| //===-- llvm/Target/TargetSchedule.cpp - Sched Machine Model ----*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements a wrapper around MCSchedModel that allows the interface |
| // to benefit from information currently only available in TargetInstrInfo. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/TargetSchedule.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/Target/TargetSubtargetInfo.h" |
| |
| using namespace llvm; |
| |
| static cl::opt<bool> EnableSchedModel("schedmodel", cl::Hidden, cl::init(true), |
| cl::desc("Use TargetSchedModel for latency lookup")); |
| |
| static cl::opt<bool> EnableSchedItins("scheditins", cl::Hidden, cl::init(true), |
| cl::desc("Use InstrItineraryData for latency lookup")); |
| |
| bool TargetSchedModel::hasInstrSchedModel() const { |
| return EnableSchedModel && SchedModel.hasInstrSchedModel(); |
| } |
| |
| bool TargetSchedModel::hasInstrItineraries() const { |
| return EnableSchedItins && !InstrItins.isEmpty(); |
| } |
| |
| static unsigned gcd(unsigned Dividend, unsigned Divisor) { |
| // Dividend and Divisor will be naturally swapped as needed. |
| while(Divisor) { |
| unsigned Rem = Dividend % Divisor; |
| Dividend = Divisor; |
| Divisor = Rem; |
| }; |
| return Dividend; |
| } |
| static unsigned lcm(unsigned A, unsigned B) { |
| unsigned LCM = (uint64_t(A) * B) / gcd(A, B); |
| assert((LCM >= A && LCM >= B) && "LCM overflow"); |
| return LCM; |
| } |
| |
| void TargetSchedModel::init(const MCSchedModel &sm, |
| const TargetSubtargetInfo *sti, |
| const TargetInstrInfo *tii) { |
| SchedModel = sm; |
| STI = sti; |
| TII = tii; |
| STI->initInstrItins(InstrItins); |
| |
| unsigned NumRes = SchedModel.getNumProcResourceKinds(); |
| ResourceFactors.resize(NumRes); |
| ResourceLCM = SchedModel.IssueWidth; |
| for (unsigned Idx = 0; Idx < NumRes; ++Idx) { |
| unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits; |
| if (NumUnits > 0) |
| ResourceLCM = lcm(ResourceLCM, NumUnits); |
| } |
| MicroOpFactor = ResourceLCM / SchedModel.IssueWidth; |
| for (unsigned Idx = 0; Idx < NumRes; ++Idx) { |
| unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits; |
| ResourceFactors[Idx] = NumUnits ? (ResourceLCM / NumUnits) : 0; |
| } |
| } |
| |
| unsigned TargetSchedModel::getNumMicroOps(const MachineInstr *MI, |
| const MCSchedClassDesc *SC) const { |
| if (hasInstrItineraries()) { |
| int UOps = InstrItins.getNumMicroOps(MI->getDesc().getSchedClass()); |
| return (UOps >= 0) ? UOps : TII->getNumMicroOps(&InstrItins, MI); |
| } |
| if (hasInstrSchedModel()) { |
| if (!SC) |
| SC = resolveSchedClass(MI); |
| if (SC->isValid()) |
| return SC->NumMicroOps; |
| } |
| return MI->isTransient() ? 0 : 1; |
| } |
| |
| // The machine model may explicitly specify an invalid latency, which |
| // effectively means infinite latency. Since users of the TargetSchedule API |
| // don't know how to handle this, we convert it to a very large latency that is |
| // easy to distinguish when debugging the DAG but won't induce overflow. |
| static unsigned convertLatency(int Cycles) { |
| return Cycles >= 0 ? Cycles : 1000; |
| } |
| |
| /// If we can determine the operand latency from the def only, without machine |
| /// model or itinerary lookup, do so. Otherwise return -1. |
| int TargetSchedModel::getDefLatency(const MachineInstr *DefMI, |
| bool FindMin) const { |
| |
| // Return a latency based on the itinerary properties and defining instruction |
| // if possible. Some common subtargets don't require per-operand latency, |
| // especially for minimum latencies. |
| if (FindMin) { |
| // If MinLatency is invalid, then use the itinerary for MinLatency. If no |
| // itinerary exists either, then use single cycle latency. |
| if (SchedModel.MinLatency < 0 && !hasInstrItineraries()) { |
| return 1; |
| } |
| return SchedModel.MinLatency; |
| } |
| else if (!hasInstrSchedModel() && !hasInstrItineraries()) { |
| return TII->defaultDefLatency(&SchedModel, DefMI); |
| } |
| // ...operand lookup required |
| return -1; |
| } |
| |
| /// Return the MCSchedClassDesc for this instruction. Some SchedClasses require |
| /// evaluation of predicates that depend on instruction operands or flags. |
| const MCSchedClassDesc *TargetSchedModel:: |
| resolveSchedClass(const MachineInstr *MI) const { |
| |
| // Get the definition's scheduling class descriptor from this machine model. |
| unsigned SchedClass = MI->getDesc().getSchedClass(); |
| const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SchedClass); |
| |
| #ifndef NDEBUG |
| unsigned NIter = 0; |
| #endif |
| while (SCDesc->isVariant()) { |
| assert(++NIter < 6 && "Variants are nested deeper than the magic number"); |
| |
| SchedClass = STI->resolveSchedClass(SchedClass, MI, this); |
| SCDesc = SchedModel.getSchedClassDesc(SchedClass); |
| } |
| return SCDesc; |
| } |
| |
| /// Find the def index of this operand. This index maps to the machine model and |
| /// is independent of use operands. Def operands may be reordered with uses or |
| /// merged with uses without affecting the def index (e.g. before/after |
| /// regalloc). However, an instruction's def operands must never be reordered |
| /// with respect to each other. |
| static unsigned findDefIdx(const MachineInstr *MI, unsigned DefOperIdx) { |
| unsigned DefIdx = 0; |
| for (unsigned i = 0; i != DefOperIdx; ++i) { |
| const MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg() && MO.isDef()) |
| ++DefIdx; |
| } |
| return DefIdx; |
| } |
| |
| /// Find the use index of this operand. This is independent of the instruction's |
| /// def operands. |
| /// |
| /// Note that uses are not determined by the operand's isUse property, which |
| /// is simply the inverse of isDef. Here we consider any readsReg operand to be |
| /// a "use". The machine model allows an operand to be both a Def and Use. |
| static unsigned findUseIdx(const MachineInstr *MI, unsigned UseOperIdx) { |
| unsigned UseIdx = 0; |
| for (unsigned i = 0; i != UseOperIdx; ++i) { |
| const MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg() && MO.readsReg()) |
| ++UseIdx; |
| } |
| return UseIdx; |
| } |
| |
| // Top-level API for clients that know the operand indices. |
| unsigned TargetSchedModel::computeOperandLatency( |
| const MachineInstr *DefMI, unsigned DefOperIdx, |
| const MachineInstr *UseMI, unsigned UseOperIdx, |
| bool FindMin) const { |
| |
| int DefLatency = getDefLatency(DefMI, FindMin); |
| if (DefLatency >= 0) |
| return DefLatency; |
| |
| if (hasInstrItineraries()) { |
| int OperLatency = 0; |
| if (UseMI) { |
| OperLatency = |
| TII->getOperandLatency(&InstrItins, DefMI, DefOperIdx, UseMI, UseOperIdx); |
| } |
| else { |
| unsigned DefClass = DefMI->getDesc().getSchedClass(); |
| OperLatency = InstrItins.getOperandCycle(DefClass, DefOperIdx); |
| } |
| if (OperLatency >= 0) |
| return OperLatency; |
| |
| // No operand latency was found. |
| unsigned InstrLatency = TII->getInstrLatency(&InstrItins, DefMI); |
| |
| // Expected latency is the max of the stage latency and itinerary props. |
| // Rather than directly querying InstrItins stage latency, we call a TII |
| // hook to allow subtargets to specialize latency. This hook is only |
| // applicable to the InstrItins model. InstrSchedModel should model all |
| // special cases without TII hooks. |
| if (!FindMin) |
| InstrLatency = std::max(InstrLatency, |
| TII->defaultDefLatency(&SchedModel, DefMI)); |
| return InstrLatency; |
| } |
| assert(!FindMin && hasInstrSchedModel() && |
| "Expected a SchedModel for this cpu"); |
| const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI); |
| unsigned DefIdx = findDefIdx(DefMI, DefOperIdx); |
| if (DefIdx < SCDesc->NumWriteLatencyEntries) { |
| // Lookup the definition's write latency in SubtargetInfo. |
| const MCWriteLatencyEntry *WLEntry = |
| STI->getWriteLatencyEntry(SCDesc, DefIdx); |
| unsigned WriteID = WLEntry->WriteResourceID; |
| unsigned Latency = convertLatency(WLEntry->Cycles); |
| if (!UseMI) |
| return Latency; |
| |
| // Lookup the use's latency adjustment in SubtargetInfo. |
| const MCSchedClassDesc *UseDesc = resolveSchedClass(UseMI); |
| if (UseDesc->NumReadAdvanceEntries == 0) |
| return Latency; |
| unsigned UseIdx = findUseIdx(UseMI, UseOperIdx); |
| return Latency - STI->getReadAdvanceCycles(UseDesc, UseIdx, WriteID); |
| } |
| // If DefIdx does not exist in the model (e.g. implicit defs), then return |
| // unit latency (defaultDefLatency may be too conservative). |
| #ifndef NDEBUG |
| if (SCDesc->isValid() && !DefMI->getOperand(DefOperIdx).isImplicit() |
| && !DefMI->getDesc().OpInfo[DefOperIdx].isOptionalDef()) { |
| std::string Err; |
| raw_string_ostream ss(Err); |
| ss << "DefIdx " << DefIdx << " exceeds machine model writes for " |
| << *DefMI; |
| report_fatal_error(ss.str()); |
| } |
| #endif |
| return DefMI->isTransient() ? 0 : 1; |
| } |
| |
| unsigned TargetSchedModel::computeInstrLatency(const MachineInstr *MI) const { |
| // For the itinerary model, fall back to the old subtarget hook. |
| // Allow subtargets to compute Bundle latencies outside the machine model. |
| if (hasInstrItineraries() || MI->isBundle()) |
| return TII->getInstrLatency(&InstrItins, MI); |
| |
| if (hasInstrSchedModel()) { |
| const MCSchedClassDesc *SCDesc = resolveSchedClass(MI); |
| if (SCDesc->isValid()) { |
| unsigned Latency = 0; |
| for (unsigned DefIdx = 0, DefEnd = SCDesc->NumWriteLatencyEntries; |
| DefIdx != DefEnd; ++DefIdx) { |
| // Lookup the definition's write latency in SubtargetInfo. |
| const MCWriteLatencyEntry *WLEntry = |
| STI->getWriteLatencyEntry(SCDesc, DefIdx); |
| Latency = std::max(Latency, convertLatency(WLEntry->Cycles)); |
| } |
| return Latency; |
| } |
| } |
| return TII->defaultDefLatency(&SchedModel, MI); |
| } |
| |
| unsigned TargetSchedModel:: |
| computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx, |
| const MachineInstr *DepMI) const { |
| // MinLatency == -1 is for in-order processors that always have unit |
| // MinLatency. MinLatency > 0 is for in-order processors with varying min |
| // latencies, but since this is not a RAW dep, we always use unit latency. |
| if (SchedModel.MinLatency != 0) |
| return 1; |
| |
| // MinLatency == 0 indicates an out-of-order processor that can dispatch |
| // WAW dependencies in the same cycle. |
| |
| // Treat predication as a data dependency for out-of-order cpus. In-order |
| // cpus do not need to treat predicated writes specially. |
| // |
| // TODO: The following hack exists because predication passes do not |
| // correctly append imp-use operands, and readsReg() strangely returns false |
| // for predicated defs. |
| unsigned Reg = DefMI->getOperand(DefOperIdx).getReg(); |
| const MachineFunction &MF = *DefMI->getParent()->getParent(); |
| const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo(); |
| if (!DepMI->readsRegister(Reg, TRI) && TII->isPredicated(DepMI)) |
| return computeInstrLatency(DefMI); |
| |
| // If we have a per operand scheduling model, check if this def is writing |
| // an unbuffered resource. If so, it treated like an in-order cpu. |
| if (hasInstrSchedModel()) { |
| const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI); |
| if (SCDesc->isValid()) { |
| for (const MCWriteProcResEntry *PRI = STI->getWriteProcResBegin(SCDesc), |
| *PRE = STI->getWriteProcResEnd(SCDesc); PRI != PRE; ++PRI) { |
| if (!SchedModel.getProcResource(PRI->ProcResourceIdx)->IsBuffered) |
| return 1; |
| } |
| } |
| } |
| return 0; |
| } |