuncInfo.CreateReg(B.RegVT); |
| SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), |
| B.Reg, Sub); |
| |
| // Set NextBlock to be the MBB immediately after the current one, if any. |
| // This is used to avoid emitting unnecessary branches to the next block. |
| MachineBasicBlock *NextBlock = 0; |
| MachineFunction::iterator BBI = SwitchBB; |
| if (++BBI != FuncInfo.MF->end()) |
| NextBlock = BBI; |
| |
| MachineBasicBlock* MBB = B.Cases[0].ThisBB; |
| |
| addSuccessorWithWeight(SwitchBB, B.Default); |
| addSuccessorWithWeight(SwitchBB, MBB); |
| |
| SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), |
| MVT::Other, CopyTo, RangeCmp, |
| DAG.getBasicBlock(B.Default)); |
| |
| if (MBB != NextBlock) |
| BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, |
| DAG.getBasicBlock(MBB)); |
| |
| DAG.setRoot(BrRange); |
| } |
| |
| /// visitBitTestCase - this function produces one "bit test" |
| void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, |
| MachineBasicBlock* NextMBB, |
| uint32_t BranchWeightToNext, |
| unsigned Reg, |
| BitTestCase &B, |
| MachineBasicBlock *SwitchBB) { |
| MVT VT = BB.RegVT; |
| SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), |
| Reg, VT); |
| SDValue Cmp; |
| unsigned PopCount = CountPopulation_64(B.Mask); |
| if (PopCount == 1) { |
| // Testing for a single bit; just compare the shift count with what it |
| // would need to be to shift a 1 bit in that position. |
| Cmp = DAG.getSetCC(getCurDebugLoc(), |
| TLI.getSetCCResultType(VT), |
| ShiftOp, |
| DAG.getConstant(CountTrailingZeros_64(B.Mask), VT), |
| ISD::SETEQ); |
| } else if (PopCount == BB.Range) { |
| // There is only one zero bit in the range, test for it directly. |
| Cmp = DAG.getSetCC(getCurDebugLoc(), |
| TLI.getSetCCResultType(VT), |
| ShiftOp, |
| DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), |
| ISD::SETNE); |
| } else { |
| // Make desired shift |
| SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT, |
| DAG.getConstant(1, VT), ShiftOp); |
| |
| // Emit bit tests and jumps |
| SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), |
| VT, SwitchVal, DAG.getConstant(B.Mask, VT)); |
| Cmp = DAG.getSetCC(getCurDebugLoc(), |
| TLI.getSetCCResultType(VT), |
| AndOp, DAG.getConstant(0, VT), |
| ISD::SETNE); |
| } |
| |
| // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. |
| addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); |
| // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. |
| addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); |
| |
| SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), |
| MVT::Other, getControlRoot(), |
| Cmp, DAG.getBasicBlock(B.TargetBB)); |
| |
| // Set NextBlock to be the MBB immediately after the current one, if any. |
| // This is used to avoid emitting unnecessary branches to the next block. |
| MachineBasicBlock *NextBlock = 0; |
| MachineFunction::iterator BBI = SwitchBB; |
| if (++BBI != FuncInfo.MF->end()) |
| NextBlock = BBI; |
| |
| if (NextMBB != NextBlock) |
| BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, |
| DAG.getBasicBlock(NextMBB)); |
| |
| DAG.setRoot(BrAnd); |
| } |
| |
| void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { |
| MachineBasicBlock *InvokeMBB = FuncInfo.MBB; |
| |
| // Retrieve successors. |
| MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; |
| MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; |
| |
| const Value *Callee(I.getCalledValue()); |
| const Function *Fn = dyn_cast<Function>(Callee); |
| if (isa<InlineAsm>(Callee)) |
| visitInlineAsm(&I); |
| else if (Fn && Fn->isIntrinsic()) { |
| assert(Fn->getIntrinsicID() == Intrinsic::donothing); |
| // Ignore invokes to @llvm.donothing: jump directly to the next BB. |
| } else |
| LowerCallTo(&I, getValue(Callee), false, LandingPad); |
| |
| // If the value of the invoke is used outside of its defining block, make it |
| // available as a virtual register. |
| CopyToExportRegsIfNeeded(&I); |
| |
| // Update successor info |
| addSuccessorWithWeight(InvokeMBB, Return); |
| addSuccessorWithWeight(InvokeMBB, LandingPad); |
| |
| // Drop into normal successor. |
| DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), |
| MVT::Other, getControlRoot(), |
| DAG.getBasicBlock(Return))); |
| } |
| |
| void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { |
| llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); |
| } |
| |
| void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { |
| assert(FuncInfo.MBB->isLandingPad() && |
| "Call to landingpad not in landing pad!"); |
| |
| MachineBasicBlock *MBB = FuncInfo.MBB; |
| MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); |
| AddLandingPadInfo(LP, MMI, MBB); |
| |
| // If there aren't registers to copy the values into (e.g., during SjLj |
| // exceptions), then don't bother to create these DAG nodes. |
| if (TLI.getExceptionPointerRegister() == 0 && |
| TLI.getExceptionSelectorRegister() == 0) |
| return; |
| |
| SmallVector<EVT, 2> ValueVTs; |
| ComputeValueVTs(TLI, LP.getType(), ValueVTs); |
| |
| // Insert the EXCEPTIONADDR instruction. |
| assert(FuncInfo.MBB->isLandingPad() && |
| "Call to eh.exception not in landing pad!"); |
| SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); |
| SDValue Ops[2]; |
| Ops[0] = DAG.getRoot(); |
| SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1); |
| SDValue Chain = Op1.getValue(1); |
| |
| // Insert the EHSELECTION instruction. |
| VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); |
| Ops[0] = Op1; |
| Ops[1] = Chain; |
| SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2); |
| Chain = Op2.getValue(1); |
| Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32); |
| |
| Ops[0] = Op1; |
| Ops[1] = Op2; |
| SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), |
| DAG.getVTList(&ValueVTs[0], ValueVTs.size()), |
| &Ops[0], 2); |
| |
| std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain); |
| setValue(&LP, RetPair.first); |
| DAG.setRoot(RetPair.second); |
| } |
| |
| /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for |
| /// small case ranges). |
| bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, |
| CaseRecVector& WorkList, |
| const Value* SV, |
| MachineBasicBlock *Default, |
| MachineBasicBlock *SwitchBB) { |
| // Size is the number of Cases represented by this range. |
| size_t Size = CR.Range.second - CR.Range.first; |
| if (Size > 3) |
| return false; |
| |
| // Get the MachineFunction which holds the current MBB. This is used when |
| // inserting any additional MBBs necessary to represent the switch. |
| MachineFunction *CurMF = FuncInfo.MF; |
| |
| // Figure out which block is immediately after the current one. |
| MachineBasicBlock *NextBlock = 0; |
| MachineFunction::iterator BBI = CR.CaseBB; |
| |
| if (++BBI != FuncInfo.MF->end()) |
| NextBlock = BBI; |
| |
| BranchProbabilityInfo *BPI = FuncInfo.BPI; |
| // If any two of the cases has the same destination, and if one value |
| // is the same as the other, but has one bit unset that the other has set, |
| // use bit manipulation to do two compares at once. For example: |
| // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" |
| // TODO: This could be extended to merge any 2 cases in switches with 3 cases. |
| // TODO: Handle cases where CR.CaseBB != SwitchBB. |
| if (Size == 2 && CR.CaseBB == SwitchBB) { |
| Case &Small = *CR.Range.first; |
| Case &Big = *(CR.Range.second-1); |
| |
| if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { |
| const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); |
| const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); |
| |
| // Check that there is only one bit different. |
| if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && |
| (SmallValue | BigValue) == BigValue) { |
| // Isolate the common bit. |
| APInt CommonBit = BigValue & ~SmallValue; |
| assert((SmallValue | CommonBit) == BigValue && |
| CommonBit.countPopulation() == 1 && "Not a common bit?"); |
| |
| SDValue CondLHS = getValue(SV); |
| EVT VT = CondLHS.getValueType(); |
| DebugLoc DL = getCurDebugLoc(); |
| |
| SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, |
| DAG.getConstant(CommonBit, VT)); |
| SDValue Cond = DAG.getSetCC(DL, MVT::i1, |
| Or, DAG.getConstant(BigValue, VT), |
| ISD::SETEQ); |
| |
| // Update successor info. |
| // Both Small and Big will jump to Small.BB, so we sum up the weights. |
| addSuccessorWithWeight(SwitchBB, Small.BB, |
| Small.ExtraWeight + Big.ExtraWeight); |
| addSuccessorWithWeight(SwitchBB, Default, |
| // The default destination is the first successor in IR. |
| BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); |
| |
| // Insert the true branch. |
| SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, |
| getControlRoot(), Cond, |
| DAG.getBasicBlock(Small.BB)); |
| |
| // Insert the false branch. |
| BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, |
| DAG.getBasicBlock(Default)); |
| |
| DAG.setRoot(BrCond); |
| return true; |
| } |
| } |
| } |
| |
| // Order cases by weight so the most likely case will be checked first. |
| uint32_t UnhandledWeights = 0; |
| if (BPI) { |
| for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { |
| uint32_t IWeight = I->ExtraWeight; |
| UnhandledWeights += IWeight; |
| for (CaseItr J = CR.Range.first; J < I; ++J) { |
| uint32_t JWeight = J->ExtraWeight; |
| if (IWeight > JWeight) |
| std::swap(*I, *J); |
| } |
| } |
| } |
| // Rearrange the case blocks so that the last one falls through if possible. |
| Case &BackCase = *(CR.Range.second-1); |
| if (Size > 1 && |
| NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { |
| // The last case block won't fall through into 'NextBlock' if we emit the |
| // branches in this order. See if rearranging a case value would help. |
| // We start at the bottom as it's the case with the least weight. |
| for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I){ |
| if (I->BB == NextBlock) { |
| std::swap(*I, BackCase); |
| break; |
| } |
| } |
| } |
| |
| // Create a CaseBlock record representing a conditional branch to |
| // the Case's target mbb if the value being switched on SV is equal |
| // to C. |
| MachineBasicBlock *CurBlock = CR.CaseBB; |
| for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { |
| MachineBasicBlock *FallThrough; |
| if (I != E-1) { |
| FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); |
| CurMF->insert(BBI, FallThrough); |
| |
| // Put SV in a virtual register to make it available from the new blocks. |
| ExportFromCurrentBlock(SV); |
| } else { |
| // If the last case doesn't match, go to the default block. |
| FallThrough = Default; |
| } |
| |
| const Value *RHS, *LHS, *MHS; |
| ISD::CondCode CC; |
| if (I->High == I->Low) { |
| // This is just small small case range :) containing exactly 1 case |
| CC = ISD::SETEQ; |
| LHS = SV; RHS = I->High; MHS = NULL; |
| } else { |
| CC = ISD::SETCC_INVALID; |
| LHS = I->Low; MHS = SV; RHS = I->High; |
| } |
| |
| // The false weight should be sum of all un-handled cases. |
| UnhandledWeights -= I->ExtraWeight; |
| CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, |
| /* me */ CurBlock, |
| /* trueweight */ I->ExtraWeight, |
| /* falseweight */ UnhandledWeights); |
| |
| // If emitting the first comparison, just call visitSwitchCase to emit the |
| // code into the current block. Otherwise, push the CaseBlock onto the |
| // vector to be later processed by SDISel, and insert the node's MBB |
| // before the next MBB. |
| if (CurBlock == SwitchBB) |
| visitSwitchCase(CB, SwitchBB); |
| else |
| SwitchCases.push_back(CB); |
| |
| CurBlock = FallThrough; |
| } |
| |
| return true; |
| } |
| |
| static inline bool areJTsAllowed(const TargetLowering &TLI) { |
| return TLI.supportJumpTables() && |
| (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || |
| TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); |
| } |
| |
| static APInt ComputeRange(const APInt &First, const APInt &Last) { |
| uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; |
| APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth); |
| return (LastExt - FirstExt + 1ULL); |
| } |
| |
| /// handleJTSwitchCase - Emit jumptable for current switch case range |
| bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, |
| CaseRecVector &WorkList, |
| const Value *SV, |
| MachineBasicBlock *Default, |
| MachineBasicBlock *SwitchBB) { |
| Case& FrontCase = *CR.Range.first; |
| Case& BackCase = *(CR.Range.second-1); |
| |
| const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); |
| const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); |
| |
| APInt TSize(First.getBitWidth(), 0); |
| for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) |
| TSize += I->size(); |
| |
| if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries())) |
| return false; |
| |
| APInt Range = ComputeRange(First, Last); |
| // The density is TSize / Range. Require at least 40%. |
| // It should not be possible for IntTSize to saturate for sane code, but make |
| // sure we handle Range saturation correctly. |
| uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); |
| uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); |
| if (IntTSize * 10 < IntRange * 4) |
| return false; |
| |
| DEBUG(dbgs() << "Lowering jump table\n" |
| << "First entry: " << First << ". Last entry: " << Last << '\n' |
| << "Range: " << Range << ". Size: " << TSize << ".\n\n"); |
| |
| // Get the MachineFunction which holds the current MBB. This is used when |
| // inserting any additional MBBs necessary to represent the switch. |
| MachineFunction *CurMF = FuncInfo.MF; |
| |
| // Figure out which block is immediately after the current one. |
| MachineFunction::iterator BBI = CR.CaseBB; |
| ++BBI; |
| |
| const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); |
| |
| // Create a new basic block to hold the code for loading the address |
| // of the jump table, and jumping to it. Update successor information; |
| // we will either branch to the default case for the switch, or the jump |
| // table. |
| MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); |
| CurMF->insert(BBI, JumpTableBB); |
| |
| addSuccessorWithWeight(CR.CaseBB, Default); |
| addSuccessorWithWeight(CR.CaseBB, JumpTableBB); |
| |
| // Build a vector of destination BBs, corresponding to each target |
| // of the jump table. If the value of the jump table slot corresponds to |
| // a case statement, push the case's BB onto the vector, otherwise, push |
| // the default BB. |
| std::vector<MachineBasicBlock*> DestBBs; |
| APInt TEI = First; |
| for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { |
| const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); |
| const APInt &High = cast<ConstantInt>(I->High)->getValue(); |
| |
| if (Low.ule(TEI) && TEI.ule(High)) { |
| DestBBs.push_back(I->BB); |
| if (TEI==High) |
| ++I; |
| } else { |
| DestBBs.push_back(Default); |
| } |
| } |
| |
| // Calculate weight for each unique destination in CR. |
| DenseMap<MachineBasicBlock*, uint32_t> DestWeights; |
| if (FuncInfo.BPI) |
| for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { |
| DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = |
| DestWeights.find(I->BB); |
| if (Itr != DestWeights.end()) |
| Itr->second += I->ExtraWeight; |
| else |
| DestWeights[I->BB] = I->ExtraWeight; |
| } |
| |
| // Update successor info. Add one edge to each unique successor. |
| BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); |
| for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), |
| E = DestBBs.end(); I != E; ++I) { |
| if (!SuccsHandled[(*I)->getNumber()]) { |
| SuccsHandled[(*I)->getNumber()] = true; |
| DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = |
| DestWeights.find(*I); |
| addSuccessorWithWeight(JumpTableBB, *I, |
| Itr != DestWeights.end() ? Itr->second : 0); |
| } |
| } |
| |
| // Create a jump table index for this jump table. |
| unsigned JTEncoding = TLI.getJumpTableEncoding(); |
| unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) |
| ->createJumpTableIndex(DestBBs); |
| |
| // Set the jump table information so that we can codegen it as a second |
| // MachineBasicBlock |
| JumpTable JT(-1U, JTI, JumpTableBB, Default); |
| JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); |
| if (CR.CaseBB == SwitchBB) |
| visitJumpTableHeader(JT, JTH, SwitchBB); |
| |
| JTCases.push_back(JumpTableBlock(JTH, JT)); |
| return true; |
| } |
| |
| /// handleBTSplitSwitchCase - emit comparison and split binary search tree into |
| /// 2 subtrees. |
| bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, |
| CaseRecVector& WorkList, |
| const Value* SV, |
| MachineBasicBlock *Default, |
| MachineBasicBlock *SwitchBB) { |
| // Get the MachineFunction which holds the current MBB. This is used when |
| // inserting any additional MBBs necessary to represent the switch. |
| MachineFunction *CurMF = FuncInfo.MF; |
| |
| // Figure out which block is immediately after the current one. |
| MachineFunction::iterator BBI = CR.CaseBB; |
| ++BBI; |
| |
| Case& FrontCase = *CR.Range.first; |
| Case& BackCase = *(CR.Range.second-1); |
| const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); |
| |
| // Size is the number of Cases represented by this range. |
| unsigned Size = CR.Range.second - CR.Range.first; |
| |
| const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); |
| const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); |
| double FMetric = 0; |
| CaseItr Pivot = CR.Range.first + Size/2; |
| |
| // Select optimal pivot, maximizing sum density of LHS and RHS. This will |
| // (heuristically) allow us to emit JumpTable's later. |
| APInt TSize(First.getBitWidth(), 0); |
| for (CaseItr I = CR.Range.first, E = CR.Range.second; |
| I!=E; ++I) |
| TSize += I->size(); |
| |
| APInt LSize = FrontCase.size(); |
| APInt RSize = TSize-LSize; |
| DEBUG(dbgs() << "Selecting best pivot: \n" |
| << "First: " << First << ", Last: " << Last <<'\n' |
| << "LSize: " << LSize << ", RSize: " << RSize << '\n'); |
| for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; |
| J!=E; ++I, ++J) { |
| const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); |
| const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); |
| APInt Range = ComputeRange(LEnd, RBegin); |
| assert((Range - 2ULL).isNonNegative() && |
| "Invalid case distance"); |
| // Use volatile double here to avoid excess precision issues on some hosts, |
| // e.g. that use 80-bit X87 registers. |
| volatile double LDensity = |
| (double)LSize.roundToDouble() / |
| (LEnd - First + 1ULL).roundToDouble(); |
| volatile double RDensity = |
| (double)RSize.roundToDouble() / |
| (Last - RBegin + 1ULL).roundToDouble(); |
| double Metric = Range.logBase2()*(LDensity+RDensity); |
| // Should always split in some non-trivial place |
| DEBUG(dbgs() <<"=>Step\n" |
| << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' |
| << "LDensity: " << LDensity |
| << ", RDensity: " << RDensity << '\n' |
| << "Metric: " << Metric << '\n'); |
| if (FMetric < Metric) { |
| Pivot = J; |
| FMetric = Metric; |
| DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); |
| } |
| |
| LSize += J->size(); |
| RSize -= J->size(); |
| } |
| if (areJTsAllowed(TLI)) { |
| // If our case is dense we *really* should handle it earlier! |
| assert((FMetric > 0) && "Should handle dense range earlier!"); |
| } else { |
| Pivot = CR.Range.first + Size/2; |
| } |
| |
| CaseRange LHSR(CR.Range.first, Pivot); |
| CaseRange RHSR(Pivot, CR.Range.second); |
| const Constant *C = Pivot->Low; |
| MachineBasicBlock *FalseBB = 0, *TrueBB = 0; |
| |
| // We know that we branch to the LHS if the Value being switched on is |
| // less than the Pivot value, C. We use this to optimize our binary |
| // tree a bit, by recognizing that if SV is greater than or equal to the |
| // LHS's Case Value, and that Case Value is exactly one less than the |
| // Pivot's Value, then we can branch directly to the LHS's Target, |
| // rather than creating a leaf node for it. |
| if ((LHSR.second - LHSR.first) == 1 && |
| LHSR.first->High == CR.GE && |
| cast<ConstantInt>(C)->getValue() == |
| (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { |
| TrueBB = LHSR.first->BB; |
| } else { |
| TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); |
| CurMF->insert(BBI, TrueBB); |
| WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); |
| |
| // Put SV in a virtual register to make it available from the new blocks. |
| ExportFromCurrentBlock(SV); |
| } |
| |
| // Similar to the optimization above, if the Value being switched on is |
| // known to be less than the Constant CR.LT, and the current Case Value |
| // is CR.LT - 1, then we can branch directly to the target block for |
| // the current Case Value, rather than emitting a RHS leaf node for it. |
| if ((RHSR.second - RHSR.first) == 1 && CR.LT && |
| cast<ConstantInt>(RHSR.first->Low)->getValue() == |
| (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { |
| FalseBB = RHSR.first->BB; |
| } else { |
| FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); |
| CurMF->insert(BBI, FalseBB); |
| WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); |
| |
| // Put SV in a virtual register to make it available from the new blocks. |
| ExportFromCurrentBlock(SV); |
| } |
| |
| // Create a CaseBlock record representing a conditional branch to |
| // the LHS node if the value being switched on SV is less than C. |
| // Otherwise, branch to LHS. |
| CaseBlock CB(ISD::SETULT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); |
| |
| if (CR.CaseBB == SwitchBB) |
| visitSwitchCase(CB, SwitchBB); |
| else |
| SwitchCases.push_back(CB); |
| |
| return true; |
| } |
| |
| /// handleBitTestsSwitchCase - if current case range has few destination and |
| /// range span less, than machine word bitwidth, encode case range into series |
| /// of masks and emit bit tests with these masks. |
| bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, |
| CaseRecVector& WorkList, |
| const Value* SV, |
| MachineBasicBlock* Default, |
| MachineBasicBlock *SwitchBB){ |
| EVT PTy = TLI.getPointerTy(); |
| unsigned IntPtrBits = PTy.getSizeInBits(); |
| |
| Case& FrontCase = *CR.Range.first; |
| Case& BackCase = *(CR.Range.second-1); |
| |
| // Get the MachineFunction which holds the current MBB. This is used when |
| // inserting any additional MBBs necessary to represent the switch. |
| MachineFunction *CurMF = FuncInfo.MF; |
| |
| // If target does not have legal shift left, do not emit bit tests at all. |
| if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) |
| return false; |
| |
| size_t numCmps = 0; |
| for (CaseItr I = CR.Range.first, E = CR.Range.second; |
| I!=E; ++I) { |
| // Single case counts one, case range - two. |
| numCmps += (I->Low == I->High ? 1 : 2); |
| } |
| |
| // Count unique destinations |
| SmallSet<MachineBasicBlock*, 4> Dests; |
| for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { |
| Dests.insert(I->BB); |
| if (Dests.size() > 3) |
| // Don't bother the code below, if there are too much unique destinations |
| return false; |
| } |
| DEBUG(dbgs() << "Total number of unique destinations: " |
| << Dests.size() << '\n' |
| << "Total number of comparisons: " << numCmps << '\n'); |
| |
| // Compute span of values. |
| const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); |
| const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); |
| APInt cmpRange = maxValue - minValue; |
| |
| DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' |
| << "Low bound: " << minValue << '\n' |
| << "High bound: " << maxValue << '\n'); |
| |
| if (cmpRange.uge(IntPtrBits) || |
| (!(Dests.size() == 1 && numCmps >= 3) && |
| !(Dests.size() == 2 && numCmps >= 5) && |
| !(Dests.size() >= 3 && numCmps >= 6))) |
| return false; |
| |
| DEBUG(dbgs() << "Emitting bit tests\n"); |
| APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); |
| |
| // Optimize the case where all the case values fit in a |
| // word without having to subtract minValue. In this case, |
| // we can optimize away the subtraction. |
| if (maxValue.ult(IntPtrBits)) { |
| cmpRange = maxValue; |
| } else { |
| lowBound = minValue; |
| } |
| |
| CaseBitsVector CasesBits; |
| unsigned i, count = 0; |
| |
| for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { |
| MachineBasicBlock* Dest = I->BB; |
| for (i = 0; i < count; ++i) |
| if (Dest == CasesBits[i].BB) |
| break; |
| |
| if (i == count) { |
| assert((count < 3) && "Too much destinations to test!"); |
| CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); |
| count++; |
| } |
| |
| const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); |
| const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); |
| |
| uint64_t lo = (lowValue - lowBound).getZExtValue(); |
| uint64_t hi = (highValue - lowBound).getZExtValue(); |
| CasesBits[i].ExtraWeight += I->ExtraWeight; |
| |
| for (uint64_t j = lo; j <= hi; j++) { |
| CasesBits[i].Mask |= 1ULL << j; |
| CasesBits[i].Bits++; |
| } |
| |
| } |
| std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); |
| |
| BitTestInfo BTC; |
| |
| // Figure out which block is immediately after the current one. |
| MachineFunction::iterator BBI = CR.CaseBB; |
| ++BBI; |
| |
| const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); |
| |
| DEBUG(dbgs() << "Cases:\n"); |
| for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { |
| DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask |
| << ", Bits: " << CasesBits[i].Bits |
| << ", BB: " << CasesBits[i].BB << '\n'); |
| |
| MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); |
| CurMF->insert(BBI, CaseBB); |
| BTC.push_back(BitTestCase(CasesBits[i].Mask, |
| CaseBB, |
| CasesBits[i].BB, CasesBits[i].ExtraWeight)); |
| |
| // Put SV in a virtual register to make it available from the new blocks. |
| ExportFromCurrentBlock(SV); |
| } |
| |
| BitTestBlock BTB(lowBound, cmpRange, SV, |
| -1U, MVT::Other, (CR.CaseBB == SwitchBB), |
| CR.CaseBB, Default, BTC); |
| |
| if (CR.CaseBB == SwitchBB) |
| visitBitTestHeader(BTB, SwitchBB); |
| |
| BitTestCases.push_back(BTB); |
| |
| return true; |
| } |
| |
| /// Clusterify - Transform simple list of Cases into list of CaseRange's |
| size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, |
| const SwitchInst& SI) { |
| |
| /// Use a shorter form of declaration, and also |
| /// show the we want to use CRSBuilder as Clusterifier. |
| typedef IntegersSubsetMapping<MachineBasicBlock> Clusterifier; |
| |
| Clusterifier TheClusterifier; |
| |
| BranchProbabilityInfo *BPI = FuncInfo.BPI; |
| // Start with "simple" cases |
| for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); |
| i != e; ++i) { |
| const BasicBlock *SuccBB = i.getCaseSuccessor(); |
| MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; |
| |
| TheClusterifier.add(i.getCaseValueEx(), SMBB, |
| BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0); |
| } |
| |
| TheClusterifier.optimize(); |
| |
| size_t numCmps = 0; |
| for (Clusterifier::RangeIterator i = TheClusterifier.begin(), |
| e = TheClusterifier.end(); i != e; ++i, ++numCmps) { |
| Clusterifier::Cluster &C = *i; |
| // Update edge weight for the cluster. |
| unsigned W = C.first.Weight; |
| |
| // FIXME: Currently work with ConstantInt based numbers. |
| // Changing it to APInt based is a pretty heavy for this commit. |
| Cases.push_back(Case(C.first.getLow().toConstantInt(), |
| C.first.getHigh().toConstantInt(), C.second, W)); |
| |
| if (C.first.getLow() != C.first.getHigh()) |
| // A range counts double, since it requires two compares. |
| ++numCmps; |
| } |
| |
| return numCmps; |
| } |
| |
| void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, |
| MachineBasicBlock *Last) { |
| // Update JTCases. |
| for (unsigned i = 0, e = JTCases.size(); i != e; ++i) |
| if (JTCases[i].first.HeaderBB == First) |
| JTCases[i].first.HeaderBB = Last; |
| |
| // Update BitTestCases. |
| for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) |
| if (BitTestCases[i].Parent == First) |
| BitTestCases[i].Parent = Last; |
| } |
| |
| void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { |
| MachineBasicBlock *SwitchMBB = FuncInfo.MBB; |
| |
| // Figure out which block is immediately after the current one. |
| MachineBasicBlock *NextBlock = 0; |
| MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; |
| |
| // If there is only the default destination, branch to it if it is not the |
| // next basic block. Otherwise, just fall through. |
| if (!SI.getNumCases()) { |
| // Update machine-CFG edges. |
| |
| // If this is not a fall-through branch, emit the branch. |
| SwitchMBB->addSuccessor(Default); |
| if (Default != NextBlock) |
| DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), |
| MVT::Other, getControlRoot(), |
| DAG.getBasicBlock(Default))); |
| |
| return; |
| } |
| |
| // If there are any non-default case statements, create a vector of Cases |
| // representing each one, and sort the vector so that we can efficiently |
| // create a binary search tree from them. |
| CaseVector Cases; |
| size_t numCmps = Clusterify(Cases, SI); |
| DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() |
| << ". Total compares: " << numCmps << '\n'); |
| (void)numCmps; |
| |
| // Get the Value to be switched on and default basic blocks, which will be |
| // inserted into CaseBlock records, representing basic blocks in the binary |
| // search tree. |
| const Value *SV = SI.getCondition(); |
| |
| // Push the initial CaseRec onto the worklist |
| CaseRecVector WorkList; |
| WorkList.push_back(CaseRec(SwitchMBB,0,0, |
| CaseRange(Cases.begin(),Cases.end()))); |
| |
| while (!WorkList.empty()) { |
| // Grab a record representing a case range to process off the worklist |
| CaseRec CR = WorkList.back(); |
| WorkList.pop_back(); |
| |
| if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) |
| continue; |
| |
| // If the range has few cases (two or less) emit a series of specific |
| // tests. |
| if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) |
| continue; |
| |
| // If the switch has more than N blocks, and is at least 40% dense, and the |
| // target supports indirect branches, then emit a jump table rather than |
| // lowering the switch to a binary tree of conditional branches. |
| // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). |
| if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) |
| continue; |
| |
| // Emit binary tree. We need to pick a pivot, and push left and right ranges |
| // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. |
| handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); |
| } |
| } |
| |
| void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { |
| MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; |
| |
| // Update machine-CFG edges with unique successors. |
| SmallSet<BasicBlock*, 32> Done; |
| for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { |
| BasicBlock *BB = I.getSuccessor(i); |
| bool Inserted = Done.insert(BB); |
| if (!Inserted) |
| continue; |
| |
| MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; |
| addSuccessorWithWeight(IndirectBrMBB, Succ); |
| } |
| |
| DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), |
| MVT::Other, getControlRoot(), |
| getValue(I.getAddress()))); |
| } |
| |
| void SelectionDAGBuilder::visitFSub(const User &I) { |
| // -0.0 - X --> fneg |
| Type *Ty = I.getType(); |
| if (isa<Constant>(I.getOperand(0)) && |
| I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { |
| SDValue Op2 = getValue(I.getOperand(1)); |
| setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), |
| Op2.getValueType(), Op2)); |
| return; |
| } |
| |
| visitBinary(I, ISD::FSUB); |
| } |
| |
| void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { |
| SDValue Op1 = getValue(I.getOperand(0)); |
| SDValue Op2 = getValue(I.getOperand(1)); |
| setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), |
| Op1.getValueType(), Op1, Op2)); |
| } |
| |
| void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { |
| SDValue Op1 = getValue(I.getOperand(0)); |
| SDValue Op2 = getValue(I.getOperand(1)); |
| |
| MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType()); |
| |
| // Coerce the shift amount to the right type if we can. |
| if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { |
| unsigned ShiftSize = ShiftTy.getSizeInBits(); |
| unsigned Op2Size = Op2.getValueType().getSizeInBits(); |
| DebugLoc DL = getCurDebugLoc(); |
| |
| // If the operand is smaller than the shift count type, promote it. |
| if (ShiftSize > Op2Size) |
| Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); |
| |
| // If the operand is larger than the shift count type but the shift |
| // count type has enough bits to represent any shift value, truncate |
| // it now. This is a common case and it exposes the truncate to |
| // optimization early. |
| else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) |
| Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); |
| // Otherwise we'll need to temporarily settle for some other convenient |
| // type. Type legalization will make adjustments once the shiftee is split. |
| else |
| Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); |
| } |
| |
| setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), |
| Op1.getValueType(), Op1, Op2)); |
| } |
| |
| void SelectionDAGBuilder::visitSDiv(const User &I) { |
| SDValue Op1 = getValue(I.getOperand(0)); |
| SDValue Op2 = getValue(I.getOperand(1)); |
| |
| // Turn exact SDivs into multiplications. |
| // FIXME: This should be in DAGCombiner, but it doesn't have access to the |
| // exact bit. |
| if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && |
| !isa<ConstantSDNode>(Op1) && |
| isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) |
| setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG)); |
| else |
| setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(), |
| Op1, Op2)); |
| } |
| |
| void SelectionDAGBuilder::visitICmp(const User &I) { |
| ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; |
| if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) |
| predicate = IC->getPredicate(); |
| else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) |
| predicate = ICmpInst::Predicate(IC->getPredicate()); |
| SDValue Op1 = getValue(I.getOperand(0)); |
| SDValue Op2 = getValue(I.getOperand(1)); |
| ISD::CondCode Opcode = getICmpCondCode(predicate); |
| |
| EVT DestVT = TLI.getValueType(I.getType()); |
| setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); |
| } |
| |
| void SelectionDAGBuilder::visitFCmp(const User &I) { |
| FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; |
| if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) |
| predicate = FC->getPredicate(); |
| else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) |
| predicate = FCmpInst::Predicate(FC->getPredicate()); |
| SDValue Op1 = getValue(I.getOperand(0)); |
| SDValue Op2 = getValue(I.getOperand(1)); |
| ISD::CondCode Condition = getFCmpCondCode(predicate); |
| if (TM.Options.NoNaNsFPMath) |
| Condition = getFCmpCodeWithoutNaN(Condition); |
| EVT DestVT = TLI.getValueType(I.getType()); |
| setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); |
| } |
| |
| void SelectionDAGBuilder::visitSelect(const User &I) { |
| SmallVector<EVT, 4> ValueVTs; |
| ComputeValueVTs(TLI, I.getType(), ValueVTs); |
| unsigned NumValues = ValueVTs.size(); |
| if (NumValues == 0) return; |
| |
| SmallVector<SDValue, 4> Values(NumValues); |
| SDValue Cond = getValue(I.getOperand(0)); |
| SDValue TrueVal = getValue(I.getOperand(1)); |
| SDValue FalseVal = getValue(I.getOperand(2)); |
| ISD::NodeType OpCode = Cond.getValueType().isVector() ? |
| ISD::VSELECT : ISD::SELECT; |
| |
| for (unsigned i = 0; i != NumValues; ++i) |
| Values[i] = DAG.getNode(OpCode, getCurDebugLoc(), |
| TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), |
| Cond, |
| SDValue(TrueVal.getNode(), |
| TrueVal.getResNo() + i), |
| SDValue(FalseVal.getNode(), |
| FalseVal.getResNo() + i)); |
| |
| setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), |
| DAG.getVTList(&ValueVTs[0], NumValues), |
| &Values[0], NumValues)); |
| } |
| |
| void SelectionDAGBuilder::visitTrunc(const User &I) { |
| // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). |
| SDValue N = getValue(I.getOperand(0)); |
| EVT DestVT = TLI.getValueType(I.getType()); |
| setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); |
| } |
| |
| void SelectionDAGBuilder::visitZExt(const User &I) { |
| // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). |
| // ZExt also can't be a cast to bool for same reason. So, nothing much to do |
| SDValue N = getValue(I.getOperand(0)); |
| EVT DestVT = TLI.getValueType(I.getType()); |
| setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); |
| } |
| |
| void SelectionDAGBuilder::visitSExt(const User &I) { |
| // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). |
| // SExt also can't be a cast to bool for same reason. So, nothing much to do |
| SDValue N = getValue(I.getOperand(0)); |
| EVT DestVT = TLI.getValueType(I.getType()); |
| setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); |
| } |
| |
| void SelectionDAGBuilder::visitFPTrunc(const User &I) { |
| // FPTrunc is never a no-op cast, no need to check |
| SDValue N = getValue(I.getOperand(0)); |
| EVT DestVT = TLI.getValueType(I.getType()); |
| setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), |
| DestVT, N, |
| DAG.getTargetConstant(0, TLI.getPointerTy()))); |
| } |
| |
| void SelectionDAGBuilder::visitFPExt(const User &I){ |
| // FPExt is never a no-op cast, no need to check |
| SDValue N = getValue(I.getOperand(0)); |
| EVT DestVT = TLI.getValueType(I.getType()); |
| setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); |
| } |
| |
| void SelectionDAGBuilder::visitFPToUI(const User &I) { |
| // FPToUI is never a no-op cast, no need to check |
| SDValue N = getValue(I.getOperand(0)); |
| EVT DestVT = TLI.getValueType(I.getType()); |
| setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); |
| } |
| |
| void SelectionDAGBuilder::visitFPToSI(const User &I) { |
| // FPToSI is never a no-op cast, no need to check |
| SDValue N = getValue(I.getOperand(0)); |
| EVT DestVT = TLI.getValueType(I.getType()); |
| setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); |
| } |
| |
| void SelectionDAGBuilder::visitUIToFP(const User &I) { |
| // UIToFP is never a no-op cast, no need to check |
| SDValue N = getValue(I.getOperand(0)); |
| EVT DestVT = TLI.getValueType(I.getType()); |
| setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); |
| } |
| |
| void SelectionDAGBuilder::visitSIToFP(const User &I){ |
| // SIToFP is never a no-op cast, no need to check |
| SDValue N = getValue(I.getOperand(0)); |
| EVT DestVT = TLI.getValueType(I.getType()); |
| setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); |
| } |
| |
| void SelectionDAGBuilder::visitPtrToInt(const User &I) { |
| // What to do depends on the size of the integer and the size of the pointer. |
| // We can either truncate, zero extend, or no-op, accordingly. |
| SDValue N = getValue(I.getOperand(0)); |
| EVT DestVT = TLI.getValueType(I.getType()); |
| setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); |
| } |
| |
| void SelectionDAGBuilder::visitIntToPtr(const User &I) { |
| // What to do depends on the size of the integer and the size of the pointer. |
| // We can either truncate, zero extend, or no-op, accordingly. |
| SDValue N = getValue(I.getOperand(0)); |
| EVT DestVT = TLI.getValueType(I.getType()); |
| setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); |
| } |
| |
| void SelectionDAGBuilder::visitBitCast(const User &I) { |
| SDValue N = getValue(I.getOperand(0)); |
| EVT DestVT = TLI.getValueType(I.getType()); |
| |
| // BitCast assures us that source and destination are the same size so this is |
| // either a BITCAST or a no-op. |
| if (DestVT != N.getValueType()) |
| setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(), |
| DestVT, N)); // convert types. |
| else |
| setValue(&I, N); // noop cast. |
| } |
| |
| void SelectionDAGBuilder::visitInsertElement(const User &I) { |
| SDValue InVec = getValue(I.getOperand(0)); |
| SDValue InVal = getValue(I.getOperand(1)); |
| SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), |
| TLI.getPointerTy(), |
| getValue(I.getOperand(2))); |
| setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), |
| TLI.getValueType(I.getType()), |
| InVec, InVal, InIdx)); |
| } |
| |
| void SelectionDAGBuilder::visitExtractElement(const User &I) { |
| SDValue InVec = getValue(I.getOperand(0)); |
| SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), |
| TLI.getPointerTy(), |
| getValue(I.getOperand(1))); |
| setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), |
| TLI.getValueType(I.getType()), InVec, InIdx)); |
| } |
| |
| // Utility for visitShuffleVector - Return true if every element in Mask, |
| // beginning from position Pos and ending in Pos+Size, falls within the |
| // specified sequential range [L, L+Pos). or is undef. |
| static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, |
| unsigned Pos, unsigned Size, int Low) { |
| for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) |
| if (Mask[i] >= 0 && Mask[i] != Low) |
| return false; |
| return true; |
| } |
| |
| void SelectionDAGBuilder::visitShuffleVector(const User &I) { |
| SDValue Src1 = getValue(I.getOperand(0)); |
| SDValue Src2 = getValue(I.getOperand(1)); |
| |
| SmallVector<int, 8> Mask; |
| ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); |
| unsigned MaskNumElts = Mask.size(); |
| |
| EVT VT = TLI.getValueType(I.getType()); |
| EVT SrcVT = Src1.getValueType(); |
| unsigned SrcNumElts = SrcVT.getVectorNumElements(); |
| |
| if (SrcNumElts == MaskNumElts) { |
| setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, |
| &Mask[0])); |
| return; |
| } |
| |
| // Normalize the shuffle vector since mask and vector length don't match. |
| if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { |
| // Mask is longer than the source vectors and is a multiple of the source |
| // vectors. We can use concatenate vector to make the mask and vectors |
| // lengths match. |
| if (SrcNumElts*2 == MaskNumElts) { |
| // First check for Src1 in low and Src2 in high |
| if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && |
| isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { |
| // The shuffle is concatenating two vectors together. |
| setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), |
| VT, Src1, Src2)); |
| return; |
| } |
| // Then check for Src2 in low and Src1 in high |
| if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && |
| isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { |
| // The shuffle is concatenating two vectors together. |
| setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), |
| VT, Src2, Src1)); |
| return; |
| } |
| } |
| |
| // Pad both vectors with undefs to make them the same length as the mask. |
| unsigned NumConcat = MaskNumElts / SrcNumElts; |
| bool Src1U = Src1.getOpcode() == ISD::UNDEF; |
| bool Src2U = Src2.getOpcode() == ISD::UNDEF; |
| SDValue UndefVal = DAG.getUNDEF(SrcVT); |
| |
| SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); |
| SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); |
| MOps1[0] = Src1; |
| MOps2[0] = Src2; |
| |
| Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, |
| getCurDebugLoc(), VT, |
| &MOps1[0], NumConcat); |
| Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, |
| getCurDebugLoc(), VT, |
| &MOps2[0], NumConcat); |
| |
| // Readjust mask for new input vector length. |
| SmallVector<int, 8> MappedOps; |
| for (unsigned i = 0; i != MaskNumElts; ++i) { |
| int Idx = Mask[i]; |
| if (Idx >= (int)SrcNumElts) |
| Idx -= SrcNumElts - MaskNumElts; |
| MappedOps.push_back(Idx); |
| } |
| |
| setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, |
| &MappedOps[0])); |
| return; |
| } |
| |
| if (SrcNumElts > MaskNumElts) { |
| // Analyze the access pattern of the vector to see if we can extract |
| // two subvectors and do the shuffle. The analysis is done by calculating |
| // the range of elements the mask access on both vectors. |
| int MinRange[2] = { static_cast<int>(SrcNumElts), |
| static_cast<int>(SrcNumElts)}; |
| int MaxRange[2] = {-1, -1}; |
| |
| for (unsigned i = 0; i != MaskNumElts; ++i) { |
| int Idx = Mask[i]; |
| unsigned Input = 0; |
| if (Idx < 0) |
| continue; |
| |
| if (Idx >= (int)SrcNumElts) { |
| Input = 1; |
| Idx -= SrcNumElts; |
| } |
| if (Idx > MaxRange[Input]) |
| MaxRange[Input] = Idx; |
| if (Idx < MinRange[Input]) |
| MinRange[Input] = Idx; |
| } |
| |
| // Check if the access is smaller than the vector size and can we find |
| // a reasonable extract index. |
| int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not |
| // Extract. |
| int StartIdx[2]; // StartIdx to extract from |
| for (unsigned Input = 0; Input < 2; ++Input) { |
| if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { |
| RangeUse[Input] = 0; // Unused |
| StartIdx[Input] = 0; |
| continue; |
| } |
| |
| // Find a good start index that is a multiple of the mask length. Then |
| // see if the rest of the elements are in range. |
| StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; |
| if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && |
| StartIdx[Input] + MaskNumElts <= SrcNumElts) |
| RangeUse[Input] = 1; // Extract from a multiple of the mask length. |
| } |
| |
| if (RangeUse[0] == 0 && RangeUse[1] == 0) { |
| setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. |
| return; |
| } |
| if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { |
| // Extract appropriate subvector and generate a vector shuffle |
| for (unsigned Input = 0; Input < 2; ++Input) { |
| SDValue &Src = Input == 0 ? Src1 : Src2; |
| if (RangeUse[Input] == 0) |
| Src = DAG.getUNDEF(VT); |
| else |
| Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, |
| Src, DAG.getIntPtrConstant(StartIdx[Input])); |
| } |
| |
| // Calculate new mask. |
| SmallVector<int, 8> MappedOps; |
| for (unsigned i = 0; i != MaskNumElts; ++i) { |
| int Idx = Mask[i]; |
| if (Idx >= 0) { |
| if (Idx < (int)SrcNumElts) |
| Idx -= StartIdx[0]; |
| else |
| Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; |
| } |
| MappedOps.push_back(Idx); |
| } |
| |
| setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, |
| &MappedOps[0])); |
| return; |
| } |
| } |
| |
| // We can't use either concat vectors or extract subvectors so fall back to |
| // replacing the shuffle with extract and build vector. |
| // to insert and build vector. |
| EVT EltVT = VT.getVectorElementType(); |
| EVT PtrVT = TLI.getPointerTy(); |
| SmallVector<SDValue,8> Ops; |
| for (unsigned i = 0; i != MaskNumElts; ++i) { |
| int Idx = Mask[i]; |
| SDValue Res; |
| |
| if (Idx < 0) { |
| Res = DAG.getUNDEF(EltVT); |
| } else { |
| SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; |
| if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; |
| |
| Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), |
| EltVT, Src, DAG.getConstant(Idx, PtrVT)); |
| } |
| |
| Ops.push_back(Res); |
| } |
| |
| setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), |
| VT, &Ops[0], Ops.size())); |
| } |
| |
| void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { |
| const Value *Op0 = I.getOperand(0); |
| const Value *Op1 = I.getOperand(1); |
| Type *AggTy = I.getType(); |
| Type *ValTy = Op1->getType(); |
| bool IntoUndef = isa<UndefValue>(Op0); |
| bool FromUndef = isa<UndefValue>(Op1); |
| |
| unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); |
| |
| SmallVector<EVT, 4> AggValueVTs; |
| ComputeValueVTs(TLI, AggTy, AggValueVTs); |
| SmallVector<EVT, 4> ValValueVTs; |
| ComputeValueVTs(TLI, ValTy, ValValueVTs); |
| |
| unsigned NumAggValues = AggValueVTs.size(); |
| unsigned NumValValues = ValValueVTs.size(); |
| SmallVector<SDValue, 4> Values(NumAggValues); |
| |
| SDValue Agg = getValue(Op0); |
| unsigned i = 0; |
| // Copy the beginning value(s) from the original aggregate. |
| for (; i != LinearIndex; ++i) |
| Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : |
| SDValue(Agg.getNode(), Agg.getResNo() + i); |
| // Copy values from the inserted value(s). |
| if (NumValValues) { |
| SDValue Val = getValue(Op1); |
| for (; i != LinearIndex + NumValValues; ++i) |
| Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : |
| SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); |
| } |
| // Copy remaining value(s) from the original aggregate. |
| for (; i != NumAggValues; ++i) |
| Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : |
| SDValue(Agg.getNode(), Agg.getResNo() + i); |
| |
| setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), |
| DAG.getVTList(&AggValueVTs[0], NumAggValues), |
| &Values[0], NumAggValues)); |
| } |
| |
| void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { |
| const Value *Op0 = I.getOperand(0); |
| Type *AggTy = Op0->getType(); |
| Type *ValTy = I.getType(); |
| bool OutOfUndef = isa<UndefValue>(Op0); |
| |
| unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); |
| |
| SmallVector<EVT, 4> ValValueVTs; |
| ComputeValueVTs(TLI, ValTy, ValValueVTs); |
| |
| unsigned NumValValues = ValValueVTs.size(); |
| |
| // Ignore a extractvalue that produces an empty object |
| if (!NumValValues) { |
| setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); |
| return; |
| } |
| |
| SmallVector<SDValue, 4> Values(NumValValues); |
| |
| SDValue Agg = getValue(Op0); |
| // Copy out the selected value(s). |
| for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) |
| Values[i - LinearIndex] = |
| OutOfUndef ? |
| DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : |
| SDValue(Agg.getNode(), Agg.getResNo() + i); |
| |
| setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), |
| DAG.getVTList(&ValValueVTs[0], NumValValues), |
| &Values[0], NumValValues)); |
| } |
| |
| void SelectionDAGBuilder::visitGetElementPtr(const User &I) { |
| SDValue N = getValue(I.getOperand(0)); |
| // Note that the pointer operand may be a vector of pointers. Take the scalar |
| // element which holds a pointer. |
| Type *Ty = I.getOperand(0)->getType()->getScalarType(); |
| |
| for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); |
| OI != E; ++OI) { |
| const Value *Idx = *OI; |
| if (StructType *StTy = dyn_cast<StructType>(Ty)) { |
| unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); |
| if (Field) { |
| // N = N + Offset |
| uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); |
| N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, |
| DAG.getConstant(Offset, N.getValueType())); |
| } |
| |
| Ty = StTy->getElementType(Field); |
| } else { |
| Ty = cast<SequentialType>(Ty)->getElementType(); |
| |
| // If this is a constant subscript, handle it quickly. |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { |
| if (CI->isZero()) continue; |
| uint64_t Offs = |
| TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); |
| SDValue OffsVal; |
| EVT PTy = TLI.getPointerTy(); |
| unsigned PtrBits = PTy.getSizeInBits(); |
| if (PtrBits < 64) |
| OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), |
| TLI.getPointerTy(), |
| DAG.getConstant(Offs, MVT::i64)); |
| else |
| OffsVal = DAG.getIntPtrConstant(Offs); |
| |
| N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, |
| OffsVal); |
| continue; |
| } |
| |
| // N = N + Idx * ElementSize; |
| APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), |
| TD->getTypeAllocSize(Ty)); |
| SDValue IdxN = getValue(Idx); |
| |
| // If the index is smaller or larger than intptr_t, truncate or extend |
| // it. |
| IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); |
| |
| // If this is a multiply by a power of two, turn it into a shl |
| // immediately. This is a very common case. |
| if (ElementSize != 1) { |
| if (ElementSize.isPowerOf2()) { |
| unsigned Amt = ElementSize.logBase2(); |
| IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), |
| N.getValueType(), IdxN, |
| DAG.getConstant(Amt, IdxN.getValueType())); |
| } else { |
| SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); |
| IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), |
| N.getValueType(), IdxN, Scale); |
| } |
| } |
| |
| N = DAG.getNode(ISD::ADD, getCurDebugLoc(), |
| N.getValueType(), N, IdxN); |
| } |
| } |
| |
| setValue(&I, N); |
| } |
| |
| void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { |
| // If this is a fixed sized alloca in the entry block of the function, |
| // allocate it statically on the stack. |
| if (FuncInfo.StaticAllocaMap.count(&I)) |
| return; // getValue will auto-populate this. |
| |
| Type *Ty = I.getAllocatedType(); |
| uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); |
| unsigned Align = |
| std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), |
| I.getAlignment()); |
| |
| SDValue AllocSize = getValue(I.getArraySize()); |
| |
| EVT IntPtr = TLI.getPointerTy(); |
| if (AllocSize.getValueType() != IntPtr) |
| AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); |
| |
| AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr, |
| AllocSize, |
| DAG.getConstant(TySize, IntPtr)); |
| |
| // Handle alignment. If the requested alignment is less than or equal to |
| // the stack alignment, ignore it. If the size is greater than or equal to |
| // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. |
| unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); |
| if (Align <= StackAlign) |
| Align = 0; |
| |
| // Round the size of the allocation up to the stack alignment size |
| // by add SA-1 to the size. |
| AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), |
| AllocSize.getValueType(), AllocSize, |
| DAG.getIntPtrConstant(StackAlign-1)); |
| |
| // Mask out the low bits for alignment purposes. |
| AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), |
| AllocSize.getValueType(), AllocSize, |
| DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); |
| |
| SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; |
| SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); |
| SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), |
| VTs, Ops, 3); |
| setValue(&I, DSA); |
| DAG.setRoot(DSA.getValue(1)); |
| |
| // Inform the Frame Information that we have just allocated a variable-sized |
| // object. |
| FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); |
| } |
| |
| void SelectionDAGBuilder::visitLoad(const LoadInst &I) { |
| if (I.isAtomic()) |
| return visitAtomicLoad(I); |
| |
| const Value *SV = I.getOperand(0); |
| SDValue Ptr = getValue(SV); |
| |
| Type *Ty = I.getType(); |
| |
| bool isVolatile = I.isVolatile(); |
| bool isNonTemporal = I.getMetadata("nontemporal") != 0; |
| bool isInvariant = I.getMetadata("invariant.load") != 0; |
| unsigned Alignment = I.getAlignment(); |
| const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); |
| const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); |
| |
| SmallVector<EVT, 4> ValueVTs; |
| SmallVector<uint64_t, 4> Offsets; |
| ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); |
| unsigned NumValues = ValueVTs.size(); |
| if (NumValues == 0) |
| return; |
| |
| SDValue Root; |
| bool ConstantMemory = false; |
| if (I.isVolatile() || NumValues > MaxParallelChains) |
| // Serialize volatile loads with other side effects. |
| Root = getRoot(); |
| else if (AA->pointsToConstantMemory( |
| AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { |
| // Do not serialize (non-volatile) loads of constant memory with anything. |
| Root = DAG.getEntryNode(); |
| ConstantMemory = true; |
| } else { |
| // Do not serialize non-volatile loads against each other. |
| Root = DAG.getRoot(); |
| } |
| |
| SmallVector<SDValue, 4> Values(NumValues); |
| SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), |
| NumValues)); |
| EVT PtrVT = Ptr.getValueType(); |
| unsigned ChainI = 0; |
| for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { |
| // Serializing loads here may result in excessive register pressure, and |
| // TokenFactor places arbitrary choke points on the scheduler. SD scheduling |
| // could recover a bit by hoisting nodes upward in the chain by recognizing |
| // they are side-effect free or do not alias. The optimizer should really |
| // avoid this case by converting large object/array copies to llvm.memcpy |
| // (MaxParallelChains should always remain as failsafe). |
| if (ChainI == MaxParallelChains) { |
| assert(PendingLoads.empty() && "PendingLoads must be serialized first"); |
| SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), |
| MVT::Other, &Chains[0], ChainI); |
| Root = Chain; |
| ChainI = 0; |
| } |
| SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), |
| PtrVT, Ptr, |
| DAG.getConstant(Offsets[i], PtrVT)); |
| SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, |
| A, MachinePointerInfo(SV, Offsets[i]), isVolatile, |
| isNonTemporal, isInvariant, Alignment, TBAAInfo, |
| Ranges); |
| |
| Values[i] = L; |
| Chains[ChainI] = L.getValue(1); |
| } |
| |
| if (!ConstantMemory) { |
| SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), |
| MVT::Other, &Chains[0], ChainI); |
| if (isVolatile) |
| DAG.setRoot(Chain); |
| else |
| PendingLoads.push_back(Chain); |
| } |
| |
| setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), |
| DAG.getVTList(&ValueVTs[0], NumValues), |
| &Values[0], NumValues)); |
| } |
| |
| void SelectionDAGBuilder::visitStore(const StoreInst &I) { |
| if (I.isAtomic()) |
| return visitAtomicStore(I); |
| |
| const Value *SrcV = I.getOperand(0); |
| const Value *PtrV = I.getOperand(1); |
| |
| SmallVector<EVT, 4> ValueVTs; |
| SmallVector<uint64_t, 4> Offsets; |
| ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); |
| unsigned NumValues = ValueVTs.size(); |
| if (NumValues == 0) |
| return; |
| |
| // Get the lowered operands. Note that we do this after |
| // checking if NumResults is zero, because with zero results |
| // the operands won't have values in the map. |
| SDValue Src = getValue(SrcV); |
| SDValue Ptr = getValue(PtrV); |
| |
| SDValue Root = getRoot(); |
| SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), |
| NumValues)); |
| EVT PtrVT = Ptr.getValueType(); |
| bool isVolatile = I.isVolatile(); |
| bool isNonTemporal = I.getMetadata("nontemporal") != 0; |
| unsigned Alignment = I.getAlignment(); |
| const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); |
| |
| unsigned ChainI = 0; |
| for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { |
| // See visitLoad comments. |
| if (ChainI == MaxParallelChains) { |
| SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), |
| MVT::Other, &Chains[0], ChainI); |
| Root = Chain; |
| ChainI = 0; |
| } |
| SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, |
| DAG.getConstant(Offsets[i], PtrVT)); |
| SDValue St = DAG.getStore(Root, getCurDebugLoc(), |
| SDValue(Src.getNode(), Src.getResNo() + i), |
| Add, MachinePointerInfo(PtrV, Offsets[i]), |
| isVolatile, isNonTemporal, Alignment, TBAAInfo); |
| Chains[ChainI] = St; |
| } |
| |
| SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), |
| MVT::Other, &Chains[0], ChainI); |
| ++SDNodeOrder; |
| AssignOrderingToNode(StoreNode.getNode()); |
| DAG.setRoot(StoreNode); |
| } |
| |
| static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, |
| SynchronizationScope Scope, |
| bool Before, DebugLoc dl, |
| SelectionDAG &DAG, |
| const TargetLowering &TLI) { |
| // Fence, if necessary |
| if (Before) { |
| if (Order == AcquireRelease || Order == SequentiallyConsistent) |
| Order = Release; |
| else if (Order == Acquire || Order == Monotonic) |
| return Chain; |
| } else { |
| if (Order == AcquireRelease) |
| Order = Acquire; |
| else if (Order == Release || Order == Monotonic) |
| return Chain; |
| } |
| SDValue Ops[3]; |
| Ops[0] = Chain; |
| Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); |
| Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); |
| return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3); |
| } |
| |
| void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { |
| DebugLoc dl = getCurDebugLoc(); |
| AtomicOrdering Order = I.getOrdering(); |
| SynchronizationScope Scope = I.getSynchScope(); |
| |
| SDValue InChain = getRoot(); |
| |
| if (TLI.getInsertFencesForAtomic()) |
| InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, |
| DAG, TLI); |
| |
| SDValue L = |
| DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, |
| getValue(I.getCompareOperand()).getValueType().getSimpleVT(), |
| InChain, |
| getValue(I.getPointerOperand()), |
| getValue(I.getCompareOperand()), |
| getValue(I.getNewValOperand()), |
| MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */, |
| TLI.getInsertFencesForAtomic() ? Monotonic : Order, |
| Scope); |
| |
| SDValue OutChain = L.getValue(1); |
| |
| if (TLI.getInsertFencesForAtomic()) |
| OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, |
| DAG, TLI); |
| |
| setValue(&I, L); |
| DAG.setRoot(OutChain); |
| } |
| |
| void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { |
| DebugLoc dl = getCurDebugLoc(); |
| ISD::NodeType NT; |
| switch (I.getOperation()) { |
| default: llvm_unreachable("Unknown atomicrmw operation"); |
| case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; |
| case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; |
| case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; |
| case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; |
| case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; |
| case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; |
| case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; |
| case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; |
| case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; |
| case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; |
| case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; |
| } |
| AtomicOrdering Order = I.getOrdering(); |
| SynchronizationScope Scope = I.getSynchScope(); |
| |
| SDValue InChain = getRoot(); |
| |
| if (TLI.getInsertFencesForAtomic()) |
| InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, |
| DAG, TLI); |
| |
| SDValue L = |
| DAG.getAtomic(NT, dl, |
| getValue(I.getValOperand()).getValueType().getSimpleVT(), |
| InChain, |
| getValue(I.getPointerOperand()), |
| getValue(I.getValOperand()), |
| I.getPointerOperand(), 0 /* Alignment */, |
| TLI.getInsertFencesForAtomic() ? Monotonic : Order, |
| Scope); |
| |
| SDValue OutChain = L.getValue(1); |
| |
| if (TLI.getInsertFencesForAtomic()) |
| OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, |
| DAG, TLI); |
| |
| setValue(&I, L); |
| DAG.setRoot(OutChain); |
| } |
| |
| void SelectionDAGBuilder::visitFence(const FenceInst &I) { |
| DebugLoc dl = getCurDebugLoc(); |
| SDValue Ops[3]; |
| Ops[0] = getRoot(); |
| Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); |
| Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); |
| DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3)); |
| } |
| |
| void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { |
| DebugLoc dl = getCurDebugLoc(); |
| AtomicOrdering Order = I.getOrdering(); |
| SynchronizationScope Scope = I.getSynchScope(); |
| |
| SDValue InChain = getRoot(); |
| |
| EVT VT = TLI.getValueType(I.getType()); |
| |
| if (I.getAlignment() < VT.getSizeInBits() / 8) |
| report_fatal_error("Cannot generate unaligned atomic load"); |
| |
| SDValue L = |
| DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, |
| getValue(I.getPointerOperand()), |
| I.getPointerOperand(), I.getAlignment(), |
| TLI.getInsertFencesForAtomic() ? Monotonic : Order, |
| Scope); |
| |
| SDValue OutChain = L.getValue(1); |
| |
| if (TLI.getInsertFencesForAtomic()) |
| OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, |
| DAG, TLI); |
| |
| setValue(&I, L); |
| DAG.setRoot(OutChain); |
| } |
| |
| void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { |
| DebugLoc dl = getCurDebugLoc(); |
| |
| AtomicOrdering Order = I.getOrdering(); |
| SynchronizationScope Scope = I.getSynchScope(); |
| |
| SDValue InChain = getRoot(); |
| |
| EVT VT = TLI.getValueType(I.getValueOperand()->getType()); |
| |
| if (I.getAlignment() < VT.getSizeInBits() / 8) |
| report_fatal_error("Cannot generate unaligned atomic store"); |
| |
| if (TLI.getInsertFencesForAtomic()) |
| InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, |
| DAG, TLI); |
| |
| SDValue OutChain = |
| DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, |
| InChain, |
| getValue(I.getPointerOperand()), |
| getValue(I.getValueOperand()), |
| I.getPointerOperand(), I.getAlignment(), |
| TLI.getInsertFencesForAtomic() ? Monotonic : Order, |
| Scope); |
| |
| if (TLI.getInsertFencesForAtomic()) |
| OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, |
| DAG, TLI); |
| |
| DAG.setRoot(OutChain); |
| } |
| |
| /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC |
| /// node. |
| void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, |
| unsigned Intrinsic) { |
| bool HasChain = !I.doesNotAccessMemory(); |
| bool OnlyLoad = HasChain && I.onlyReadsMemory(); |
| |
| // Build the operand list. |
| SmallVector<SDValue, 8> Ops; |
| if (HasChain) { // If this intrinsic has side-effects, chainify it. |
| if (OnlyLoad) { |
| // We don't need to serialize loads against other loads. |
| Ops.push_back(DAG.getRoot()); |
| } else { |
| Ops.push_back(getRoot()); |
| } |
| } |
| |
| // Info is set by getTgtMemInstrinsic |
| TargetLowering::IntrinsicInfo Info; |
| bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); |
| |
| // Add the intrinsic ID as an integer operand if it's not a target intrinsic. |
| if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || |
| Info.opc == ISD::INTRINSIC_W_CHAIN) |
| Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy())); |
| |
| // Add all operands of the call to the operand list. |
| for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { |
| SDValue Op = getValue(I.getArgOperand(i)); |
| Ops.push_back(Op); |
| } |
| |
| SmallVector<EVT, 4> ValueVTs; |
| ComputeValueVTs(TLI, I.getType(), ValueVTs); |
| |
| if (HasChain) |
| ValueVTs.push_back(MVT::Other); |
| |
| SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); |
| |
| // Create the node. |
| SDValue Result; |
| if (IsTgtIntrinsic) { |
| // This is target intrinsic that touches memory |
| Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), |
| VTs, &Ops[0], Ops.size(), |
| Info.memVT, |
| MachinePointerInfo(Info.ptrVal, Info.offset), |
| Info.align, Info.vol, |
| Info.readMem, Info.writeMem); |
| } else if (!HasChain) { |
| Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), |
| VTs, &Ops[0], Ops.size()); |
| } else if (!I.getType()->isVoidTy()) { |
| Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), |
| VTs, &Ops[0], Ops.size()); |
| } else { |
| Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), |
| VTs, &Ops[0], Ops.size()); |
| } |
| |
| if (HasChain) { |
| SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); |
| if (OnlyLoad) |
| PendingLoads.push_back(Chain); |
| else |
| DAG.setRoot(Chain); |
| } |
| |
| if (!I.getType()->isVoidTy()) { |
| if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { |
| EVT VT = TLI.getValueType(PTy); |
| Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result); |
| } |
| |
| setValue(&I, Result); |
| } else { |
| // Assign order to result here. If the intrinsic does not produce a result, |
| // it won't be mapped to a SDNode and visit() will not assign it an order |
| // number. |
| ++SDNodeOrder; |
| AssignOrderingToNode(Result.getNode()); |
| } |
| } |
| |
| /// GetSignificand - Get the significand and build it into a floating-point |
| /// number with exponent of 1: |
| /// |
| /// Op = (Op & 0x007fffff) | 0x3f800000; |
| /// |
| /// where Op is the hexadecimal representation of floating point value. |
| static SDValue |
| GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { |
| SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, |
| DAG.getConstant(0x007fffff, MVT::i32)); |
| SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, |
| DAG.getConstant(0x3f800000, MVT::i32)); |
| return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); |
| } |
| |
| /// GetExponent - Get the exponent: |
| /// |
| /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); |
| /// |
| /// where Op is the hexadecimal representation of floating point value. |
| static SDValue |
| GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, |
| DebugLoc dl) { |
| SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, |
| DAG.getConstant(0x7f800000, MVT::i32)); |
| SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, |
| DAG.getConstant(23, TLI.getPointerTy())); |
| SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, |
| DAG.getConstant(127, MVT::i32)); |
| return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); |
| } |
| |
| /// getF32Constant - Get 32-bit floating point constant. |
| static SDValue |
| getF32Constant(SelectionDAG &DAG, unsigned Flt) { |
| return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), |
| MVT::f32); |
| } |
| |
| /// expandExp - Lower an exp intrinsic. Handles the special sequences for |
| /// limited-precision mode. |
| static SDValue expandExp(DebugLoc dl, SDValue Op, SelectionDAG &DAG, |
| const TargetLowering &TLI) { |
| if (Op.getValueType() == MVT::f32 && |
| LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { |
| |
| // Put the exponent in the right bit position for later addition to the |
| // final result: |
| // |
| // #define LOG2OFe 1.4426950f |
| // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); |
| SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, |
| getF32Constant(DAG, 0x3fb8aa3b)); |
| SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); |
| |
| // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; |
| SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); |
| SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); |
| |
| // IntegerPartOfX <<= 23; |
| IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, |
| DAG.getConstant(23, TLI.getPointerTy())); |
| |
| SDValue TwoToFracPartOfX; |
| if (LimitFloatPrecision <= 6) { |
| // For floating-point precision of 6: |
| // |
| // TwoToFractionalPartOfX = |
| // 0.997535578f + |
| // (0.735607626f + 0.252464424f * x) * x; |
| // |
| // error 0.0144103317, which is 6 bits |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0x3e814304)); |
| SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3f3c50c8)); |
| SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
| TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
| getF32Constant(DAG, 0x3f7f5e7e)); |
| } else if (LimitFloatPrecision <= 12) { |
| // For floating-point precision of 12: |
| // |
| // TwoToFractionalPartOfX = |
| // 0.999892986f + |
| // (0.696457318f + |
| // (0.224338339f + 0.792043434e-1f * x) * x) * x; |
| // |
| // 0.000107046256 error, which is 13 to 14 bits |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0x3da235e3)); |
| SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3e65b8f3)); |
| SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
| SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
| getF32Constant(DAG, 0x3f324b07)); |
| SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); |
| TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, |
| getF32Constant(DAG, 0x3f7ff8fd)); |
| } else { // LimitFloatPrecision <= 18 |
| // For floating-point precision of 18: |
| // |
| // TwoToFractionalPartOfX = |
| // 0.999999982f + |
| // (0.693148872f + |
| // (0.240227044f + |
| // (0.554906021e-1f + |
| // (0.961591928e-2f + |
| // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; |
| // |
| // error 2.47208000*10^(-7), which is better than 18 bits |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0x3924b03e)); |
| SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3ab24b87)); |
| SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
| SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
| getF32Constant(DAG, 0x3c1d8c17)); |
| SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); |
| SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, |
| getF32Constant(DAG, 0x3d634a1d)); |
| SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); |
| SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, |
| getF32Constant(DAG, 0x3e75fe14)); |
| SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); |
| SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, |
| getF32Constant(DAG, 0x3f317234)); |
| SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); |
| TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, |
| getF32Constant(DAG, 0x3f800000)); |
| } |
| |
| // Add the exponent into the result in integer domain. |
| SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); |
| return DAG.getNode(ISD::BITCAST, dl, MVT::f32, |
| DAG.getNode(ISD::ADD, dl, MVT::i32, |
| t13, IntegerPartOfX)); |
| } |
| |
| // No special expansion. |
| return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); |
| } |
| |
| /// expandLog - Lower a log intrinsic. Handles the special sequences for |
| /// limited-precision mode. |
| static SDValue expandLog(DebugLoc dl, SDValue Op, SelectionDAG &DAG, |
| const TargetLowering &TLI) { |
| if (Op.getValueType() == MVT::f32 && |
| LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { |
| SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); |
| |
| // Scale the exponent by log(2) [0.69314718f]. |
| SDValue Exp = GetExponent(DAG, Op1, TLI, dl); |
| SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, |
| getF32Constant(DAG, 0x3f317218)); |
| |
| // Get the significand and build it into a floating-point number with |
| // exponent of 1. |
| SDValue X = GetSignificand(DAG, Op1, dl); |
| |
| SDValue LogOfMantissa; |
| if (LimitFloatPrecision <= 6) { |
| // For floating-point precision of 6: |
| // |
| // LogofMantissa = |
| // -1.1609546f + |
| // (1.4034025f - 0.23903021f * x) * x; |
| // |
| // error 0.0034276066, which is better than 8 bits |
| SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0xbe74c456)); |
| SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, |
| getF32Constant(DAG, 0x3fb3a2b1)); |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); |
| LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3f949a29)); |
| } else if (LimitFloatPrecision <= 12) { |
| // For floating-point precision of 12: |
| // |
| // LogOfMantissa = |
| // -1.7417939f + |
| // (2.8212026f + |
| // (-1.4699568f + |
| // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; |
| // |
| // error 0.000061011436, which is 14 bits |
| SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0xbd67b6d6)); |
| SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, |
| getF32Constant(DAG, 0x3ee4f4b8)); |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); |
| SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3fbc278b)); |
| SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
| SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
| getF32Constant(DAG, 0x40348e95)); |
| SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); |
| LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, |
| getF32Constant(DAG, 0x3fdef31a)); |
| } else { // LimitFloatPrecision <= 18 |
| // For floating-point precision of 18: |
| // |
| // LogOfMantissa = |
| // -2.1072184f + |
| // (4.2372794f + |
| // (-3.7029485f + |
| // (2.2781945f + |
| // (-0.87823314f + |
| // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; |
| // |
| // error 0.0000023660568, which is better than 18 bits |
| SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0xbc91e5ac)); |
| SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, |
| getF32Constant(DAG, 0x3e4350aa)); |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); |
| SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3f60d3e3)); |
| SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
| SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
| getF32Constant(DAG, 0x4011cdf0)); |
| SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); |
| SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, |
| getF32Constant(DAG, 0x406cfd1c)); |
| SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); |
| SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, |
| getF32Constant(DAG, 0x408797cb)); |
| SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); |
| LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, |
| getF32Constant(DAG, 0x4006dcab)); |
| } |
| |
| return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); |
| } |
| |
| // No special expansion. |
| return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); |
| } |
| |
| /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for |
| /// limited-precision mode. |
| static SDValue expandLog2(DebugLoc dl, SDValue Op, SelectionDAG &DAG, |
| const TargetLowering &TLI) { |
| if (Op.getValueType() == MVT::f32 && |
| LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { |
| SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); |
| |
| // Get the exponent. |
| SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); |
| |
| // Get the significand and build it into a floating-point number with |
| // exponent of 1. |
| SDValue X = GetSignificand(DAG, Op1, dl); |
| |
| // Different possible minimax approximations of significand in |
| // floating-point for various degrees of accuracy over [1,2]. |
| SDValue Log2ofMantissa; |
| if (LimitFloatPrecision <= 6) { |
| // For floating-point precision of 6: |
| // |
| // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; |
| // |
| // error 0.0049451742, which is more than 7 bits |
| SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0xbeb08fe0)); |
| SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, |
| getF32Constant(DAG, 0x40019463)); |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); |
| Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3fd6633d)); |
| } else if (LimitFloatPrecision <= 12) { |
| // For floating-point precision of 12: |
| // |
| // Log2ofMantissa = |
| // -2.51285454f + |
| // (4.07009056f + |
| // (-2.12067489f + |
| // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; |
| // |
| // error 0.0000876136000, which is better than 13 bits |
| SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0xbda7262e)); |
| SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, |
| getF32Constant(DAG, 0x3f25280b)); |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); |
| SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x4007b923)); |
| SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
| SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
| getF32Constant(DAG, 0x40823e2f)); |
| SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); |
| Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, |
| getF32Constant(DAG, 0x4020d29c)); |
| } else { // LimitFloatPrecision <= 18 |
| // For floating-point precision of 18: |
| // |
| // Log2ofMantissa = |
| // -3.0400495f + |
| // (6.1129976f + |
| // (-5.3420409f + |
| // (3.2865683f + |
| // (-1.2669343f + |
| // (0.27515199f - |
| // 0.25691327e-1f * x) * x) * x) * x) * x) * x; |
| // |
| // error 0.0000018516, which is better than 18 bits |
| SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0xbcd2769e)); |
| SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, |
| getF32Constant(DAG, 0x3e8ce0b9)); |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); |
| SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3fa22ae7)); |
| SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
| SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
| getF32Constant(DAG, 0x40525723)); |
| SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); |
| SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, |
| getF32Constant(DAG, 0x40aaf200)); |
| SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); |
| SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, |
| getF32Constant(DAG, 0x40c39dad)); |
| SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); |
| Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, |
| getF32Constant(DAG, 0x4042902c)); |
| } |
| |
| return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); |
| } |
| |
| // No special expansion. |
| return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); |
| } |
| |
| /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for |
| /// limited-precision mode. |
| static SDValue expandLog10(DebugLoc dl, SDValue Op, SelectionDAG &DAG, |
| const TargetLowering &TLI) { |
| if (Op.getValueType() == MVT::f32 && |
| LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { |
| SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); |
| |
| // Scale the exponent by log10(2) [0.30102999f]. |
| SDValue Exp = GetExponent(DAG, Op1, TLI, dl); |
| SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, |
| getF32Constant(DAG, 0x3e9a209a)); |
| |
| // Get the significand and build it into a floating-point number with |
| // exponent of 1. |
| SDValue X = GetSignificand(DAG, Op1, dl); |
| |
| SDValue Log10ofMantissa; |
| if (LimitFloatPrecision <= 6) { |
| // For floating-point precision of 6: |
| // |
| // Log10ofMantissa = |
| // -0.50419619f + |
| // (0.60948995f - 0.10380950f * x) * x; |
| // |
| // error 0.0014886165, which is 6 bits |
| SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0xbdd49a13)); |
| SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, |
| getF32Constant(DAG, 0x3f1c0789)); |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); |
| Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3f011300)); |
| } else if (LimitFloatPrecision <= 12) { |
| // For floating-point precision of 12: |
| // |
| // Log10ofMantissa = |
| // -0.64831180f + |
| // (0.91751397f + |
| // (-0.31664806f + 0.47637168e-1f * x) * x) * x; |
| // |
| // error 0.00019228036, which is better than 12 bits |
| SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0x3d431f31)); |
| SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, |
| getF32Constant(DAG, 0x3ea21fb2)); |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); |
| SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3f6ae232)); |
| SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
| Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, |
| getF32Constant(DAG, 0x3f25f7c3)); |
| } else { // LimitFloatPrecision <= 18 |
| // For floating-point precision of 18: |
| // |
| // Log10ofMantissa = |
| // -0.84299375f + |
| // (1.5327582f + |
| // (-1.0688956f + |
| // (0.49102474f + |
| // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; |
| // |
| // error 0.0000037995730, which is better than 18 bits |
| SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0x3c5d51ce)); |
| SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, |
| getF32Constant(DAG, 0x3e00685a)); |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); |
| SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3efb6798)); |
| SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
| SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, |
| getF32Constant(DAG, 0x3f88d192)); |
| SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); |
| SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, |
| getF32Constant(DAG, 0x3fc4316c)); |
| SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); |
| Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, |
| getF32Constant(DAG, 0x3f57ce70)); |
| } |
| |
| return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); |
| } |
| |
| // No special expansion. |
| return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); |
| } |
| |
| /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for |
| /// limited-precision mode. |
| static SDValue expandExp2(DebugLoc dl, SDValue Op, SelectionDAG &DAG, |
| const TargetLowering &TLI) { |
| if (Op.getValueType() == MVT::f32 && |
| LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { |
| SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); |
| |
| // FractionalPartOfX = x - (float)IntegerPartOfX; |
| SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); |
| SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); |
| |
| // IntegerPartOfX <<= 23; |
| IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, |
| DAG.getConstant(23, TLI.getPointerTy())); |
| |
| SDValue TwoToFractionalPartOfX; |
| if (LimitFloatPrecision <= 6) { |
| // For floating-point precision of 6: |
| // |
| // TwoToFractionalPartOfX = |
| // 0.997535578f + |
| // (0.735607626f + 0.252464424f * x) * x; |
| // |
| // error 0.0144103317, which is 6 bits |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0x3e814304)); |
| SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3f3c50c8)); |
| SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
| TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
| getF32Constant(DAG, 0x3f7f5e7e)); |
| } else if (LimitFloatPrecision <= 12) { |
| // For floating-point precision of 12: |
| // |
| // TwoToFractionalPartOfX = |
| // 0.999892986f + |
| // (0.696457318f + |
| // (0.224338339f + 0.792043434e-1f * x) * x) * x; |
| // |
| // error 0.000107046256, which is 13 to 14 bits |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0x3da235e3)); |
| SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3e65b8f3)); |
| SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
| SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
| getF32Constant(DAG, 0x3f324b07)); |
| SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); |
| TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, |
| getF32Constant(DAG, 0x3f7ff8fd)); |
| } else { // LimitFloatPrecision <= 18 |
| // For floating-point precision of 18: |
| // |
| // TwoToFractionalPartOfX = |
| // 0.999999982f + |
| // (0.693148872f + |
| // (0.240227044f + |
| // (0.554906021e-1f + |
| // (0.961591928e-2f + |
| // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; |
| // error 2.47208000*10^(-7), which is better than 18 bits |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0x3924b03e)); |
| SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3ab24b87)); |
| SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
| SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
| getF32Constant(DAG, 0x3c1d8c17)); |
| SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); |
| SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, |
| getF32Constant(DAG, 0x3d634a1d)); |
| SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); |
| SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, |
| getF32Constant(DAG, 0x3e75fe14)); |
| SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); |
| SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, |
| getF32Constant(DAG, 0x3f317234)); |
| SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); |
| TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, |
| getF32Constant(DAG, 0x3f800000)); |
| } |
| |
| // Add the exponent into the result in integer domain. |
| SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, |
| TwoToFractionalPartOfX); |
| return DAG.getNode(ISD::BITCAST, dl, MVT::f32, |
| DAG.getNode(ISD::ADD, dl, MVT::i32, |
| t13, IntegerPartOfX)); |
| } |
| |
| // No special expansion. |
| return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); |
| } |
| |
| /// visitPow - Lower a pow intrinsic. Handles the special sequences for |
| /// limited-precision mode with x == 10.0f. |
| static SDValue expandPow(DebugLoc dl, SDValue LHS, SDValue RHS, |
| SelectionDAG &DAG, const TargetLowering &TLI) { |
| bool IsExp10 = false; |
| if (LHS.getValueType() == MVT::f32 && LHS.getValueType() == MVT::f32 && |
| LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { |
| if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { |
| APFloat Ten(10.0f); |
| IsExp10 = LHSC->isExactlyValue(Ten); |
| } |
| } |
| |
| if (IsExp10) { |
| // Put the exponent in the right bit position for later addition to the |
| // final result: |
| // |
| // #define LOG2OF10 3.3219281f |
| // IntegerPartOfX = (int32_t)(x * LOG2OF10); |
| SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, |
| getF32Constant(DAG, 0x40549a78)); |
| SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); |
| |
| // FractionalPartOfX = x - (float)IntegerPartOfX; |
| SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); |
| SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); |
| |
| // IntegerPartOfX <<= 23; |
| IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, |
| DAG.getConstant(23, TLI.getPointerTy())); |
| |
| SDValue TwoToFractionalPartOfX; |
| if (LimitFloatPrecision <= 6) { |
| // For floating-point precision of 6: |
| // |
| // twoToFractionalPartOfX = |
| // 0.997535578f + |
| // (0.735607626f + 0.252464424f * x) * x; |
| // |
| // error 0.0144103317, which is 6 bits |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0x3e814304)); |
| SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3f3c50c8)); |
| SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
| TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
| getF32Constant(DAG, 0x3f7f5e7e)); |
| } else if (LimitFloatPrecision <= 12) { |
| // For floating-point precision of 12: |
| // |
| // TwoToFractionalPartOfX = |
| // 0.999892986f + |
| // (0.696457318f + |
| // (0.224338339f + 0.792043434e-1f * x) * x) * x; |
| // |
| // error 0.000107046256, which is 13 to 14 bits |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0x3da235e3)); |
| SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3e65b8f3)); |
| SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
| SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
| getF32Constant(DAG, 0x3f324b07)); |
| SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); |
| TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, |
| getF32Constant(DAG, 0x3f7ff8fd)); |
| } else { // LimitFloatPrecision <= 18 |
| // For floating-point precision of 18: |
| // |
| // TwoToFractionalPartOfX = |
| // 0.999999982f + |
| // (0.693148872f + |
| // (0.240227044f + |
| // (0.554906021e-1f + |
| // (0.961591928e-2f + |
| // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; |
| // error 2.47208000*10^(-7), which is better than 18 bits |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0x3924b03e)); |
| SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3ab24b87)); |
| SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
| SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
| getF32Constant(DAG, 0x3c1d8c17)); |
| SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); |
| SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, |
| getF32Constant(DAG, 0x3d634a1d)); |
| SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); |
| SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, |
| getF32Constant(DAG, 0x3e75fe14)); |
| SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); |
| SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, |
| getF32Constant(DAG, 0x3f317234)); |
| SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); |
| TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, |
| getF32Constant(DAG, 0x3f800000)); |
| } |
| |
| SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); |
| return DAG.getNode(ISD::BITCAST, dl, MVT::f32, |
| DAG.getNode(ISD::ADD, dl, MVT::i32, |
| t13, IntegerPartOfX)); |
| } |
| |
| // No special expansion. |
| return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); |
| } |
| |
| |
| /// ExpandPowI - Expand a llvm.powi intrinsic. |
| static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, |
| SelectionDAG &DAG) { |
| // If RHS is a constant, we can expand this out to a multiplication tree, |
| // otherwise we end up lowering to a call to __powidf2 (for example). When |
| // optimizing for size, we only want to do this if the expansion would produce |
| // a small number of multiplies, otherwise we do the full expansion. |
| if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { |
| // Get the exponent as a positive value. |
| unsigned Val = RHSC->getSExtValue(); |
| if ((int)Val < 0) Val = -Val; |
| |
| // powi(x, 0) -> 1.0 |
| if (Val == 0) |
| return DAG.getConstantFP(1.0, LHS.getValueType()); |
| |
| const Function *F = DAG.getMachineFunction().getFunction(); |
| if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, |
| Attribute::OptimizeForSize) || |
| // If optimizing for size, don't insert too many multiplies. This |
| // inserts up to 5 multiplies. |
| CountPopulation_32(Val)+Log2_32(Val) < 7) { |
| // We use the simple binary decomposition method to generate the multiply |
| // sequence. There are more optimal ways to do this (for example, |
| // powi(x,15) generates one more multiply than it should), but this has |
| // the benefit of being both really simple and much better than a libcall. |
| SDValue Res; // Logically starts equal to 1.0 |
| SDValue CurSquare = LHS; |
| while (Val) { |
| if (Val & 1) { |
| if (Res.getNode()) |
| Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); |
| else |
| Res = CurSquare; // 1.0*CurSquare. |
| } |
| |
| CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), |
| CurSquare, CurSquare); |
| Val >>= 1; |
| } |
| |
| // If the original was negative, invert the result, producing 1/(x*x*x). |
| if (RHSC->getSExtValue() < 0) |
| Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), |
| DAG.getConstantFP(1.0, LHS.getValueType()), Res); |
| return Res; |
| } |
| } |
| |
| // Otherwise, expand to a libcall. |
| return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); |
| } |
| |
| // getTruncatedArgReg - Find underlying register used for an truncated |
| // argument. |
| static unsigned getTruncatedArgReg(const SDValue &N) { |
| if (N.getOpcode() != ISD::TRUNCATE) |
| return 0; |
| |
| const SDValue &Ext = N.getOperand(0); |
| if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){ |
| const SDValue &CFR = Ext.getOperand(0); |
| if (CFR.getOpcode() == ISD::CopyFromReg) |
| return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); |
| if (CFR.getOpcode() == ISD::TRUNCATE) |
| return getTruncatedArgReg(CFR); |
| } |
| return 0; |
| } |
| |
| /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function |
| /// argument, create the corresponding DBG_VALUE machine instruction for it now. |
| /// At the end of instruction selection, they will be inserted to the entry BB. |
| bool |
| SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, |
| int64_t Offset, |
| const SDValue &N) { |
| const Argument *Arg = dyn_cast<Argument>(V); |
| if (!Arg) |
| return false; |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); |
| const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); |
| |
| // Ignore inlined function arguments here. |
| DIVariable DV(Variable); |
| if (DV.isInlinedFnArgument(MF.getFunction())) |
| return false; |
| |
| unsigned Reg = 0; |
| // Some arguments' frame index is recorded during argument lowering. |
| Offset = FuncInfo.getArgumentFrameIndex(Arg); |
| if (Offset) |
| Reg = TRI->getFrameRegister(MF); |
| |
| if (!Reg && N.getNode()) { |
| if (N.getOpcode() == ISD::CopyFromReg) |
| Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); |
| else |
| Reg = getTruncatedArgReg(N); |
| if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { |
| MachineRegisterInfo &RegInfo = MF.getRegInfo(); |
| unsigned PR = RegInfo.getLiveInPhysReg(Reg); |
| if (PR) |
| Reg = PR; |
| } |
| } |
| |
| if (!Reg) { |
| // Check if ValueMap has reg number. |
| DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); |
| if (VMI != FuncInfo.ValueMap.end()) |
| Reg = VMI->second; |
| } |
| |
| if (!Reg && N.getNode()) { |
| // Check if frame index is available. |
| if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) |
| if (FrameIndexSDNode *FINode = |
| dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) { |
| Reg = TRI->getFrameRegister(MF); |
| Offset = FINode->getIndex(); |
| } |
| } |
| |
| if (!Reg) |
| return false; |
| |
| MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(), |
| TII->get(TargetOpcode::DBG_VALUE)) |
| .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable); |
| FuncInfo.ArgDbgValues.push_back(&*MIB); |
| return true; |
| } |
| |
| // VisualStudio defines setjmp as _setjmp |
| #if defined(_MSC_VER) && defined(setjmp) && \ |
| !defined(setjmp_undefined_for_msvc) |
| # pragma push_macro("setjmp") |
| # undef setjmp |
| # define setjmp_undefined_for_msvc |
| #endif |
| |
| /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If |
| /// we want to emit this as a call to a named external function, return the name |
| /// otherwise lower it and return null. |
| const char * |
| SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { |
| DebugLoc dl = getCurDebugLoc(); |
| SDValue Res; |
| |
| switch (Intrinsic) { |
| default: |
| // By default, turn this into a target intrinsic node. |
| visitTargetIntrinsic(I, Intrinsic); |
| return 0; |
| case Intrinsic::vastart: visitVAStart(I); return 0; |
| case Intrinsic::vaend: visitVAEnd(I); return 0; |
| case Intrinsic::vacopy: visitVACopy(I); return 0; |
| case Intrinsic::returnaddress: |
| setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), |
| getValue(I.getArgOperand(0)))); |
| return 0; |
| case Intrinsic::frameaddress: |
| setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), |
| getValue(I.getArgOperand(0)))); |
| return 0; |
| case Intrinsic::setjmp: |
| return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; |
| case Intrinsic::longjmp: |
| return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; |
| case Intrinsic::memcpy: { |
| // Assert for address < 256 since we support only user defined address |
| // spaces. |
| assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() |
| < 256 && |
| cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() |
| < 256 && |
| "Unknown address space"); |
| SDValue Op1 = getValue(I.getArgOperand(0)); |
| SDValue Op2 = getValue(I.getArgOperand(1)); |
| SDValue Op3 = getValue(I.getArgOperand(2)); |
| unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); |
| if (!Align) |
| Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. |
| bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); |
| DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, |
| MachinePointerInfo(I.getArgOperand(0)), |
| MachinePointerInfo(I.getArgOperand(1)))); |
| return 0; |
| } |
| case Intrinsic::memset: { |
| // Assert for address < 256 since we support only user defined address |
| // spaces. |
| assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() |
| < 256 && |
| "Unknown address space"); |
| SDValue Op1 = getValue(I.getArgOperand(0)); |
| SDValue Op2 = getValue(I.getArgOperand(1)); |
| SDValue Op3 = getValue(I.getArgOperand(2)); |
| unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); |
| if (!Align) |
| Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. |
| bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); |
| DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, |
| MachinePointerInfo(I.getArgOperand(0)))); |
| return 0; |
| } |
| case Intrinsic::memmove: { |
| // Assert for address < 256 since we support only user defined address |
| // spaces. |
| assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() |
| < 256 && |
| cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() |
| < 256 && |
| "Unknown address space"); |
| SDValue Op1 = getValue(I.getArgOperand(0)); |
| SDValue Op2 = getValue(I.getArgOperand(1)); |
| SDValue Op3 = getValue(I.getArgOperand(2)); |
| unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); |
| if (!Align) |
| Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. |
| bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); |
| DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, |
| MachinePointerInfo(I.getArgOperand(0)), |
| MachinePointerInfo(I.getArgOperand(1)))); |
| return 0; |
| } |
| case Intrinsic::dbg_declare: { |
| const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); |
| MDNode *Variable = DI.getVariable(); |
| const Value *Address = DI.getAddress(); |
| if (!Address || !DIVariable(Variable).Verify()) { |
| DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); |
| return 0; |
| } |
| |
| // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder |
| // but do not always have a corresponding SDNode built. The SDNodeOrder |
| // absolute, but not relative, values are different depending on whether |
| // debug info exists. |
| ++SDNodeOrder; |
| |
| // Check if address has undef value. |
| if (isa<UndefValue>(Address) || |
| (Address->use_empty() && !isa<Argument>(Address))) { |
| DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); |
| return 0; |
| } |
| |
| SDValue &N = NodeMap[Address]; |
| if (!N.getNode() && isa<Argument>(Address)) |
| // Check unused arguments map. |
| N = UnusedArgNodeMap[Address]; |
| SDDbgValue *SDV; |
| if (N.getNode()) { |
| if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) |
| Address = BCI->getOperand(0); |
| // Parameters are handled specially. |
| bool isParameter = |
| (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || |
| isa<Argument>(Address)); |
| |
| const AllocaInst *AI = dyn_cast<AllocaInst>(Address); |
| |
| if (isParameter && !AI) { |
| FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); |
| if (FINode) |
| // Byval parameter. We have a frame index at this point. |
| SDV = DAG.getDbgValue(Variable, FINode->getIndex(), |
| 0, dl, SDNodeOrder); |
| else { |
| // Address is an argument, so try to emit its dbg value using |
| // virtual register info from the FuncInfo.ValueMap. |
| EmitFuncArgumentDbgValue(Address, Variable, 0, N); |
| return 0; |
| } |
| } else if (AI) |
| SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), |
| 0, dl, SDNodeOrder); |
| else { |
| // Can't do anything with other non-AI cases yet. |
| DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); |
| DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); |
| DEBUG(Address->dump()); |
| return 0; |
| } |
| DAG.AddDbgValue(SDV, N.getNode(), isParameter); |
| } else { |
| // If Address is an argument then try to emit its dbg value using |
| // virtual register info from the FuncInfo.ValueMap. |
| if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { |
| // If variable is pinned by a alloca in dominating bb then |
| // use StaticAllocaMap. |
| if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { |
| if (AI->getParent() != DI.getParent()) { |
| DenseMap<const AllocaInst*, int>::iterator SI = |
| FuncInfo.StaticAllocaMap.find(AI); |
| if (SI != FuncInfo.StaticAllocaMap.end()) { |
| SDV = DAG.getDbgValue(Variable, SI->second, |
| 0, dl, SDNodeOrder); |
| DAG.AddDbgValue(SDV, 0, false); |
| return 0; |
| } |
| } |
| } |
| DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); |
| } |
| } |
| return 0; |
| } |
| case Intrinsic::dbg_value: { |
| const DbgValueInst &DI = cast<DbgValueInst>(I); |
| if (!DIVariable(DI.getVariable()).Verify()) |
| return 0; |
| |
| MDNode *Variable = DI.getVariable(); |
| uint64_t Offset = DI.getOffset(); |
| const Value *V = DI.getValue(); |
| if (!V) |
| return 0; |
| |
| // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder |
| // but do not always have a corresponding SDNode built. The SDNodeOrder |
| // absolute, but not relative, values are different depending on whether |
| // debug info exists. |
| ++SDNodeOrder; |
| SDDbgValue *SDV; |
| if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { |
| SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); |
| DAG.AddDbgValue(SDV, 0, false); |
| } else { |
| // Do not use getValue() in here; we don't want to generate code at |
| // this point if it hasn't been done yet. |
| SDValue N = NodeMap[V]; |
| if (!N.getNode() && isa<Argument>(V)) |
| // Check unused arguments map. |
| N = UnusedArgNodeMap[V]; |
| if (N.getNode()) { |
| if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { |
| SDV = DAG.getDbgValue(Variable, N.getNode(), |
| N.getResNo(), Offset, dl, SDNodeOrder); |
| DAG.AddDbgValue(SDV, N.getNode(), false); |
| } |
| } else if (!V->use_empty() ) { |
| // Do not call getValue(V) yet, as we don't want to generate code. |
| // Remember it for later. |
| DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); |
| DanglingDebugInfoMap[V] = DDI; |
| } else { |
| // We may expand this to cover more cases. One case where we have no |
| // data available is an unreferenced parameter. |
| DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); |
| } |
| } |
| |
| // Build a debug info table entry. |
| if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) |
| V = BCI->getOperand(0); |
| const AllocaInst *AI = dyn_cast<AllocaInst>(V); |
| // Don't handle byval struct arguments or VLAs, for example. |
| if (!AI) { |
| DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); |
| DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); |
| return 0; |
| } |
| DenseMap<const AllocaInst*, int>::iterator SI = |
| FuncInfo.StaticAllocaMap.find(AI); |
| if (SI == FuncInfo.StaticAllocaMap.end()) |
| return 0; // VLAs. |
| int FI = SI->second; |
| |
| MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); |
| if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) |
| MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); |
| return 0; |
| } |
| |
| case Intrinsic::eh_typeid_for: { |
| // Find the type id for the given typeinfo. |
| GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); |
| unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); |
| Res = DAG.getConstant(TypeID, MVT::i32); |
| setValue(&I, Res); |
| return 0; |
| } |
| |
| case Intrinsic::eh_return_i32: |
| case Intrinsic::eh_return_i64: |
| DAG.getMachineFunction().getMMI().setCallsEHReturn(true); |
| DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, |
| MVT::Other, |
| getControlRoot(), |
| getValue(I.getArgOperand(0)), |
| getValue(I.getArgOperand(1)))); |
| return 0; |
| case Intrinsic::eh_unwind_init: |
| DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); |
| return 0; |
| case Intrinsic::eh_dwarf_cfa: { |
| SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl, |
| TLI.getPointerTy()); |
| SDValue Offset = DAG.getNode(ISD::ADD, dl, |
| TLI.getPointerTy(), |
| DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, |
| TLI.getPointerTy()), |
| CfaArg); |
| SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, |
| TLI.getPointerTy(), |
| DAG.getConstant(0, TLI.getPointerTy())); |
| setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), |
| FA, Offset)); |
| return 0; |
| } |
| case Intrinsic::eh_sjlj_callsite: { |
| MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); |
| ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); |
| assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); |
| assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); |
| |
| MMI.setCurrentCallSite(CI->getZExtValue()); |
| return 0; |
| } |
| case Intrinsic::eh_sjlj_functioncontext: { |
| // Get and store the index of the function context. |
| MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); |
| AllocaInst *FnCtx = |
| cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); |
| int FI = FuncInfo.StaticAllocaMap[FnCtx]; |
| MFI->setFunctionContextIndex(FI); |
| return 0; |
| } |
| case Intrinsic::eh_sjlj_setjmp: { |
| SDValue Ops[2]; |
| Ops[0] = getRoot(); |
| Ops[1] = getValue(I.getArgOperand(0)); |
| SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, |
| DAG.getVTList(MVT::i32, MVT::Other), |
| Ops, 2); |
| setValue(&I, Op.getValue(0)); |
| DAG.setRoot(Op.getValue(1)); |
| return 0; |
| } |
| case Intrinsic::eh_sjlj_longjmp: { |
| DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other, |
| getRoot(), getValue(I.getArgOperand(0)))); |
| return 0; |
| } |
| |
| case Intrinsic::x86_mmx_pslli_w: |
| case Intrinsic::x86_mmx_pslli_d: |
| case Intrinsic::x86_mmx_pslli_q: |
| case Intrinsic::x86_mmx_psrli_w: |
| case Intrinsic::x86_mmx_psrli_d: |
| case Intrinsic::x86_mmx_psrli_q: |
| case Intrinsic::x86_mmx_psrai_w: |
| case Intrinsic::x86_mmx_psrai_d: { |
| SDValue ShAmt = getValue(I.getArgOperand(1)); |
| if (isa<ConstantSDNode>(ShAmt)) { |
| visitTargetIntrinsic(I, Intrinsic); |
| return 0; |
| } |
| unsigned NewIntrinsic = 0; |
| EVT ShAmtVT = MVT::v2i32; |
| switch (Intrinsic) { |
| case Intrinsic::x86_mmx_pslli_w: |
| NewIntrinsic = Intrinsic::x86_mmx_psll_w; |
| break; |
| case Intrinsic::x86_mmx_pslli_d: |
| NewIntrinsic = Intrinsic::x86_mmx_psll_d; |
| break; |
| case Intrinsic::x86_mmx_pslli_q: |
| NewIntrinsic = Intrinsic::x86_mmx_psll_q; |
| break; |
| case Intrinsic::x86_mmx_psrli_w: |
| NewIntrinsic = Intrinsic::x86_mmx_psrl_w; |
| break; |
| case Intrinsic::x86_mmx_psrli_d: |
| NewIntrinsic = Intrinsic::x86_mmx_psrl_d; |
| break; |
| case Intrinsic::x86_mmx_psrli_q: |
| NewIntrinsic = Intrinsic::x86_mmx_psrl_q; |
| break; |
| case Intrinsic::x86_mmx_psrai_w: |
| NewIntrinsic = Intrinsic::x86_mmx_psra_w; |
| break; |
| case Intrinsic::x86_mmx_psrai_d: |
| NewIntrinsic = Intrinsic::x86_mmx_psra_d; |
| break; |
| default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. |
| } |
| |
| // The vector shift intrinsics with scalars uses 32b shift amounts but |
| // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits |
| // to be zero. |
| // We must do this early because v2i32 is not a legal type. |
| SDValue ShOps[2]; |
| ShOps[0] = ShAmt; |
| ShOps[1] = DAG.getConstant(0, MVT::i32); |
| ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2); |
| EVT DestVT = TLI.getValueType(I.getType()); |
| ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt); |
| Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, |
| DAG.getConstant(NewIntrinsic, MVT::i32), |
| getValue(I.getArgOperand(0)), ShAmt); |
| setValue(&I, Res); |
| return 0; |
| } |
| case Intrinsic::x86_avx_vinsertf128_pd_256: |
| case Intrinsic::x86_avx_vinsertf128_ps_256: |
| case Intrinsic::x86_avx_vinsertf128_si_256: |
| case Intrinsic::x86_avx2_vinserti128: { |
| EVT DestVT = TLI.getValueType(I.getType()); |
| EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType()); |
| uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * |
| ElVT.getVectorNumElements(); |
| Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, DestVT, |
| getValue(I.getArgOperand(0)), |
| getValue(I.getArgOperand(1)), |
| DAG.getIntPtrConstant(Idx)); |
| setValue(&I, Res); |
| return 0; |
| } |
| case Intrinsic::x86_avx_vextractf128_pd_256: |
| case Intrinsic::x86_avx_vextractf128_ps_256: |
| case Intrinsic::x86_avx_vextractf128_si_256: |
| case Intrinsic::x86_avx2_vextracti128: { |
| EVT DestVT = TLI.getValueType(I.getType()); |
| uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * |
| DestVT.getVectorNumElements(); |
| Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, |
| getValue(I.getArgOperand(0)), |
| DAG.getIntPtrConstant(Idx)); |
| setValue(&I, Res); |
| return 0; |
| } |
| case Intrinsic::convertff: |
| case Intrinsic::convertfsi: |
| case Intrinsic::convertfui: |
| case Intrinsic::convertsif: |
| case Intrinsic::convertuif: |
| case Intrinsic::convertss: |
| case Intrinsic::convertsu: |
| case Intrinsic::convertus: |
| case Intrinsic::convertuu: { |
| ISD::CvtCode Code = ISD::CVT_INVALID; |
| switch (Intrinsic) { |
| default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. |
| case Intrinsic::convertff: Code = ISD::CVT_FF; break; |
| case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; |
| case Intrinsic::convertfui: Code = ISD::CVT_FU; break; |
| case Intrinsic::convertsif: Code = ISD::CVT_SF; break; |
| case Intrinsic::convertuif: Code = ISD::CVT_UF; break; |
| case Intrinsic::convertss: Code = ISD::CVT_SS; break; |
| case Intrinsic::convertsu: Code = ISD::CVT_SU; break; |
| case Intrinsic::convertus: Code = ISD::CVT_US; break; |
| case Intrinsic::convertuu: Code = ISD::CVT_UU; break; |
| } |
| EVT DestVT = TLI.getValueType(I.getType()); |
| const Value *Op1 = I.getArgOperand(0); |
| Res = DAG.getConvertRndSat(DestVT, dl, getValue(Op1), |
| DAG.getValueType(DestVT), |
| DAG.getValueType(getValue(Op1).getValueType()), |
| getValue(I.getArgOperand(1)), |
| getValue(I.getArgOperand(2)), |
| Code); |
| setValue(&I, Res); |
| return 0; |
| } |
| case Intrinsic::powi: |
| setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)), |
| getValue(I.getArgOperand(1)), DAG)); |
| return 0; |
| case Intrinsic::log: |
| setValue(&I, expandLog(dl, getValue(I.getArgOperand(0)), DAG, TLI)); |
| return 0; |
| case Intrinsic::log2: |
| setValue(&I, expandLog2(dl, getValue(I.getArgOperand(0)), DAG, TLI)); |
| return 0; |
| case Intrinsic::log10: |
| setValue(&I, expandLog10(dl, getValue(I.getArgOperand(0)), DAG, TLI)); |
| return 0; |
| case Intrinsic::exp: |
| setValue(&I, expandExp(dl, getValue(I.getArgOperand(0)), DAG, TLI)); |
| return 0; |
| case Intrinsic::exp2: |
| setValue(&I, expandExp2(dl, getValue(I.getArgOperand(0)), DAG, TLI)); |
| return 0; |
| case Intrinsic::pow: |
| setValue(&I, expandPow(dl, getValue(I.getArgOperand(0)), |
| getValue(I.getArgOperand(1)), DAG, TLI)); |
| return 0; |
| case Intrinsic::sqrt: |
| case Intrinsic::fabs: |
| case Intrinsic::sin: |
| case Intrinsic::cos: |
| case Intrinsic::floor: |
| case Intrinsic::ceil: |
| case Intrinsic::trunc: |
| case Intrinsic::rint: |
| case Intrinsic::nearbyint: { |
| unsigned Opcode; |
| switch (Intrinsic) { |
| default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. |
| case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; |
| case Intrinsic::fabs: Opcode = ISD::FABS; break; |
| case Intrinsic::sin: Opcode = ISD::FSIN; break; |
| case Intrinsic::cos: Opcode = ISD::FCOS; break; |
| case Intrinsic::floor: Opcode = ISD::FFLOOR; break; |
| case Intrinsic::ceil: Opcode = ISD::FCEIL; break; |
| case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; |
| case Intrinsic::rint: Opcode = ISD::FRINT; break; |
| case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; |
| } |
| |
| setValue(&I, DAG.getNode(Opcode, dl, |
| getValue(I.getArgOperand(0)).getValueType(), |
| getValue(I.getArgOperand(0)))); |
| return 0; |
| } |
| case Intrinsic::fma: |
| setValue(&I, DAG.getNode(ISD::FMA, dl, |
| getValue(I.getArgOperand(0)).getValueType(), |
| getValue(I.getArgOperand(0)), |
| getValue(I.getArgOperand(1)), |
| getValue(I.getArgOperand(2)))); |
| return 0; |
| case Intrinsic::fmuladd: { |
| EVT VT = TLI.getValueType(I.getType()); |
| if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && |
| TLI.isOperationLegalOrCustom(ISD::FMA, VT) && |
| TLI.isFMAFasterThanMulAndAdd(VT)){ |
| setValue(&I, DAG.getNode(ISD::FMA, dl, |
| getValue(I.getArgOperand(0)).getValueType(), |
| getValue(I.getArgOperand(0)), |
| getValue(I.getArgOperand(1)), |
| getValue(I.getArgOperand(2)))); |
| } else { |
| SDValue Mul = DAG.getNode(ISD::FMUL, dl, |
| getValue(I.getArgOperand(0)).getValueType(), |
| getValue(I.getArgOperand(0)), |
| getValue(I.getArgOperand(1))); |
| SDValue Add = DAG.getNode(ISD::FADD, dl, |
| getValue(I.getArgOperand(0)).getValueType(), |
| Mul, |
| getValue(I.getArgOperand(2))); |
| setValue(&I, Add); |
| } |
| return 0; |
| } |
| case Intrinsic::convert_to_fp16: |
| setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, |
| MVT::i16, getValue(I.getArgOperand(0)))); |
| return 0; |
| case Intrinsic::convert_from_fp16: |
| setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, |
| MVT::f32, getValue(I.getArgOperand(0)))); |
| return 0; |
| case Intrinsic::pcmarker: { |
| SDValue Tmp = getValue(I.getArgOperand(0)); |
| DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); |
| return 0; |
| } |
| case Intrinsic::readcyclecounter: { |
| SDValue Op = getRoot(); |
| Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, |
| DAG.getVTList(MVT::i64, MVT::Other), |
| &Op, 1); |
| setValue(&I, Res); |
| DAG.setRoot(Res.getValue(1)); |
| return 0; |
| } |
| case Intrinsic::bswap: |
| setValue(&I, DAG.getNode(ISD::BSWAP, dl, |
| getValue(I.getArgOperand(0)).getValueType(), |
| getValue(I.getArgOperand(0)))); |
| return 0; |
| case Intrinsic::cttz: { |
| SDValue Arg = getValue(I.getArgOperand(0)); |
| ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); |
| EVT Ty = Arg.getValueType(); |
| setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, |
| dl, Ty, Arg)); |
| return 0; |
| } |
| case Intrinsic::ctlz: { |
| SDValue Arg = getValue(I.getArgOperand(0)); |
| ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); |
| EVT Ty = Arg.getValueType(); |
| setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, |
| dl, Ty, Arg)); |
| return 0; |
| } |
| case Intrinsic::ctpop: { |
| SDValue Arg = getValue(I.getArgOperand(0)); |
| EVT Ty = Arg.getValueType(); |
| setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); |
| return 0; |
| } |
| case Intrinsic::stacksave: { |
| SDValue Op = getRoot(); |
| Res = DAG.getNode(ISD::STACKSAVE, dl, |
| DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); |
| setValue(&I, Res); |
| DAG.setRoot(Res.getValue(1)); |
| return 0; |
| } |
| case Intrinsic::stackrestore: { |
| Res = getValue(I.getArgOperand(0)); |
| DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); |
| return 0; |
| } |
| case Intrinsic::stackprotector: { |
| // Emit code into the DAG to store the stack guard onto the stack. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| EVT PtrTy = TLI.getPointerTy(); |
| |
| SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. |
| AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); |
| |
| int FI = FuncInfo.StaticAllocaMap[Slot]; |
| MFI->setStackProtectorIndex(FI); |
| |
| SDValue FIN = DAG.getFrameIndex(FI, PtrTy); |
| |
| // Store the stack protector onto the stack. |
| Res = DAG.getStore(getRoot(), dl, Src, FIN, |
| MachinePointerInfo::getFixedStack(FI), |
| true, false, 0); |
| setValue(&I, Res); |
| DAG.setRoot(Res); |
| return 0; |
| } |
| case Intrinsic::objectsize: { |
| // If we don't know by now, we're never going to know. |
| ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); |
| |
| assert(CI && "Non-constant type in __builtin_object_size?"); |
| |
| SDValue Arg = getValue(I.getCalledValue()); |
| EVT Ty = Arg.getValueType(); |
| |
| if (CI->isZero()) |
| Res = DAG.getConstant(-1ULL, Ty); |
| else |
| Res = DAG.getConstant(0, Ty); |
| |
| setValue(&I, Res); |
| return 0; |
| } |
| case Intrinsic::var_annotation: |
| // Discard annotate attributes |
| return 0; |
| |
| case Intrinsic::init_trampoline: { |
| const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); |
| |
| SDValue Ops[6]; |
| Ops[0] = getRoot(); |
| Ops[1] = getValue(I.getArgOperand(0)); |
| Ops[2] = getValue(I.getArgOperand(1)); |
| Ops[3] = getValue(I.getArgOperand(2)); |
| Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); |
| Ops[5] = DAG.getSrcValue(F); |
| |
| Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6); |
| |
| DAG.setRoot(Res); |
| return 0; |
| } |
| case Intrinsic::adjust_trampoline: { |
| setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl, |
| TLI.getPointerTy(), |
| getValue(I.getArgOperand(0)))); |
| return 0; |
| } |
| case Intrinsic::gcroot: |
| if (GFI) { |
| const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); |
| const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); |
| |
| FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); |
| GFI->addStackRoot(FI->getIndex(), TypeMap); |
| } |
| return 0; |
| case Intrinsic::gcread: |
| case Intrinsic::gcwrite: |
| llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); |
| case Intrinsic::flt_rounds: |
| setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); |
| return 0; |
| |
| case Intrinsic::expect: { |
| // Just replace __builtin_expect(exp, c) with EXP. |
| setValue(&I, getValue(I.getArgOperand(0))); |
| return 0; |
| } |
| |
| case Intrinsic::debugtrap: |
| case Intrinsic::trap: { |
| StringRef TrapFuncName = TM.Options.getTrapFunctionName(); |
| if (TrapFuncName.empty()) { |
| ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? |
| ISD::TRAP : ISD::DEBUGTRAP; |
| DAG.setRoot(DAG.getNode(Op, dl,MVT::Other, getRoot())); |
| return 0; |
| } |
| TargetLowering::ArgListTy Args; |
| TargetLowering:: |
| CallLoweringInfo CLI(getRoot(), I.getType(), |
| false, false, false, false, 0, CallingConv::C, |
| /*isTailCall=*/false, |
| /*doesNotRet=*/false, /*isReturnValueUsed=*/true, |
| DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), |
| Args, DAG, dl); |
| std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); |
| DAG.setRoot(Result.second); |
| return 0; |
| } |
| |
| case Intrinsic::uadd_with_overflow: |
| case Intrinsic::sadd_with_overflow: |
| case Intrinsic::usub_with_overflow: |
| case Intrinsic::ssub_with_overflow: |
| case Intrinsic::umul_with_overflow: |
| case Intrinsic::smul_with_overflow: { |
| ISD::NodeType Op; |
| switch (Intrinsic) { |
| default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. |
| case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; |
| case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; |
| case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; |
| case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; |
| case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; |
| case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; |
| } |
| SDValue Op1 = getValue(I.getArgOperand(0)); |
| SDValue Op2 = getValue(I.getArgOperand(1)); |
| |
| SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); |
| setValue(&I, DAG.getNode(Op, dl, VTs, Op1, Op2)); |
| return 0; |
| } |
| case Intrinsic::prefetch: { |
| SDValue Ops[5]; |
| unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); |
| Ops[0] = getRoot(); |
| Ops[1] = getValue(I.getArgOperand(0)); |
| Ops[2] = getValue(I.getArgOperand(1)); |
| Ops[3] = getValue(I.getArgOperand(2)); |
| Ops[4] = getValue(I.getArgOperand(3)); |
| DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl, |
| DAG.getVTList(MVT::Other), |
| &Ops[0], 5, |
| EVT::getIntegerVT(*Context, 8), |
| MachinePointerInfo(I.getArgOperand(0)), |
| 0, /* align */ |
| false, /* volatile */ |
| rw==0, /* read */ |
| rw==1)); /* write */ |
| return 0; |
| } |
| case Intrinsic::lifetime_start: |
| case Intrinsic::lifetime_end: { |
| bool IsStart = (Intrinsic == Intrinsic::lifetime_start); |
| // Stack coloring is not enabled in O0, discard region information. |
| if (TM.getOptLevel() == CodeGenOpt::None) |
| return 0; |
| |
| SmallVector<Value *, 4> Allocas; |
| GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD); |
| |
| for (SmallVector<Value*, 4>::iterator Object = Allocas.begin(), |
| E = Allocas.end(); Object != E; ++Object) { |
| AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); |
| |
| // Could not find an Alloca. |
| if (!LifetimeObject) |
| continue; |
| |
| int FI = FuncInfo.StaticAllocaMap[LifetimeObject]; |
| |
| SDValue Ops[2]; |
| Ops[0] = getRoot(); |
| Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); |
| unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); |
| |
| Res = DAG.getNode(Opcode, dl, MVT::Other, Ops, 2); |
| DAG.setRoot(Res); |
| } |
| return 0; |
| } |
| case Intrinsic::invariant_start: |
| // Discard region information. |
| setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); |
| return 0; |
| case Intrinsic::invariant_end: |
| // Discard region information. |
| return 0; |
| case Intrinsic::donothing: |
| // ignore |
| return 0; |
| } |
| } |
| |
| void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, |
| bool isTailCall, |
| MachineBasicBlock *LandingPad) { |
| PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); |
| FunctionType *FTy = cast<FunctionType>(PT->getElementType()); |
| Type *RetTy = FTy->getReturnType(); |
| MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); |
| MCSymbol *BeginLabel = 0; |
| |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| Args.reserve(CS.arg_size()); |
| |
| // Check whether the function can return without sret-demotion. |
| SmallVector<ISD::OutputArg, 4> Outs; |
| GetReturnInfo(RetTy, CS.getAttributes(), Outs, TLI); |
| |
| bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), |
| DAG.getMachineFunction(), |
| FTy->isVarArg(), Outs, |
| FTy->getContext()); |
| |
| SDValue DemoteStackSlot; |
| int DemoteStackIdx = -100; |
| |
| if (!CanLowerReturn) { |
| uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize( |
| FTy->getReturnType()); |
| unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment( |
| FTy->getReturnType()); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); |
| Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); |
| |
| DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy()); |
| Entry.Node = DemoteStackSlot; |
| Entry.Ty = StackSlotPtrType; |
| Entry.isSExt = false; |
| Entry.isZExt = false; |
| Entry.isInReg = false; |
| Entry.isSRet = true; |
| Entry.isNest = false; |
| Entry.isByVal = false; |
| Entry.Alignment = Align; |
| Args.push_back(Entry); |
| RetTy = Type::getVoidTy(FTy->getContext()); |
| } |
| |
| for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); |
| i != e; ++i) { |
| const Value *V = *i; |
| |
| // Skip empty types |
| if (V->getType()->isEmptyTy()) |
| continue; |
| |
| SDValue ArgNode = getValue(V); |
| Entry.Node = ArgNode; Entry.Ty = V->getType(); |
| |
| unsigned attrInd = i - CS.arg_begin() + 1; |
| Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); |
| Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); |
| Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); |
| Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); |
| Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); |
| Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); |
| Entry.Alignment = CS.getParamAlignment(attrInd); |
| Args.push_back(Entry); |
| } |
| |
| if (LandingPad) { |
| // Insert a label before the invoke call to mark the try range. This can be |
| // used to detect deletion of the invoke via the MachineModuleInfo. |
| BeginLabel = MMI.getContext().CreateTempSymbol(); |
| |
| // For SjLj, keep track of which landing pads go with which invokes |
| // so as to maintain the ordering of pads in the LSDA. |
| unsigned CallSiteIndex = MMI.getCurrentCallSite(); |
| if (CallSiteIndex) { |
| MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); |
| LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); |
| |
| // Now that the call site is handled, stop tracking it. |
| MMI.setCurrentCallSite(0); |
| } |
| |
| // Both PendingLoads and PendingExports must be flushed here; |
| // this call might not return. |
| (void)getRoot(); |
| DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); |
| } |
| |
| // Check if target-independent constraints permit a tail call here. |
| // Target-dependent constraints are checked within TLI.LowerCallTo. |
| if (isTailCall && !isInTailCallPosition(CS, TLI)) |
| isTailCall = false; |
| |
| TargetLowering:: |
| CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG, |
| getCurDebugLoc(), CS); |
| std::pair<SDValue,SDValue> Result = TLI.LowerCallTo(CLI); |
| assert((isTailCall || Result.second.getNode()) && |
| "Non-null chain expected with non-tail call!"); |
| assert((Result.second.getNode() || !Result.first.getNode()) && |
| "Null value expected with tail call!"); |
| if (Result.first.getNode()) { |
| setValue(CS.getInstruction(), Result.first); |
| } else if (!CanLowerReturn && Result.second.getNode()) { |
| // The instruction result is the result of loading from the |
| // hidden sret parameter. |
| SmallVector<EVT, 1> PVTs; |
| Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); |
| |
| ComputeValueVTs(TLI, PtrRetTy, PVTs); |
| assert(PVTs.size() == 1 && "Pointers should fit in one register"); |
| EVT PtrVT = PVTs[0]; |
| |
| SmallVector<EVT, 4> RetTys; |
| SmallVector<uint64_t, 4> Offsets; |
| RetTy = FTy->getReturnType(); |
| ComputeValueVTs(TLI, RetTy, RetTys, &Offsets); |
| |
| unsigned NumValues = RetTys.size(); |
| SmallVector<SDValue, 4> Values(NumValues); |
| SmallVector<SDValue, 4> Chains(NumValues); |
| |
| for (unsigned i = 0; i < NumValues; ++i) { |
| SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, |
| DemoteStackSlot, |
| DAG.getConstant(Offsets[i], PtrVT)); |
| SDValue L = DAG.getLoad(RetTys[i], getCurDebugLoc(), Result.second, Add, |
| MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), |
| false, false, false, 1); |
| Values[i] = L; |
| Chains[i] = L.getValue(1); |
| } |
| |
| SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), |
| MVT::Other, &Chains[0], NumValues); |
| PendingLoads.push_back(Chain); |
| |
| setValue(CS.getInstruction(), |
| DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), |
| DAG.getVTList(&RetTys[0], RetTys.size()), |
| &Values[0], Values.size())); |
| } |
| |
| // Assign order to nodes here. If the call does not produce a result, it won't |
| // be mapped to a SDNode and visit() will not assign it an order number. |
| if (!Result.second.getNode()) { |
| // As a special case, a null chain means that a tail call has been emitted and |
| // the DAG root is already updated. |
| HasTailCall = true; |
| ++SDNodeOrder; |
| AssignOrderingToNode(DAG.getRoot().getNode()); |
| } else { |
| DAG.setRoot(Result.second); |
| ++SDNodeOrder; |
| AssignOrderingToNode(Result.second.getNode()); |
| } |
| |
| if (LandingPad) { |
| // Insert a label at the end of the invoke call to mark the try range. This |
| // can be used to detect deletion of the invoke via the MachineModuleInfo. |
| MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); |
| DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); |
| |
| // Inform MachineModuleInfo of range. |
| MMI.addInvoke(LandingPad, BeginLabel, EndLabel); |
| } |
| } |
| |
| /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the |
| /// value is equal or not-equal to zero. |
| static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { |
| for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); |
| UI != E; ++UI) { |
| if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) |
| if (IC->isEquality()) |
| if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) |
| if (C->isNullValue()) |
| continue; |
| // Unknown instruction. |
| return false; |
| } |
| return true; |
| } |
| |
| static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, |
| Type *LoadTy, |
| SelectionDAGBuilder &Builder) { |
| |
| // Check to see if this load can be trivially constant folded, e.g. if the |
| // input is from a string literal. |
| if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { |
| // Cast pointer to the type we really want to load. |
| LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), |
| PointerType::getUnqual(LoadTy)); |
| |
| if (const Constant *LoadCst = |
| ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), |
| Builder.TD)) |
| return Builder.getValue(LoadCst); |
| } |
| |
| // Otherwise, we have to emit the load. If the pointer is to unfoldable but |
| // still constant memory, the input chain can be the entry node. |
| SDValue Root; |
| bool ConstantMemory = false; |
| |
| // Do not serialize (non-volatile) loads of constant memory with anything. |
| if (Builder.AA->pointsToConstantMemory(PtrVal)) { |
| Root = Builder.DAG.getEntryNode(); |
| ConstantMemory = true; |
| } else { |
| // Do not serialize non-volatile loads against each other. |
| Root = Builder.DAG.getRoot(); |
| } |
| |
| SDValue Ptr = Builder.getValue(PtrVal); |
| SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, |
| Ptr, MachinePointerInfo(PtrVal), |
| false /*volatile*/, |
| false /*nontemporal*/, |
| false /*isinvariant*/, 1 /* align=1 */); |
| |
| if (!ConstantMemory) |
| Builder.PendingLoads.push_back(LoadVal.getValue(1)); |
| return LoadVal; |
| } |
| |
| |
| /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. |
| /// If so, return true and lower it, otherwise return false and it will be |
| /// lowered like a normal call. |
| bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { |
| // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) |
| if (I.getNumArgOperands() != 3) |
| return false; |
| |
| const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); |
| if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || |
| !I.getArgOperand(2)->getType()->isIntegerTy() || |
| !I.getType()->isIntegerTy()) |
| return false; |
| |
| const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); |
| |
| // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 |
| // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 |
| if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { |
| bool ActuallyDoIt = true; |
| MVT LoadVT; |
| Type *LoadTy; |
| switch (Size->getZExtValue()) { |
| default: |
| LoadVT = MVT::Other; |
| LoadTy = 0; |
| ActuallyDoIt = false; |
| break; |
| case 2: |
| LoadVT = MVT::i16; |
| LoadTy = Type::getInt16Ty(Size->getContext()); |
| break; |
| case 4: |
| LoadVT = MVT::i32; |
| LoadTy = Type::getInt32Ty(Size->getContext()); |
| break; |
| case 8: |
| LoadVT = MVT::i64; |
| LoadTy = Type::getInt64Ty(Size->getContext()); |
| break; |
| /* |
| case 16: |
| LoadVT = MVT::v4i32; |
| LoadTy = Type::getInt32Ty(Size->getContext()); |
| LoadTy = VectorType::get(LoadTy, 4); |
| break; |
| */ |
| } |
| |
| // This turns into unaligned loads. We only do this if the target natively |
| // supports the MVT we'll be loading or if it is small enough (<= 4) that |
| // we'll only produce a small number of byte loads. |
| |
| // Require that we can find a legal MVT, and only do this if the target |
| // supports unaligned loads of that type. Expanding into byte loads would |
| // bloat the code. |
| if (ActuallyDoIt && Size->getZExtValue() > 4) { |
| // TODO: Handle 5 byte compare as 4-byte + 1 byte. |
| // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. |
| if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) |
| ActuallyDoIt = false; |
| } |
| |
| if (ActuallyDoIt) { |
| SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); |
| SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); |
| |
| SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, |
| ISD::SETNE); |
| EVT CallVT = TLI.getValueType(I.getType(), true); |
| setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); |
| return true; |
| } |
| } |
| |
| |
| return false; |
| } |
| |
| /// visitUnaryFloatCall - If a call instruction is a unary floating-point |
| /// operation (as expected), translate it to an SDNode with the specified opcode |
| /// and return true. |
| bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, |
| unsigned Opcode) { |
| // Sanity check that it really is a unary floating-point call. |
| if (I.getNumArgOperands() != 1 || |
| !I.getArgOperand(0)->getType()->isFloatingPointTy() || |
| I.getType() != I.getArgOperand(0)->getType() || |
| !I.onlyReadsMemory()) |
| return false; |
| |
| SDValue Tmp = getValue(I.getArgOperand(0)); |
| setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), Tmp.getValueType(), Tmp)); |
| return true; |
| } |
| |
| void SelectionDAGBuilder::visitCall(const CallInst &I) { |
| // Handle inline assembly differently. |
| if (isa<InlineAsm>(I.getCalledValue())) { |
| visitInlineAsm(&I); |
| return; |
| } |
| |
| MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); |
| ComputeUsesVAFloatArgument(I, &MMI); |
| |
| const char *RenameFn = 0; |
| if (Function *F = I.getCalledFunction()) { |
| if (F->isDeclaration()) { |
| if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { |
| if (unsigned IID = II->getIntrinsicID(F)) { |
| RenameFn = visitIntrinsicCall(I, IID); |
| if (!RenameFn) |
| return; |
| } |
| } |
| if (unsigned IID = F->getIntrinsicID()) { |
| RenameFn = visitIntrinsicCall(I, IID); |
| if (!RenameFn) |
| return; |
| } |
| } |
| |
| // Check for well-known libc/libm calls. If the function is internal, it |
| // can't be a library call. |
| LibFunc::Func Func; |
| if (!F->hasLocalLinkage() && F->hasName() && |
| LibInfo->getLibFunc(F->getName(), Func) && |
| LibInfo->hasOptimizedCodeGen(Func)) { |
| switch (Func) { |
| default: break; |
| case LibFunc::copysign: |
| case LibFunc::copysignf: |
| case LibFunc::copysignl: |
| if (I.getNumArgOperands() == 2 && // Basic sanity checks. |
| I.getArgOperand(0)->getType()->isFloatingPointTy() && |
| I.getType() == I.getArgOperand(0)->getType() && |
| I.getType() == I.getArgOperand(1)->getType() && |
| I.onlyReadsMemory()) { |
| SDValue LHS = getValue(I.getArgOperand(0)); |
| SDValue RHS = getValue(I.getArgOperand(1)); |
| setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), |
| LHS.getValueType(), LHS, RHS)); |
| return; |
| } |
| break; |
| case LibFunc::fabs: |
| case LibFunc::fabsf: |
| case LibFunc::fabsl: |
| if (visitUnaryFloatCall(I, ISD::FABS)) |
| return; |
| break; |
| case LibFunc::sin: |
| case LibFunc::sinf: |
| case LibFunc::sinl: |
| if (visitUnaryFloatCall(I, ISD::FSIN)) |
| return; |
| break; |
| case LibFunc::cos: |
| case LibFunc::cosf: |
| case LibFunc::cosl: |
| if (visitUnaryFloatCall(I, ISD::FCOS)) |
| return; |
| break; |
| case LibFunc::sqrt: |
| case LibFunc::sqrtf: |
| case LibFunc::sqrtl: |
| if (visitUnaryFloatCall(I, ISD::FSQRT)) |
| return; |
| break; |
| case LibFunc::floor: |
| case LibFunc::floorf: |
| case LibFunc::floorl: |
| if (visitUnaryFloatCall(I, ISD::FFLOOR)) |
| return; |
| break; |
| case LibFunc::nearbyint: |
| case LibFunc::nearbyintf: |
| case LibFunc::nearbyintl: |
| if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) |
| return; |
| break; |
| case LibFunc::ceil: |
| case LibFunc::ceilf: |
| case LibFunc::ceill: |
| if (visitUnaryFloatCall(I, ISD::FCEIL)) |
| return; |
| break; |
| case LibFunc::rint: |
| case LibFunc::rintf: |
| case LibFunc::rintl: |
| if (visitUnaryFloatCall(I, ISD::FRINT)) |
| return; |
| break; |
| case LibFunc::trunc: |
| case LibFunc::truncf: |
| case LibFunc::truncl: |
| if (visitUnaryFloatCall(I, ISD::FTRUNC)) |
| return; |
| break; |
| case LibFunc::log2: |
| case LibFunc::log2f: |
| case LibFunc::log2l: |
| if (visitUnaryFloatCall(I, ISD::FLOG2)) |
| return; |
| break; |
| case LibFunc::exp2: |
| case LibFunc::exp2f: |
| case LibFunc::exp2l: |
| if (visitUnaryFloatCall(I, ISD::FEXP2)) |
| return; |
| break; |
| case LibFunc::memcmp: |
| if (visitMemCmpCall(I)) |
| return; |
| break; |
| } |
| } |
| } |
| |
| SDValue Callee; |
| if (!RenameFn) |
| Callee = getValue(I.getCalledValue()); |
| else |
| Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); |
| |
| // Check if we can potentially perform a tail call. More detailed checking is |
| // be done within LowerCallTo, after more information about the call is known. |
| LowerCallTo(&I, Callee, I.isTailCall()); |
| } |
| |
| namespace { |
| |
| /// AsmOperandInfo - This contains information for each constraint that we are |
| /// lowering. |
| class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { |
| public: |
| /// CallOperand - If this is the result output operand or a clobber |
| /// this is null, otherwise it is the incoming operand to the CallInst. |
| /// This gets modified as the asm is processed. |
| SDValue CallOperand; |
| |
| /// AssignedRegs - If this is a register or register class operand, this |
| /// contains the set of register corresponding to the operand. |
| RegsForValue AssignedRegs; |
| |
| explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) |
| : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { |
| } |
| |
| /// getCallOperandValEVT - Return the EVT of the Value* that this operand |
| /// corresponds to. If there is no Value* for this operand, it returns |
| /// MVT::Other. |
| EVT getCallOperandValEVT(LLVMContext &Context, |
| const TargetLowering &TLI, |
| const DataLayout *TD) const { |
| if (CallOperandVal == 0) return MVT::Other; |
| |
| if (isa<BasicBlock>(CallOperandVal)) |
| return TLI.getPointerTy(); |
| |
| llvm::Type *OpTy = CallOperandVal->getType(); |
| |
| // FIXME: code duplicated from TargetLowering::ParseConstraints(). |
| // If this is an indirect operand, the operand is a pointer to the |
| // accessed type. |
| if (isIndirect) { |
| llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); |
| if (!PtrTy) |
| report_fatal_error("Indirect operand for inline asm not a pointer!"); |
| OpTy = PtrTy->getElementType(); |
| } |
| |
| // Look for vector wrapped in a struct. e.g. { <16 x i8> }. |
| if (StructType *STy = dyn_cast<StructType>(OpTy)) |
| if (STy->getNumElements() == 1) |
| OpTy = STy->getElementType(0); |
| |
| // If OpTy is not a single value, it may be a struct/union that we |
| // can tile with integers. |
| if (!OpTy->isSingleValueType() && OpTy->isSized()) { |
| unsigned BitSize = TD->getTypeSizeInBits(OpTy); |
| switch (BitSize) { |
| default: break; |
| case 1: |
| case 8: |
| case 16: |
| case 32: |
| case 64: |
| case 128: |
| OpTy = IntegerType::get(Context, BitSize); |
| break; |
| } |
| } |
| |
| return TLI.getValueType(OpTy, true); |
| } |
| }; |
| |
| typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; |
| |
| } // end anonymous namespace |
| |
| /// GetRegistersForValue - Assign registers (virtual or physical) for the |
| /// specified operand. We prefer to assign virtual registers, to allow the |
| /// register allocator to handle the assignment process. However, if the asm |
| /// uses features that we can't model on machineinstrs, we have SDISel do the |
| /// allocation. This produces generally horrible, but correct, code. |
| /// |
| /// OpInfo describes the operand. |
| /// |
| static void GetRegistersForValue(SelectionDAG &DAG, |
| const TargetLowering &TLI, |
| DebugLoc DL, |
| SDISelAsmOperandInfo &OpInfo) { |
| LLVMContext &Context = *DAG.getContext(); |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| SmallVector<unsigned, 4> Regs; |
| |
| // If this is a constraint for a single physreg, or a constraint for a |
| // register class, find it. |
| std::pair<unsigned, const TargetRegisterClass*> PhysReg = |
| TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, |
| OpInfo.ConstraintVT); |
| |
| unsigned NumRegs = 1; |
| if (OpInfo.ConstraintVT != MVT::Other) { |
| // If this is a FP input in an integer register (or visa versa) insert a bit |
| // cast of the input value. More generally, handle any case where the input |
| // value disagrees with the register class we plan to stick this in. |
| if (OpInfo.Type == InlineAsm::isInput && |
| PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { |
| // Try to convert to the first EVT that the reg class contains. If the |
| // types are identical size, use a bitcast to convert (e.g. two differing |
| // vector types). |
| MVT RegVT = *PhysReg.second->vt_begin(); |
| if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { |
| OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, |
| RegVT, OpInfo.CallOperand); |
| OpInfo.ConstraintVT = RegVT; |
| } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { |
| // If the input is a FP value and we want it in FP registers, do a |
| // bitcast to the corresponding integer type. This turns an f64 value |
| // into i64, which can be passed with two i32 values on a 32-bit |
| // machine. |
| RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); |
| OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, |
| RegVT, OpInfo.CallOperand); |
| OpInfo.ConstraintVT = RegVT; |
| } |
| } |
| |
| NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); |
| } |
| |
| MVT RegVT; |
| EVT ValueVT = OpInfo.ConstraintVT; |
| |
| // If this is a constraint for a specific physical register, like {r17}, |
| // assign it now. |
| if (unsigned AssignedReg = PhysReg.first) { |
| const TargetRegisterClass *RC = PhysReg.second; |
| if (OpInfo.ConstraintVT == MVT::Other) |
| ValueVT = *RC->vt_begin(); |
| |
| // Get the actual register value type. This is important, because the user |
| // may have asked for (e.g.) the AX register in i32 type. We need to |
| // remember that AX is actually i16 to get the right extension. |
| RegVT = *RC->vt_begin(); |
| |
| // This is a explicit reference to a physical register. |
| Regs.push_back(AssignedReg); |
| |
| // If this is an expanded reference, add the rest of the regs to Regs. |
| if (NumRegs != 1) { |
| TargetRegisterClass::iterator I = RC->begin(); |
| for (; *I != AssignedReg; ++I) |
| assert(I != RC->end() && "Didn't find reg!"); |
| |
| // Already added the first reg. |
| --NumRegs; ++I; |
| for (; NumRegs; --NumRegs, ++I) { |
| assert(I != RC->end() && "Ran out of registers to allocate!"); |
| Regs.push_back(*I); |
| } |
| } |
| |
| OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); |
| return; |
| } |
| |
| // Otherwise, if this was a reference to an LLVM register class, create vregs |
| // for this reference. |
| if (const TargetRegisterClass *RC = PhysReg.second) { |
| RegVT = *RC->vt_begin(); |
| if (OpInfo.ConstraintVT == MVT::Other) |
| ValueVT = RegVT; |
| |
| // Create the appropriate number of virtual registers. |
| MachineRegisterInfo &RegInfo = MF.getRegInfo(); |
| for (; NumRegs; --NumRegs) |
| Regs.push_back(RegInfo.createVirtualRegister(RC)); |
| |
| OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); |
| return; |
| } |
| |
| // Otherwise, we couldn't allocate enough registers for this. |
| } |
| |
| /// visitInlineAsm - Handle a call to an InlineAsm object. |
| /// |
| void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { |
| const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); |
| |
| /// ConstraintOperands - Information about all of the constraints. |
| SDISelAsmOperandInfoVector ConstraintOperands; |
| |
| TargetLowering::AsmOperandInfoVector |
| TargetConstraints = TLI.ParseConstraints(CS); |
| |
| bool hasMemory = false; |
| |
| unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. |
| unsigned ResNo = 0; // ResNo - The result number of the next output. |
| for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { |
| ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); |
| SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); |
| |
| MVT OpVT = MVT::Other; |
| |
| // Compute the value type for each operand. |
| switch (OpInfo.Type) { |
| case InlineAsm::isOutput: |
| // Indirect outputs just consume an argument. |
| if (OpInfo.isIndirect) { |
| OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); |
| break; |
| } |
| |
| // The return value of the call is this value. As such, there is no |
| // corresponding argument. |
| assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); |
| if (StructType *STy = dyn_cast<StructType>(CS.getType())) { |
| OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo)); |
| } else { |
| assert(ResNo == 0 && "Asm only has one result!"); |
| OpVT = TLI.getSimpleValueType(CS.getType()); |
| } |
| ++ResNo; |
| break; |
| case InlineAsm::isInput: |
| OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); |
| break; |
| case InlineAsm::isClobber: |
| // Nothing to do. |
| break; |
| } |
| |
| // If this is an input or an indirect output, process the call argument. |
| // BasicBlocks are labels, currently appearing only in asm's. |
| if (OpInfo.CallOperandVal) { |
| if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { |
| OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); |
| } else { |
| OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); |
| } |
| |
| OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD). |
| getSimpleVT(); |
| } |
| |
| OpInfo.ConstraintVT = OpVT; |
| |
| // Indirect operand accesses access memory. |
| if (OpInfo.isIndirect) |
| hasMemory = true; |
| else { |
| for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { |
| TargetLowering::ConstraintType |
| CType = TLI.getConstraintType(OpInfo.Codes[j]); |
| if (CType == TargetLowering::C_Memory) { |
| hasMemory = true; |
| break; |
| } |
| } |
| } |
| } |
| |
| SDValue Chain, Flag; |
| |
| // We won't need to flush pending loads if this asm doesn't touch |
| // memory and is nonvolatile. |
| if (hasMemory || IA->hasSideEffects()) |
| Chain = getRoot(); |
| else |
| Chain = DAG.getRoot(); |
| |
| // Second pass over the constraints: compute which constraint option to use |
| // and assign registers to constraints that want a specific physreg. |
| for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { |
| SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; |
| |
| // If this is an output operand with a matching input operand, look up the |
| // matching input. If their types mismatch, e.g. one is an integer, the |
| // other is floating point, or their sizes are different, flag it as an |
| // error. |
| if (OpInfo.hasMatchingInput()) { |
| SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; |
| |
| if (OpInfo.ConstraintVT != Input.ConstraintVT) { |
| std::pair<unsigned, const TargetRegisterClass*> MatchRC = |
| TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, |
| OpInfo.ConstraintVT); |
| std::pair<unsigned, const TargetRegisterClass*> InputRC = |
| TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, |
| Input.ConstraintVT); |
| if ((OpInfo.ConstraintVT.isInteger() != |
| Input.ConstraintVT.isInteger()) || |
| (MatchRC.second != InputRC.second)) { |
| report_fatal_error("Unsupported asm: input constraint" |
| " with a matching output constraint of" |
| " incompatible type!"); |
| } |
| Input.ConstraintVT = OpInfo.ConstraintVT; |
| } |
| } |
| |
| // Compute the constraint code and ConstraintType to use. |
| TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); |
| |
| if (OpInfo.ConstraintType == TargetLowering::C_Memory && |
| OpInfo.Type == InlineAsm::isClobber) |
| continue; |
| |
| // If this is a memory input, and if the operand is not indirect, do what we |
| // need to to provide an address for the memory input. |
| if (OpInfo.ConstraintType == TargetLowering::C_Memory && |
| !OpInfo.isIndirect) { |
| assert((OpInfo.isMultipleAlternative || |
| (OpInfo.Type == InlineAsm::isInput)) && |
| "Can only indirectify direct input operands!"); |
| |
| // Memory operands really want the address of the value. If we don't have |
| // an indirect input, put it in the constpool if we can, otherwise spill |
| // it to a stack slot. |
| // TODO: This isn't quite right. We need to handle these according to |
| // the addressing mode that the constraint wants. Also, this may take |
| // an additional register for the computation and we don't want that |
| // either. |
| |
| // If the operand is a float, integer, or vector constant, spill to a |
| // constant pool entry to get its address. |
| const Value *OpVal = OpInfo.CallOperandVal; |
| if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || |
| isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { |
| OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), |
| TLI.getPointerTy()); |
| } else { |
| // Otherwise, create a stack slot and emit a store to it before the |
| // asm. |
| Type *Ty = OpVal->getType(); |
| uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); |
| unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); |
| SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); |
| Chain = DAG.getStore(Chain, getCurDebugLoc(), |
| OpInfo.CallOperand, StackSlot, |
| MachinePointerInfo::getFixedStack(SSFI), |
| false, false, 0); |
| OpInfo.CallOperand = StackSlot; |
| } |
| |
| // There is no longer a Value* corresponding to this operand. |
| OpInfo.CallOperandVal = 0; |
| |
| // It is now an indirect operand. |
| OpInfo.isIndirect = true; |
| } |
| |
| // If this constraint is for a specific register, allocate it before |
| // anything else. |
| if (OpInfo.ConstraintType == TargetLowering::C_Register) |
| GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo); |
| } |
| |
| // Second pass - Loop over all of the operands, assigning virtual or physregs |
| // to register class operands. |
| for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { |
| SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; |
| |
| // C_Register operands have already been allocated, Other/Memory don't need |
| // to be. |
| if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) |
| GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo); |
| } |
| |
| // AsmNodeOperands - The operands for the ISD::INLINEASM node. |
| std::vector<SDValue> AsmNodeOperands; |
| AsmNodeOperands.push_back(SDValue()); // reserve space for input chain |
| AsmNodeOperands.push_back( |
| DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), |
| TLI.getPointerTy())); |
| |
| // If we have a !srcloc metadata node associated with it, we want to attach |
| // this to the ultimately generated inline asm machineinstr. To do this, we |
| // pass in the third operand as this (potentially null) inline asm MDNode. |
| const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); |
| AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); |
| |
| // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore |
| // bits as operand 3. |
| unsigned ExtraInfo = 0; |
| if (IA->hasSideEffects()) |
| ExtraInfo |= InlineAsm::Extra_HasSideEffects; |
| if (IA->isAlignStack()) |
| ExtraInfo |= InlineAsm::Extra_IsAlignStack; |
| // Set the asm dialect. |
| ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; |
| |
| // Determine if this InlineAsm MayLoad or MayStore based on the constraints. |
| for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { |
| TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; |
| |
| // Compute the constraint code and ConstraintType to use. |
| TLI.ComputeConstraintToUse(OpInfo, SDValue()); |
| |
| // Ideally, we would only check against memory constraints. However, the |
| // meaning of an other constraint can be target-specific and we can't easily |
| // reason about it. Therefore, be conservative and set MayLoad/MayStore |
| // for other constriants as well. |
| if (OpInfo.ConstraintType == TargetLowering::C_Memory || |
| OpInfo.ConstraintType == TargetLowering::C_Other) { |
| if (OpInfo.Type == InlineAsm::isInput) |
| ExtraInfo |= InlineAsm::Extra_MayLoad; |
| else if (OpInfo.Type == InlineAsm::isOutput) |
| ExtraInfo |= InlineAsm::Extra_MayStore; |
| else if (OpInfo.Type == InlineAsm::isClobber) |
| ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); |
| } |
| } |
| |
| AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, |
| TLI.getPointerTy())); |
| |
| // Loop over all of the inputs, copying the operand values into the |
| // appropriate registers and processing the output regs. |
| RegsForValue RetValRegs; |
| |
| // IndirectStoresToEmit - The set of stores to emit after the inline asm node. |
| std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; |
| |
| for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { |
| SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; |
| |
| switch (OpInfo.Type) { |
| case InlineAsm::isOutput: { |
| if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && |
| OpInfo.ConstraintType != TargetLowering::C_Register) { |
| // Memory output, or 'other' output (e.g. 'X' constraint). |
| assert(OpInfo.isIndirect && "Memory output must be indirect operand"); |
| |
| // Add information to the INLINEASM node to know about this output. |
| unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); |
| AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, |
| TLI.getPointerTy())); |
| AsmNodeOperands.push_back(OpInfo.CallOperand); |
| break; |
| } |
| |
| // Otherwise, this is a register or register class output. |
| |
| // Copy the output from the appropriate register. Find a register that |
| // we can use. |
| if (OpInfo.AssignedRegs.Regs.empty()) { |
| LLVMContext &Ctx = *DAG.getContext(); |
| Ctx.emitError(CS.getInstruction(), |
| "couldn't allocate output register for constraint '" + |
| Twine(OpInfo.ConstraintCode) + "'"); |
| break; |
| } |
| |
| // If this is an indirect operand, store through the pointer after the |
| // asm. |
| if (OpInfo.isIndirect) { |
| IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, |
| OpInfo.CallOperandVal)); |
| } else { |
| // This is the result value of the call. |
| assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); |
| // Concatenate this output onto the outputs list. |
| RetValRegs.append(OpInfo.AssignedRegs); |
| } |
| |
| // Add information to the INLINEASM node to know that this register is |
| // set. |
| OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? |
| InlineAsm::Kind_RegDefEarlyClobber : |
| InlineAsm::Kind_RegDef, |
| false, |
| 0, |
| DAG, |
| AsmNodeOperands); |
| break; |
| } |
| case InlineAsm::isInput: { |
| SDValue InOperandVal = OpInfo.CallOperand; |
| |
| if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? |
| // If this is required to match an output register we have already set, |
| // just use its register. |
| unsigned OperandNo = OpInfo.getMatchedOperand(); |
| |
| // Scan until we find the definition we already emitted of this operand. |
| // When we find it, create a RegsForValue operand. |
| unsigned CurOp = InlineAsm::Op_FirstOperand; |
| for (; OperandNo; --OperandNo) { |
| // Advance to the next operand. |
| unsigned OpFlag = |
| cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); |
| assert((InlineAsm::isRegDefKind(OpFlag) || |
| InlineAsm::isRegDefEarlyClobberKind(OpFlag) || |
| InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); |
| CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; |
| } |
| |
| unsigned OpFlag = |
| cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); |
| if (InlineAsm::isRegDefKind(OpFlag) || |
| InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { |
| // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. |
| if (OpInfo.isIndirect) { |
| // This happens on gcc/testsuite/gcc.dg/pr8788-1.c |
| LLVMContext &Ctx = *DAG.getContext(); |
| Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" |
| " don't know how to handle tied " |
| "indirect register inputs"); |
| } |
| |
| RegsForValue MatchedRegs; |
| MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); |
| MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); |
| MatchedRegs.RegVTs.push_back(RegVT); |
| MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); |
| for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); |
| i != e; ++i) |
| MatchedRegs.Regs.push_back |
| (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); |
| |
| // Use the produced MatchedRegs object to |
| MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), |
| Chain, &Flag, CS.getInstruction()); |
| MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, |
| true, OpInfo.getMatchedOperand(), |
| DAG, AsmNodeOperands); |
| break; |
| } |
| |
| assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); |
| assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && |
| "Unexpected number of operands"); |
| // Add information to the INLINEASM node to know about this input. |
| // See InlineAsm.h isUseOperandTiedToDef. |
| OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, |
| OpInfo.getMatchedOperand()); |
| AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, |
| TLI.getPointerTy())); |
| AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); |
| break; |
| } |
| |
| // Treat indirect 'X' constraint as memory. |
| if (OpInfo.ConstraintType == TargetLowering::C_Other && |
| OpInfo.isIndirect) |
| OpInfo.ConstraintType = TargetLowering::C_Memory; |
| |
| if (OpInfo.ConstraintType == TargetLowering::C_Other) { |
| std::vector<SDValue> Ops; |
| TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, |
| Ops, DAG); |
| if (Ops.empty()) { |
| LLVMContext &Ctx = *DAG.getContext(); |
| Ctx.emitError(CS.getInstruction(), |
| "invalid operand for inline asm constraint '" + |
| Twine(OpInfo.ConstraintCode) + "'"); |
| break; |
| } |
| |
| // Add information to the INLINEASM node to know about this input. |
| unsigned ResOpType = |
| InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); |
| AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, |
| TLI.getPointerTy())); |
| AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); |
| break; |
| } |
| |
| if (OpInfo.ConstraintType == TargetLowering::C_Memory) { |
| assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); |
| assert(InOperandVal.getValueType() == TLI.getPointerTy() && |
| "Memory operands expect pointer values"); |
| |
| // Add information to the INLINEASM node to know about this input. |
| unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); |
| AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, |
| TLI.getPointerTy())); |
| AsmNodeOperands.push_back(InOperandVal); |
| break; |
| } |
| |
| assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || |
| OpInfo.ConstraintType == TargetLowering::C_Register) && |
| "Unknown constraint type!"); |
| |
| // TODO: Support this. |
| if (OpInfo.isIndirect) { |
| LLVMContext &Ctx = *DAG.getContext(); |
| Ctx.emitError(CS.getInstruction(), |
| "Don't know how to handle indirect register inputs yet " |
| "for constraint '" + Twine(OpInfo.ConstraintCode) + "'"); |
| break; |
| } |
| |
| // Copy the input into the appropriate registers. |
| if (OpInfo.AssignedRegs.Regs.empty()) { |
| LLVMContext &Ctx = *DAG.getContext(); |
| Ctx.emitError(CS.getInstruction(), |
| "couldn't allocate input reg for constraint '" + |
| Twine(OpInfo.ConstraintCode) + "'"); |
| break; |
| } |
| |
| OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), |
| Chain, &Flag, CS.getInstruction()); |
| |
| OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, |
| DAG, AsmNodeOperands); |
| break; |
| } |
| case InlineAsm::isClobber: { |
| // Add the clobbered value to the operand list, so that the register |
| // allocator is aware that the physreg got clobbered. |
| if (!OpInfo.AssignedRegs.Regs.empty()) |
| OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, |
| false, 0, DAG, |
| AsmNodeOperands); |
| break; |
| } |
| } |
| } |
| |
| // Finish up input operands. Set the input chain and add the flag last. |
| AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; |
| if (Flag.getNode()) AsmNodeOperands.push_back(Flag); |
| |
| Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), |
| DAG.getVTList(MVT::Other, MVT::Glue), |
| &AsmNodeOperands[0], AsmNodeOperands.size()); |
| Flag = Chain.getValue(1); |
| |
| // If this asm returns a register value, copy the result from that register |
| // and set it as the value of the call. |
| if (!RetValRegs.Regs.empty()) { |
| SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), |
| Chain, &Flag, CS.getInstruction()); |
| |
| // FIXME: Why don't we do this for inline asms with MRVs? |
| if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { |
| EVT ResultType = TLI.getValueType(CS.getType()); |
| |
| // If any of the results of the inline asm is a vector, it may have the |
| // wrong width/num elts. This can happen for register classes that can |
| // contain multiple different value types. The preg or vreg allocated may |
| // not have the same VT as was expected. Convert it to the right type |
| // with bit_convert. |
| if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { |
| Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), |
| ResultType, Val); |
| |
| } else if (ResultType != Val.getValueType() && |
| ResultType.isInteger() && Val.getValueType().isInteger()) { |
| // If a result value was tied to an input value, the computed result may |
| // have a wider width than the expected result. Extract the relevant |
| // portion. |
| Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); |
| } |
| |
| assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); |
| } |
| |
| setValue(CS.getInstruction(), Val); |
| // Don't need to use this as a chain in this case. |
| if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) |
| return; |
| } |
| |
| std::vector<std::pair<SDValue, const Value *> > StoresToEmit; |
| |
| // Process indirect outputs, first output all of the flagged copies out of |
| // physregs. |
| for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { |
| RegsForValue &OutRegs = IndirectStoresToEmit[i].first; |
| const Value *Ptr = IndirectStoresToEmit[i].second; |
| SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), |
| Chain, &Flag, IA); |
| StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); |
| } |
| |
| // Emit the non-flagged stores from the physregs. |
| SmallVector<SDValue, 8> OutChains; |
| for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { |
| SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), |
| StoresToEmit[i].first, |
| getValue(StoresToEmit[i].second), |
| MachinePointerInfo(StoresToEmit[i].second), |
| false, false, 0); |
| OutChains.push_back(Val); |
| } |
| |
| if (!OutChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, |
| &OutChains[0], OutChains.size()); |
| |
| DAG.setRoot(Chain); |
| } |
| |
| void SelectionDAGBuilder::visitVAStart(const CallInst &I) { |
| DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), |
| MVT::Other, getRoot(), |
| getValue(I.getArgOperand(0)), |
| DAG.getSrcValue(I.getArgOperand(0)))); |
| } |
| |
| void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { |
| const DataLayout &TD = *TLI.getDataLayout(); |
| SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), |
| getRoot(), getValue(I.getOperand(0)), |
| DAG.getSrcValue(I.getOperand(0)), |
| TD.getABITypeAlignment(I.getType())); |
| setValue(&I, V); |
| DAG.setRoot(V.getValue(1)); |
| } |
| |
| void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { |
| DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), |
| MVT::Other, getRoot(), |
| getValue(I.getArgOperand(0)), |
| DAG.getSrcValue(I.getArgOperand(0)))); |
| } |
| |
| void SelectionDAGBuilder::visitVACopy(const CallInst &I) { |
| DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), |
| MVT::Other, getRoot(), |
| getValue(I.getArgOperand(0)), |
| getValue(I.getArgOperand(1)), |
| DAG.getSrcValue(I.getArgOperand(0)), |
| DAG.getSrcValue(I.getArgOperand(1)))); |
| } |
| |
| /// TargetLowering::LowerCallTo - This is the default LowerCallTo |
| /// implementation, which just calls LowerCall. |
| /// FIXME: When all targets are |
| /// migrated to using LowerCall, this hook should be integrated into SDISel. |
| std::pair<SDValue, SDValue> |
| TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { |
| // Handle all of the outgoing arguments. |
| CLI.Outs.clear(); |
| CLI.OutVals.clear(); |
| ArgListTy &Args = CLI.Args; |
| for (unsigned i = 0, e = Args.size(); i != e; ++i) { |
| SmallVector<EVT, 4> ValueVTs; |
| ComputeValueVTs(*this, Args[i].Ty, ValueVTs); |
| for (unsigned Value = 0, NumValues = ValueVTs.size(); |
| Value != NumValues; ++Value) { |
| EVT VT = ValueVTs[Value]; |
| Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); |
| SDValue Op = SDValue(Args[i].Node.getNode(), |
| Args[i].Node.getResNo() + Value); |
| ISD::ArgFlagsTy Flags; |
| unsigned OriginalAlignment = |
| getDataLayout()->getABITypeAlignment(ArgTy); |
| |
| if (Args[i].isZExt) |
| Flags.setZExt(); |
| if (Args[i].isSExt) |
| Flags.setSExt(); |
| if (Args[i].isInReg) |
| Flags.setInReg(); |
| if (Args[i].isSRet) |
| Flags.setSRet(); |
| if (Args[i].isByVal) { |
| Flags.setByVal(); |
| PointerType *Ty = cast<PointerType>(Args[i].Ty); |
| Type *ElementTy = Ty->getElementType(); |
| Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); |
| // For ByVal, alignment should come from FE. BE will guess if this |
| // info is not there but there are cases it cannot get right. |
| unsigned FrameAlign; |
| if (Args[i].Alignment) |
| FrameAlign = Args[i].Alignment; |
| else |
| FrameAlign = getByValTypeAlignment(ElementTy); |
| Flags.setByValAlign(FrameAlign); |
| } |
| if (Args[i].isNest) |
| Flags.setNest(); |
| Flags.setOrigAlign(OriginalAlignment); |
| |
| MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); |
| unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); |
| SmallVector<SDValue, 4> Parts(NumParts); |
| ISD::NodeType ExtendKind = ISD::ANY_EXTEND; |
| |
| if (Args[i].isSExt) |
| ExtendKind = ISD::SIGN_EXTEND; |
| else if (Args[i].isZExt) |
| ExtendKind = ISD::ZERO_EXTEND; |
| |
| getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, |
| PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind); |
| |
| for (unsigned j = 0; j != NumParts; ++j) { |
| // if it isn't first piece, alignment must be 1 |
| ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), |
| i < CLI.NumFixedArgs, |
| i, j*Parts[j].getValueType().getStoreSize()); |
| if (NumParts > 1 && j == 0) |
| MyFlags.Flags.setSplit(); |
| else if (j != 0) |
| MyFlags.Flags.setOrigAlign(1); |
| |
| CLI.Outs.push_back(MyFlags); |
| CLI.OutVals.push_back(Parts[j]); |
| } |
| } |
| } |
| |
| // Handle the incoming return values from the call. |
| CLI.Ins.clear(); |
| SmallVector<EVT, 4> RetTys; |
| ComputeValueVTs(*this, CLI.RetTy, RetTys); |
| for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { |
| EVT VT = RetTys[I]; |
| MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); |
| unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); |
| for (unsigned i = 0; i != NumRegs; ++i) { |
| ISD::InputArg MyFlags; |
| MyFlags.VT = RegisterVT; |
| MyFlags.Used = CLI.IsReturnValueUsed; |
| if (CLI.RetSExt) |
| MyFlags.Flags.setSExt(); |
| if (CLI.RetZExt) |
| MyFlags.Flags.setZExt(); |
| if (CLI.IsInReg) |
| MyFlags.Flags.setInReg(); |
| CLI.Ins.push_back(MyFlags); |
| } |
| } |
| |
| SmallVector<SDValue, 4> InVals; |
| CLI.Chain = LowerCall(CLI, InVals); |
| |
| // Verify that the target's LowerCall behaved as expected. |
| assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && |
| "LowerCall didn't return a valid chain!"); |
| assert((!CLI.IsTailCall || InVals.empty()) && |
| "LowerCall emitted a return value for a tail call!"); |
| assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && |
| "LowerCall didn't emit the correct number of values!"); |
| |
| // For a tail call, the return value is merely live-out and there aren't |
| // any nodes in the DAG representing it. Return a special value to |
| // indicate that a tail call has been emitted and no more Instructions |
| // should be processed in the current block. |
| if (CLI.IsTailCall) { |
| CLI.DAG.setRoot(CLI.Chain); |
| return std::make_pair(SDValue(), SDValue()); |
| } |
| |
| DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { |
| assert(InVals[i].getNode() && |
| "LowerCall emitted a null value!"); |
| assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && |
| "LowerCall emitted a value with the wrong type!"); |
| }); |
| |
| // Collect the legal value parts into potentially illegal values |
| // that correspond to the original function's return values. |
| ISD::NodeType AssertOp = ISD::DELETED_NODE; |
| if (CLI.RetSExt) |
| AssertOp = ISD::AssertSext; |
| else if (CLI.RetZExt) |
| AssertOp = ISD::AssertZext; |
| SmallVector<SDValue, 4> ReturnValues; |
| unsigned CurReg = 0; |
| for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { |
| EVT VT = RetTys[I]; |
| MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); |
| unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); |
| |
| ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], |
| NumRegs, RegisterVT, VT, NULL, |
| AssertOp)); |
| CurReg += NumRegs; |
| } |
| |
| // For a function returning void, there is no return value. We can't create |
| // such a node, so we just return a null return value in that case. In |
| // that case, nothing will actually look at the value. |
| if (ReturnValues.empty()) |
| return std::make_pair(SDValue(), CLI.Chain); |
| |
| SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, |
| CLI.DAG.getVTList(&RetTys[0], RetTys.size()), |
| &ReturnValues[0], ReturnValues.size()); |
| return std::make_pair(Res, CLI.Chain); |
| } |
| |
| void TargetLowering::LowerOperationWrapper(SDNode *N, |
| SmallVectorImpl<SDValue> &Results, |
| SelectionDAG &DAG) const { |
| SDValue Res = LowerOperation(SDValue(N, 0), DAG); |
| if (Res.getNode()) |
| Results.push_back(Res); |
| } |
| |
| SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { |
| llvm_unreachable("LowerOperation not implemented for this target!"); |
| } |
| |
| void |
| SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { |
| SDValue Op = getNonRegisterValue(V); |
| assert((Op.getOpcode() != ISD::CopyFromReg || |
| cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && |
| "Copy from a reg to the same reg!"); |
| assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); |
| |
| RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); |
| SDValue Chain = DAG.getEntryNode(); |
| RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0, V); |
| PendingExports.push_back(Chain); |
| } |
| |
| #include "llvm/CodeGen/SelectionDAGISel.h" |
| |
| /// isOnlyUsedInEntryBlock - If the specified argument is only used in the |
| /// entry block, return true. This includes arguments used by switches, since |
| /// the switch may expand into multiple basic blocks. |
| static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { |
| // With FastISel active, we may be splitting blocks, so force creation |
| // of virtual registers for all non-dead arguments. |
| if (FastISel) |
| return A->use_empty(); |
| |
| const BasicBlock *Entry = A->getParent()->begin(); |
| for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end(); |
| UI != E; ++UI) { |
| const User *U = *UI; |
| if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) |
| return false; // Use not in entry block. |
| } |
| return true; |
| } |
| |
| void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { |
| // If this is the entry block, emit arguments. |
| const Function &F = *LLVMBB->getParent(); |
| SelectionDAG &DAG = SDB->DAG; |
| DebugLoc dl = SDB->getCurDebugLoc(); |
| const DataLayout *TD = TLI.getDataLayout(); |
| SmallVector<ISD::InputArg, 16> Ins; |
| |
| if (!FuncInfo->CanLowerReturn) { |
| // Put in an sret pointer parameter before all the other parameters. |
| SmallVector<EVT, 1> ValueVTs; |
| ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); |
| |
| // NOTE: Assuming that a pointer will never break down to more than one VT |
| // or one register. |
| ISD::ArgFlagsTy Flags; |
| Flags.setSRet(); |
| MVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]); |
| ISD::InputArg RetArg(Flags, RegisterVT, true, 0, 0); |
| Ins.push_back(RetArg); |
| } |
| |
| // Set up the incoming argument description vector. |
| unsigned Idx = 1; |
| for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); |
| I != E; ++I, ++Idx) { |
| SmallVector<EVT, 4> ValueVTs; |
| ComputeValueVTs(TLI, I->getType(), ValueVTs); |
| bool isArgValueUsed = !I->use_empty(); |
| for (unsigned Value = 0, NumValues = ValueVTs.size(); |
| Value != NumValues; ++Value) { |
| EVT VT = ValueVTs[Value]; |
| Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); |
| ISD::ArgFlagsTy Flags; |
| unsigned OriginalAlignment = |
| TD->getABITypeAlignment(ArgTy); |
| |
| if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) |
| Flags.setZExt(); |
| if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) |
| Flags.setSExt(); |
| if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) |
| Flags.setInReg(); |
| if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) |
| Flags.setSRet(); |
| if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) { |
| Flags.setByVal(); |
| PointerType *Ty = cast<PointerType>(I->getType()); |
| Type *ElementTy = Ty->getElementType(); |
| Flags.setByValSize(TD->getTypeAllocSize(ElementTy)); |
| // For ByVal, alignment should be passed from FE. BE will guess if |
| // this info is not there but there are cases it cannot get right. |
| unsigned FrameAlign; |
| if (F.getParamAlignment(Idx)) |
| FrameAlign = F.getParamAlignment(Idx); |
| else |
| FrameAlign = TLI.getByValTypeAlignment(ElementTy); |
| Flags.setByValAlign(FrameAlign); |
| } |
| if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) |
| Flags.setNest(); |
| Flags.setOrigAlign(OriginalAlignment); |
| |
| MVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); |
| unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); |
| for (unsigned i = 0; i != NumRegs; ++i) { |
| ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed, |
| Idx-1, i*RegisterVT.getStoreSize()); |
| if (NumRegs > 1 && i == 0) |
| MyFlags.Flags.setSplit(); |
| // if it isn't first piece, alignment must be 1 |
| else if (i > 0) |
| MyFlags.Flags.setOrigAlign(1); |
| Ins.push_back(MyFlags); |
| } |
| } |
| } |
| |
| // Call the target to set up the argument values. |
| SmallVector<SDValue, 8> InVals; |
| SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), |
| F.isVarArg(), Ins, |
| dl, DAG, InVals); |
| |
| // Verify that the target's LowerFormalArguments behaved as expected. |
| assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && |
| "LowerFormalArguments didn't return a valid chain!"); |
| assert(InVals.size() == Ins.size() && |
| "LowerFormalArguments didn't emit the correct number of values!"); |
| DEBUG({ |
| for (unsigned i = 0, e = Ins.size(); i != e; ++i) { |
| assert(InVals[i].getNode() && |
| "LowerFormalArguments emitted a null value!"); |
| assert(EVT(Ins[i].VT) == InVals[i].getValueType() && |
| "LowerFormalArguments emitted a value with the wrong type!"); |
| } |
| }); |
| |
| // Update the DAG with the new chain value resulting from argument lowering. |
| DAG.setRoot(NewRoot); |
| |
| // Set up the argument values. |
| unsigned i = 0; |
| Idx = 1; |
| if (!FuncInfo->CanLowerReturn) { |
| // Create a virtual register for the sret pointer, and put in a copy |
| // from the sret argument into it. |
| SmallVector<EVT, 1> ValueVTs; |
| ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); |
| MVT VT = ValueVTs[0].getSimpleVT(); |
| MVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); |
| ISD::NodeType AssertOp = ISD::DELETED_NODE; |
| SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, |
| RegVT, VT, NULL, AssertOp); |
| |
| MachineFunction& MF = SDB->DAG.getMachineFunction(); |
| MachineRegisterInfo& RegInfo = MF.getRegInfo(); |
| unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); |
| FuncInfo->DemoteRegister = SRetReg; |
| NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), |
| SRetReg, ArgValue); |
| DAG.setRoot(NewRoot); |
| |
| // i indexes lowered arguments. Bump it past the hidden sret argument. |
| // Idx indexes LLVM arguments. Don't touch it. |
| ++i; |
| } |
| |
| for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; |
| ++I, ++Idx) { |
| SmallVector<SDValue, 4> ArgValues; |
| SmallVector<EVT, 4> ValueVTs; |
| ComputeValueVTs(TLI, I->getType(), ValueVTs); |
| unsigned NumValues = ValueVTs.size(); |
| |
| // If this argument is unused then remember its value. It is used to generate |
| // debugging information. |
| if (I->use_empty() && NumValues) |
| SDB->setUnusedArgValue(I, InVals[i]); |
| |
| for (unsigned Val = 0; Val != NumValues; ++Val) { |
| EVT VT = ValueVTs[Val]; |
| MVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); |
| unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); |
| |
| if (!I->use_empty()) { |
| ISD::NodeType AssertOp = ISD::DELETED_NODE; |
| if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) |
| AssertOp = ISD::AssertSext; |
| else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) |
| AssertOp = ISD::AssertZext; |
| |
| ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], |
| NumParts, PartVT, VT, |
| NULL, AssertOp)); |
| } |
| |
| i += NumParts; |
| } |
| |
| // We don't need to do anything else for unused arguments. |
| if (ArgValues.empty()) |
| continue; |
| |
| // Note down frame index. |
| if (FrameIndexSDNode *FI = |
| dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) |
| FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); |
| |
| SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, |
| SDB->getCurDebugLoc()); |
| |
| SDB->setValue(I, Res); |
| if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { |
| if (LoadSDNode *LNode = |
| dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) |
| if (FrameIndexSDNode *FI = |
| dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) |
| FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); |
| } |
| |
| // If this argument is live outside of the entry block, insert a copy from |
| // wherever we got it to the vreg that other BB's will reference it as. |
| if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { |
| // If we can, though, try to skip creating an unnecessary vreg. |
| // FIXME: This isn't very clean... it would be nice to make this more |
| // general. It's also subtly incompatible with the hacks FastISel |
| // uses with vregs. |
| unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); |
| if (TargetRegisterInfo::isVirtualRegister(Reg)) { |
| FuncInfo->ValueMap[I] = Reg; |
| continue; |
| } |
| } |
| if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { |
| FuncInfo->InitializeRegForValue(I); |
| SDB->CopyToExportRegsIfNeeded(I); |
| } |
| } |
| |
| assert(i == InVals.size() && "Argument register count mismatch!"); |
| |
| // Finally, if the target has anything special to do, allow it to do so. |
| // FIXME: this should insert code into the DAG! |
| EmitFunctionEntryCode(); |
| } |
| |
| /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to |
| /// ensure constants are generated when needed. Remember the virtual registers |
| /// that need to be added to the Machine PHI nodes as input. We cannot just |
| /// directly add them, because expansion might result in multiple MBB's for one |
| /// BB. As such, the start of the BB might correspond to a different MBB than |
| /// the end. |
| /// |
| void |
| SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { |
| const TerminatorInst *TI = LLVMBB->getTerminator(); |
| |
| SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; |
| |
| // Check successor nodes' PHI nodes that expect a constant to be available |
| // from this block. |
| for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { |
| const BasicBlock *SuccBB = TI->getSuccessor(succ); |
| if (!isa<PHINode>(SuccBB->begin())) continue; |
| MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; |
| |
| // If this terminator has multiple identical successors (common for |
| // switches), only handle each succ once. |
| if (!SuccsHandled.insert(SuccMBB)) continue; |
| |
| MachineBasicBlock::iterator MBBI = SuccMBB->begin(); |
| |
| // At this point we know that there is a 1-1 correspondence between LLVM PHI |
| // nodes and Machine PHI nodes, but the incoming operands have not been |
| // emitted yet. |
| for (BasicBlock::const_iterator I = SuccBB->begin(); |
| const PHINode *PN = dyn_cast<PHINode>(I); ++I) { |
| // Ignore dead phi's. |
| if (PN->use_empty()) continue; |
| |
| // Skip empty types |
| if (PN->getType()->isEmptyTy()) |
| continue; |
| |
| unsigned Reg; |
| const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); |
| |
| if (const Constant *C = dyn_cast<Constant>(PHIOp)) { |
| unsigned &RegOut = ConstantsOut[C]; |
| if (RegOut == 0) { |
| RegOut = FuncInfo.CreateRegs(C->getType()); |
| CopyValueToVirtualRegister(C, RegOut); |
| } |
| Reg = RegOut; |
| } else { |
| DenseMap<const Value *, unsigned>::iterator I = |
| FuncInfo.ValueMap.find(PHIOp); |
| if (I != FuncInfo.ValueMap.end()) |
| Reg = I->second; |
| else { |
| assert(isa<AllocaInst>(PHIOp) && |
| FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && |
| "Didn't codegen value into a register!??"); |
| Reg = FuncInfo.CreateRegs(PHIOp->getType()); |
| CopyValueToVirtualRegister(PHIOp, Reg); |
| } |
| } |
| |
| // Remember that this register needs to added to the machine PHI node as |
| // the input for this MBB. |
| SmallVector<EVT, 4> ValueVTs; |
| ComputeValueVTs(TLI, PN->getType(), ValueVTs); |
| for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { |
| EVT VT = ValueVTs[vti]; |
| unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); |
| for (unsigned i = 0, e = NumRegisters; i != e; ++i) |
| FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); |
| Reg += NumRegisters; |
| } |
| } |
| } |
| ConstantsOut.clear(); |
| } |