| //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the TwoAddress instruction pass which is used |
| // by most register allocators. Two-Address instructions are rewritten |
| // from: |
| // |
| // A = B op C |
| // |
| // to: |
| // |
| // A = B |
| // A op= C |
| // |
| // Note that if a register allocator chooses to use this pass, that it |
| // has to be capable of handling the non-SSA nature of these rewritten |
| // virtual registers. |
| // |
| // It is also worth noting that the duplicate operand of the two |
| // address instruction is removed. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "twoaddrinstr" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h" |
| #include "llvm/CodeGen/LiveVariables.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/MC/MCInstrItineraries.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| using namespace llvm; |
| |
| STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions"); |
| STATISTIC(NumCommuted , "Number of instructions commuted to coalesce"); |
| STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted"); |
| STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address"); |
| STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk"); |
| STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up"); |
| STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down"); |
| |
| namespace { |
| class TwoAddressInstructionPass : public MachineFunctionPass { |
| MachineFunction *MF; |
| const TargetInstrInfo *TII; |
| const TargetRegisterInfo *TRI; |
| const InstrItineraryData *InstrItins; |
| MachineRegisterInfo *MRI; |
| LiveVariables *LV; |
| LiveIntervals *LIS; |
| AliasAnalysis *AA; |
| CodeGenOpt::Level OptLevel; |
| |
| // The current basic block being processed. |
| MachineBasicBlock *MBB; |
| |
| // DistanceMap - Keep track the distance of a MI from the start of the |
| // current basic block. |
| DenseMap<MachineInstr*, unsigned> DistanceMap; |
| |
| // Set of already processed instructions in the current block. |
| SmallPtrSet<MachineInstr*, 8> Processed; |
| |
| // SrcRegMap - A map from virtual registers to physical registers which are |
| // likely targets to be coalesced to due to copies from physical registers to |
| // virtual registers. e.g. v1024 = move r0. |
| DenseMap<unsigned, unsigned> SrcRegMap; |
| |
| // DstRegMap - A map from virtual registers to physical registers which are |
| // likely targets to be coalesced to due to copies to physical registers from |
| // virtual registers. e.g. r1 = move v1024. |
| DenseMap<unsigned, unsigned> DstRegMap; |
| |
| bool sink3AddrInstruction(MachineInstr *MI, unsigned Reg, |
| MachineBasicBlock::iterator OldPos); |
| |
| bool noUseAfterLastDef(unsigned Reg, unsigned Dist, unsigned &LastDef); |
| |
| bool isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC, |
| MachineInstr *MI, unsigned Dist); |
| |
| bool commuteInstruction(MachineBasicBlock::iterator &mi, |
| unsigned RegB, unsigned RegC, unsigned Dist); |
| |
| bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB); |
| |
| bool convertInstTo3Addr(MachineBasicBlock::iterator &mi, |
| MachineBasicBlock::iterator &nmi, |
| unsigned RegA, unsigned RegB, unsigned Dist); |
| |
| bool isDefTooClose(unsigned Reg, unsigned Dist, MachineInstr *MI); |
| |
| bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, |
| MachineBasicBlock::iterator &nmi, |
| unsigned Reg); |
| bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, |
| MachineBasicBlock::iterator &nmi, |
| unsigned Reg); |
| |
| bool tryInstructionTransform(MachineBasicBlock::iterator &mi, |
| MachineBasicBlock::iterator &nmi, |
| unsigned SrcIdx, unsigned DstIdx, |
| unsigned Dist, bool shouldOnlyCommute); |
| |
| void scanUses(unsigned DstReg); |
| |
| void processCopy(MachineInstr *MI); |
| |
| typedef SmallVector<std::pair<unsigned, unsigned>, 4> TiedPairList; |
| typedef SmallDenseMap<unsigned, TiedPairList> TiedOperandMap; |
| bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&); |
| void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist); |
| void eliminateRegSequence(MachineBasicBlock::iterator&); |
| |
| public: |
| static char ID; // Pass identification, replacement for typeid |
| TwoAddressInstructionPass() : MachineFunctionPass(ID) { |
| initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesCFG(); |
| AU.addRequired<AliasAnalysis>(); |
| AU.addPreserved<LiveVariables>(); |
| AU.addPreserved<SlotIndexes>(); |
| AU.addPreserved<LiveIntervals>(); |
| AU.addPreservedID(MachineLoopInfoID); |
| AU.addPreservedID(MachineDominatorsID); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| /// runOnMachineFunction - Pass entry point. |
| bool runOnMachineFunction(MachineFunction&); |
| }; |
| } // end anonymous namespace |
| |
| char TwoAddressInstructionPass::ID = 0; |
| INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction", |
| "Two-Address instruction pass", false, false) |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis) |
| INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction", |
| "Two-Address instruction pass", false, false) |
| |
| char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID; |
| |
| static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, LiveIntervals *LIS); |
| |
| /// sink3AddrInstruction - A two-address instruction has been converted to a |
| /// three-address instruction to avoid clobbering a register. Try to sink it |
| /// past the instruction that would kill the above mentioned register to reduce |
| /// register pressure. |
| bool TwoAddressInstructionPass:: |
| sink3AddrInstruction(MachineInstr *MI, unsigned SavedReg, |
| MachineBasicBlock::iterator OldPos) { |
| // FIXME: Shouldn't we be trying to do this before we three-addressify the |
| // instruction? After this transformation is done, we no longer need |
| // the instruction to be in three-address form. |
| |
| // Check if it's safe to move this instruction. |
| bool SeenStore = true; // Be conservative. |
| if (!MI->isSafeToMove(TII, AA, SeenStore)) |
| return false; |
| |
| unsigned DefReg = 0; |
| SmallSet<unsigned, 4> UseRegs; |
| |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg()) |
| continue; |
| unsigned MOReg = MO.getReg(); |
| if (!MOReg) |
| continue; |
| if (MO.isUse() && MOReg != SavedReg) |
| UseRegs.insert(MO.getReg()); |
| if (!MO.isDef()) |
| continue; |
| if (MO.isImplicit()) |
| // Don't try to move it if it implicitly defines a register. |
| return false; |
| if (DefReg) |
| // For now, don't move any instructions that define multiple registers. |
| return false; |
| DefReg = MO.getReg(); |
| } |
| |
| // Find the instruction that kills SavedReg. |
| MachineInstr *KillMI = NULL; |
| if (LIS) { |
| LiveInterval &LI = LIS->getInterval(SavedReg); |
| assert(LI.end() != LI.begin() && |
| "Reg should not have empty live interval."); |
| |
| SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); |
| LiveInterval::const_iterator I = LI.find(MBBEndIdx); |
| if (I != LI.end() && I->start < MBBEndIdx) |
| return false; |
| |
| --I; |
| KillMI = LIS->getInstructionFromIndex(I->end); |
| } |
| if (!KillMI) { |
| for (MachineRegisterInfo::use_nodbg_iterator |
| UI = MRI->use_nodbg_begin(SavedReg), |
| UE = MRI->use_nodbg_end(); UI != UE; ++UI) { |
| MachineOperand &UseMO = UI.getOperand(); |
| if (!UseMO.isKill()) |
| continue; |
| KillMI = UseMO.getParent(); |
| break; |
| } |
| } |
| |
| // If we find the instruction that kills SavedReg, and it is in an |
| // appropriate location, we can try to sink the current instruction |
| // past it. |
| if (!KillMI || KillMI->getParent() != MBB || KillMI == MI || |
| KillMI == OldPos || KillMI->isTerminator()) |
| return false; |
| |
| // If any of the definitions are used by another instruction between the |
| // position and the kill use, then it's not safe to sink it. |
| // |
| // FIXME: This can be sped up if there is an easy way to query whether an |
| // instruction is before or after another instruction. Then we can use |
| // MachineRegisterInfo def / use instead. |
| MachineOperand *KillMO = NULL; |
| MachineBasicBlock::iterator KillPos = KillMI; |
| ++KillPos; |
| |
| unsigned NumVisited = 0; |
| for (MachineBasicBlock::iterator I = llvm::next(OldPos); I != KillPos; ++I) { |
| MachineInstr *OtherMI = I; |
| // DBG_VALUE cannot be counted against the limit. |
| if (OtherMI->isDebugValue()) |
| continue; |
| if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost. |
| return false; |
| ++NumVisited; |
| for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = OtherMI->getOperand(i); |
| if (!MO.isReg()) |
| continue; |
| unsigned MOReg = MO.getReg(); |
| if (!MOReg) |
| continue; |
| if (DefReg == MOReg) |
| return false; |
| |
| if (MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS))) { |
| if (OtherMI == KillMI && MOReg == SavedReg) |
| // Save the operand that kills the register. We want to unset the kill |
| // marker if we can sink MI past it. |
| KillMO = &MO; |
| else if (UseRegs.count(MOReg)) |
| // One of the uses is killed before the destination. |
| return false; |
| } |
| } |
| } |
| assert(KillMO && "Didn't find kill"); |
| |
| if (!LIS) { |
| // Update kill and LV information. |
| KillMO->setIsKill(false); |
| KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI); |
| KillMO->setIsKill(true); |
| |
| if (LV) |
| LV->replaceKillInstruction(SavedReg, KillMI, MI); |
| } |
| |
| // Move instruction to its destination. |
| MBB->remove(MI); |
| MBB->insert(KillPos, MI); |
| |
| if (LIS) |
| LIS->handleMove(MI); |
| |
| ++Num3AddrSunk; |
| return true; |
| } |
| |
| /// noUseAfterLastDef - Return true if there are no intervening uses between the |
| /// last instruction in the MBB that defines the specified register and the |
| /// two-address instruction which is being processed. It also returns the last |
| /// def location by reference |
| bool TwoAddressInstructionPass::noUseAfterLastDef(unsigned Reg, unsigned Dist, |
| unsigned &LastDef) { |
| LastDef = 0; |
| unsigned LastUse = Dist; |
| for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg), |
| E = MRI->reg_end(); I != E; ++I) { |
| MachineOperand &MO = I.getOperand(); |
| MachineInstr *MI = MO.getParent(); |
| if (MI->getParent() != MBB || MI->isDebugValue()) |
| continue; |
| DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); |
| if (DI == DistanceMap.end()) |
| continue; |
| if (MO.isUse() && DI->second < LastUse) |
| LastUse = DI->second; |
| if (MO.isDef() && DI->second > LastDef) |
| LastDef = DI->second; |
| } |
| |
| return !(LastUse > LastDef && LastUse < Dist); |
| } |
| |
| /// isCopyToReg - Return true if the specified MI is a copy instruction or |
| /// a extract_subreg instruction. It also returns the source and destination |
| /// registers and whether they are physical registers by reference. |
| static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII, |
| unsigned &SrcReg, unsigned &DstReg, |
| bool &IsSrcPhys, bool &IsDstPhys) { |
| SrcReg = 0; |
| DstReg = 0; |
| if (MI.isCopy()) { |
| DstReg = MI.getOperand(0).getReg(); |
| SrcReg = MI.getOperand(1).getReg(); |
| } else if (MI.isInsertSubreg() || MI.isSubregToReg()) { |
| DstReg = MI.getOperand(0).getReg(); |
| SrcReg = MI.getOperand(2).getReg(); |
| } else |
| return false; |
| |
| IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg); |
| IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); |
| return true; |
| } |
| |
| /// isPLainlyKilled - Test if the given register value, which is used by the |
| // given instruction, is killed by the given instruction. |
| static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, |
| LiveIntervals *LIS) { |
| if (LIS && TargetRegisterInfo::isVirtualRegister(Reg) && |
| !LIS->isNotInMIMap(MI)) { |
| // FIXME: Sometimes tryInstructionTransform() will add instructions and |
| // test whether they can be folded before keeping them. In this case it |
| // sets a kill before recursively calling tryInstructionTransform() again. |
| // If there is no interval available, we assume that this instruction is |
| // one of those. A kill flag is manually inserted on the operand so the |
| // check below will handle it. |
| LiveInterval &LI = LIS->getInterval(Reg); |
| // This is to match the kill flag version where undefs don't have kill |
| // flags. |
| if (!LI.hasAtLeastOneValue()) |
| return false; |
| |
| SlotIndex useIdx = LIS->getInstructionIndex(MI); |
| LiveInterval::const_iterator I = LI.find(useIdx); |
| assert(I != LI.end() && "Reg must be live-in to use."); |
| return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx); |
| } |
| |
| return MI->killsRegister(Reg); |
| } |
| |
| /// isKilled - Test if the given register value, which is used by the given |
| /// instruction, is killed by the given instruction. This looks through |
| /// coalescable copies to see if the original value is potentially not killed. |
| /// |
| /// For example, in this code: |
| /// |
| /// %reg1034 = copy %reg1024 |
| /// %reg1035 = copy %reg1025<kill> |
| /// %reg1036 = add %reg1034<kill>, %reg1035<kill> |
| /// |
| /// %reg1034 is not considered to be killed, since it is copied from a |
| /// register which is not killed. Treating it as not killed lets the |
| /// normal heuristics commute the (two-address) add, which lets |
| /// coalescing eliminate the extra copy. |
| /// |
| /// If allowFalsePositives is true then likely kills are treated as kills even |
| /// if it can't be proven that they are kills. |
| static bool isKilled(MachineInstr &MI, unsigned Reg, |
| const MachineRegisterInfo *MRI, |
| const TargetInstrInfo *TII, |
| LiveIntervals *LIS, |
| bool allowFalsePositives) { |
| MachineInstr *DefMI = &MI; |
| for (;;) { |
| // All uses of physical registers are likely to be kills. |
| if (TargetRegisterInfo::isPhysicalRegister(Reg) && |
| (allowFalsePositives || MRI->hasOneUse(Reg))) |
| return true; |
| if (!isPlainlyKilled(DefMI, Reg, LIS)) |
| return false; |
| if (TargetRegisterInfo::isPhysicalRegister(Reg)) |
| return true; |
| MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg); |
| // If there are multiple defs, we can't do a simple analysis, so just |
| // go with what the kill flag says. |
| if (llvm::next(Begin) != MRI->def_end()) |
| return true; |
| DefMI = &*Begin; |
| bool IsSrcPhys, IsDstPhys; |
| unsigned SrcReg, DstReg; |
| // If the def is something other than a copy, then it isn't going to |
| // be coalesced, so follow the kill flag. |
| if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) |
| return true; |
| Reg = SrcReg; |
| } |
| } |
| |
| /// isTwoAddrUse - Return true if the specified MI uses the specified register |
| /// as a two-address use. If so, return the destination register by reference. |
| static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) { |
| const MCInstrDesc &MCID = MI.getDesc(); |
| unsigned NumOps = MI.isInlineAsm() |
| ? MI.getNumOperands() : MCID.getNumOperands(); |
| for (unsigned i = 0; i != NumOps; ++i) { |
| const MachineOperand &MO = MI.getOperand(i); |
| if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) |
| continue; |
| unsigned ti; |
| if (MI.isRegTiedToDefOperand(i, &ti)) { |
| DstReg = MI.getOperand(ti).getReg(); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// findOnlyInterestingUse - Given a register, if has a single in-basic block |
| /// use, return the use instruction if it's a copy or a two-address use. |
| static |
| MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB, |
| MachineRegisterInfo *MRI, |
| const TargetInstrInfo *TII, |
| bool &IsCopy, |
| unsigned &DstReg, bool &IsDstPhys) { |
| if (!MRI->hasOneNonDBGUse(Reg)) |
| // None or more than one use. |
| return 0; |
| MachineInstr &UseMI = *MRI->use_nodbg_begin(Reg); |
| if (UseMI.getParent() != MBB) |
| return 0; |
| unsigned SrcReg; |
| bool IsSrcPhys; |
| if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) { |
| IsCopy = true; |
| return &UseMI; |
| } |
| IsDstPhys = false; |
| if (isTwoAddrUse(UseMI, Reg, DstReg)) { |
| IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); |
| return &UseMI; |
| } |
| return 0; |
| } |
| |
| /// getMappedReg - Return the physical register the specified virtual register |
| /// might be mapped to. |
| static unsigned |
| getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) { |
| while (TargetRegisterInfo::isVirtualRegister(Reg)) { |
| DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg); |
| if (SI == RegMap.end()) |
| return 0; |
| Reg = SI->second; |
| } |
| if (TargetRegisterInfo::isPhysicalRegister(Reg)) |
| return Reg; |
| return 0; |
| } |
| |
| /// regsAreCompatible - Return true if the two registers are equal or aliased. |
| /// |
| static bool |
| regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) { |
| if (RegA == RegB) |
| return true; |
| if (!RegA || !RegB) |
| return false; |
| return TRI->regsOverlap(RegA, RegB); |
| } |
| |
| |
| /// isProfitableToCommute - Return true if it's potentially profitable to commute |
| /// the two-address instruction that's being processed. |
| bool |
| TwoAddressInstructionPass:: |
| isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC, |
| MachineInstr *MI, unsigned Dist) { |
| if (OptLevel == CodeGenOpt::None) |
| return false; |
| |
| // Determine if it's profitable to commute this two address instruction. In |
| // general, we want no uses between this instruction and the definition of |
| // the two-address register. |
| // e.g. |
| // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1 |
| // %reg1029<def> = MOV8rr %reg1028 |
| // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead> |
| // insert => %reg1030<def> = MOV8rr %reg1028 |
| // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead> |
| // In this case, it might not be possible to coalesce the second MOV8rr |
| // instruction if the first one is coalesced. So it would be profitable to |
| // commute it: |
| // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1 |
| // %reg1029<def> = MOV8rr %reg1028 |
| // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead> |
| // insert => %reg1030<def> = MOV8rr %reg1029 |
| // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead> |
| |
| if (!isPlainlyKilled(MI, regC, LIS)) |
| return false; |
| |
| // Ok, we have something like: |
| // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead> |
| // let's see if it's worth commuting it. |
| |
| // Look for situations like this: |
| // %reg1024<def> = MOV r1 |
| // %reg1025<def> = MOV r0 |
| // %reg1026<def> = ADD %reg1024, %reg1025 |
| // r0 = MOV %reg1026 |
| // Commute the ADD to hopefully eliminate an otherwise unavoidable copy. |
| unsigned ToRegA = getMappedReg(regA, DstRegMap); |
| if (ToRegA) { |
| unsigned FromRegB = getMappedReg(regB, SrcRegMap); |
| unsigned FromRegC = getMappedReg(regC, SrcRegMap); |
| bool BComp = !FromRegB || regsAreCompatible(FromRegB, ToRegA, TRI); |
| bool CComp = !FromRegC || regsAreCompatible(FromRegC, ToRegA, TRI); |
| if (BComp != CComp) |
| return !BComp && CComp; |
| } |
| |
| // If there is a use of regC between its last def (could be livein) and this |
| // instruction, then bail. |
| unsigned LastDefC = 0; |
| if (!noUseAfterLastDef(regC, Dist, LastDefC)) |
| return false; |
| |
| // If there is a use of regB between its last def (could be livein) and this |
| // instruction, then go ahead and make this transformation. |
| unsigned LastDefB = 0; |
| if (!noUseAfterLastDef(regB, Dist, LastDefB)) |
| return true; |
| |
| // Since there are no intervening uses for both registers, then commute |
| // if the def of regC is closer. Its live interval is shorter. |
| return LastDefB && LastDefC && LastDefC > LastDefB; |
| } |
| |
| /// commuteInstruction - Commute a two-address instruction and update the basic |
| /// block, distance map, and live variables if needed. Return true if it is |
| /// successful. |
| bool TwoAddressInstructionPass:: |
| commuteInstruction(MachineBasicBlock::iterator &mi, |
| unsigned RegB, unsigned RegC, unsigned Dist) { |
| MachineInstr *MI = mi; |
| DEBUG(dbgs() << "2addr: COMMUTING : " << *MI); |
| MachineInstr *NewMI = TII->commuteInstruction(MI); |
| |
| if (NewMI == 0) { |
| DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n"); |
| return false; |
| } |
| |
| DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI); |
| assert(NewMI == MI && |
| "TargetInstrInfo::commuteInstruction() should not return a new " |
| "instruction unless it was requested."); |
| |
| // Update source register map. |
| unsigned FromRegC = getMappedReg(RegC, SrcRegMap); |
| if (FromRegC) { |
| unsigned RegA = MI->getOperand(0).getReg(); |
| SrcRegMap[RegA] = FromRegC; |
| } |
| |
| return true; |
| } |
| |
| /// isProfitableToConv3Addr - Return true if it is profitable to convert the |
| /// given 2-address instruction to a 3-address one. |
| bool |
| TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){ |
| // Look for situations like this: |
| // %reg1024<def> = MOV r1 |
| // %reg1025<def> = MOV r0 |
| // %reg1026<def> = ADD %reg1024, %reg1025 |
| // r2 = MOV %reg1026 |
| // Turn ADD into a 3-address instruction to avoid a copy. |
| unsigned FromRegB = getMappedReg(RegB, SrcRegMap); |
| if (!FromRegB) |
| return false; |
| unsigned ToRegA = getMappedReg(RegA, DstRegMap); |
| return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI)); |
| } |
| |
| /// convertInstTo3Addr - Convert the specified two-address instruction into a |
| /// three address one. Return true if this transformation was successful. |
| bool |
| TwoAddressInstructionPass::convertInstTo3Addr(MachineBasicBlock::iterator &mi, |
| MachineBasicBlock::iterator &nmi, |
| unsigned RegA, unsigned RegB, |
| unsigned Dist) { |
| // FIXME: Why does convertToThreeAddress() need an iterator reference? |
| MachineFunction::iterator MFI = MBB; |
| MachineInstr *NewMI = TII->convertToThreeAddress(MFI, mi, LV); |
| assert(MBB == MFI && "convertToThreeAddress changed iterator reference"); |
| if (!NewMI) |
| return false; |
| |
| DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi); |
| DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI); |
| bool Sunk = false; |
| |
| if (LIS) |
| LIS->ReplaceMachineInstrInMaps(mi, NewMI); |
| |
| if (NewMI->findRegisterUseOperand(RegB, false, TRI)) |
| // FIXME: Temporary workaround. If the new instruction doesn't |
| // uses RegB, convertToThreeAddress must have created more |
| // then one instruction. |
| Sunk = sink3AddrInstruction(NewMI, RegB, mi); |
| |
| MBB->erase(mi); // Nuke the old inst. |
| |
| if (!Sunk) { |
| DistanceMap.insert(std::make_pair(NewMI, Dist)); |
| mi = NewMI; |
| nmi = llvm::next(mi); |
| } |
| |
| // Update source and destination register maps. |
| SrcRegMap.erase(RegA); |
| DstRegMap.erase(RegB); |
| return true; |
| } |
| |
| /// scanUses - Scan forward recursively for only uses, update maps if the use |
| /// is a copy or a two-address instruction. |
| void |
| TwoAddressInstructionPass::scanUses(unsigned DstReg) { |
| SmallVector<unsigned, 4> VirtRegPairs; |
| bool IsDstPhys; |
| bool IsCopy = false; |
| unsigned NewReg = 0; |
| unsigned Reg = DstReg; |
| while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy, |
| NewReg, IsDstPhys)) { |
| if (IsCopy && !Processed.insert(UseMI)) |
| break; |
| |
| DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); |
| if (DI != DistanceMap.end()) |
| // Earlier in the same MBB.Reached via a back edge. |
| break; |
| |
| if (IsDstPhys) { |
| VirtRegPairs.push_back(NewReg); |
| break; |
| } |
| bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second; |
| if (!isNew) |
| assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!"); |
| VirtRegPairs.push_back(NewReg); |
| Reg = NewReg; |
| } |
| |
| if (!VirtRegPairs.empty()) { |
| unsigned ToReg = VirtRegPairs.back(); |
| VirtRegPairs.pop_back(); |
| while (!VirtRegPairs.empty()) { |
| unsigned FromReg = VirtRegPairs.back(); |
| VirtRegPairs.pop_back(); |
| bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second; |
| if (!isNew) |
| assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!"); |
| ToReg = FromReg; |
| } |
| bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second; |
| if (!isNew) |
| assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!"); |
| } |
| } |
| |
| /// processCopy - If the specified instruction is not yet processed, process it |
| /// if it's a copy. For a copy instruction, we find the physical registers the |
| /// source and destination registers might be mapped to. These are kept in |
| /// point-to maps used to determine future optimizations. e.g. |
| /// v1024 = mov r0 |
| /// v1025 = mov r1 |
| /// v1026 = add v1024, v1025 |
| /// r1 = mov r1026 |
| /// If 'add' is a two-address instruction, v1024, v1026 are both potentially |
| /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is |
| /// potentially joined with r1 on the output side. It's worthwhile to commute |
| /// 'add' to eliminate a copy. |
| void TwoAddressInstructionPass::processCopy(MachineInstr *MI) { |
| if (Processed.count(MI)) |
| return; |
| |
| bool IsSrcPhys, IsDstPhys; |
| unsigned SrcReg, DstReg; |
| if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) |
| return; |
| |
| if (IsDstPhys && !IsSrcPhys) |
| DstRegMap.insert(std::make_pair(SrcReg, DstReg)); |
| else if (!IsDstPhys && IsSrcPhys) { |
| bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second; |
| if (!isNew) |
| assert(SrcRegMap[DstReg] == SrcReg && |
| "Can't map to two src physical registers!"); |
| |
| scanUses(DstReg); |
| } |
| |
| Processed.insert(MI); |
| return; |
| } |
| |
| /// rescheduleMIBelowKill - If there is one more local instruction that reads |
| /// 'Reg' and it kills 'Reg, consider moving the instruction below the kill |
| /// instruction in order to eliminate the need for the copy. |
| bool TwoAddressInstructionPass:: |
| rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, |
| MachineBasicBlock::iterator &nmi, |
| unsigned Reg) { |
| // Bail immediately if we don't have LV or LIS available. We use them to find |
| // kills efficiently. |
| if (!LV && !LIS) |
| return false; |
| |
| MachineInstr *MI = &*mi; |
| DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); |
| if (DI == DistanceMap.end()) |
| // Must be created from unfolded load. Don't waste time trying this. |
| return false; |
| |
| MachineInstr *KillMI = 0; |
| if (LIS) { |
| LiveInterval &LI = LIS->getInterval(Reg); |
| assert(LI.end() != LI.begin() && |
| "Reg should not have empty live interval."); |
| |
| SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); |
| LiveInterval::const_iterator I = LI.find(MBBEndIdx); |
| if (I != LI.end() && I->start < MBBEndIdx) |
| return false; |
| |
| --I; |
| KillMI = LIS->getInstructionFromIndex(I->end); |
| } else { |
| KillMI = LV->getVarInfo(Reg).findKill(MBB); |
| } |
| if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) |
| // Don't mess with copies, they may be coalesced later. |
| return false; |
| |
| if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() || |
| KillMI->isBranch() || KillMI->isTerminator()) |
| // Don't move pass calls, etc. |
| return false; |
| |
| unsigned DstReg; |
| if (isTwoAddrUse(*KillMI, Reg, DstReg)) |
| return false; |
| |
| bool SeenStore = true; |
| if (!MI->isSafeToMove(TII, AA, SeenStore)) |
| return false; |
| |
| if (TII->getInstrLatency(InstrItins, MI) > 1) |
| // FIXME: Needs more sophisticated heuristics. |
| return false; |
| |
| SmallSet<unsigned, 2> Uses; |
| SmallSet<unsigned, 2> Kills; |
| SmallSet<unsigned, 2> Defs; |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg()) |
| continue; |
| unsigned MOReg = MO.getReg(); |
| if (!MOReg) |
| continue; |
| if (MO.isDef()) |
| Defs.insert(MOReg); |
| else { |
| Uses.insert(MOReg); |
| if (MOReg != Reg && (MO.isKill() || |
| (LIS && isPlainlyKilled(MI, MOReg, LIS)))) |
| Kills.insert(MOReg); |
| } |
| } |
| |
| // Move the copies connected to MI down as well. |
| MachineBasicBlock::iterator Begin = MI; |
| MachineBasicBlock::iterator AfterMI = llvm::next(Begin); |
| |
| MachineBasicBlock::iterator End = AfterMI; |
| while (End->isCopy() && Defs.count(End->getOperand(1).getReg())) { |
| Defs.insert(End->getOperand(0).getReg()); |
| ++End; |
| } |
| |
| // Check if the reschedule will not break depedencies. |
| unsigned NumVisited = 0; |
| MachineBasicBlock::iterator KillPos = KillMI; |
| ++KillPos; |
| for (MachineBasicBlock::iterator I = End; I != KillPos; ++I) { |
| MachineInstr *OtherMI = I; |
| // DBG_VALUE cannot be counted against the limit. |
| if (OtherMI->isDebugValue()) |
| continue; |
| if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. |
| return false; |
| ++NumVisited; |
| if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() || |
| OtherMI->isBranch() || OtherMI->isTerminator()) |
| // Don't move pass calls, etc. |
| return false; |
| for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = OtherMI->getOperand(i); |
| if (!MO.isReg()) |
| continue; |
| unsigned MOReg = MO.getReg(); |
| if (!MOReg) |
| continue; |
| if (MO.isDef()) { |
| if (Uses.count(MOReg)) |
| // Physical register use would be clobbered. |
| return false; |
| if (!MO.isDead() && Defs.count(MOReg)) |
| // May clobber a physical register def. |
| // FIXME: This may be too conservative. It's ok if the instruction |
| // is sunken completely below the use. |
| return false; |
| } else { |
| if (Defs.count(MOReg)) |
| return false; |
| bool isKill = MO.isKill() || |
| (LIS && isPlainlyKilled(OtherMI, MOReg, LIS)); |
| if (MOReg != Reg && |
| ((isKill && Uses.count(MOReg)) || Kills.count(MOReg))) |
| // Don't want to extend other live ranges and update kills. |
| return false; |
| if (MOReg == Reg && !isKill) |
| // We can't schedule across a use of the register in question. |
| return false; |
| // Ensure that if this is register in question, its the kill we expect. |
| assert((MOReg != Reg || OtherMI == KillMI) && |
| "Found multiple kills of a register in a basic block"); |
| } |
| } |
| } |
| |
| // Move debug info as well. |
| while (Begin != MBB->begin() && llvm::prior(Begin)->isDebugValue()) |
| --Begin; |
| |
| nmi = End; |
| MachineBasicBlock::iterator InsertPos = KillPos; |
| if (LIS) { |
| // We have to move the copies first so that the MBB is still well-formed |
| // when calling handleMove(). |
| for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) { |
| MachineInstr *CopyMI = MBBI; |
| ++MBBI; |
| MBB->splice(InsertPos, MBB, CopyMI); |
| LIS->handleMove(CopyMI); |
| InsertPos = CopyMI; |
| } |
| End = llvm::next(MachineBasicBlock::iterator(MI)); |
| } |
| |
| // Copies following MI may have been moved as well. |
| MBB->splice(InsertPos, MBB, Begin, End); |
| DistanceMap.erase(DI); |
| |
| // Update live variables |
| if (LIS) { |
| LIS->handleMove(MI); |
| } else { |
| LV->removeVirtualRegisterKilled(Reg, KillMI); |
| LV->addVirtualRegisterKilled(Reg, MI); |
| } |
| |
| DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI); |
| return true; |
| } |
| |
| /// isDefTooClose - Return true if the re-scheduling will put the given |
| /// instruction too close to the defs of its register dependencies. |
| bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist, |
| MachineInstr *MI) { |
| for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(Reg), |
| DE = MRI->def_end(); DI != DE; ++DI) { |
| MachineInstr *DefMI = &*DI; |
| if (DefMI->getParent() != MBB || DefMI->isCopy() || DefMI->isCopyLike()) |
| continue; |
| if (DefMI == MI) |
| return true; // MI is defining something KillMI uses |
| DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(DefMI); |
| if (DDI == DistanceMap.end()) |
| return true; // Below MI |
| unsigned DefDist = DDI->second; |
| assert(Dist > DefDist && "Visited def already?"); |
| if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist)) |
| return true; |
| } |
| return false; |
| } |
| |
| /// rescheduleKillAboveMI - If there is one more local instruction that reads |
| /// 'Reg' and it kills 'Reg, consider moving the kill instruction above the |
| /// current two-address instruction in order to eliminate the need for the |
| /// copy. |
| bool TwoAddressInstructionPass:: |
| rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, |
| MachineBasicBlock::iterator &nmi, |
| unsigned Reg) { |
| // Bail immediately if we don't have LV or LIS available. We use them to find |
| // kills efficiently. |
| if (!LV && !LIS) |
| return false; |
| |
| MachineInstr *MI = &*mi; |
| DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); |
| if (DI == DistanceMap.end()) |
| // Must be created from unfolded load. Don't waste time trying this. |
| return false; |
| |
| MachineInstr *KillMI = 0; |
| if (LIS) { |
| LiveInterval &LI = LIS->getInterval(Reg); |
| assert(LI.end() != LI.begin() && |
| "Reg should not have empty live interval."); |
| |
| SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); |
| LiveInterval::const_iterator I = LI.find(MBBEndIdx); |
| if (I != LI.end() && I->start < MBBEndIdx) |
| return false; |
| |
| --I; |
| KillMI = LIS->getInstructionFromIndex(I->end); |
| } else { |
| KillMI = LV->getVarInfo(Reg).findKill(MBB); |
| } |
| if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) |
| // Don't mess with copies, they may be coalesced later. |
| return false; |
| |
| unsigned DstReg; |
| if (isTwoAddrUse(*KillMI, Reg, DstReg)) |
| return false; |
| |
| bool SeenStore = true; |
| if (!KillMI->isSafeToMove(TII, AA, SeenStore)) |
| return false; |
| |
| SmallSet<unsigned, 2> Uses; |
| SmallSet<unsigned, 2> Kills; |
| SmallSet<unsigned, 2> Defs; |
| SmallSet<unsigned, 2> LiveDefs; |
| for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = KillMI->getOperand(i); |
| if (!MO.isReg()) |
| continue; |
| unsigned MOReg = MO.getReg(); |
| if (MO.isUse()) { |
| if (!MOReg) |
| continue; |
| if (isDefTooClose(MOReg, DI->second, MI)) |
| return false; |
| bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS)); |
| if (MOReg == Reg && !isKill) |
| return false; |
| Uses.insert(MOReg); |
| if (isKill && MOReg != Reg) |
| Kills.insert(MOReg); |
| } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) { |
| Defs.insert(MOReg); |
| if (!MO.isDead()) |
| LiveDefs.insert(MOReg); |
| } |
| } |
| |
| // Check if the reschedule will not break depedencies. |
| unsigned NumVisited = 0; |
| MachineBasicBlock::iterator KillPos = KillMI; |
| for (MachineBasicBlock::iterator I = mi; I != KillPos; ++I) { |
| MachineInstr *OtherMI = I; |
| // DBG_VALUE cannot be counted against the limit. |
| if (OtherMI->isDebugValue()) |
| continue; |
| if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. |
| return false; |
| ++NumVisited; |
| if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() || |
| OtherMI->isBranch() || OtherMI->isTerminator()) |
| // Don't move pass calls, etc. |
| return false; |
| SmallVector<unsigned, 2> OtherDefs; |
| for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = OtherMI->getOperand(i); |
| if (!MO.isReg()) |
| continue; |
| unsigned MOReg = MO.getReg(); |
| if (!MOReg) |
| continue; |
| if (MO.isUse()) { |
| if (Defs.count(MOReg)) |
| // Moving KillMI can clobber the physical register if the def has |
| // not been seen. |
| return false; |
| if (Kills.count(MOReg)) |
| // Don't want to extend other live ranges and update kills. |
| return false; |
| if (OtherMI != MI && MOReg == Reg && |
| !(MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS)))) |
| // We can't schedule across a use of the register in question. |
| return false; |
| } else { |
| OtherDefs.push_back(MOReg); |
| } |
| } |
| |
| for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) { |
| unsigned MOReg = OtherDefs[i]; |
| if (Uses.count(MOReg)) |
| return false; |
| if (TargetRegisterInfo::isPhysicalRegister(MOReg) && |
| LiveDefs.count(MOReg)) |
| return false; |
| // Physical register def is seen. |
| Defs.erase(MOReg); |
| } |
| } |
| |
| // Move the old kill above MI, don't forget to move debug info as well. |
| MachineBasicBlock::iterator InsertPos = mi; |
| while (InsertPos != MBB->begin() && llvm::prior(InsertPos)->isDebugValue()) |
| --InsertPos; |
| MachineBasicBlock::iterator From = KillMI; |
| MachineBasicBlock::iterator To = llvm::next(From); |
| while (llvm::prior(From)->isDebugValue()) |
| --From; |
| MBB->splice(InsertPos, MBB, From, To); |
| |
| nmi = llvm::prior(InsertPos); // Backtrack so we process the moved instr. |
| DistanceMap.erase(DI); |
| |
| // Update live variables |
| if (LIS) { |
| LIS->handleMove(KillMI); |
| } else { |
| LV->removeVirtualRegisterKilled(Reg, KillMI); |
| LV->addVirtualRegisterKilled(Reg, MI); |
| } |
| |
| DEBUG(dbgs() << "\trescheduled kill: " << *KillMI); |
| return true; |
| } |
| |
| /// tryInstructionTransform - For the case where an instruction has a single |
| /// pair of tied register operands, attempt some transformations that may |
| /// either eliminate the tied operands or improve the opportunities for |
| /// coalescing away the register copy. Returns true if no copy needs to be |
| /// inserted to untie mi's operands (either because they were untied, or |
| /// because mi was rescheduled, and will be visited again later). If the |
| /// shouldOnlyCommute flag is true, only instruction commutation is attempted. |
| bool TwoAddressInstructionPass:: |
| tryInstructionTransform(MachineBasicBlock::iterator &mi, |
| MachineBasicBlock::iterator &nmi, |
| unsigned SrcIdx, unsigned DstIdx, |
| unsigned Dist, bool shouldOnlyCommute) { |
| if (OptLevel == CodeGenOpt::None) |
| return false; |
| |
| MachineInstr &MI = *mi; |
| unsigned regA = MI.getOperand(DstIdx).getReg(); |
| unsigned regB = MI.getOperand(SrcIdx).getReg(); |
| |
| assert(TargetRegisterInfo::isVirtualRegister(regB) && |
| "cannot make instruction into two-address form"); |
| bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); |
| |
| if (TargetRegisterInfo::isVirtualRegister(regA)) |
| scanUses(regA); |
| |
| // Check if it is profitable to commute the operands. |
| unsigned SrcOp1, SrcOp2; |
| unsigned regC = 0; |
| unsigned regCIdx = ~0U; |
| bool TryCommute = false; |
| bool AggressiveCommute = false; |
| if (MI.isCommutable() && MI.getNumOperands() >= 3 && |
| TII->findCommutedOpIndices(&MI, SrcOp1, SrcOp2)) { |
| if (SrcIdx == SrcOp1) |
| regCIdx = SrcOp2; |
| else if (SrcIdx == SrcOp2) |
| regCIdx = SrcOp1; |
| |
| if (regCIdx != ~0U) { |
| regC = MI.getOperand(regCIdx).getReg(); |
| if (!regBKilled && isKilled(MI, regC, MRI, TII, LIS, false)) |
| // If C dies but B does not, swap the B and C operands. |
| // This makes the live ranges of A and C joinable. |
| TryCommute = true; |
| else if (isProfitableToCommute(regA, regB, regC, &MI, Dist)) { |
| TryCommute = true; |
| AggressiveCommute = true; |
| } |
| } |
| } |
| |
| // If it's profitable to commute, try to do so. |
| if (TryCommute && commuteInstruction(mi, regB, regC, Dist)) { |
| ++NumCommuted; |
| if (AggressiveCommute) |
| ++NumAggrCommuted; |
| return false; |
| } |
| |
| if (shouldOnlyCommute) |
| return false; |
| |
| // If there is one more use of regB later in the same MBB, consider |
| // re-schedule this MI below it. |
| if (rescheduleMIBelowKill(mi, nmi, regB)) { |
| ++NumReSchedDowns; |
| return true; |
| } |
| |
| if (MI.isConvertibleTo3Addr()) { |
| // This instruction is potentially convertible to a true |
| // three-address instruction. Check if it is profitable. |
| if (!regBKilled || isProfitableToConv3Addr(regA, regB)) { |
| // Try to convert it. |
| if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) { |
| ++NumConvertedTo3Addr; |
| return true; // Done with this instruction. |
| } |
| } |
| } |
| |
| // If there is one more use of regB later in the same MBB, consider |
| // re-schedule it before this MI if it's legal. |
| if (rescheduleKillAboveMI(mi, nmi, regB)) { |
| ++NumReSchedUps; |
| return true; |
| } |
| |
| // If this is an instruction with a load folded into it, try unfolding |
| // the load, e.g. avoid this: |
| // movq %rdx, %rcx |
| // addq (%rax), %rcx |
| // in favor of this: |
| // movq (%rax), %rcx |
| // addq %rdx, %rcx |
| // because it's preferable to schedule a load than a register copy. |
| if (MI.mayLoad() && !regBKilled) { |
| // Determine if a load can be unfolded. |
| unsigned LoadRegIndex; |
| unsigned NewOpc = |
| TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), |
| /*UnfoldLoad=*/true, |
| /*UnfoldStore=*/false, |
| &LoadRegIndex); |
| if (NewOpc != 0) { |
| const MCInstrDesc &UnfoldMCID = TII->get(NewOpc); |
| if (UnfoldMCID.getNumDefs() == 1) { |
| // Unfold the load. |
| DEBUG(dbgs() << "2addr: UNFOLDING: " << MI); |
| const TargetRegisterClass *RC = |
| TRI->getAllocatableClass( |
| TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF)); |
| unsigned Reg = MRI->createVirtualRegister(RC); |
| SmallVector<MachineInstr *, 2> NewMIs; |
| if (!TII->unfoldMemoryOperand(*MF, &MI, Reg, |
| /*UnfoldLoad=*/true,/*UnfoldStore=*/false, |
| NewMIs)) { |
| DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); |
| return false; |
| } |
| assert(NewMIs.size() == 2 && |
| "Unfolded a load into multiple instructions!"); |
| // The load was previously folded, so this is the only use. |
| NewMIs[1]->addRegisterKilled(Reg, TRI); |
| |
| // Tentatively insert the instructions into the block so that they |
| // look "normal" to the transformation logic. |
| MBB->insert(mi, NewMIs[0]); |
| MBB->insert(mi, NewMIs[1]); |
| |
| DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0] |
| << "2addr: NEW INST: " << *NewMIs[1]); |
| |
| // Transform the instruction, now that it no longer has a load. |
| unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA); |
| unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB); |
| MachineBasicBlock::iterator NewMI = NewMIs[1]; |
| bool TransformResult = |
| tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true); |
| (void)TransformResult; |
| assert(!TransformResult && |
| "tryInstructionTransform() should return false."); |
| if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) { |
| // Success, or at least we made an improvement. Keep the unfolded |
| // instructions and discard the original. |
| if (LV) { |
| for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI.getOperand(i); |
| if (MO.isReg() && |
| TargetRegisterInfo::isVirtualRegister(MO.getReg())) { |
| if (MO.isUse()) { |
| if (MO.isKill()) { |
| if (NewMIs[0]->killsRegister(MO.getReg())) |
| LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[0]); |
| else { |
| assert(NewMIs[1]->killsRegister(MO.getReg()) && |
| "Kill missing after load unfold!"); |
| LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[1]); |
| } |
| } |
| } else if (LV->removeVirtualRegisterDead(MO.getReg(), &MI)) { |
| if (NewMIs[1]->registerDefIsDead(MO.getReg())) |
| LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]); |
| else { |
| assert(NewMIs[0]->registerDefIsDead(MO.getReg()) && |
| "Dead flag missing after load unfold!"); |
| LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]); |
| } |
| } |
| } |
| } |
| LV->addVirtualRegisterKilled(Reg, NewMIs[1]); |
| } |
| |
| SmallVector<unsigned, 4> OrigRegs; |
| if (LIS) { |
| for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(), |
| MOE = MI.operands_end(); MOI != MOE; ++MOI) { |
| if (MOI->isReg()) |
| OrigRegs.push_back(MOI->getReg()); |
| } |
| } |
| |
| MI.eraseFromParent(); |
| |
| // Update LiveIntervals. |
| if (LIS) { |
| MachineBasicBlock::iterator Begin(NewMIs[0]); |
| MachineBasicBlock::iterator End(NewMIs[1]); |
| LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs); |
| } |
| |
| mi = NewMIs[1]; |
| } else { |
| // Transforming didn't eliminate the tie and didn't lead to an |
| // improvement. Clean up the unfolded instructions and keep the |
| // original. |
| DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); |
| NewMIs[0]->eraseFromParent(); |
| NewMIs[1]->eraseFromParent(); |
| } |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| // Collect tied operands of MI that need to be handled. |
| // Rewrite trivial cases immediately. |
| // Return true if any tied operands where found, including the trivial ones. |
| bool TwoAddressInstructionPass:: |
| collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) { |
| const MCInstrDesc &MCID = MI->getDesc(); |
| bool AnyOps = false; |
| unsigned NumOps = MI->getNumOperands(); |
| |
| for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) { |
| unsigned DstIdx = 0; |
| if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx)) |
| continue; |
| AnyOps = true; |
| MachineOperand &SrcMO = MI->getOperand(SrcIdx); |
| MachineOperand &DstMO = MI->getOperand(DstIdx); |
| unsigned SrcReg = SrcMO.getReg(); |
| unsigned DstReg = DstMO.getReg(); |
| // Tied constraint already satisfied? |
| if (SrcReg == DstReg) |
| continue; |
| |
| assert(SrcReg && SrcMO.isUse() && "two address instruction invalid"); |
| |
| // Deal with <undef> uses immediately - simply rewrite the src operand. |
| if (SrcMO.isUndef()) { |
| // Constrain the DstReg register class if required. |
| if (TargetRegisterInfo::isVirtualRegister(DstReg)) |
| if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx, |
| TRI, *MF)) |
| MRI->constrainRegClass(DstReg, RC); |
| SrcMO.setReg(DstReg); |
| DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI); |
| continue; |
| } |
| TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx)); |
| } |
| return AnyOps; |
| } |
| |
| // Process a list of tied MI operands that all use the same source register. |
| // The tied pairs are of the form (SrcIdx, DstIdx). |
| void |
| TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI, |
| TiedPairList &TiedPairs, |
| unsigned &Dist) { |
| bool IsEarlyClobber = false; |
| for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { |
| const MachineOperand &DstMO = MI->getOperand(TiedPairs[tpi].second); |
| IsEarlyClobber |= DstMO.isEarlyClobber(); |
| } |
| |
| bool RemovedKillFlag = false; |
| bool AllUsesCopied = true; |
| unsigned LastCopiedReg = 0; |
| SlotIndex LastCopyIdx; |
| unsigned RegB = 0; |
| for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { |
| unsigned SrcIdx = TiedPairs[tpi].first; |
| unsigned DstIdx = TiedPairs[tpi].second; |
| |
| const MachineOperand &DstMO = MI->getOperand(DstIdx); |
| unsigned RegA = DstMO.getReg(); |
| |
| // Grab RegB from the instruction because it may have changed if the |
| // instruction was commuted. |
| RegB = MI->getOperand(SrcIdx).getReg(); |
| |
| if (RegA == RegB) { |
| // The register is tied to multiple destinations (or else we would |
| // not have continued this far), but this use of the register |
| // already matches the tied destination. Leave it. |
| AllUsesCopied = false; |
| continue; |
| } |
| LastCopiedReg = RegA; |
| |
| assert(TargetRegisterInfo::isVirtualRegister(RegB) && |
| "cannot make instruction into two-address form"); |
| |
| #ifndef NDEBUG |
| // First, verify that we don't have a use of "a" in the instruction |
| // (a = b + a for example) because our transformation will not |
| // work. This should never occur because we are in SSA form. |
| for (unsigned i = 0; i != MI->getNumOperands(); ++i) |
| assert(i == DstIdx || |
| !MI->getOperand(i).isReg() || |
| MI->getOperand(i).getReg() != RegA); |
| #endif |
| |
| // Emit a copy. |
| BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), |
| TII->get(TargetOpcode::COPY), RegA).addReg(RegB); |
| |
| // Update DistanceMap. |
| MachineBasicBlock::iterator PrevMI = MI; |
| --PrevMI; |
| DistanceMap.insert(std::make_pair(PrevMI, Dist)); |
| DistanceMap[MI] = ++Dist; |
| |
| if (LIS) { |
| LastCopyIdx = LIS->InsertMachineInstrInMaps(PrevMI).getRegSlot(); |
| |
| if (TargetRegisterInfo::isVirtualRegister(RegA)) { |
| LiveInterval &LI = LIS->getInterval(RegA); |
| VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); |
| SlotIndex endIdx = |
| LIS->getInstructionIndex(MI).getRegSlot(IsEarlyClobber); |
| LI.addRange(LiveRange(LastCopyIdx, endIdx, VNI)); |
| } |
| } |
| |
| DEBUG(dbgs() << "\t\tprepend:\t" << *PrevMI); |
| |
| MachineOperand &MO = MI->getOperand(SrcIdx); |
| assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() && |
| "inconsistent operand info for 2-reg pass"); |
| if (MO.isKill()) { |
| MO.setIsKill(false); |
| RemovedKillFlag = true; |
| } |
| |
| // Make sure regA is a legal regclass for the SrcIdx operand. |
| if (TargetRegisterInfo::isVirtualRegister(RegA) && |
| TargetRegisterInfo::isVirtualRegister(RegB)) |
| MRI->constrainRegClass(RegA, MRI->getRegClass(RegB)); |
| |
| MO.setReg(RegA); |
| |
| // Propagate SrcRegMap. |
| SrcRegMap[RegA] = RegB; |
| } |
| |
| |
| if (AllUsesCopied) { |
| if (!IsEarlyClobber) { |
| // Replace other (un-tied) uses of regB with LastCopiedReg. |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { |
| if (MO.isKill()) { |
| MO.setIsKill(false); |
| RemovedKillFlag = true; |
| } |
| MO.setReg(LastCopiedReg); |
| } |
| } |
| } |
| |
| // Update live variables for regB. |
| if (RemovedKillFlag && LV && LV->getVarInfo(RegB).removeKill(MI)) { |
| MachineBasicBlock::iterator PrevMI = MI; |
| --PrevMI; |
| LV->addVirtualRegisterKilled(RegB, PrevMI); |
| } |
| |
| // Update LiveIntervals. |
| if (LIS) { |
| LiveInterval &LI = LIS->getInterval(RegB); |
| SlotIndex MIIdx = LIS->getInstructionIndex(MI); |
| LiveInterval::const_iterator I = LI.find(MIIdx); |
| assert(I != LI.end() && "RegB must be live-in to use."); |
| |
| SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber); |
| if (I->end == UseIdx) |
| LI.removeRange(LastCopyIdx, UseIdx); |
| } |
| |
| } else if (RemovedKillFlag) { |
| // Some tied uses of regB matched their destination registers, so |
| // regB is still used in this instruction, but a kill flag was |
| // removed from a different tied use of regB, so now we need to add |
| // a kill flag to one of the remaining uses of regB. |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { |
| MO.setIsKill(true); |
| break; |
| } |
| } |
| } |
| } |
| |
| /// runOnMachineFunction - Reduce two-address instructions to two operands. |
| /// |
| bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) { |
| MF = &Func; |
| const TargetMachine &TM = MF->getTarget(); |
| MRI = &MF->getRegInfo(); |
| TII = TM.getInstrInfo(); |
| TRI = TM.getRegisterInfo(); |
| InstrItins = TM.getInstrItineraryData(); |
| LV = getAnalysisIfAvailable<LiveVariables>(); |
| LIS = getAnalysisIfAvailable<LiveIntervals>(); |
| AA = &getAnalysis<AliasAnalysis>(); |
| OptLevel = TM.getOptLevel(); |
| |
| bool MadeChange = false; |
| |
| DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n"); |
| DEBUG(dbgs() << "********** Function: " |
| << MF->getName() << '\n'); |
| |
| // This pass takes the function out of SSA form. |
| MRI->leaveSSA(); |
| |
| TiedOperandMap TiedOperands; |
| for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end(); |
| MBBI != MBBE; ++MBBI) { |
| MBB = MBBI; |
| unsigned Dist = 0; |
| DistanceMap.clear(); |
| SrcRegMap.clear(); |
| DstRegMap.clear(); |
| Processed.clear(); |
| for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end(); |
| mi != me; ) { |
| MachineBasicBlock::iterator nmi = llvm::next(mi); |
| if (mi->isDebugValue()) { |
| mi = nmi; |
| continue; |
| } |
| |
| // Expand REG_SEQUENCE instructions. This will position mi at the first |
| // expanded instruction. |
| if (mi->isRegSequence()) |
| eliminateRegSequence(mi); |
| |
| DistanceMap.insert(std::make_pair(mi, ++Dist)); |
| |
| processCopy(&*mi); |
| |
| // First scan through all the tied register uses in this instruction |
| // and record a list of pairs of tied operands for each register. |
| if (!collectTiedOperands(mi, TiedOperands)) { |
| mi = nmi; |
| continue; |
| } |
| |
| ++NumTwoAddressInstrs; |
| MadeChange = true; |
| DEBUG(dbgs() << '\t' << *mi); |
| |
| // If the instruction has a single pair of tied operands, try some |
| // transformations that may either eliminate the tied operands or |
| // improve the opportunities for coalescing away the register copy. |
| if (TiedOperands.size() == 1) { |
| SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs |
| = TiedOperands.begin()->second; |
| if (TiedPairs.size() == 1) { |
| unsigned SrcIdx = TiedPairs[0].first; |
| unsigned DstIdx = TiedPairs[0].second; |
| unsigned SrcReg = mi->getOperand(SrcIdx).getReg(); |
| unsigned DstReg = mi->getOperand(DstIdx).getReg(); |
| if (SrcReg != DstReg && |
| tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) { |
| // The tied operands have been eliminated or shifted further down the |
| // block to ease elimination. Continue processing with 'nmi'. |
| TiedOperands.clear(); |
| mi = nmi; |
| continue; |
| } |
| } |
| } |
| |
| // Now iterate over the information collected above. |
| for (TiedOperandMap::iterator OI = TiedOperands.begin(), |
| OE = TiedOperands.end(); OI != OE; ++OI) { |
| processTiedPairs(mi, OI->second, Dist); |
| DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); |
| } |
| |
| // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form. |
| if (mi->isInsertSubreg()) { |
| // From %reg = INSERT_SUBREG %reg, %subreg, subidx |
| // To %reg:subidx = COPY %subreg |
| unsigned SubIdx = mi->getOperand(3).getImm(); |
| mi->RemoveOperand(3); |
| assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx"); |
| mi->getOperand(0).setSubReg(SubIdx); |
| mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef()); |
| mi->RemoveOperand(1); |
| mi->setDesc(TII->get(TargetOpcode::COPY)); |
| DEBUG(dbgs() << "\t\tconvert to:\t" << *mi); |
| } |
| |
| // Clear TiedOperands here instead of at the top of the loop |
| // since most instructions do not have tied operands. |
| TiedOperands.clear(); |
| mi = nmi; |
| } |
| } |
| |
| if (LIS) |
| MF->verify(this, "After two-address instruction pass"); |
| |
| return MadeChange; |
| } |
| |
| /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process. |
| /// |
| /// The instruction is turned into a sequence of sub-register copies: |
| /// |
| /// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1 |
| /// |
| /// Becomes: |
| /// |
| /// %dst:ssub0<def,undef> = COPY %v1 |
| /// %dst:ssub1<def> = COPY %v2 |
| /// |
| void TwoAddressInstructionPass:: |
| eliminateRegSequence(MachineBasicBlock::iterator &MBBI) { |
| MachineInstr *MI = MBBI; |
| unsigned DstReg = MI->getOperand(0).getReg(); |
| if (MI->getOperand(0).getSubReg() || |
| TargetRegisterInfo::isPhysicalRegister(DstReg) || |
| !(MI->getNumOperands() & 1)) { |
| DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI); |
| llvm_unreachable(0); |
| } |
| |
| SmallVector<unsigned, 4> OrigRegs; |
| if (LIS) { |
| OrigRegs.push_back(MI->getOperand(0).getReg()); |
| for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) |
| OrigRegs.push_back(MI->getOperand(i).getReg()); |
| } |
| |
| bool DefEmitted = false; |
| for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) { |
| MachineOperand &UseMO = MI->getOperand(i); |
| unsigned SrcReg = UseMO.getReg(); |
| unsigned SubIdx = MI->getOperand(i+1).getImm(); |
| // Nothing needs to be inserted for <undef> operands. |
| if (UseMO.isUndef()) |
| continue; |
| |
| // Defer any kill flag to the last operand using SrcReg. Otherwise, we |
| // might insert a COPY that uses SrcReg after is was killed. |
| bool isKill = UseMO.isKill(); |
| if (isKill) |
| for (unsigned j = i + 2; j < e; j += 2) |
| if (MI->getOperand(j).getReg() == SrcReg) { |
| MI->getOperand(j).setIsKill(); |
| UseMO.setIsKill(false); |
| isKill = false; |
| break; |
| } |
| |
| // Insert the sub-register copy. |
| MachineInstr *CopyMI = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), |
| TII->get(TargetOpcode::COPY)) |
| .addReg(DstReg, RegState::Define, SubIdx) |
| .addOperand(UseMO); |
| |
| // The first def needs an <undef> flag because there is no live register |
| // before it. |
| if (!DefEmitted) { |
| CopyMI->getOperand(0).setIsUndef(true); |
| // Return an iterator pointing to the first inserted instr. |
| MBBI = CopyMI; |
| } |
| DefEmitted = true; |
| |
| // Update LiveVariables' kill info. |
| if (LV && isKill && !TargetRegisterInfo::isPhysicalRegister(SrcReg)) |
| LV->replaceKillInstruction(SrcReg, MI, CopyMI); |
| |
| DEBUG(dbgs() << "Inserted: " << *CopyMI); |
| } |
| |
| MachineBasicBlock::iterator EndMBBI = |
| llvm::next(MachineBasicBlock::iterator(MI)); |
| |
| if (!DefEmitted) { |
| DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF"); |
| MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); |
| for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j) |
| MI->RemoveOperand(j); |
| } else { |
| DEBUG(dbgs() << "Eliminated: " << *MI); |
| MI->eraseFromParent(); |
| } |
| |
| // Udpate LiveIntervals. |
| if (LIS) |
| LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs); |
| } |