| //===----- AArch64InstrInfo.td - AArch64 Instruction Info ----*- tablegen -*-=// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file describes the AArch64 scalar instructions in TableGen format. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| include "AArch64InstrFormats.td" |
| |
| //===----------------------------------------------------------------------===// |
| // Target-specific ISD nodes and profiles |
| //===----------------------------------------------------------------------===// |
| |
| def SDT_A64ret : SDTypeProfile<0, 0, []>; |
| def A64ret : SDNode<"AArch64ISD::Ret", SDT_A64ret, [SDNPHasChain, |
| SDNPOptInGlue, |
| SDNPVariadic]>; |
| |
| // (ins NZCV, Condition, Dest) |
| def SDT_A64br_cc : SDTypeProfile<0, 3, [SDTCisVT<0, i32>]>; |
| def A64br_cc : SDNode<"AArch64ISD::BR_CC", SDT_A64br_cc, [SDNPHasChain]>; |
| |
| // (outs Result), (ins NZCV, IfTrue, IfFalse, Condition) |
| def SDT_A64select_cc : SDTypeProfile<1, 4, [SDTCisVT<1, i32>, |
| SDTCisSameAs<0, 2>, |
| SDTCisSameAs<2, 3>]>; |
| def A64select_cc : SDNode<"AArch64ISD::SELECT_CC", SDT_A64select_cc>; |
| |
| // (outs NZCV), (ins LHS, RHS, Condition) |
| def SDT_A64setcc : SDTypeProfile<1, 3, [SDTCisVT<0, i32>, |
| SDTCisSameAs<1, 2>]>; |
| def A64setcc : SDNode<"AArch64ISD::SETCC", SDT_A64setcc>; |
| |
| |
| // (outs GPR64), (ins) |
| def A64threadpointer : SDNode<"AArch64ISD::THREAD_POINTER", SDTPtrLeaf>; |
| |
| // A64 compares don't care about the cond really (they set all flags) so a |
| // simple binary operator is useful. |
| def A64cmp : PatFrag<(ops node:$lhs, node:$rhs), |
| (A64setcc node:$lhs, node:$rhs, cond)>; |
| |
| |
| // When matching a notional (CMP op1, (sub 0, op2)), we'd like to use a CMN |
| // instruction on the grounds that "op1 - (-op2) == op1 + op2". However, the C |
| // and V flags can be set differently by this operation. It comes down to |
| // whether "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are |
| // then everything is fine. If not then the optimization is wrong. Thus general |
| // comparisons are only valid if op2 != 0. |
| |
| // So, finally, the only LLVM-native comparisons that don't mention C and V are |
| // SETEQ and SETNE. They're the only ones we can safely use CMN for in the |
| // absence of information about op2. |
| def equality_cond : PatLeaf<(cond), [{ |
| return N->get() == ISD::SETEQ || N->get() == ISD::SETNE; |
| }]>; |
| |
| def A64cmn : PatFrag<(ops node:$lhs, node:$rhs), |
| (A64setcc node:$lhs, (sub 0, node:$rhs), equality_cond)>; |
| |
| // There are two layers of indirection here, driven by the following |
| // considerations. |
| // + TableGen does not know CodeModel or Reloc so that decision should be |
| // made for a variable/address at ISelLowering. |
| // + The output of ISelLowering should be selectable (hence the Wrapper, |
| // rather than a bare target opcode) |
| def SDTAArch64Wrapper : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, |
| SDTCisSameAs<1, 2>, |
| SDTCisVT<3, i32>, |
| SDTCisPtrTy<0>]>; |
| |
| def A64WrapperSmall : SDNode<"AArch64ISD::WrapperSmall", SDTAArch64Wrapper>; |
| |
| |
| def SDTAArch64GOTLoad : SDTypeProfile<1, 1, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>; |
| def A64GOTLoad : SDNode<"AArch64ISD::GOTLoad", SDTAArch64GOTLoad, |
| [SDNPHasChain]>; |
| |
| |
| // (A64BFI LHS, RHS, LSB, Width) |
| def SDTA64BFI : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, |
| SDTCisSameAs<1, 2>, |
| SDTCisVT<3, i64>, |
| SDTCisVT<4, i64>]>; |
| |
| def A64Bfi : SDNode<"AArch64ISD::BFI", SDTA64BFI>; |
| |
| // (A64EXTR HiReg, LoReg, LSB) |
| def SDTA64EXTR : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, |
| SDTCisVT<3, i64>]>; |
| def A64Extr : SDNode<"AArch64ISD::EXTR", SDTA64EXTR>; |
| |
| // (A64[SU]BFX Field, ImmR, ImmS). |
| // |
| // Note that ImmR and ImmS are already encoded for the actual instructions. The |
| // more natural LSB and Width mix together to form ImmR and ImmS, something |
| // which TableGen can't handle. |
| def SDTA64BFX : SDTypeProfile<1, 3, [SDTCisVT<2, i64>, SDTCisVT<3, i64>]>; |
| def A64Sbfx : SDNode<"AArch64ISD::SBFX", SDTA64BFX>; |
| |
| def A64Ubfx : SDNode<"AArch64ISD::UBFX", SDTA64BFX>; |
| |
| //===----------------------------------------------------------------------===// |
| // Call sequence pseudo-instructions |
| //===----------------------------------------------------------------------===// |
| |
| |
| def SDT_AArch64Call : SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>; |
| def AArch64Call : SDNode<"AArch64ISD::Call", SDT_AArch64Call, |
| [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; |
| |
| def AArch64tcret : SDNode<"AArch64ISD::TC_RETURN", SDT_AArch64Call, |
| [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; |
| |
| // The TLSDESCCALL node is a variant call which goes to an indirectly calculated |
| // destination but needs a relocation against a fixed symbol. As such it has two |
| // certain operands: the callee and the relocated variable. |
| // |
| // The TLS ABI only allows it to be selected to a BLR instructin (with |
| // appropriate relocation). |
| def SDTTLSDescCall : SDTypeProfile<0, -2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>; |
| |
| def A64tlsdesc_blr : SDNode<"AArch64ISD::TLSDESCCALL", SDTTLSDescCall, |
| [SDNPInGlue, SDNPOutGlue, SDNPHasChain, |
| SDNPVariadic]>; |
| |
| |
| def SDT_AArch64CallSeqStart : SDCallSeqStart<[ SDTCisPtrTy<0> ]>; |
| def AArch64callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_AArch64CallSeqStart, |
| [SDNPHasChain, SDNPOutGlue]>; |
| |
| def SDT_AArch64CallSeqEnd : SDCallSeqEnd<[ SDTCisPtrTy<0>, SDTCisPtrTy<1> ]>; |
| def AArch64callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_AArch64CallSeqEnd, |
| [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; |
| |
| |
| |
| // These pseudo-instructions have special semantics by virtue of being passed to |
| // the InstrInfo constructor. CALLSEQ_START/CALLSEQ_END are produced by |
| // LowerCall to (in our case) tell the back-end about stack adjustments for |
| // arguments passed on the stack. Here we select those markers to |
| // pseudo-instructions which explicitly set the stack, and finally in the |
| // RegisterInfo we convert them to a true stack adjustment. |
| let Defs = [XSP], Uses = [XSP] in { |
| def ADJCALLSTACKDOWN : PseudoInst<(outs), (ins i64imm:$amt), |
| [(AArch64callseq_start timm:$amt)]>; |
| |
| def ADJCALLSTACKUP : PseudoInst<(outs), (ins i64imm:$amt1, i64imm:$amt2), |
| [(AArch64callseq_end timm:$amt1, timm:$amt2)]>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Atomic operation pseudo-instructions |
| //===----------------------------------------------------------------------===// |
| |
| let usesCustomInserter = 1, Defs = [NZCV] in { |
| multiclass AtomicSizes<string opname> { |
| def _I8 : PseudoInst<(outs GPR32:$dst), (ins GPR64:$ptr, GPR32:$incr), |
| [(set GPR32:$dst, (!cast<SDNode>(opname # "_8") GPR64:$ptr, GPR32:$incr))]>; |
| def _I16 : PseudoInst<(outs GPR32:$dst), (ins GPR64:$ptr, GPR32:$incr), |
| [(set GPR32:$dst, (!cast<SDNode>(opname # "_16") GPR64:$ptr, GPR32:$incr))]>; |
| def _I32 : PseudoInst<(outs GPR32:$dst), (ins GPR64:$ptr, GPR32:$incr), |
| [(set GPR32:$dst, (!cast<SDNode>(opname # "_32") GPR64:$ptr, GPR32:$incr))]>; |
| def _I64 : PseudoInst<(outs GPR64:$dst), (ins GPR64:$ptr, GPR64:$incr), |
| [(set GPR64:$dst, (!cast<SDNode>(opname # "_64") GPR64:$ptr, GPR64:$incr))]>; |
| } |
| } |
| |
| defm ATOMIC_LOAD_ADD : AtomicSizes<"atomic_load_add">; |
| defm ATOMIC_LOAD_SUB : AtomicSizes<"atomic_load_sub">; |
| defm ATOMIC_LOAD_AND : AtomicSizes<"atomic_load_and">; |
| defm ATOMIC_LOAD_OR : AtomicSizes<"atomic_load_or">; |
| defm ATOMIC_LOAD_XOR : AtomicSizes<"atomic_load_xor">; |
| defm ATOMIC_LOAD_NAND : AtomicSizes<"atomic_load_nand">; |
| defm ATOMIC_LOAD_MIN : AtomicSizes<"atomic_load_min">; |
| defm ATOMIC_LOAD_MAX : AtomicSizes<"atomic_load_max">; |
| defm ATOMIC_LOAD_UMIN : AtomicSizes<"atomic_load_umin">; |
| defm ATOMIC_LOAD_UMAX : AtomicSizes<"atomic_load_umax">; |
| defm ATOMIC_SWAP : AtomicSizes<"atomic_swap">; |
| |
| let usesCustomInserter = 1, Defs = [NZCV] in { |
| def ATOMIC_CMP_SWAP_I8 |
| : PseudoInst<(outs GPR32:$dst), (ins GPR64:$ptr, GPR32:$old, GPR32:$new), |
| [(set GPR32:$dst, |
| (atomic_cmp_swap_8 GPR64:$ptr, GPR32:$old, GPR32:$new))]>; |
| def ATOMIC_CMP_SWAP_I16 |
| : PseudoInst<(outs GPR32:$dst), (ins GPR64:$ptr, GPR32:$old, GPR32:$new), |
| [(set GPR32:$dst, |
| (atomic_cmp_swap_16 GPR64:$ptr, GPR32:$old, GPR32:$new))]>; |
| def ATOMIC_CMP_SWAP_I32 |
| : PseudoInst<(outs GPR32:$dst), (ins GPR64:$ptr, GPR32:$old, GPR32:$new), |
| [(set GPR32:$dst, |
| (atomic_cmp_swap_32 GPR64:$ptr, GPR32:$old, GPR32:$new))]>; |
| def ATOMIC_CMP_SWAP_I64 |
| : PseudoInst<(outs GPR64:$dst), (ins GPR64:$ptr, GPR64:$old, GPR64:$new), |
| [(set GPR64:$dst, |
| (atomic_cmp_swap_64 GPR64:$ptr, GPR64:$old, GPR64:$new))]>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Add-subtract (extended register) instructions |
| //===----------------------------------------------------------------------===// |
| // Contains: ADD, ADDS, SUB, SUBS + aliases CMN, CMP |
| |
| // The RHS of these operations is conceptually a sign/zero-extended |
| // register, optionally shifted left by 1-4. The extension can be a |
| // NOP (e.g. "sxtx" sign-extending a 64-bit register to 64-bits) but |
| // must be specified with one exception: |
| |
| // If one of the registers is sp/wsp then LSL is an alias for UXTW in |
| // 32-bit instructions and UXTX in 64-bit versions, the shift amount |
| // is not optional in that case (but can explicitly be 0), and the |
| // entire suffix can be skipped (e.g. "add sp, x3, x2"). |
| |
| multiclass extend_operands<string PREFIX, string Diag> { |
| def _asmoperand : AsmOperandClass { |
| let Name = PREFIX; |
| let RenderMethod = "addRegExtendOperands"; |
| let PredicateMethod = "isRegExtend<A64SE::" # PREFIX # ">"; |
| let DiagnosticType = "AddSubRegExtend" # Diag; |
| } |
| |
| def _operand : Operand<i64>, |
| ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 4; }]> { |
| let PrintMethod = "printRegExtendOperand<A64SE::" # PREFIX # ">"; |
| let DecoderMethod = "DecodeRegExtendOperand"; |
| let ParserMatchClass = !cast<AsmOperandClass>(PREFIX # "_asmoperand"); |
| } |
| } |
| |
| defm UXTB : extend_operands<"UXTB", "Small">; |
| defm UXTH : extend_operands<"UXTH", "Small">; |
| defm UXTW : extend_operands<"UXTW", "Small">; |
| defm UXTX : extend_operands<"UXTX", "Large">; |
| defm SXTB : extend_operands<"SXTB", "Small">; |
| defm SXTH : extend_operands<"SXTH", "Small">; |
| defm SXTW : extend_operands<"SXTW", "Small">; |
| defm SXTX : extend_operands<"SXTX", "Large">; |
| |
| def LSL_extasmoperand : AsmOperandClass { |
| let Name = "RegExtendLSL"; |
| let RenderMethod = "addRegExtendOperands"; |
| let DiagnosticType = "AddSubRegExtendLarge"; |
| } |
| |
| def LSL_extoperand : Operand<i64> { |
| let ParserMatchClass = LSL_extasmoperand; |
| } |
| |
| |
| // The patterns for various sign-extensions are a little ugly and |
| // non-uniform because everything has already been promoted to the |
| // legal i64 and i32 types. We'll wrap the various variants up in a |
| // class for use later. |
| class extend_types { |
| dag uxtb; dag uxth; dag uxtw; dag uxtx; |
| dag sxtb; dag sxth; dag sxtw; dag sxtx; |
| } |
| |
| def extends_to_i64 : extend_types { |
| let uxtb = (and (anyext GPR32:$Rm), 255); |
| let uxth = (and (anyext GPR32:$Rm), 65535); |
| let uxtw = (zext GPR32:$Rm); |
| let uxtx = (i64 GPR64:$Rm); |
| |
| let sxtb = (sext_inreg (anyext GPR32:$Rm), i8); |
| let sxth = (sext_inreg (anyext GPR32:$Rm), i16); |
| let sxtw = (sext GPR32:$Rm); |
| let sxtx = (i64 GPR64:$Rm); |
| } |
| |
| |
| def extends_to_i32 : extend_types { |
| let uxtb = (and GPR32:$Rm, 255); |
| let uxth = (and GPR32:$Rm, 65535); |
| let uxtw = (i32 GPR32:$Rm); |
| let uxtx = (i32 GPR32:$Rm); |
| |
| let sxtb = (sext_inreg GPR32:$Rm, i8); |
| let sxth = (sext_inreg GPR32:$Rm, i16); |
| let sxtw = (i32 GPR32:$Rm); |
| let sxtx = (i32 GPR32:$Rm); |
| } |
| |
| // Now, six of the extensions supported are easy and uniform: if the source size |
| // is 32-bits or less, then Rm is always a 32-bit register. We'll instantiate |
| // those instructions in one block. |
| |
| // The uxtx/sxtx could potentially be merged in, but three facts dissuaded me: |
| // + It would break the naming scheme: either ADDxx_uxtx or ADDww_uxtx would |
| // be impossible. |
| // + Patterns are very different as well. |
| // + Passing different registers would be ugly (more fields in extend_types |
| // would probably be the best option). |
| multiclass addsub_exts<bit sf, bit op, bit S, string asmop, |
| SDPatternOperator opfrag, |
| dag outs, extend_types exts, RegisterClass GPRsp> { |
| def w_uxtb : A64I_addsubext<sf, op, S, 0b00, 0b000, |
| outs, |
| (ins GPRsp:$Rn, GPR32:$Rm, UXTB_operand:$Imm3), |
| !strconcat(asmop, "$Rn, $Rm, $Imm3"), |
| [(opfrag GPRsp:$Rn, (shl exts.uxtb, UXTB_operand:$Imm3))], |
| NoItinerary>; |
| def w_uxth : A64I_addsubext<sf, op, S, 0b00, 0b001, |
| outs, |
| (ins GPRsp:$Rn, GPR32:$Rm, UXTH_operand:$Imm3), |
| !strconcat(asmop, "$Rn, $Rm, $Imm3"), |
| [(opfrag GPRsp:$Rn, (shl exts.uxth, UXTH_operand:$Imm3))], |
| NoItinerary>; |
| def w_uxtw : A64I_addsubext<sf, op, S, 0b00, 0b010, |
| outs, |
| (ins GPRsp:$Rn, GPR32:$Rm, UXTW_operand:$Imm3), |
| !strconcat(asmop, "$Rn, $Rm, $Imm3"), |
| [(opfrag GPRsp:$Rn, (shl exts.uxtw, UXTW_operand:$Imm3))], |
| NoItinerary>; |
| |
| def w_sxtb : A64I_addsubext<sf, op, S, 0b00, 0b100, |
| outs, |
| (ins GPRsp:$Rn, GPR32:$Rm, SXTB_operand:$Imm3), |
| !strconcat(asmop, "$Rn, $Rm, $Imm3"), |
| [(opfrag GPRsp:$Rn, (shl exts.sxtb, SXTB_operand:$Imm3))], |
| NoItinerary>; |
| def w_sxth : A64I_addsubext<sf, op, S, 0b00, 0b101, |
| outs, |
| (ins GPRsp:$Rn, GPR32:$Rm, SXTH_operand:$Imm3), |
| !strconcat(asmop, "$Rn, $Rm, $Imm3"), |
| [(opfrag GPRsp:$Rn, (shl exts.sxth, SXTH_operand:$Imm3))], |
| NoItinerary>; |
| def w_sxtw : A64I_addsubext<sf, op, S, 0b00, 0b110, |
| outs, |
| (ins GPRsp:$Rn, GPR32:$Rm, SXTW_operand:$Imm3), |
| !strconcat(asmop, "$Rn, $Rm, $Imm3"), |
| [(opfrag GPRsp:$Rn, (shl exts.sxtw, SXTW_operand:$Imm3))], |
| NoItinerary>; |
| } |
| |
| // These two could be merge in with the above, but their patterns aren't really |
| // necessary and the naming-scheme would necessarily break: |
| multiclass addsub_xxtx<bit op, bit S, string asmop, SDPatternOperator opfrag, |
| dag outs> { |
| def x_uxtx : A64I_addsubext<0b1, op, S, 0b00, 0b011, |
| outs, |
| (ins GPR64xsp:$Rn, GPR64:$Rm, UXTX_operand:$Imm3), |
| !strconcat(asmop, "$Rn, $Rm, $Imm3"), |
| [(opfrag GPR64xsp:$Rn, (shl GPR64:$Rm, UXTX_operand:$Imm3))], |
| NoItinerary>; |
| |
| def x_sxtx : A64I_addsubext<0b1, op, S, 0b00, 0b111, |
| outs, |
| (ins GPR64xsp:$Rn, GPR64:$Rm, SXTX_operand:$Imm3), |
| !strconcat(asmop, "$Rn, $Rm, $Imm3"), |
| [/* No Pattern: same as uxtx */], |
| NoItinerary>; |
| } |
| |
| multiclass addsub_wxtx<bit op, bit S, string asmop, dag outs> { |
| def w_uxtx : A64I_addsubext<0b0, op, S, 0b00, 0b011, |
| outs, |
| (ins GPR32wsp:$Rn, GPR32:$Rm, UXTX_operand:$Imm3), |
| !strconcat(asmop, "$Rn, $Rm, $Imm3"), |
| [/* No pattern: probably same as uxtw */], |
| NoItinerary>; |
| |
| def w_sxtx : A64I_addsubext<0b0, op, S, 0b00, 0b111, |
| outs, |
| (ins GPR32wsp:$Rn, GPR32:$Rm, SXTX_operand:$Imm3), |
| !strconcat(asmop, "$Rn, $Rm, $Imm3"), |
| [/* No Pattern: probably same as uxtw */], |
| NoItinerary>; |
| } |
| |
| class SetRD<RegisterClass RC, SDPatternOperator op> |
| : PatFrag<(ops node:$lhs, node:$rhs), (set RC:$Rd, (op node:$lhs, node:$rhs))>; |
| class SetNZCV<SDPatternOperator op> |
| : PatFrag<(ops node:$lhs, node:$rhs), (set NZCV, (op node:$lhs, node:$rhs))>; |
| |
| defm ADDxx :addsub_exts<0b1, 0b0, 0b0, "add\t$Rd, ", SetRD<GPR64xsp, add>, |
| (outs GPR64xsp:$Rd), extends_to_i64, GPR64xsp>, |
| addsub_xxtx< 0b0, 0b0, "add\t$Rd, ", SetRD<GPR64xsp, add>, |
| (outs GPR64xsp:$Rd)>; |
| defm ADDww :addsub_exts<0b0, 0b0, 0b0, "add\t$Rd, ", SetRD<GPR32wsp, add>, |
| (outs GPR32wsp:$Rd), extends_to_i32, GPR32wsp>, |
| addsub_wxtx< 0b0, 0b0, "add\t$Rd, ", |
| (outs GPR32wsp:$Rd)>; |
| defm SUBxx :addsub_exts<0b1, 0b1, 0b0, "sub\t$Rd, ", SetRD<GPR64xsp, sub>, |
| (outs GPR64xsp:$Rd), extends_to_i64, GPR64xsp>, |
| addsub_xxtx< 0b1, 0b0, "sub\t$Rd, ", SetRD<GPR64xsp, sub>, |
| (outs GPR64xsp:$Rd)>; |
| defm SUBww :addsub_exts<0b0, 0b1, 0b0, "sub\t$Rd, ", SetRD<GPR32wsp, sub>, |
| (outs GPR32wsp:$Rd), extends_to_i32, GPR32wsp>, |
| addsub_wxtx< 0b1, 0b0, "sub\t$Rd, ", |
| (outs GPR32wsp:$Rd)>; |
| |
| let Defs = [NZCV] in { |
| defm ADDSxx :addsub_exts<0b1, 0b0, 0b1, "adds\t$Rd, ", SetRD<GPR64, addc>, |
| (outs GPR64:$Rd), extends_to_i64, GPR64xsp>, |
| addsub_xxtx< 0b0, 0b1, "adds\t$Rd, ", SetRD<GPR64, addc>, |
| (outs GPR64:$Rd)>; |
| defm ADDSww :addsub_exts<0b0, 0b0, 0b1, "adds\t$Rd, ", SetRD<GPR32, addc>, |
| (outs GPR32:$Rd), extends_to_i32, GPR32wsp>, |
| addsub_wxtx< 0b0, 0b1, "adds\t$Rd, ", |
| (outs GPR32:$Rd)>; |
| defm SUBSxx :addsub_exts<0b1, 0b1, 0b1, "subs\t$Rd, ", SetRD<GPR64, subc>, |
| (outs GPR64:$Rd), extends_to_i64, GPR64xsp>, |
| addsub_xxtx< 0b1, 0b1, "subs\t$Rd, ", SetRD<GPR64, subc>, |
| (outs GPR64:$Rd)>; |
| defm SUBSww :addsub_exts<0b0, 0b1, 0b1, "subs\t$Rd, ", SetRD<GPR32, subc>, |
| (outs GPR32:$Rd), extends_to_i32, GPR32wsp>, |
| addsub_wxtx< 0b1, 0b1, "subs\t$Rd, ", |
| (outs GPR32:$Rd)>; |
| |
| |
| let Rd = 0b11111, isCompare = 1 in { |
| defm CMNx : addsub_exts<0b1, 0b0, 0b1, "cmn\t", SetNZCV<A64cmn>, |
| (outs), extends_to_i64, GPR64xsp>, |
| addsub_xxtx< 0b0, 0b1, "cmn\t", SetNZCV<A64cmn>, (outs)>; |
| defm CMNw : addsub_exts<0b0, 0b0, 0b1, "cmn\t", SetNZCV<A64cmn>, |
| (outs), extends_to_i32, GPR32wsp>, |
| addsub_wxtx< 0b0, 0b1, "cmn\t", (outs)>; |
| defm CMPx : addsub_exts<0b1, 0b1, 0b1, "cmp\t", SetNZCV<A64cmp>, |
| (outs), extends_to_i64, GPR64xsp>, |
| addsub_xxtx< 0b1, 0b1, "cmp\t", SetNZCV<A64cmp>, (outs)>; |
| defm CMPw : addsub_exts<0b0, 0b1, 0b1, "cmp\t", SetNZCV<A64cmp>, |
| (outs), extends_to_i32, GPR32wsp>, |
| addsub_wxtx< 0b1, 0b1, "cmp\t", (outs)>; |
| } |
| } |
| |
| // Now patterns for the operation without a shift being needed. No patterns are |
| // created for uxtx/sxtx since they're non-uniform and it's expected that |
| // add/sub (shifted register) will handle those cases anyway. |
| multiclass addsubext_noshift_patterns<string prefix, SDPatternOperator nodeop, |
| RegisterClass GPRsp, extend_types exts> { |
| def : Pat<(nodeop GPRsp:$Rn, exts.uxtb), |
| (!cast<Instruction>(prefix # "w_uxtb") GPRsp:$Rn, GPR32:$Rm, 0)>; |
| def : Pat<(nodeop GPRsp:$Rn, exts.uxth), |
| (!cast<Instruction>(prefix # "w_uxth") GPRsp:$Rn, GPR32:$Rm, 0)>; |
| def : Pat<(nodeop GPRsp:$Rn, exts.uxtw), |
| (!cast<Instruction>(prefix # "w_uxtw") GPRsp:$Rn, GPR32:$Rm, 0)>; |
| |
| def : Pat<(nodeop GPRsp:$Rn, exts.sxtb), |
| (!cast<Instruction>(prefix # "w_sxtb") GPRsp:$Rn, GPR32:$Rm, 0)>; |
| def : Pat<(nodeop GPRsp:$Rn, exts.sxth), |
| (!cast<Instruction>(prefix # "w_sxth") GPRsp:$Rn, GPR32:$Rm, 0)>; |
| def : Pat<(nodeop GPRsp:$Rn, exts.sxtw), |
| (!cast<Instruction>(prefix # "w_sxtw") GPRsp:$Rn, GPR32:$Rm, 0)>; |
| } |
| |
| defm : addsubext_noshift_patterns<"ADDxx", add, GPR64xsp, extends_to_i64>; |
| defm : addsubext_noshift_patterns<"ADDww", add, GPR32wsp, extends_to_i32>; |
| defm : addsubext_noshift_patterns<"SUBxx", sub, GPR64xsp, extends_to_i64>; |
| defm : addsubext_noshift_patterns<"SUBww", sub, GPR32wsp, extends_to_i32>; |
| |
| defm : addsubext_noshift_patterns<"CMNx", A64cmn, GPR64xsp, extends_to_i64>; |
| defm : addsubext_noshift_patterns<"CMNw", A64cmn, GPR32wsp, extends_to_i32>; |
| defm : addsubext_noshift_patterns<"CMPx", A64cmp, GPR64xsp, extends_to_i64>; |
| defm : addsubext_noshift_patterns<"CMPw", A64cmp, GPR32wsp, extends_to_i32>; |
| |
| // An extend of "lsl #imm" is valid if and only if one of Rn and Rd is |
| // sp/wsp. It is synonymous with uxtx/uxtw depending on the size of the |
| // operation. Also permitted in this case is complete omission of the argument, |
| // which implies "lsl #0". |
| multiclass lsl_aliases<string asmop, Instruction inst, RegisterClass GPR_Rd, |
| RegisterClass GPR_Rn, RegisterClass GPR_Rm> { |
| def : InstAlias<!strconcat(asmop, " $Rd, $Rn, $Rm"), |
| (inst GPR_Rd:$Rd, GPR_Rn:$Rn, GPR_Rm:$Rm, 0)>; |
| |
| def : InstAlias<!strconcat(asmop, " $Rd, $Rn, $Rm, $LSL"), |
| (inst GPR_Rd:$Rd, GPR_Rn:$Rn, GPR_Rm:$Rm, LSL_extoperand:$LSL)>; |
| |
| } |
| |
| defm : lsl_aliases<"add", ADDxxx_uxtx, Rxsp, GPR64xsp, GPR64>; |
| defm : lsl_aliases<"add", ADDxxx_uxtx, GPR64xsp, Rxsp, GPR64>; |
| defm : lsl_aliases<"add", ADDwww_uxtw, Rwsp, GPR32wsp, GPR32>; |
| defm : lsl_aliases<"add", ADDwww_uxtw, GPR32wsp, Rwsp, GPR32>; |
| defm : lsl_aliases<"sub", SUBxxx_uxtx, Rxsp, GPR64xsp, GPR64>; |
| defm : lsl_aliases<"sub", SUBxxx_uxtx, GPR64xsp, Rxsp, GPR64>; |
| defm : lsl_aliases<"sub", SUBwww_uxtw, Rwsp, GPR32wsp, GPR32>; |
| defm : lsl_aliases<"sub", SUBwww_uxtw, GPR32wsp, Rwsp, GPR32>; |
| |
| // Rd cannot be sp for flag-setting variants so only half of the aliases are |
| // needed. |
| defm : lsl_aliases<"adds", ADDSxxx_uxtx, GPR64, Rxsp, GPR64>; |
| defm : lsl_aliases<"adds", ADDSwww_uxtw, GPR32, Rwsp, GPR32>; |
| defm : lsl_aliases<"subs", SUBSxxx_uxtx, GPR64, Rxsp, GPR64>; |
| defm : lsl_aliases<"subs", SUBSwww_uxtw, GPR32, Rwsp, GPR32>; |
| |
| // CMP unfortunately has to be different because the instruction doesn't have a |
| // dest register. |
| multiclass cmp_lsl_aliases<string asmop, Instruction inst, |
| RegisterClass GPR_Rn, RegisterClass GPR_Rm> { |
| def : InstAlias<!strconcat(asmop, " $Rn, $Rm"), |
| (inst GPR_Rn:$Rn, GPR_Rm:$Rm, 0)>; |
| |
| def : InstAlias<!strconcat(asmop, " $Rn, $Rm, $LSL"), |
| (inst GPR_Rn:$Rn, GPR_Rm:$Rm, LSL_extoperand:$LSL)>; |
| } |
| |
| defm : cmp_lsl_aliases<"cmp", CMPxx_uxtx, Rxsp, GPR64>; |
| defm : cmp_lsl_aliases<"cmp", CMPww_uxtw, Rwsp, GPR32>; |
| defm : cmp_lsl_aliases<"cmn", CMNxx_uxtx, Rxsp, GPR64>; |
| defm : cmp_lsl_aliases<"cmn", CMNww_uxtw, Rwsp, GPR32>; |
| |
| //===----------------------------------------------------------------------===// |
| // Add-subtract (immediate) instructions |
| //===----------------------------------------------------------------------===// |
| // Contains: ADD, ADDS, SUB, SUBS + aliases CMN, CMP, MOV |
| |
| // These instructions accept a 12-bit unsigned immediate, optionally shifted |
| // left by 12 bits. Official assembly format specifies a 12 bit immediate with |
| // one of "", "LSL #0", "LSL #12" supplementary operands. |
| |
| // There are surprisingly few ways to make this work with TableGen, so this |
| // implementation has separate instructions for the "LSL #0" and "LSL #12" |
| // variants. |
| |
| // If the MCInst retained a single combined immediate (which could be 0x123000, |
| // for example) then both components (imm & shift) would have to be delegated to |
| // a single assembly operand. This would entail a separate operand parser |
| // (because the LSL would have to live in the same AArch64Operand as the |
| // immediate to be accessible); assembly parsing is rather complex and |
| // error-prone C++ code. |
| // |
| // By splitting the immediate, we can delegate handling this optional operand to |
| // an InstAlias. Supporting functions to generate the correct MCInst are still |
| // required, but these are essentially trivial and parsing can remain generic. |
| // |
| // Rejected plans with rationale: |
| // ------------------------------ |
| // |
| // In an ideal world you'de have two first class immediate operands (in |
| // InOperandList, specifying imm12 and shift). Unfortunately this is not |
| // selectable by any means I could discover. |
| // |
| // An Instruction with two MCOperands hidden behind a single entry in |
| // InOperandList (expanded by ComplexPatterns and MIOperandInfo) was functional, |
| // but required more C++ code to handle encoding/decoding. Parsing (the intended |
| // main beneficiary) ended up equally complex because of the optional nature of |
| // "LSL #0". |
| // |
| // Attempting to circumvent the need for a custom OperandParser above by giving |
| // InstAliases without the "lsl #0" failed. add/sub could be accommodated but |
| // the cmp/cmn aliases didn't use the MIOperandInfo to determine how operands |
| // should be parsed: there was no way to accommodate an "lsl #12". |
| |
| let ParserMethod = "ParseImmWithLSLOperand", |
| RenderMethod = "addImmWithLSLOperands" in { |
| // Derived PredicateMethod fields are different for each |
| def addsubimm_lsl0_asmoperand : AsmOperandClass { |
| let Name = "AddSubImmLSL0"; |
| // If an error is reported against this operand, instruction could also be a |
| // register variant. |
| let DiagnosticType = "AddSubSecondSource"; |
| } |
| |
| def addsubimm_lsl12_asmoperand : AsmOperandClass { |
| let Name = "AddSubImmLSL12"; |
| let DiagnosticType = "AddSubSecondSource"; |
| } |
| } |
| |
| def shr_12_XFORM : SDNodeXForm<imm, [{ |
| return CurDAG->getTargetConstant(N->getSExtValue() >> 12, MVT::i32); |
| }]>; |
| |
| def shr_12_neg_XFORM : SDNodeXForm<imm, [{ |
| return CurDAG->getTargetConstant((-N->getSExtValue()) >> 12, MVT::i32); |
| }]>; |
| |
| def neg_XFORM : SDNodeXForm<imm, [{ |
| return CurDAG->getTargetConstant(-N->getSExtValue(), MVT::i32); |
| }]>; |
| |
| |
| multiclass addsub_imm_operands<ValueType ty> { |
| let PrintMethod = "printAddSubImmLSL0Operand", |
| EncoderMethod = "getAddSubImmOpValue", |
| ParserMatchClass = addsubimm_lsl0_asmoperand in { |
| def _posimm_lsl0 : Operand<ty>, |
| ImmLeaf<ty, [{ return Imm >= 0 && (Imm & ~0xfff) == 0; }]>; |
| def _negimm_lsl0 : Operand<ty>, |
| ImmLeaf<ty, [{ return Imm < 0 && (-Imm & ~0xfff) == 0; }], |
| neg_XFORM>; |
| } |
| |
| let PrintMethod = "printAddSubImmLSL12Operand", |
| EncoderMethod = "getAddSubImmOpValue", |
| ParserMatchClass = addsubimm_lsl12_asmoperand in { |
| def _posimm_lsl12 : Operand<ty>, |
| ImmLeaf<ty, [{ return Imm >= 0 && (Imm & ~0xfff000) == 0; }], |
| shr_12_XFORM>; |
| |
| def _negimm_lsl12 : Operand<ty>, |
| ImmLeaf<ty, [{ return Imm < 0 && (-Imm & ~0xfff000) == 0; }], |
| shr_12_neg_XFORM>; |
| } |
| } |
| |
| // The add operands don't need any transformation |
| defm addsubimm_operand_i32 : addsub_imm_operands<i32>; |
| defm addsubimm_operand_i64 : addsub_imm_operands<i64>; |
| |
| multiclass addsubimm_varieties<string prefix, bit sf, bit op, bits<2> shift, |
| string asmop, string cmpasmop, |
| Operand imm_operand, Operand cmp_imm_operand, |
| RegisterClass GPR, RegisterClass GPRsp, |
| AArch64Reg ZR> { |
| // All registers for non-S variants allow SP |
| def _s : A64I_addsubimm<sf, op, 0b0, shift, |
| (outs GPRsp:$Rd), |
| (ins GPRsp:$Rn, imm_operand:$Imm12), |
| !strconcat(asmop, "\t$Rd, $Rn, $Imm12"), |
| [(set GPRsp:$Rd, |
| (add GPRsp:$Rn, imm_operand:$Imm12))], |
| NoItinerary>; |
| |
| |
| // S variants can read SP but would write to ZR |
| def _S : A64I_addsubimm<sf, op, 0b1, shift, |
| (outs GPR:$Rd), |
| (ins GPRsp:$Rn, imm_operand:$Imm12), |
| !strconcat(asmop, "s\t$Rd, $Rn, $Imm12"), |
| [(set GPR:$Rd, (addc GPRsp:$Rn, imm_operand:$Imm12))], |
| NoItinerary> { |
| let Defs = [NZCV]; |
| } |
| |
| // Note that the pattern here for ADDS is subtle. Canonically CMP |
| // a, b becomes SUBS a, b. If b < 0 then this is equivalent to |
| // ADDS a, (-b). This is not true in general. |
| def _cmp : A64I_addsubimm<sf, op, 0b1, shift, |
| (outs), (ins GPRsp:$Rn, imm_operand:$Imm12), |
| !strconcat(cmpasmop, " $Rn, $Imm12"), |
| [(set NZCV, |
| (A64cmp GPRsp:$Rn, cmp_imm_operand:$Imm12))], |
| NoItinerary> { |
| let Rd = 0b11111; |
| let Defs = [NZCV]; |
| let isCompare = 1; |
| } |
| } |
| |
| |
| multiclass addsubimm_shifts<string prefix, bit sf, bit op, |
| string asmop, string cmpasmop, string operand, string cmpoperand, |
| RegisterClass GPR, RegisterClass GPRsp, AArch64Reg ZR> { |
| defm _lsl0 : addsubimm_varieties<prefix # "_lsl0", sf, op, 0b00, |
| asmop, cmpasmop, |
| !cast<Operand>(operand # "_lsl0"), |
| !cast<Operand>(cmpoperand # "_lsl0"), |
| GPR, GPRsp, ZR>; |
| |
| defm _lsl12 : addsubimm_varieties<prefix # "_lsl12", sf, op, 0b01, |
| asmop, cmpasmop, |
| !cast<Operand>(operand # "_lsl12"), |
| !cast<Operand>(cmpoperand # "_lsl12"), |
| GPR, GPRsp, ZR>; |
| } |
| |
| defm ADDwwi : addsubimm_shifts<"ADDwi", 0b0, 0b0, "add", "cmn", |
| "addsubimm_operand_i32_posimm", |
| "addsubimm_operand_i32_negimm", |
| GPR32, GPR32wsp, WZR>; |
| defm ADDxxi : addsubimm_shifts<"ADDxi", 0b1, 0b0, "add", "cmn", |
| "addsubimm_operand_i64_posimm", |
| "addsubimm_operand_i64_negimm", |
| GPR64, GPR64xsp, XZR>; |
| defm SUBwwi : addsubimm_shifts<"SUBwi", 0b0, 0b1, "sub", "cmp", |
| "addsubimm_operand_i32_negimm", |
| "addsubimm_operand_i32_posimm", |
| GPR32, GPR32wsp, WZR>; |
| defm SUBxxi : addsubimm_shifts<"SUBxi", 0b1, 0b1, "sub", "cmp", |
| "addsubimm_operand_i64_negimm", |
| "addsubimm_operand_i64_posimm", |
| GPR64, GPR64xsp, XZR>; |
| |
| multiclass MOVsp<RegisterClass GPRsp, RegisterClass SP, Instruction addop> { |
| def _fromsp : InstAlias<"mov $Rd, $Rn", |
| (addop GPRsp:$Rd, SP:$Rn, 0), |
| 0b1>; |
| |
| def _tosp : InstAlias<"mov $Rd, $Rn", |
| (addop SP:$Rd, GPRsp:$Rn, 0), |
| 0b1>; |
| } |
| |
| // Recall Rxsp is a RegisterClass containing *just* xsp. |
| defm MOVxx : MOVsp<GPR64xsp, Rxsp, ADDxxi_lsl0_s>; |
| defm MOVww : MOVsp<GPR32wsp, Rwsp, ADDwwi_lsl0_s>; |
| |
| //===----------------------------------------------------------------------===// |
| // Add-subtract (shifted register) instructions |
| //===----------------------------------------------------------------------===// |
| // Contains: ADD, ADDS, SUB, SUBS + aliases CMN, CMP, NEG, NEGS |
| |
| //===------------------------------- |
| // 1. The "shifed register" operands. Shared with logical insts. |
| //===------------------------------- |
| |
| multiclass shift_operands<string prefix, string form> { |
| def _asmoperand_i32 : AsmOperandClass { |
| let Name = "Shift" # form # "i32"; |
| let RenderMethod = "addShiftOperands"; |
| let PredicateMethod = "isShift<A64SE::" # form # ", false>"; |
| let DiagnosticType = "AddSubRegShift32"; |
| } |
| |
| // Note that the operand type is intentionally i64 because the DAGCombiner |
| // puts these into a canonical form. |
| def _i32 : Operand<i64>, ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 31; }]> { |
| let ParserMatchClass |
| = !cast<AsmOperandClass>(prefix # "_asmoperand_i32"); |
| let PrintMethod = "printShiftOperand<A64SE::" # form # ">"; |
| let DecoderMethod = "Decode32BitShiftOperand"; |
| } |
| |
| def _asmoperand_i64 : AsmOperandClass { |
| let Name = "Shift" # form # "i64"; |
| let RenderMethod = "addShiftOperands"; |
| let PredicateMethod = "isShift<A64SE::" # form # ", true>"; |
| let DiagnosticType = "AddSubRegShift64"; |
| } |
| |
| def _i64 : Operand<i64>, ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 63; }]> { |
| let ParserMatchClass |
| = !cast<AsmOperandClass>(prefix # "_asmoperand_i64"); |
| let PrintMethod = "printShiftOperand<A64SE::" # form # ">"; |
| } |
| } |
| |
| defm lsl_operand : shift_operands<"lsl_operand", "LSL">; |
| defm lsr_operand : shift_operands<"lsr_operand", "LSR">; |
| defm asr_operand : shift_operands<"asr_operand", "ASR">; |
| |
| // Not used for add/sub, but defined here for completeness. The "logical |
| // (shifted register)" instructions *do* have an ROR variant. |
| defm ror_operand : shift_operands<"ror_operand", "ROR">; |
| |
| //===------------------------------- |
| // 2. The basic 3.5-operand ADD/SUB/ADDS/SUBS instructions. |
| //===------------------------------- |
| |
| // N.b. the commutable parameter is just !N. It will be first against the wall |
| // when the revolution comes. |
| multiclass addsub_shifts<string prefix, bit sf, bit op, bit s, bit commutable, |
| string asmop, SDPatternOperator opfrag, string sty, |
| RegisterClass GPR, list<Register> defs> { |
| let isCommutable = commutable, Defs = defs in { |
| def _lsl : A64I_addsubshift<sf, op, s, 0b00, |
| (outs GPR:$Rd), |
| (ins GPR:$Rn, GPR:$Rm, |
| !cast<Operand>("lsl_operand_" # sty):$Imm6), |
| !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"), |
| [(set GPR:$Rd, (opfrag GPR:$Rn, (shl GPR:$Rm, |
| !cast<Operand>("lsl_operand_" # sty):$Imm6)) |
| )], |
| NoItinerary>; |
| |
| def _lsr : A64I_addsubshift<sf, op, s, 0b01, |
| (outs GPR:$Rd), |
| (ins GPR:$Rn, GPR:$Rm, |
| !cast<Operand>("lsr_operand_" # sty):$Imm6), |
| !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"), |
| [(set GPR:$Rd, (opfrag GPR:$Rn, (srl GPR:$Rm, |
| !cast<Operand>("lsr_operand_" # sty):$Imm6)) |
| )], |
| NoItinerary>; |
| |
| def _asr : A64I_addsubshift<sf, op, s, 0b10, |
| (outs GPR:$Rd), |
| (ins GPR:$Rn, GPR:$Rm, |
| !cast<Operand>("asr_operand_" # sty):$Imm6), |
| !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"), |
| [(set GPR:$Rd, (opfrag GPR:$Rn, (sra GPR:$Rm, |
| !cast<Operand>("asr_operand_" # sty):$Imm6)) |
| )], |
| NoItinerary>; |
| } |
| |
| def _noshift |
| : InstAlias<!strconcat(asmop, " $Rd, $Rn, $Rm"), |
| (!cast<Instruction>(prefix # "_lsl") GPR:$Rd, GPR:$Rn, |
| GPR:$Rm, 0)>; |
| |
| def : Pat<(opfrag GPR:$Rn, GPR:$Rm), |
| (!cast<Instruction>(prefix # "_lsl") GPR:$Rn, GPR:$Rm, 0)>; |
| } |
| |
| multiclass addsub_sizes<string prefix, bit op, bit s, bit commutable, |
| string asmop, SDPatternOperator opfrag, |
| list<Register> defs> { |
| defm xxx : addsub_shifts<prefix # "xxx", 0b1, op, s, |
| commutable, asmop, opfrag, "i64", GPR64, defs>; |
| defm www : addsub_shifts<prefix # "www", 0b0, op, s, |
| commutable, asmop, opfrag, "i32", GPR32, defs>; |
| } |
| |
| |
| defm ADD : addsub_sizes<"ADD", 0b0, 0b0, 0b1, "add", add, []>; |
| defm SUB : addsub_sizes<"SUB", 0b1, 0b0, 0b0, "sub", sub, []>; |
| |
| defm ADDS : addsub_sizes<"ADDS", 0b0, 0b1, 0b1, "adds", addc, [NZCV]>; |
| defm SUBS : addsub_sizes<"SUBS", 0b1, 0b1, 0b0, "subs", subc, [NZCV]>; |
| |
| //===------------------------------- |
| // 1. The NEG/NEGS aliases |
| //===------------------------------- |
| |
| multiclass neg_alias<Instruction INST, RegisterClass GPR, |
| Register ZR, Operand shift_operand, SDNode shiftop> { |
| def : InstAlias<"neg $Rd, $Rm, $Imm6", |
| (INST GPR:$Rd, ZR, GPR:$Rm, shift_operand:$Imm6)>; |
| |
| def : Pat<(sub 0, (shiftop GPR:$Rm, shift_operand:$Imm6)), |
| (INST ZR, GPR:$Rm, shift_operand:$Imm6)>; |
| } |
| |
| defm : neg_alias<SUBwww_lsl, GPR32, WZR, lsl_operand_i32, shl>; |
| defm : neg_alias<SUBwww_lsr, GPR32, WZR, lsr_operand_i32, srl>; |
| defm : neg_alias<SUBwww_asr, GPR32, WZR, asr_operand_i32, sra>; |
| def : InstAlias<"neg $Rd, $Rm", (SUBwww_lsl GPR32:$Rd, WZR, GPR32:$Rm, 0)>; |
| def : Pat<(sub 0, GPR32:$Rm), (SUBwww_lsl WZR, GPR32:$Rm, 0)>; |
| |
| defm : neg_alias<SUBxxx_lsl, GPR64, XZR, lsl_operand_i64, shl>; |
| defm : neg_alias<SUBxxx_lsr, GPR64, XZR, lsr_operand_i64, srl>; |
| defm : neg_alias<SUBxxx_asr, GPR64, XZR, asr_operand_i64, sra>; |
| def : InstAlias<"neg $Rd, $Rm", (SUBxxx_lsl GPR64:$Rd, XZR, GPR64:$Rm, 0)>; |
| def : Pat<(sub 0, GPR64:$Rm), (SUBxxx_lsl XZR, GPR64:$Rm, 0)>; |
| |
| // NEGS doesn't get any patterns yet: defining multiple outputs means C++ has to |
| // be involved. |
| class negs_alias<Instruction INST, RegisterClass GPR, |
| Register ZR, Operand shift_operand, SDNode shiftop> |
| : InstAlias<"negs $Rd, $Rm, $Imm6", |
| (INST GPR:$Rd, ZR, GPR:$Rm, shift_operand:$Imm6)>; |
| |
| def : negs_alias<SUBSwww_lsl, GPR32, WZR, lsl_operand_i32, shl>; |
| def : negs_alias<SUBSwww_lsr, GPR32, WZR, lsr_operand_i32, srl>; |
| def : negs_alias<SUBSwww_asr, GPR32, WZR, asr_operand_i32, sra>; |
| def : InstAlias<"negs $Rd, $Rm", (SUBSwww_lsl GPR32:$Rd, WZR, GPR32:$Rm, 0)>; |
| |
| def : negs_alias<SUBSxxx_lsl, GPR64, XZR, lsl_operand_i64, shl>; |
| def : negs_alias<SUBSxxx_lsr, GPR64, XZR, lsr_operand_i64, srl>; |
| def : negs_alias<SUBSxxx_asr, GPR64, XZR, asr_operand_i64, sra>; |
| def : InstAlias<"negs $Rd, $Rm", (SUBSxxx_lsl GPR64:$Rd, XZR, GPR64:$Rm, 0)>; |
| |
| //===------------------------------- |
| // 1. The CMP/CMN aliases |
| //===------------------------------- |
| |
| multiclass cmp_shifts<string prefix, bit sf, bit op, bit commutable, |
| string asmop, SDPatternOperator opfrag, string sty, |
| RegisterClass GPR> { |
| let isCommutable = commutable, Rd = 0b11111, Defs = [NZCV] in { |
| def _lsl : A64I_addsubshift<sf, op, 0b1, 0b00, |
| (outs), |
| (ins GPR:$Rn, GPR:$Rm, |
| !cast<Operand>("lsl_operand_" # sty):$Imm6), |
| !strconcat(asmop, "\t$Rn, $Rm, $Imm6"), |
| [(set NZCV, (opfrag GPR:$Rn, (shl GPR:$Rm, |
| !cast<Operand>("lsl_operand_" # sty):$Imm6)) |
| )], |
| NoItinerary>; |
| |
| def _lsr : A64I_addsubshift<sf, op, 0b1, 0b01, |
| (outs), |
| (ins GPR:$Rn, GPR:$Rm, |
| !cast<Operand>("lsr_operand_" # sty):$Imm6), |
| !strconcat(asmop, "\t$Rn, $Rm, $Imm6"), |
| [(set NZCV, (opfrag GPR:$Rn, (srl GPR:$Rm, |
| !cast<Operand>("lsr_operand_" # sty):$Imm6)) |
| )], |
| NoItinerary>; |
| |
| def _asr : A64I_addsubshift<sf, op, 0b1, 0b10, |
| (outs), |
| (ins GPR:$Rn, GPR:$Rm, |
| !cast<Operand>("asr_operand_" # sty):$Imm6), |
| !strconcat(asmop, "\t$Rn, $Rm, $Imm6"), |
| [(set NZCV, (opfrag GPR:$Rn, (sra GPR:$Rm, |
| !cast<Operand>("asr_operand_" # sty):$Imm6)) |
| )], |
| NoItinerary>; |
| } |
| |
| def _noshift |
| : InstAlias<!strconcat(asmop, " $Rn, $Rm"), |
| (!cast<Instruction>(prefix # "_lsl") GPR:$Rn, GPR:$Rm, 0)>; |
| |
| def : Pat<(opfrag GPR:$Rn, GPR:$Rm), |
| (!cast<Instruction>(prefix # "_lsl") GPR:$Rn, GPR:$Rm, 0)>; |
| } |
| |
| defm CMPww : cmp_shifts<"CMPww", 0b0, 0b1, 0b0, "cmp", A64cmp, "i32", GPR32>; |
| defm CMPxx : cmp_shifts<"CMPxx", 0b1, 0b1, 0b0, "cmp", A64cmp, "i64", GPR64>; |
| |
| defm CMNww : cmp_shifts<"CMNww", 0b0, 0b0, 0b1, "cmn", A64cmn, "i32", GPR32>; |
| defm CMNxx : cmp_shifts<"CMNxx", 0b1, 0b0, 0b1, "cmn", A64cmn, "i64", GPR64>; |
| |
| //===----------------------------------------------------------------------===// |
| // Add-subtract (with carry) instructions |
| //===----------------------------------------------------------------------===// |
| // Contains: ADC, ADCS, SBC, SBCS + aliases NGC, NGCS |
| |
| multiclass A64I_addsubcarrySizes<bit op, bit s, string asmop> { |
| let Uses = [NZCV] in { |
| def www : A64I_addsubcarry<0b0, op, s, 0b000000, |
| (outs GPR32:$Rd), (ins GPR32:$Rn, GPR32:$Rm), |
| !strconcat(asmop, "\t$Rd, $Rn, $Rm"), |
| [], NoItinerary>; |
| |
| def xxx : A64I_addsubcarry<0b1, op, s, 0b000000, |
| (outs GPR64:$Rd), (ins GPR64:$Rn, GPR64:$Rm), |
| !strconcat(asmop, "\t$Rd, $Rn, $Rm"), |
| [], NoItinerary>; |
| } |
| } |
| |
| let isCommutable = 1 in { |
| defm ADC : A64I_addsubcarrySizes<0b0, 0b0, "adc">; |
| } |
| |
| defm SBC : A64I_addsubcarrySizes<0b1, 0b0, "sbc">; |
| |
| let Defs = [NZCV] in { |
| let isCommutable = 1 in { |
| defm ADCS : A64I_addsubcarrySizes<0b0, 0b1, "adcs">; |
| } |
| |
| defm SBCS : A64I_addsubcarrySizes<0b1, 0b1, "sbcs">; |
| } |
| |
| def : InstAlias<"ngc $Rd, $Rm", (SBCwww GPR32:$Rd, WZR, GPR32:$Rm)>; |
| def : InstAlias<"ngc $Rd, $Rm", (SBCxxx GPR64:$Rd, XZR, GPR64:$Rm)>; |
| def : InstAlias<"ngcs $Rd, $Rm", (SBCSwww GPR32:$Rd, WZR, GPR32:$Rm)>; |
| def : InstAlias<"ngcs $Rd, $Rm", (SBCSxxx GPR64:$Rd, XZR, GPR64:$Rm)>; |
| |
| // Note that adde and sube can form a chain longer than two (e.g. for 256-bit |
| // addition). So the flag-setting instructions are appropriate. |
| def : Pat<(adde GPR32:$Rn, GPR32:$Rm), (ADCSwww GPR32:$Rn, GPR32:$Rm)>; |
| def : Pat<(adde GPR64:$Rn, GPR64:$Rm), (ADCSxxx GPR64:$Rn, GPR64:$Rm)>; |
| def : Pat<(sube GPR32:$Rn, GPR32:$Rm), (SBCSwww GPR32:$Rn, GPR32:$Rm)>; |
| def : Pat<(sube GPR64:$Rn, GPR64:$Rm), (SBCSxxx GPR64:$Rn, GPR64:$Rm)>; |
| |
| //===----------------------------------------------------------------------===// |
| // Bitfield |
| //===----------------------------------------------------------------------===// |
| // Contains: SBFM, BFM, UBFM, [SU]XT[BHW], ASR, LSR, LSL, SBFI[ZX], BFI, BFXIL, |
| // UBFIZ, UBFX |
| |
| // Because of the rather complicated nearly-overlapping aliases, the decoding of |
| // this range of instructions is handled manually. The architectural |
| // instructions are BFM, SBFM and UBFM but a disassembler should never produce |
| // these. |
| // |
| // In the end, the best option was to use BFM instructions for decoding under |
| // almost all circumstances, but to create aliasing *Instructions* for each of |
| // the canonical forms and specify a completely custom decoder which would |
| // substitute the correct MCInst as needed. |
| // |
| // This also simplifies instruction selection, parsing etc because the MCInsts |
| // have a shape that's closer to their use in code. |
| |
| //===------------------------------- |
| // 1. The architectural BFM instructions |
| //===------------------------------- |
| |
| def uimm5_asmoperand : AsmOperandClass { |
| let Name = "UImm5"; |
| let PredicateMethod = "isUImm<5>"; |
| let RenderMethod = "addImmOperands"; |
| let DiagnosticType = "UImm5"; |
| } |
| |
| def uimm6_asmoperand : AsmOperandClass { |
| let Name = "UImm6"; |
| let PredicateMethod = "isUImm<6>"; |
| let RenderMethod = "addImmOperands"; |
| let DiagnosticType = "UImm6"; |
| } |
| |
| def bitfield32_imm : Operand<i64>, |
| ImmLeaf<i64, [{ return Imm >= 0 && Imm < 32; }]> { |
| let ParserMatchClass = uimm5_asmoperand; |
| |
| let DecoderMethod = "DecodeBitfield32ImmOperand"; |
| } |
| |
| |
| def bitfield64_imm : Operand<i64>, |
| ImmLeaf<i64, [{ return Imm >= 0 && Imm < 64; }]> { |
| let ParserMatchClass = uimm6_asmoperand; |
| |
| // Default decoder works in 64-bit case: the 6-bit field can take any value. |
| } |
| |
| multiclass A64I_bitfieldSizes<bits<2> opc, string asmop> { |
| def wwii : A64I_bitfield<0b0, opc, 0b0, (outs GPR32:$Rd), |
| (ins GPR32:$Rn, bitfield32_imm:$ImmR, bitfield32_imm:$ImmS), |
| !strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"), |
| [], NoItinerary> { |
| let DecoderMethod = "DecodeBitfieldInstruction"; |
| } |
| |
| def xxii : A64I_bitfield<0b1, opc, 0b1, (outs GPR64:$Rd), |
| (ins GPR64:$Rn, bitfield64_imm:$ImmR, bitfield64_imm:$ImmS), |
| !strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"), |
| [], NoItinerary> { |
| let DecoderMethod = "DecodeBitfieldInstruction"; |
| } |
| } |
| |
| defm SBFM : A64I_bitfieldSizes<0b00, "sbfm">; |
| defm UBFM : A64I_bitfieldSizes<0b10, "ubfm">; |
| |
| // BFM instructions modify the destination register rather than defining it |
| // completely. |
| def BFMwwii : |
| A64I_bitfield<0b0, 0b01, 0b0, (outs GPR32:$Rd), |
| (ins GPR32:$src, GPR32:$Rn, bitfield32_imm:$ImmR, bitfield32_imm:$ImmS), |
| "bfm\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary> { |
| let DecoderMethod = "DecodeBitfieldInstruction"; |
| let Constraints = "$src = $Rd"; |
| } |
| |
| def BFMxxii : |
| A64I_bitfield<0b1, 0b01, 0b1, (outs GPR64:$Rd), |
| (ins GPR64:$src, GPR64:$Rn, bitfield64_imm:$ImmR, bitfield64_imm:$ImmS), |
| "bfm\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary> { |
| let DecoderMethod = "DecodeBitfieldInstruction"; |
| let Constraints = "$src = $Rd"; |
| } |
| |
| |
| //===------------------------------- |
| // 2. Extend aliases to 64-bit dest |
| //===------------------------------- |
| |
| // Unfortunately the extensions that end up as 64-bits cannot be handled by an |
| // instruction alias: their syntax is (for example) "SXTB x0, w0", which needs |
| // to be mapped to "SBFM x0, x0, #0, 7" (changing the class of Rn). InstAlias is |
| // not capable of such a map as far as I'm aware |
| |
| // Note that these instructions are strictly more specific than the |
| // BFM ones (in ImmR) so they can handle their own decoding. |
| class A64I_bf_ext<bit sf, bits<2> opc, RegisterClass GPRDest, string asmop, |
| bits<6> imms, dag pattern> |
| : A64I_bitfield<sf, opc, sf, |
| (outs GPRDest:$Rd), (ins GPR32:$Rn), |
| !strconcat(asmop, "\t$Rd, $Rn"), |
| [(set GPRDest:$Rd, pattern)], NoItinerary> { |
| let ImmR = 0b000000; |
| let ImmS = imms; |
| } |
| |
| // Signed extensions |
| def SXTBxw : A64I_bf_ext<0b1, 0b00, GPR64, "sxtb", 7, |
| (sext_inreg (anyext GPR32:$Rn), i8)>; |
| def SXTBww : A64I_bf_ext<0b0, 0b00, GPR32, "sxtb", 7, |
| (sext_inreg GPR32:$Rn, i8)>; |
| def SXTHxw : A64I_bf_ext<0b1, 0b00, GPR64, "sxth", 15, |
| (sext_inreg (anyext GPR32:$Rn), i16)>; |
| def SXTHww : A64I_bf_ext<0b0, 0b00, GPR32, "sxth", 15, |
| (sext_inreg GPR32:$Rn, i16)>; |
| def SXTWxw : A64I_bf_ext<0b1, 0b00, GPR64, "sxtw", 31, (sext GPR32:$Rn)>; |
| |
| // Unsigned extensions |
| def UXTBww : A64I_bf_ext<0b0, 0b10, GPR32, "uxtb", 7, |
| (and GPR32:$Rn, 255)>; |
| def UXTHww : A64I_bf_ext<0b0, 0b10, GPR32, "uxth", 15, |
| (and GPR32:$Rn, 65535)>; |
| |
| // The 64-bit unsigned variants are not strictly architectural but recommended |
| // for consistency. |
| let isAsmParserOnly = 1 in { |
| def UXTBxw : A64I_bf_ext<0b0, 0b10, GPR64, "uxtb", 7, |
| (and (anyext GPR32:$Rn), 255)>; |
| def UXTHxw : A64I_bf_ext<0b0, 0b10, GPR64, "uxth", 15, |
| (and (anyext GPR32:$Rn), 65535)>; |
| } |
| |
| // Extra patterns for when the source register is actually 64-bits |
| // too. There's no architectural difference here, it's just LLVM |
| // shinanigans. There's no need for equivalent zero-extension patterns |
| // because they'll already be caught by logical (immediate) matching. |
| def : Pat<(sext_inreg GPR64:$Rn, i8), |
| (SXTBxw (EXTRACT_SUBREG GPR64:$Rn, sub_32))>; |
| def : Pat<(sext_inreg GPR64:$Rn, i16), |
| (SXTHxw (EXTRACT_SUBREG GPR64:$Rn, sub_32))>; |
| def : Pat<(sext_inreg GPR64:$Rn, i32), |
| (SXTWxw (EXTRACT_SUBREG GPR64:$Rn, sub_32))>; |
| |
| |
| //===------------------------------- |
| // 3. Aliases for ASR and LSR (the simple shifts) |
| //===------------------------------- |
| |
| // These also handle their own decoding because ImmS being set makes |
| // them take precedence over BFM. |
| multiclass A64I_shift<bits<2> opc, string asmop, SDNode opnode> { |
| def wwi : A64I_bitfield<0b0, opc, 0b0, |
| (outs GPR32:$Rd), (ins GPR32:$Rn, bitfield32_imm:$ImmR), |
| !strconcat(asmop, "\t$Rd, $Rn, $ImmR"), |
| [(set GPR32:$Rd, (opnode GPR32:$Rn, bitfield32_imm:$ImmR))], |
| NoItinerary> { |
| let ImmS = 31; |
| } |
| |
| def xxi : A64I_bitfield<0b1, opc, 0b1, |
| (outs GPR64:$Rd), (ins GPR64:$Rn, bitfield64_imm:$ImmR), |
| !strconcat(asmop, "\t$Rd, $Rn, $ImmR"), |
| [(set GPR64:$Rd, (opnode GPR64:$Rn, bitfield64_imm:$ImmR))], |
| NoItinerary> { |
| let ImmS = 63; |
| } |
| |
| } |
| |
| defm ASR : A64I_shift<0b00, "asr", sra>; |
| defm LSR : A64I_shift<0b10, "lsr", srl>; |
| |
| //===------------------------------- |
| // 4. Aliases for LSL |
| //===------------------------------- |
| |
| // Unfortunately LSL and subsequent aliases are much more complicated. We need |
| // to be able to say certain output instruction fields depend in a complex |
| // manner on combinations of input assembly fields). |
| // |
| // MIOperandInfo *might* have been able to do it, but at the cost of |
| // significantly more C++ code. |
| |
| // N.b. contrary to usual practice these operands store the shift rather than |
| // the machine bits in an MCInst. The complexity overhead of consistency |
| // outweighed the benefits in this case (custom asmparser, printer and selection |
| // vs custom encoder). |
| def bitfield32_lsl_imm : Operand<i64>, |
| ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 31; }]> { |
| let ParserMatchClass = uimm5_asmoperand; |
| let EncoderMethod = "getBitfield32LSLOpValue"; |
| } |
| |
| def bitfield64_lsl_imm : Operand<i64>, |
| ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 63; }]> { |
| let ParserMatchClass = uimm6_asmoperand; |
| let EncoderMethod = "getBitfield64LSLOpValue"; |
| } |
| |
| class A64I_bitfield_lsl<bit sf, RegisterClass GPR, Operand operand> |
| : A64I_bitfield<sf, 0b10, sf, (outs GPR:$Rd), (ins GPR:$Rn, operand:$FullImm), |
| "lsl\t$Rd, $Rn, $FullImm", |
| [(set GPR:$Rd, (shl GPR:$Rn, operand:$FullImm))], |
| NoItinerary> { |
| bits<12> FullImm; |
| let ImmR = FullImm{5-0}; |
| let ImmS = FullImm{11-6}; |
| |
| // No disassembler allowed because it would overlap with BFM which does the |
| // actual work. |
| let isAsmParserOnly = 1; |
| } |
| |
| def LSLwwi : A64I_bitfield_lsl<0b0, GPR32, bitfield32_lsl_imm>; |
| def LSLxxi : A64I_bitfield_lsl<0b1, GPR64, bitfield64_lsl_imm>; |
| |
| //===------------------------------- |
| // 5. Aliases for bitfield extract instructions |
| //===------------------------------- |
| |
| def bfx32_width_asmoperand : AsmOperandClass { |
| let Name = "BFX32Width"; |
| let PredicateMethod = "isBitfieldWidth<32>"; |
| let RenderMethod = "addBFXWidthOperands"; |
| let DiagnosticType = "Width32"; |
| } |
| |
| def bfx32_width : Operand<i64>, ImmLeaf<i64, [{ return true; }]> { |
| let PrintMethod = "printBFXWidthOperand"; |
| let ParserMatchClass = bfx32_width_asmoperand; |
| } |
| |
| def bfx64_width_asmoperand : AsmOperandClass { |
| let Name = "BFX64Width"; |
| let PredicateMethod = "isBitfieldWidth<64>"; |
| let RenderMethod = "addBFXWidthOperands"; |
| let DiagnosticType = "Width64"; |
| } |
| |
| def bfx64_width : Operand<i64> { |
| let PrintMethod = "printBFXWidthOperand"; |
| let ParserMatchClass = bfx64_width_asmoperand; |
| } |
| |
| |
| multiclass A64I_bitfield_extract<bits<2> opc, string asmop, SDNode op> { |
| def wwii : A64I_bitfield<0b0, opc, 0b0, (outs GPR32:$Rd), |
| (ins GPR32:$Rn, bitfield32_imm:$ImmR, bfx32_width:$ImmS), |
| !strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"), |
| [(set GPR32:$Rd, (op GPR32:$Rn, imm:$ImmR, imm:$ImmS))], |
| NoItinerary> { |
| // As above, no disassembler allowed. |
| let isAsmParserOnly = 1; |
| } |
| |
| def xxii : A64I_bitfield<0b1, opc, 0b1, (outs GPR64:$Rd), |
| (ins GPR64:$Rn, bitfield64_imm:$ImmR, bfx64_width:$ImmS), |
| !strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"), |
| [(set GPR64:$Rd, (op GPR64:$Rn, imm:$ImmR, imm:$ImmS))], |
| NoItinerary> { |
| // As above, no disassembler allowed. |
| let isAsmParserOnly = 1; |
| } |
| } |
| |
| defm SBFX : A64I_bitfield_extract<0b00, "sbfx", A64Sbfx>; |
| defm UBFX : A64I_bitfield_extract<0b10, "ubfx", A64Ubfx>; |
| |
| // Again, variants based on BFM modify Rd so need it as an input too. |
| def BFXILwwii : A64I_bitfield<0b0, 0b01, 0b0, (outs GPR32:$Rd), |
| (ins GPR32:$src, GPR32:$Rn, bitfield32_imm:$ImmR, bfx32_width:$ImmS), |
| "bfxil\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary> { |
| // As above, no disassembler allowed. |
| let isAsmParserOnly = 1; |
| let Constraints = "$src = $Rd"; |
| } |
| |
| def BFXILxxii : A64I_bitfield<0b1, 0b01, 0b1, (outs GPR64:$Rd), |
| (ins GPR64:$src, GPR64:$Rn, bitfield64_imm:$ImmR, bfx64_width:$ImmS), |
| "bfxil\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary> { |
| // As above, no disassembler allowed. |
| let isAsmParserOnly = 1; |
| let Constraints = "$src = $Rd"; |
| } |
| |
| // SBFX instructions can do a 1-instruction sign-extension of boolean values. |
| def : Pat<(sext_inreg GPR64:$Rn, i1), (SBFXxxii GPR64:$Rn, 0, 0)>; |
| def : Pat<(sext_inreg GPR32:$Rn, i1), (SBFXwwii GPR32:$Rn, 0, 0)>; |
| def : Pat<(i64 (sext_inreg (anyext GPR32:$Rn), i1)), |
| (SBFXxxii (SUBREG_TO_REG (i64 0), GPR32:$Rn, sub_32), 0, 0)>; |
| |
| // UBFX makes sense as an implementation of a 64-bit zero-extension too. Could |
| // use either 64-bit or 32-bit variant, but 32-bit might be more efficient. |
| def : Pat<(zext GPR32:$Rn), (SUBREG_TO_REG (i64 0), (UBFXwwii GPR32:$Rn, 0, 31), |
| sub_32)>; |
| |
| //===------------------------------- |
| // 6. Aliases for bitfield insert instructions |
| //===------------------------------- |
| |
| def bfi32_lsb_asmoperand : AsmOperandClass { |
| let Name = "BFI32LSB"; |
| let PredicateMethod = "isUImm<5>"; |
| let RenderMethod = "addBFILSBOperands<32>"; |
| let DiagnosticType = "UImm5"; |
| } |
| |
| def bfi32_lsb : Operand<i64>, |
| ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 31; }]> { |
| let PrintMethod = "printBFILSBOperand<32>"; |
| let ParserMatchClass = bfi32_lsb_asmoperand; |
| } |
| |
| def bfi64_lsb_asmoperand : AsmOperandClass { |
| let Name = "BFI64LSB"; |
| let PredicateMethod = "isUImm<6>"; |
| let RenderMethod = "addBFILSBOperands<64>"; |
| let DiagnosticType = "UImm6"; |
| } |
| |
| def bfi64_lsb : Operand<i64>, |
| ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 63; }]> { |
| let PrintMethod = "printBFILSBOperand<64>"; |
| let ParserMatchClass = bfi64_lsb_asmoperand; |
| } |
| |
| // Width verification is performed during conversion so width operand can be |
| // shared between 32/64-bit cases. Still needed for the print method though |
| // because ImmR encodes "width - 1". |
| def bfi32_width_asmoperand : AsmOperandClass { |
| let Name = "BFI32Width"; |
| let PredicateMethod = "isBitfieldWidth<32>"; |
| let RenderMethod = "addBFIWidthOperands"; |
| let DiagnosticType = "Width32"; |
| } |
| |
| def bfi32_width : Operand<i64>, |
| ImmLeaf<i64, [{ return Imm >= 1 && Imm <= 32; }]> { |
| let PrintMethod = "printBFIWidthOperand"; |
| let ParserMatchClass = bfi32_width_asmoperand; |
| } |
| |
| def bfi64_width_asmoperand : AsmOperandClass { |
| let Name = "BFI64Width"; |
| let PredicateMethod = "isBitfieldWidth<64>"; |
| let RenderMethod = "addBFIWidthOperands"; |
| let DiagnosticType = "Width64"; |
| } |
| |
| def bfi64_width : Operand<i64>, |
| ImmLeaf<i64, [{ return Imm >= 1 && Imm <= 64; }]> { |
| let PrintMethod = "printBFIWidthOperand"; |
| let ParserMatchClass = bfi64_width_asmoperand; |
| } |
| |
| multiclass A64I_bitfield_insert<bits<2> opc, string asmop> { |
| def wwii : A64I_bitfield<0b0, opc, 0b0, (outs GPR32:$Rd), |
| (ins GPR32:$Rn, bfi32_lsb:$ImmR, bfi32_width:$ImmS), |
| !strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"), |
| [], NoItinerary> { |
| // As above, no disassembler allowed. |
| let isAsmParserOnly = 1; |
| } |
| |
| def xxii : A64I_bitfield<0b1, opc, 0b1, (outs GPR64:$Rd), |
| (ins GPR64:$Rn, bfi64_lsb:$ImmR, bfi64_width:$ImmS), |
| !strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"), |
| [], NoItinerary> { |
| // As above, no disassembler allowed. |
| let isAsmParserOnly = 1; |
| } |
| } |
| |
| defm SBFIZ : A64I_bitfield_insert<0b00, "sbfiz">; |
| defm UBFIZ : A64I_bitfield_insert<0b10, "ubfiz">; |
| |
| |
| def BFIwwii : A64I_bitfield<0b0, 0b01, 0b0, (outs GPR32:$Rd), |
| (ins GPR32:$src, GPR32:$Rn, bfi32_lsb:$ImmR, bfi32_width:$ImmS), |
| "bfi\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary> { |
| // As above, no disassembler allowed. |
| let isAsmParserOnly = 1; |
| let Constraints = "$src = $Rd"; |
| } |
| |
| def BFIxxii : A64I_bitfield<0b1, 0b01, 0b1, (outs GPR64:$Rd), |
| (ins GPR64:$src, GPR64:$Rn, bfi64_lsb:$ImmR, bfi64_width:$ImmS), |
| "bfi\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary> { |
| // As above, no disassembler allowed. |
| let isAsmParserOnly = 1; |
| let Constraints = "$src = $Rd"; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Compare and branch (immediate) |
| //===----------------------------------------------------------------------===// |
| // Contains: CBZ, CBNZ |
| |
| class label_asmoperand<int width, int scale> : AsmOperandClass { |
| let Name = "Label" # width # "_" # scale; |
| let PredicateMethod = "isLabel<" # width # "," # scale # ">"; |
| let RenderMethod = "addLabelOperands<" # width # ", " # scale # ">"; |
| let DiagnosticType = "Label"; |
| } |
| |
| def label_wid19_scal4_asmoperand : label_asmoperand<19, 4>; |
| |
| // All conditional immediate branches are the same really: 19 signed bits scaled |
| // by the instruction-size (4). |
| def bcc_target : Operand<OtherVT> { |
| // This label is a 19-bit offset from PC, scaled by the instruction-width: 4. |
| let ParserMatchClass = label_wid19_scal4_asmoperand; |
| let PrintMethod = "printLabelOperand<19, 4>"; |
| let EncoderMethod = "getLabelOpValue<AArch64::fixup_a64_condbr>"; |
| let OperandType = "OPERAND_PCREL"; |
| } |
| |
| multiclass cmpbr_sizes<bit op, string asmop, ImmLeaf SETOP> { |
| let isBranch = 1, isTerminator = 1 in { |
| def x : A64I_cmpbr<0b1, op, |
| (outs), |
| (ins GPR64:$Rt, bcc_target:$Label), |
| !strconcat(asmop,"\t$Rt, $Label"), |
| [(A64br_cc (A64cmp GPR64:$Rt, 0), SETOP, bb:$Label)], |
| NoItinerary>; |
| |
| def w : A64I_cmpbr<0b0, op, |
| (outs), |
| (ins GPR32:$Rt, bcc_target:$Label), |
| !strconcat(asmop,"\t$Rt, $Label"), |
| [(A64br_cc (A64cmp GPR32:$Rt, 0), SETOP, bb:$Label)], |
| NoItinerary>; |
| } |
| } |
| |
| defm CBZ : cmpbr_sizes<0b0, "cbz", ImmLeaf<i32, [{ |
| return Imm == A64CC::EQ; |
| }]> >; |
| defm CBNZ : cmpbr_sizes<0b1, "cbnz", ImmLeaf<i32, [{ |
| return Imm == A64CC::NE; |
| }]> >; |
| |
| //===----------------------------------------------------------------------===// |
| // Conditional branch (immediate) instructions |
| //===----------------------------------------------------------------------===// |
| // Contains: B.cc |
| |
| def cond_code_asmoperand : AsmOperandClass { |
| let Name = "CondCode"; |
| let DiagnosticType = "CondCode"; |
| } |
| |
| def cond_code : Operand<i32>, ImmLeaf<i32, [{ |
| return Imm >= 0 && Imm <= 15; |
| }]> { |
| let PrintMethod = "printCondCodeOperand"; |
| let ParserMatchClass = cond_code_asmoperand; |
| } |
| |
| def Bcc : A64I_condbr<0b0, 0b0, (outs), |
| (ins cond_code:$Cond, bcc_target:$Label), |
| "b.$Cond $Label", [(A64br_cc NZCV, (i32 imm:$Cond), bb:$Label)], |
| NoItinerary> { |
| let Uses = [NZCV]; |
| let isBranch = 1; |
| let isTerminator = 1; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Conditional compare (immediate) instructions |
| //===----------------------------------------------------------------------===// |
| // Contains: CCMN, CCMP |
| |
| def uimm4_asmoperand : AsmOperandClass { |
| let Name = "UImm4"; |
| let PredicateMethod = "isUImm<4>"; |
| let RenderMethod = "addImmOperands"; |
| let DiagnosticType = "UImm4"; |
| } |
| |
| def uimm4 : Operand<i32> { |
| let ParserMatchClass = uimm4_asmoperand; |
| } |
| |
| def uimm5 : Operand<i32> { |
| let ParserMatchClass = uimm5_asmoperand; |
| } |
| |
| // The only difference between this operand and the one for instructions like |
| // B.cc is that it's parsed manually. The other get parsed implicitly as part of |
| // the mnemonic handling. |
| def cond_code_op_asmoperand : AsmOperandClass { |
| let Name = "CondCodeOp"; |
| let RenderMethod = "addCondCodeOperands"; |
| let PredicateMethod = "isCondCode"; |
| let ParserMethod = "ParseCondCodeOperand"; |
| let DiagnosticType = "CondCode"; |
| } |
| |
| def cond_code_op : Operand<i32> { |
| let PrintMethod = "printCondCodeOperand"; |
| let ParserMatchClass = cond_code_op_asmoperand; |
| } |
| |
| class A64I_condcmpimmImpl<bit sf, bit op, RegisterClass GPR, string asmop> |
| : A64I_condcmpimm<sf, op, 0b0, 0b0, 0b1, (outs), |
| (ins GPR:$Rn, uimm5:$UImm5, uimm4:$NZCVImm, cond_code_op:$Cond), |
| !strconcat(asmop, "\t$Rn, $UImm5, $NZCVImm, $Cond"), |
| [], NoItinerary> { |
| let Defs = [NZCV]; |
| } |
| |
| def CCMNwi : A64I_condcmpimmImpl<0b0, 0b0, GPR32, "ccmn">; |
| def CCMNxi : A64I_condcmpimmImpl<0b1, 0b0, GPR64, "ccmn">; |
| def CCMPwi : A64I_condcmpimmImpl<0b0, 0b1, GPR32, "ccmp">; |
| def CCMPxi : A64I_condcmpimmImpl<0b1, 0b1, GPR64, "ccmp">; |
| |
| //===----------------------------------------------------------------------===// |
| // Conditional compare (register) instructions |
| //===----------------------------------------------------------------------===// |
| // Contains: CCMN, CCMP |
| |
| class A64I_condcmpregImpl<bit sf, bit op, RegisterClass GPR, string asmop> |
| : A64I_condcmpreg<sf, op, 0b0, 0b0, 0b1, |
| (outs), |
| (ins GPR:$Rn, GPR:$Rm, uimm4:$NZCVImm, cond_code_op:$Cond), |
| !strconcat(asmop, "\t$Rn, $Rm, $NZCVImm, $Cond"), |
| [], NoItinerary> { |
| let Defs = [NZCV]; |
| } |
| |
| def CCMNww : A64I_condcmpregImpl<0b0, 0b0, GPR32, "ccmn">; |
| def CCMNxx : A64I_condcmpregImpl<0b1, 0b0, GPR64, "ccmn">; |
| def CCMPww : A64I_condcmpregImpl<0b0, 0b1, GPR32, "ccmp">; |
| def CCMPxx : A64I_condcmpregImpl<0b1, 0b1, GPR64, "ccmp">; |
| |
| //===----------------------------------------------------------------------===// |
| // Conditional select instructions |
| //===----------------------------------------------------------------------===// |
| // Contains: CSEL, CSINC, CSINV, CSNEG + aliases CSET, CSETM, CINC, CINV, CNEG |
| |
| // Condition code which is encoded as the inversion (semantically rather than |
| // bitwise) in the instruction. |
| def inv_cond_code_op_asmoperand : AsmOperandClass { |
| let Name = "InvCondCodeOp"; |
| let RenderMethod = "addInvCondCodeOperands"; |
| let PredicateMethod = "isCondCode"; |
| let ParserMethod = "ParseCondCodeOperand"; |
| let DiagnosticType = "CondCode"; |
| } |
| |
| def inv_cond_code_op : Operand<i32> { |
| let ParserMatchClass = inv_cond_code_op_asmoperand; |
| } |
| |
| // Having a separate operand for the selectable use-case is debatable, but gives |
| // consistency with cond_code. |
| def inv_cond_XFORM : SDNodeXForm<imm, [{ |
| A64CC::CondCodes CC = static_cast<A64CC::CondCodes>(N->getZExtValue()); |
| return CurDAG->getTargetConstant(A64InvertCondCode(CC), MVT::i32); |
| }]>; |
| |
| def inv_cond_code |
| : ImmLeaf<i32, [{ return Imm >= 0 && Imm <= 15; }], inv_cond_XFORM>; |
| |
| |
| multiclass A64I_condselSizes<bit op, bits<2> op2, string asmop, |
| SDPatternOperator select> { |
| let Uses = [NZCV] in { |
| def wwwc : A64I_condsel<0b0, op, 0b0, op2, |
| (outs GPR32:$Rd), |
| (ins GPR32:$Rn, GPR32:$Rm, cond_code_op:$Cond), |
| !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Cond"), |
| [(set GPR32:$Rd, (select GPR32:$Rn, GPR32:$Rm))], |
| NoItinerary>; |
| |
| |
| def xxxc : A64I_condsel<0b1, op, 0b0, op2, |
| (outs GPR64:$Rd), |
| (ins GPR64:$Rn, GPR64:$Rm, cond_code_op:$Cond), |
| !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Cond"), |
| [(set GPR64:$Rd, (select GPR64:$Rn, GPR64:$Rm))], |
| NoItinerary>; |
| } |
| } |
| |
| def simple_select |
| : PatFrag<(ops node:$lhs, node:$rhs), |
| (A64select_cc NZCV, node:$lhs, node:$rhs, (i32 imm:$Cond))>; |
| |
| class complex_select<SDPatternOperator opnode> |
| : PatFrag<(ops node:$lhs, node:$rhs), |
| (A64select_cc NZCV, node:$lhs, (opnode node:$rhs), (i32 imm:$Cond))>; |
| |
| |
| defm CSEL : A64I_condselSizes<0b0, 0b00, "csel", simple_select>; |
| defm CSINC : A64I_condselSizes<0b0, 0b01, "csinc", |
| complex_select<PatFrag<(ops node:$val), |
| (add node:$val, 1)>>>; |
| defm CSINV : A64I_condselSizes<0b1, 0b00, "csinv", complex_select<not>>; |
| defm CSNEG : A64I_condselSizes<0b1, 0b01, "csneg", complex_select<ineg>>; |
| |
| // Now the instruction aliases, which fit nicely into LLVM's model: |
| |
| def : InstAlias<"cset $Rd, $Cond", |
| (CSINCwwwc GPR32:$Rd, WZR, WZR, inv_cond_code_op:$Cond)>; |
| def : InstAlias<"cset $Rd, $Cond", |
| (CSINCxxxc GPR64:$Rd, XZR, XZR, inv_cond_code_op:$Cond)>; |
| def : InstAlias<"csetm $Rd, $Cond", |
| (CSINVwwwc GPR32:$Rd, WZR, WZR, inv_cond_code_op:$Cond)>; |
| def : InstAlias<"csetm $Rd, $Cond", |
| (CSINVxxxc GPR64:$Rd, XZR, XZR, inv_cond_code_op:$Cond)>; |
| def : InstAlias<"cinc $Rd, $Rn, $Cond", |
| (CSINCwwwc GPR32:$Rd, GPR32:$Rn, GPR32:$Rn, inv_cond_code_op:$Cond)>; |
| def : InstAlias<"cinc $Rd, $Rn, $Cond", |
| (CSINCxxxc GPR64:$Rd, GPR64:$Rn, GPR64:$Rn, inv_cond_code_op:$Cond)>; |
| def : InstAlias<"cinv $Rd, $Rn, $Cond", |
| (CSINVwwwc GPR32:$Rd, GPR32:$Rn, GPR32:$Rn, inv_cond_code_op:$Cond)>; |
| def : InstAlias<"cinv $Rd, $Rn, $Cond", |
| (CSINVxxxc GPR64:$Rd, GPR64:$Rn, GPR64:$Rn, inv_cond_code_op:$Cond)>; |
| def : InstAlias<"cneg $Rd, $Rn, $Cond", |
| (CSNEGwwwc GPR32:$Rd, GPR32:$Rn, GPR32:$Rn, inv_cond_code_op:$Cond)>; |
| def : InstAlias<"cneg $Rd, $Rn, $Cond", |
| (CSNEGxxxc GPR64:$Rd, GPR64:$Rn, GPR64:$Rn, inv_cond_code_op:$Cond)>; |
| |
| // Finally some helper patterns. |
| |
| // For CSET (a.k.a. zero-extension of icmp) |
| def : Pat<(A64select_cc NZCV, 0, 1, cond_code:$Cond), |
| (CSINCwwwc WZR, WZR, cond_code:$Cond)>; |
| def : Pat<(A64select_cc NZCV, 1, 0, inv_cond_code:$Cond), |
| (CSINCwwwc WZR, WZR, inv_cond_code:$Cond)>; |
| |
| def : Pat<(A64select_cc NZCV, 0, 1, cond_code:$Cond), |
| (CSINCxxxc XZR, XZR, cond_code:$Cond)>; |
| def : Pat<(A64select_cc NZCV, 1, 0, inv_cond_code:$Cond), |
| (CSINCxxxc XZR, XZR, inv_cond_code:$Cond)>; |
| |
| // For CSETM (a.k.a. sign-extension of icmp) |
| def : Pat<(A64select_cc NZCV, 0, -1, cond_code:$Cond), |
| (CSINVwwwc WZR, WZR, cond_code:$Cond)>; |
| def : Pat<(A64select_cc NZCV, -1, 0, inv_cond_code:$Cond), |
| (CSINVwwwc WZR, WZR, inv_cond_code:$Cond)>; |
| |
| def : Pat<(A64select_cc NZCV, 0, -1, cond_code:$Cond), |
| (CSINVxxxc XZR, XZR, cond_code:$Cond)>; |
| def : Pat<(A64select_cc NZCV, -1, 0, inv_cond_code:$Cond), |
| (CSINVxxxc XZR, XZR, inv_cond_code:$Cond)>; |
| |
| // CINC, CINV and CNEG get dealt with automatically, which leaves the issue of |
| // commutativity. The instructions are to complex for isCommutable to be used, |
| // so we have to create the patterns manually: |
| |
| // No commutable pattern for CSEL since the commuted version is isomorphic. |
| |
| // CSINC |
| def :Pat<(A64select_cc NZCV, (add GPR32:$Rm, 1), GPR32:$Rn, |
| inv_cond_code:$Cond), |
| (CSINCwwwc GPR32:$Rn, GPR32:$Rm, inv_cond_code:$Cond)>; |
| def :Pat<(A64select_cc NZCV, (add GPR64:$Rm, 1), GPR64:$Rn, |
| inv_cond_code:$Cond), |
| (CSINCxxxc GPR64:$Rn, GPR64:$Rm, inv_cond_code:$Cond)>; |
| |
| // CSINV |
| def :Pat<(A64select_cc NZCV, (not GPR32:$Rm), GPR32:$Rn, inv_cond_code:$Cond), |
| (CSINVwwwc GPR32:$Rn, GPR32:$Rm, inv_cond_code:$Cond)>; |
| def :Pat<(A64select_cc NZCV, (not GPR64:$Rm), GPR64:$Rn, inv_cond_code:$Cond), |
| (CSINVxxxc GPR64:$Rn, GPR64:$Rm, inv_cond_code:$Cond)>; |
| |
| // CSNEG |
| def :Pat<(A64select_cc NZCV, (ineg GPR32:$Rm), GPR32:$Rn, inv_cond_code:$Cond), |
| (CSNEGwwwc GPR32:$Rn, GPR32:$Rm, inv_cond_code:$Cond)>; |
| def :Pat<(A64select_cc NZCV, (ineg GPR64:$Rm), GPR64:$Rn, inv_cond_code:$Cond), |
| (CSNEGxxxc GPR64:$Rn, GPR64:$Rm, inv_cond_code:$Cond)>; |
| |
| //===----------------------------------------------------------------------===// |
| // Data Processing (1 source) instructions |
| //===----------------------------------------------------------------------===// |
| // Contains: RBIT, REV16, REV, REV32, CLZ, CLS. |
| |
| // We define an unary operator which always fails. We will use this to |
| // define unary operators that cannot be matched. |
| |
| class A64I_dp_1src_impl<bit sf, bits<6> opcode, string asmop, |
| list<dag> patterns, RegisterClass GPRrc, |
| InstrItinClass itin>: |
| A64I_dp_1src<sf, |
| 0, |
| 0b00000, |
| opcode, |
| !strconcat(asmop, "\t$Rd, $Rn"), |
| (outs GPRrc:$Rd), |
| (ins GPRrc:$Rn), |
| patterns, |
| itin>; |
| |
| multiclass A64I_dp_1src <bits<6> opcode, string asmop> { |
| let hasSideEffects = 0 in { |
| def ww : A64I_dp_1src_impl<0b0, opcode, asmop, [], GPR32, NoItinerary>; |
| def xx : A64I_dp_1src_impl<0b1, opcode, asmop, [], GPR64, NoItinerary>; |
| } |
| } |
| |
| defm RBIT : A64I_dp_1src<0b000000, "rbit">; |
| defm CLS : A64I_dp_1src<0b000101, "cls">; |
| defm CLZ : A64I_dp_1src<0b000100, "clz">; |
| |
| def : Pat<(ctlz GPR32:$Rn), (CLZww GPR32:$Rn)>; |
| def : Pat<(ctlz GPR64:$Rn), (CLZxx GPR64:$Rn)>; |
| def : Pat<(ctlz_zero_undef GPR32:$Rn), (CLZww GPR32:$Rn)>; |
| def : Pat<(ctlz_zero_undef GPR64:$Rn), (CLZxx GPR64:$Rn)>; |
| |
| def : Pat<(cttz GPR32:$Rn), (CLZww (RBITww GPR32:$Rn))>; |
| def : Pat<(cttz GPR64:$Rn), (CLZxx (RBITxx GPR64:$Rn))>; |
| def : Pat<(cttz_zero_undef GPR32:$Rn), (CLZww (RBITww GPR32:$Rn))>; |
| def : Pat<(cttz_zero_undef GPR64:$Rn), (CLZxx (RBITxx GPR64:$Rn))>; |
| |
| |
| def REVww : A64I_dp_1src_impl<0b0, 0b000010, "rev", |
| [(set GPR32:$Rd, (bswap GPR32:$Rn))], |
| GPR32, NoItinerary>; |
| def REVxx : A64I_dp_1src_impl<0b1, 0b000011, "rev", |
| [(set GPR64:$Rd, (bswap GPR64:$Rn))], |
| GPR64, NoItinerary>; |
| def REV32xx : A64I_dp_1src_impl<0b1, 0b000010, "rev32", |
| [(set GPR64:$Rd, (bswap (rotr GPR64:$Rn, (i64 32))))], |
| GPR64, NoItinerary>; |
| def REV16ww : A64I_dp_1src_impl<0b0, 0b000001, "rev16", |
| [(set GPR32:$Rd, (bswap (rotr GPR32:$Rn, (i64 16))))], |
| GPR32, |
| NoItinerary>; |
| def REV16xx : A64I_dp_1src_impl<0b1, 0b000001, "rev16", [], GPR64, NoItinerary>; |
| |
| //===----------------------------------------------------------------------===// |
| // Data Processing (2 sources) instructions |
| //===----------------------------------------------------------------------===// |
| // Contains: CRC32C?[BHWX], UDIV, SDIV, LSLV, LSRV, ASRV, RORV + aliases LSL, |
| // LSR, ASR, ROR |
| |
| |
| class dp_2src_impl<bit sf, bits<6> opcode, string asmop, list<dag> patterns, |
| RegisterClass GPRsp, |
| InstrItinClass itin>: |
| A64I_dp_2src<sf, |
| opcode, |
| 0, |
| !strconcat(asmop, "\t$Rd, $Rn, $Rm"), |
| (outs GPRsp:$Rd), |
| (ins GPRsp:$Rn, GPRsp:$Rm), |
| patterns, |
| itin>; |
| |
| multiclass dp_2src_crc<bit c, string asmop> { |
| def B_www : dp_2src_impl<0b0, {0, 1, 0, c, 0, 0}, |
| !strconcat(asmop, "b"), [], GPR32, NoItinerary>; |
| def H_www : dp_2src_impl<0b0, {0, 1, 0, c, 0, 1}, |
| !strconcat(asmop, "h"), [], GPR32, NoItinerary>; |
| def W_www : dp_2src_impl<0b0, {0, 1, 0, c, 1, 0}, |
| !strconcat(asmop, "w"), [], GPR32, NoItinerary>; |
| def X_wwx : A64I_dp_2src<0b1, {0, 1, 0, c, 1, 1}, 0b0, |
| !strconcat(asmop, "x\t$Rd, $Rn, $Rm"), |
| (outs GPR32:$Rd), (ins GPR32:$Rn, GPR64:$Rm), [], |
| NoItinerary>; |
| } |
| |
| multiclass dp_2src_zext <bits<6> opcode, string asmop, SDPatternOperator op> { |
| def www : dp_2src_impl<0b0, |
| opcode, |
| asmop, |
| [(set GPR32:$Rd, |
| (op GPR32:$Rn, (i64 (zext GPR32:$Rm))))], |
| GPR32, |
| NoItinerary>; |
| def xxx : dp_2src_impl<0b1, |
| opcode, |
| asmop, |
| [(set GPR64:$Rd, (op GPR64:$Rn, GPR64:$Rm))], |
| GPR64, |
| NoItinerary>; |
| } |
| |
| |
| multiclass dp_2src <bits<6> opcode, string asmop, SDPatternOperator op> { |
| def www : dp_2src_impl<0b0, |
| opcode, |
| asmop, |
| [(set GPR32:$Rd, (op GPR32:$Rn, GPR32:$Rm))], |
| GPR32, |
| NoItinerary>; |
| def xxx : dp_2src_impl<0b1, |
| opcode, |
| asmop, |
| [(set GPR64:$Rd, (op GPR64:$Rn, GPR64:$Rm))], |
| GPR64, |
| NoItinerary>; |
| } |
| |
| // Here we define the data processing 2 source instructions. |
| defm CRC32 : dp_2src_crc<0b0, "crc32">; |
| defm CRC32C : dp_2src_crc<0b1, "crc32c">; |
| |
| defm UDIV : dp_2src<0b000010, "udiv", udiv>; |
| defm SDIV : dp_2src<0b000011, "sdiv", sdiv>; |
| |
| defm LSLV : dp_2src_zext<0b001000, "lsl", shl>; |
| defm LSRV : dp_2src_zext<0b001001, "lsr", srl>; |
| defm ASRV : dp_2src_zext<0b001010, "asr", sra>; |
| defm RORV : dp_2src_zext<0b001011, "ror", rotr>; |
| |
| // Extra patterns for an incoming 64-bit value for a 32-bit |
| // operation. Since the LLVM operations are undefined (as in C) if the |
| // RHS is out of range, it's perfectly permissible to discard the high |
| // bits of the GPR64. |
| def : Pat<(shl GPR32:$Rn, GPR64:$Rm), |
| (LSLVwww GPR32:$Rn, (EXTRACT_SUBREG GPR64:$Rm, sub_32))>; |
| def : Pat<(srl GPR32:$Rn, GPR64:$Rm), |
| (LSRVwww GPR32:$Rn, (EXTRACT_SUBREG GPR64:$Rm, sub_32))>; |
| def : Pat<(sra GPR32:$Rn, GPR64:$Rm), |
| (ASRVwww GPR32:$Rn, (EXTRACT_SUBREG GPR64:$Rm, sub_32))>; |
| def : Pat<(rotr GPR32:$Rn, GPR64:$Rm), |
| (RORVwww GPR32:$Rn, (EXTRACT_SUBREG GPR64:$Rm, sub_32))>; |
| |
| // Here we define the aliases for the data processing 2 source instructions. |
| def LSL_mnemonic : MnemonicAlias<"lslv", "lsl">; |
| def LSR_mnemonic : MnemonicAlias<"lsrv", "lsr">; |
| def ASR_menmonic : MnemonicAlias<"asrv", "asr">; |
| def ROR_menmonic : MnemonicAlias<"rorv", "ror">; |
| |
| //===----------------------------------------------------------------------===// |
| // Data Processing (3 sources) instructions |
| //===----------------------------------------------------------------------===// |
| // Contains: MADD, MSUB, SMADDL, SMSUBL, SMULH, UMADDL, UMSUBL, UMULH |
| // + aliases MUL, MNEG, SMULL, SMNEGL, UMULL, UMNEGL |
| |
| class A64I_dp3_4operand<bit sf, bits<6> opcode, RegisterClass AccReg, |
| RegisterClass SrcReg, string asmop, dag pattern> |
| : A64I_dp3<sf, opcode, |
| (outs AccReg:$Rd), (ins SrcReg:$Rn, SrcReg:$Rm, AccReg:$Ra), |
| !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Ra"), |
| [(set AccReg:$Rd, pattern)], NoItinerary> { |
| RegisterClass AccGPR = AccReg; |
| RegisterClass SrcGPR = SrcReg; |
| } |
| |
| def MADDwwww : A64I_dp3_4operand<0b0, 0b000000, GPR32, GPR32, "madd", |
| (add GPR32:$Ra, (mul GPR32:$Rn, GPR32:$Rm))>; |
| def MADDxxxx : A64I_dp3_4operand<0b1, 0b000000, GPR64, GPR64, "madd", |
| (add GPR64:$Ra, (mul GPR64:$Rn, GPR64:$Rm))>; |
| |
| def MSUBwwww : A64I_dp3_4operand<0b0, 0b000001, GPR32, GPR32, "msub", |
| (sub GPR32:$Ra, (mul GPR32:$Rn, GPR32:$Rm))>; |
| def MSUBxxxx : A64I_dp3_4operand<0b1, 0b000001, GPR64, GPR64, "msub", |
| (sub GPR64:$Ra, (mul GPR64:$Rn, GPR64:$Rm))>; |
| |
| def SMADDLxwwx : A64I_dp3_4operand<0b1, 0b000010, GPR64, GPR32, "smaddl", |
| (add GPR64:$Ra, (mul (i64 (sext GPR32:$Rn)), (sext GPR32:$Rm)))>; |
| def SMSUBLxwwx : A64I_dp3_4operand<0b1, 0b000011, GPR64, GPR32, "smsubl", |
| (sub GPR64:$Ra, (mul (i64 (sext GPR32:$Rn)), (sext GPR32:$Rm)))>; |
| |
| def UMADDLxwwx : A64I_dp3_4operand<0b1, 0b001010, GPR64, GPR32, "umaddl", |
| (add GPR64:$Ra, (mul (i64 (zext GPR32:$Rn)), (zext GPR32:$Rm)))>; |
| def UMSUBLxwwx : A64I_dp3_4operand<0b1, 0b001011, GPR64, GPR32, "umsubl", |
| (sub GPR64:$Ra, (mul (i64 (zext GPR32:$Rn)), (zext GPR32:$Rm)))>; |
| |
| let isCommutable = 1, PostEncoderMethod = "fixMulHigh" in { |
| def UMULHxxx : A64I_dp3<0b1, 0b001100, (outs GPR64:$Rd), |
| (ins GPR64:$Rn, GPR64:$Rm), |
| "umulh\t$Rd, $Rn, $Rm", |
| [(set GPR64:$Rd, (mulhu GPR64:$Rn, GPR64:$Rm))], |
| NoItinerary>; |
| |
| def SMULHxxx : A64I_dp3<0b1, 0b000100, (outs GPR64:$Rd), |
| (ins GPR64:$Rn, GPR64:$Rm), |
| "smulh\t$Rd, $Rn, $Rm", |
| [(set GPR64:$Rd, (mulhs GPR64:$Rn, GPR64:$Rm))], |
| NoItinerary>; |
| } |
| |
| multiclass A64I_dp3_3operand<string asmop, A64I_dp3_4operand INST, |
| Register ZR, dag pattern> { |
| def : InstAlias<asmop # " $Rd, $Rn, $Rm", |
| (INST INST.AccGPR:$Rd, INST.SrcGPR:$Rn, INST.SrcGPR:$Rm, ZR)>; |
| |
| def : Pat<pattern, (INST INST.SrcGPR:$Rn, INST.SrcGPR:$Rm, ZR)>; |
| } |
| |
| defm : A64I_dp3_3operand<"mul", MADDwwww, WZR, (mul GPR32:$Rn, GPR32:$Rm)>; |
| defm : A64I_dp3_3operand<"mul", MADDxxxx, XZR, (mul GPR64:$Rn, GPR64:$Rm)>; |
| |
| defm : A64I_dp3_3operand<"mneg", MSUBwwww, WZR, |
| (sub 0, (mul GPR32:$Rn, GPR32:$Rm))>; |
| defm : A64I_dp3_3operand<"mneg", MSUBxxxx, XZR, |
| (sub 0, (mul GPR64:$Rn, GPR64:$Rm))>; |
| |
| defm : A64I_dp3_3operand<"smull", SMADDLxwwx, XZR, |
| (mul (i64 (sext GPR32:$Rn)), (sext GPR32:$Rm))>; |
| defm : A64I_dp3_3operand<"smnegl", SMSUBLxwwx, XZR, |
| (sub 0, (mul (i64 (sext GPR32:$Rn)), (sext GPR32:$Rm)))>; |
| |
| defm : A64I_dp3_3operand<"umull", UMADDLxwwx, XZR, |
| (mul (i64 (zext GPR32:$Rn)), (zext GPR32:$Rm))>; |
| defm : A64I_dp3_3operand<"umnegl", UMSUBLxwwx, XZR, |
| (sub 0, (mul (i64 (zext GPR32:$Rn)), (zext GPR32:$Rm)))>; |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Exception generation |
| //===----------------------------------------------------------------------===// |
| // Contains: SVC, HVC, SMC, BRK, HLT, DCPS1, DCPS2, DCPS3 |
| |
| def uimm16_asmoperand : AsmOperandClass { |
| let Name = "UImm16"; |
| let PredicateMethod = "isUImm<16>"; |
| let RenderMethod = "addImmOperands"; |
| let DiagnosticType = "UImm16"; |
| } |
| |
| def uimm16 : Operand<i32> { |
| let ParserMatchClass = uimm16_asmoperand; |
| } |
| |
| class A64I_exceptImpl<bits<3> opc, bits<2> ll, string asmop> |
| : A64I_exception<opc, 0b000, ll, (outs), (ins uimm16:$UImm16), |
| !strconcat(asmop, "\t$UImm16"), [], NoItinerary> { |
| let isBranch = 1; |
| let isTerminator = 1; |
| } |
| |
| def SVCi : A64I_exceptImpl<0b000, 0b01, "svc">; |
| def HVCi : A64I_exceptImpl<0b000, 0b10, "hvc">; |
| def SMCi : A64I_exceptImpl<0b000, 0b11, "smc">; |
| def BRKi : A64I_exceptImpl<0b001, 0b00, "brk">; |
| def HLTi : A64I_exceptImpl<0b010, 0b00, "hlt">; |
| |
| def DCPS1i : A64I_exceptImpl<0b101, 0b01, "dcps1">; |
| def DCPS2i : A64I_exceptImpl<0b101, 0b10, "dcps2">; |
| def DCPS3i : A64I_exceptImpl<0b101, 0b11, "dcps3">; |
| |
| // The immediate is optional for the DCPS instructions, defaulting to 0. |
| def : InstAlias<"dcps1", (DCPS1i 0)>; |
| def : InstAlias<"dcps2", (DCPS2i 0)>; |
| def : InstAlias<"dcps3", (DCPS3i 0)>; |
| |
| //===----------------------------------------------------------------------===// |
| // Extract (immediate) |
| //===----------------------------------------------------------------------===// |
| // Contains: EXTR + alias ROR |
| |
| def EXTRwwwi : A64I_extract<0b0, 0b000, 0b0, |
| (outs GPR32:$Rd), |
| (ins GPR32:$Rn, GPR32:$Rm, bitfield32_imm:$LSB), |
| "extr\t$Rd, $Rn, $Rm, $LSB", |
| [(set GPR32:$Rd, |
| (A64Extr GPR32:$Rn, GPR32:$Rm, imm:$LSB))], |
| NoItinerary>; |
| def EXTRxxxi : A64I_extract<0b1, 0b000, 0b1, |
| (outs GPR64:$Rd), |
| (ins GPR64:$Rn, GPR64:$Rm, bitfield64_imm:$LSB), |
| "extr\t$Rd, $Rn, $Rm, $LSB", |
| [(set GPR64:$Rd, |
| (A64Extr GPR64:$Rn, GPR64:$Rm, imm:$LSB))], |
| NoItinerary>; |
| |
| def : InstAlias<"ror $Rd, $Rs, $LSB", |
| (EXTRwwwi GPR32:$Rd, GPR32:$Rs, GPR32:$Rs, bitfield32_imm:$LSB)>; |
| def : InstAlias<"ror $Rd, $Rs, $LSB", |
| (EXTRxxxi GPR64:$Rd, GPR64:$Rs, GPR64:$Rs, bitfield64_imm:$LSB)>; |
| |
| def : Pat<(rotr GPR32:$Rn, bitfield32_imm:$LSB), |
| (EXTRwwwi GPR32:$Rn, GPR32:$Rn, bitfield32_imm:$LSB)>; |
| def : Pat<(rotr GPR64:$Rn, bitfield64_imm:$LSB), |
| (EXTRxxxi GPR64:$Rn, GPR64:$Rn, bitfield64_imm:$LSB)>; |
| |
| //===----------------------------------------------------------------------===// |
| // Floating-point compare instructions |
| //===----------------------------------------------------------------------===// |
| // Contains: FCMP, FCMPE |
| |
| def fpzero_asmoperand : AsmOperandClass { |
| let Name = "FPZero"; |
| let ParserMethod = "ParseFPImmOperand"; |
| let DiagnosticType = "FPZero"; |
| } |
| |
| def fpz32 : Operand<f32>, |
| ComplexPattern<f32, 1, "SelectFPZeroOperand", [fpimm]> { |
| let ParserMatchClass = fpzero_asmoperand; |
| let PrintMethod = "printFPZeroOperand"; |
| } |
| |
| def fpz64 : Operand<f64>, |
| ComplexPattern<f64, 1, "SelectFPZeroOperand", [fpimm]> { |
| let ParserMatchClass = fpzero_asmoperand; |
| let PrintMethod = "printFPZeroOperand"; |
| } |
| |
| multiclass A64I_fpcmpSignal<bits<2> type, bit imm, dag ins, string asmop2, |
| dag pattern> { |
| def _quiet : A64I_fpcmp<0b0, 0b0, type, 0b00, {0b0, imm, 0b0, 0b0, 0b0}, |
| (outs), ins, !strconcat("fcmp\t$Rn, ", asmop2), |
| [pattern], NoItinerary> { |
| let Defs = [NZCV]; |
| } |
| |
| def _sig : A64I_fpcmp<0b0, 0b0, type, 0b00, {0b1, imm, 0b0, 0b0, 0b0}, |
| (outs), ins, !strconcat("fcmpe\t$Rn, ", asmop2), |
| [], NoItinerary> { |
| let Defs = [NZCV]; |
| } |
| } |
| |
| defm FCMPss : A64I_fpcmpSignal<0b00, 0b0, (ins FPR32:$Rn, FPR32:$Rm), "$Rm", |
| (set NZCV, (A64cmp (f32 FPR32:$Rn), FPR32:$Rm))>; |
| defm FCMPdd : A64I_fpcmpSignal<0b01, 0b0, (ins FPR64:$Rn, FPR64:$Rm), "$Rm", |
| (set NZCV, (A64cmp (f64 FPR64:$Rn), FPR64:$Rm))>; |
| |
| // What would be Rm should be written as 0, but anything is valid for |
| // disassembly so we can't set the bits |
| let PostEncoderMethod = "fixFCMPImm" in { |
| defm FCMPsi : A64I_fpcmpSignal<0b00, 0b1, (ins FPR32:$Rn, fpz32:$Imm), "$Imm", |
| (set NZCV, (A64cmp (f32 FPR32:$Rn), fpz32:$Imm))>; |
| |
| defm FCMPdi : A64I_fpcmpSignal<0b01, 0b1, (ins FPR64:$Rn, fpz64:$Imm), "$Imm", |
| (set NZCV, (A64cmp (f64 FPR64:$Rn), fpz64:$Imm))>; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Floating-point conditional compare instructions |
| //===----------------------------------------------------------------------===// |
| // Contains: FCCMP, FCCMPE |
| |
| class A64I_fpccmpImpl<bits<2> type, bit op, RegisterClass FPR, string asmop> |
| : A64I_fpccmp<0b0, 0b0, type, op, |
| (outs), |
| (ins FPR:$Rn, FPR:$Rm, uimm4:$NZCVImm, cond_code_op:$Cond), |
| !strconcat(asmop, "\t$Rn, $Rm, $NZCVImm, $Cond"), |
| [], NoItinerary> { |
| let Defs = [NZCV]; |
| } |
| |
| def FCCMPss : A64I_fpccmpImpl<0b00, 0b0, FPR32, "fccmp">; |
| def FCCMPEss : A64I_fpccmpImpl<0b00, 0b1, FPR32, "fccmpe">; |
| def FCCMPdd : A64I_fpccmpImpl<0b01, 0b0, FPR64, "fccmp">; |
| def FCCMPEdd : A64I_fpccmpImpl<0b01, 0b1, FPR64, "fccmpe">; |
| |
| //===----------------------------------------------------------------------===// |
| // Floating-point conditional select instructions |
| //===----------------------------------------------------------------------===// |
| // Contains: FCSEL |
| |
| let Uses = [NZCV] in { |
| def FCSELsssc : A64I_fpcondsel<0b0, 0b0, 0b00, (outs FPR32:$Rd), |
| (ins FPR32:$Rn, FPR32:$Rm, cond_code_op:$Cond), |
| "fcsel\t$Rd, $Rn, $Rm, $Cond", |
| [(set FPR32:$Rd, |
| (simple_select (f32 FPR32:$Rn), |
| FPR32:$Rm))], |
| NoItinerary>; |
| |
| |
| def FCSELdddc : A64I_fpcondsel<0b0, 0b0, 0b01, (outs FPR64:$Rd), |
| (ins FPR64:$Rn, FPR64:$Rm, cond_code_op:$Cond), |
| "fcsel\t$Rd, $Rn, $Rm, $Cond", |
| [(set FPR64:$Rd, |
| (simple_select (f64 FPR64:$Rn), |
| FPR64:$Rm))], |
| NoItinerary>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Floating-point data-processing (1 source) |
| //===----------------------------------------------------------------------===// |
| // Contains: FMOV, FABS, FNEG, FSQRT, FCVT, FRINT[NPMZAXI]. |
| |
| def FPNoUnop : PatFrag<(ops node:$val), (fneg node:$val), |
| [{ (void)N; return false; }]>; |
| |
| // First we do the fairly trivial bunch with uniform "OP s, s" and "OP d, d" |
| // syntax. Default to no pattern because most are odd enough not to have one. |
| multiclass A64I_fpdp1sizes<bits<6> opcode, string asmstr, |
| SDPatternOperator opnode = FPNoUnop> { |
| def ss : A64I_fpdp1<0b0, 0b0, 0b00, opcode, (outs FPR32:$Rd), (ins FPR32:$Rn), |
| !strconcat(asmstr, "\t$Rd, $Rn"), |
| [(set (f32 FPR32:$Rd), (opnode FPR32:$Rn))], |
| NoItinerary>; |
| |
| def dd : A64I_fpdp1<0b0, 0b0, 0b01, opcode, (outs FPR64:$Rd), (ins FPR64:$Rn), |
| !strconcat(asmstr, "\t$Rd, $Rn"), |
| [(set (f64 FPR64:$Rd), (opnode FPR64:$Rn))], |
| NoItinerary>; |
| } |
| |
| defm FMOV : A64I_fpdp1sizes<0b000000, "fmov">; |
| defm FABS : A64I_fpdp1sizes<0b000001, "fabs", fabs>; |
| defm FNEG : A64I_fpdp1sizes<0b000010, "fneg", fneg>; |
| defm FSQRT : A64I_fpdp1sizes<0b000011, "fsqrt", fsqrt>; |
| |
| defm FRINTN : A64I_fpdp1sizes<0b001000, "frintn">; |
| defm FRINTP : A64I_fpdp1sizes<0b001001, "frintp", fceil>; |
| defm FRINTM : A64I_fpdp1sizes<0b001010, "frintm", ffloor>; |
| defm FRINTZ : A64I_fpdp1sizes<0b001011, "frintz", ftrunc>; |
| defm FRINTA : A64I_fpdp1sizes<0b001100, "frinta">; |
| defm FRINTX : A64I_fpdp1sizes<0b001110, "frintx", frint>; |
| defm FRINTI : A64I_fpdp1sizes<0b001111, "frinti", fnearbyint>; |
| |
| // The FCVT instrucitons have different source and destination register-types, |
| // but the fields are uniform everywhere a D-register (say) crops up. Package |
| // this information in a Record. |
| class FCVTRegType<RegisterClass rc, bits<2> fld, ValueType vt> { |
| RegisterClass Class = rc; |
| ValueType VT = vt; |
| bit t1 = fld{1}; |
| bit t0 = fld{0}; |
| } |
| |
| def FCVT16 : FCVTRegType<FPR16, 0b11, f16>; |
| def FCVT32 : FCVTRegType<FPR32, 0b00, f32>; |
| def FCVT64 : FCVTRegType<FPR64, 0b01, f64>; |
| |
| class A64I_fpdp1_fcvt<FCVTRegType DestReg, FCVTRegType SrcReg, SDNode opnode> |
| : A64I_fpdp1<0b0, 0b0, {SrcReg.t1, SrcReg.t0}, |
| {0,0,0,1, DestReg.t1, DestReg.t0}, |
| (outs DestReg.Class:$Rd), (ins SrcReg.Class:$Rn), |
| "fcvt\t$Rd, $Rn", |
| [(set (DestReg.VT DestReg.Class:$Rd), |
| (opnode (SrcReg.VT SrcReg.Class:$Rn)))], NoItinerary>; |
| |
| def FCVTds : A64I_fpdp1_fcvt<FCVT64, FCVT32, fextend>; |
| def FCVThs : A64I_fpdp1_fcvt<FCVT16, FCVT32, fround>; |
| def FCVTsd : A64I_fpdp1_fcvt<FCVT32, FCVT64, fround>; |
| def FCVThd : A64I_fpdp1_fcvt<FCVT16, FCVT64, fround>; |
| def FCVTsh : A64I_fpdp1_fcvt<FCVT32, FCVT16, fextend>; |
| def FCVTdh : A64I_fpdp1_fcvt<FCVT64, FCVT16, fextend>; |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Floating-point data-processing (2 sources) instructions |
| //===----------------------------------------------------------------------===// |
| // Contains: FMUL, FDIV, FADD, FSUB, FMAX, FMIN, FMAXNM, FMINNM, FNMUL |
| |
| def FPNoBinop : PatFrag<(ops node:$lhs, node:$rhs), (fadd node:$lhs, node:$rhs), |
| [{ (void)N; return false; }]>; |
| |
| multiclass A64I_fpdp2sizes<bits<4> opcode, string asmstr, |
| SDPatternOperator opnode> { |
| def sss : A64I_fpdp2<0b0, 0b0, 0b00, opcode, |
| (outs FPR32:$Rd), |
| (ins FPR32:$Rn, FPR32:$Rm), |
| !strconcat(asmstr, "\t$Rd, $Rn, $Rm"), |
| [(set (f32 FPR32:$Rd), (opnode FPR32:$Rn, FPR32:$Rm))], |
| NoItinerary>; |
| |
| def ddd : A64I_fpdp2<0b0, 0b0, 0b01, opcode, |
| (outs FPR64:$Rd), |
| (ins FPR64:$Rn, FPR64:$Rm), |
| !strconcat(asmstr, "\t$Rd, $Rn, $Rm"), |
| [(set (f64 FPR64:$Rd), (opnode FPR64:$Rn, FPR64:$Rm))], |
| NoItinerary>; |
| } |
| |
| let isCommutable = 1 in { |
| defm FMUL : A64I_fpdp2sizes<0b0000, "fmul", fmul>; |
| defm FADD : A64I_fpdp2sizes<0b0010, "fadd", fadd>; |
| |
| // No patterns for these. |
| defm FMAX : A64I_fpdp2sizes<0b0100, "fmax", FPNoBinop>; |
| defm FMIN : A64I_fpdp2sizes<0b0101, "fmin", FPNoBinop>; |
| defm FMAXNM : A64I_fpdp2sizes<0b0110, "fmaxnm", FPNoBinop>; |
| defm FMINNM : A64I_fpdp2sizes<0b0111, "fminnm", FPNoBinop>; |
| |
| defm FNMUL : A64I_fpdp2sizes<0b1000, "fnmul", |
| PatFrag<(ops node:$lhs, node:$rhs), |
| (fneg (fmul node:$lhs, node:$rhs))> >; |
| } |
| |
| defm FDIV : A64I_fpdp2sizes<0b0001, "fdiv", fdiv>; |
| defm FSUB : A64I_fpdp2sizes<0b0011, "fsub", fsub>; |
| |
| //===----------------------------------------------------------------------===// |
| // Floating-point data-processing (3 sources) instructions |
| //===----------------------------------------------------------------------===// |
| // Contains: FMADD, FMSUB, FNMADD, FNMSUB |
| |
| def fmsub : PatFrag<(ops node:$Rn, node:$Rm, node:$Ra), |
| (fma (fneg node:$Rn), node:$Rm, node:$Ra)>; |
| def fnmadd : PatFrag<(ops node:$Rn, node:$Rm, node:$Ra), |
| (fma node:$Rn, node:$Rm, (fneg node:$Ra))>; |
| def fnmsub : PatFrag<(ops node:$Rn, node:$Rm, node:$Ra), |
| (fma (fneg node:$Rn), node:$Rm, (fneg node:$Ra))>; |
| |
| class A64I_fpdp3Impl<string asmop, RegisterClass FPR, ValueType VT, |
| bits<2> type, bit o1, bit o0, SDPatternOperator fmakind> |
| : A64I_fpdp3<0b0, 0b0, type, o1, o0, (outs FPR:$Rd), |
| (ins FPR:$Rn, FPR:$Rm, FPR:$Ra), |
| !strconcat(asmop,"\t$Rd, $Rn, $Rm, $Ra"), |
| [(set FPR:$Rd, (fmakind (VT FPR:$Rn), FPR:$Rm, FPR:$Ra))], |
| NoItinerary>; |
| |
| def FMADDssss : A64I_fpdp3Impl<"fmadd", FPR32, f32, 0b00, 0b0, 0b0, fma>; |
| def FMSUBssss : A64I_fpdp3Impl<"fmsub", FPR32, f32, 0b00, 0b0, 0b1, fmsub>; |
| def FNMADDssss : A64I_fpdp3Impl<"fnmadd", FPR32, f32, 0b00, 0b1, 0b0, fnmadd>; |
| def FNMSUBssss : A64I_fpdp3Impl<"fnmsub", FPR32, f32, 0b00, 0b1, 0b1, fnmsub>; |
| |
| def FMADDdddd : A64I_fpdp3Impl<"fmadd", FPR64, f64, 0b01, 0b0, 0b0, fma>; |
| def FMSUBdddd : A64I_fpdp3Impl<"fmsub", FPR64, f64, 0b01, 0b0, 0b1, fmsub>; |
| def FNMADDdddd : A64I_fpdp3Impl<"fnmadd", FPR64, f64, 0b01, 0b1, 0b0, fnmadd>; |
| def FNMSUBdddd : A64I_fpdp3Impl<"fnmsub", FPR64, f64, 0b01, 0b1, 0b1, fnmsub>; |
| |
| //===----------------------------------------------------------------------===// |
| // Floating-point <-> fixed-point conversion instructions |
| //===----------------------------------------------------------------------===// |
| // Contains: FCVTZS, FCVTZU, SCVTF, UCVTF |
| |
| // #1-#32 allowed, encoded as "64 - <specified imm> |
| def fixedpos_asmoperand_i32 : AsmOperandClass { |
| let Name = "CVTFixedPos32"; |
| let RenderMethod = "addCVTFixedPosOperands"; |
| let PredicateMethod = "isCVTFixedPos<32>"; |
| let DiagnosticType = "CVTFixedPos32"; |
| } |
| |
| // Also encoded as "64 - <specified imm>" but #1-#64 allowed. |
| def fixedpos_asmoperand_i64 : AsmOperandClass { |
| let Name = "CVTFixedPos64"; |
| let RenderMethod = "addCVTFixedPosOperands"; |
| let PredicateMethod = "isCVTFixedPos<64>"; |
| let DiagnosticType = "CVTFixedPos64"; |
| } |
| |
| // We need the cartesian product of f32/f64 i32/i64 operands for |
| // conversions: |
| // + Selection needs to use operands of correct floating type |
| // + Assembly parsing and decoding depend on integer width |
| class cvtfix_i32_op<ValueType FloatVT> |
| : Operand<FloatVT>, |
| ComplexPattern<FloatVT, 1, "SelectCVTFixedPosOperand<32>", [fpimm]> { |
| let ParserMatchClass = fixedpos_asmoperand_i32; |
| let DecoderMethod = "DecodeCVT32FixedPosOperand"; |
| let PrintMethod = "printCVTFixedPosOperand"; |
| } |
| |
| class cvtfix_i64_op<ValueType FloatVT> |
| : Operand<FloatVT>, |
| ComplexPattern<FloatVT, 1, "SelectCVTFixedPosOperand<64>", [fpimm]> { |
| let ParserMatchClass = fixedpos_asmoperand_i64; |
| let PrintMethod = "printCVTFixedPosOperand"; |
| } |
| |
| // Because of the proliferation of weird operands, it's not really |
| // worth going for a multiclass here. Oh well. |
| |
| class A64I_fptofix<bit sf, bits<2> type, bits<3> opcode, |
| RegisterClass GPR, RegisterClass FPR, Operand scale_op, |
| string asmop, SDNode cvtop> |
| : A64I_fpfixed<sf, 0b0, type, 0b11, opcode, |
| (outs GPR:$Rd), (ins FPR:$Rn, scale_op:$Scale), |
| !strconcat(asmop, "\t$Rd, $Rn, $Scale"), |
| [(set GPR:$Rd, (cvtop (fmul FPR:$Rn, scale_op:$Scale)))], |
| NoItinerary>; |
| |
| def FCVTZSwsi : A64I_fptofix<0b0, 0b00, 0b000, GPR32, FPR32, |
| cvtfix_i32_op<f32>, "fcvtzs", fp_to_sint>; |
| def FCVTZSxsi : A64I_fptofix<0b1, 0b00, 0b000, GPR64, FPR32, |
| cvtfix_i64_op<f32>, "fcvtzs", fp_to_sint>; |
| def FCVTZUwsi : A64I_fptofix<0b0, 0b00, 0b001, GPR32, FPR32, |
| cvtfix_i32_op<f32>, "fcvtzu", fp_to_uint>; |
| def FCVTZUxsi : A64I_fptofix<0b1, 0b00, 0b001, GPR64, FPR32, |
| cvtfix_i64_op<f32>, "fcvtzu", fp_to_uint>; |
| |
| def FCVTZSwdi : A64I_fptofix<0b0, 0b01, 0b000, GPR32, FPR64, |
| cvtfix_i32_op<f64>, "fcvtzs", fp_to_sint>; |
| def FCVTZSxdi : A64I_fptofix<0b1, 0b01, 0b000, GPR64, FPR64, |
| cvtfix_i64_op<f64>, "fcvtzs", fp_to_sint>; |
| def FCVTZUwdi : A64I_fptofix<0b0, 0b01, 0b001, GPR32, FPR64, |
| cvtfix_i32_op<f64>, "fcvtzu", fp_to_uint>; |
| def FCVTZUxdi : A64I_fptofix<0b1, 0b01, 0b001, GPR64, FPR64, |
| cvtfix_i64_op<f64>, "fcvtzu", fp_to_uint>; |
| |
| |
| class A64I_fixtofp<bit sf, bits<2> type, bits<3> opcode, |
| RegisterClass FPR, RegisterClass GPR, Operand scale_op, |
| string asmop, SDNode cvtop> |
| : A64I_fpfixed<sf, 0b0, type, 0b00, opcode, |
| (outs FPR:$Rd), (ins GPR:$Rn, scale_op:$Scale), |
| !strconcat(asmop, "\t$Rd, $Rn, $Scale"), |
| [(set FPR:$Rd, (fdiv (cvtop GPR:$Rn), scale_op:$Scale))], |
| NoItinerary>; |
| |
| def SCVTFswi : A64I_fixtofp<0b0, 0b00, 0b010, FPR32, GPR32, |
| cvtfix_i32_op<f32>, "scvtf", sint_to_fp>; |
| def SCVTFsxi : A64I_fixtofp<0b1, 0b00, 0b010, FPR32, GPR64, |
| cvtfix_i64_op<f32>, "scvtf", sint_to_fp>; |
| def UCVTFswi : A64I_fixtofp<0b0, 0b00, 0b011, FPR32, GPR32, |
| cvtfix_i32_op<f32>, "ucvtf", uint_to_fp>; |
| def UCVTFsxi : A64I_fixtofp<0b1, 0b00, 0b011, FPR32, GPR64, |
| cvtfix_i64_op<f32>, "ucvtf", uint_to_fp>; |
| def SCVTFdwi : A64I_fixtofp<0b0, 0b01, 0b010, FPR64, GPR32, |
| cvtfix_i32_op<f64>, "scvtf", sint_to_fp>; |
| def SCVTFdxi : A64I_fixtofp<0b1, 0b01, 0b010, FPR64, GPR64, |
| cvtfix_i64_op<f64>, "scvtf", sint_to_fp>; |
| def UCVTFdwi : A64I_fixtofp<0b0, 0b01, 0b011, FPR64, GPR32, |
| cvtfix_i32_op<f64>, "ucvtf", uint_to_fp>; |
| def UCVTFdxi : A64I_fixtofp<0b1, 0b01, 0b011, FPR64, GPR64, |
| cvtfix_i64_op<f64>, "ucvtf", uint_to_fp>; |
| |
| //===----------------------------------------------------------------------===// |
| // Floating-point <-> integer conversion instructions |
| //===----------------------------------------------------------------------===// |
| // Contains: FCVTZS, FCVTZU, SCVTF, UCVTF |
| |
| class A64I_fpintI<bit sf, bits<2> type, bits<2> rmode, bits<3> opcode, |
| RegisterClass DestPR, RegisterClass SrcPR, string asmop> |
| : A64I_fpint<sf, 0b0, type, rmode, opcode, (outs DestPR:$Rd), (ins SrcPR:$Rn), |
| !strconcat(asmop, "\t$Rd, $Rn"), [], NoItinerary>; |
| |
| multiclass A64I_fptointRM<bits<2> rmode, bit o2, string asmop> { |
| def Sws : A64I_fpintI<0b0, 0b00, rmode, {o2, 0, 0}, |
| GPR32, FPR32, asmop # "s">; |
| def Sxs : A64I_fpintI<0b1, 0b00, rmode, {o2, 0, 0}, |
| GPR64, FPR32, asmop # "s">; |
| def Uws : A64I_fpintI<0b0, 0b00, rmode, {o2, 0, 1}, |
| GPR32, FPR32, asmop # "u">; |
| def Uxs : A64I_fpintI<0b1, 0b00, rmode, {o2, 0, 1}, |
| GPR64, FPR32, asmop # "u">; |
| |
| def Swd : A64I_fpintI<0b0, 0b01, rmode, {o2, 0, 0}, |
| GPR32, FPR64, asmop # "s">; |
| def Sxd : A64I_fpintI<0b1, 0b01, rmode, {o2, 0, 0}, |
| GPR64, FPR64, asmop # "s">; |
| def Uwd : A64I_fpintI<0b0, 0b01, rmode, {o2, 0, 1}, |
| GPR32, FPR64, asmop # "u">; |
| def Uxd : A64I_fpintI<0b1, 0b01, rmode, {o2, 0, 1}, |
| GPR64, FPR64, asmop # "u">; |
| } |
| |
| defm FCVTN : A64I_fptointRM<0b00, 0b0, "fcvtn">; |
| defm FCVTP : A64I_fptointRM<0b01, 0b0, "fcvtp">; |
| defm FCVTM : A64I_fptointRM<0b10, 0b0, "fcvtm">; |
| defm FCVTZ : A64I_fptointRM<0b11, 0b0, "fcvtz">; |
| defm FCVTA : A64I_fptointRM<0b00, 0b1, "fcvta">; |
| |
| def : Pat<(i32 (fp_to_sint FPR32:$Rn)), (FCVTZSws FPR32:$Rn)>; |
| def : Pat<(i64 (fp_to_sint FPR32:$Rn)), (FCVTZSxs FPR32:$Rn)>; |
| def : Pat<(i32 (fp_to_uint FPR32:$Rn)), (FCVTZUws FPR32:$Rn)>; |
| def : Pat<(i64 (fp_to_uint FPR32:$Rn)), (FCVTZUxs FPR32:$Rn)>; |
| def : Pat<(i32 (fp_to_sint (f64 FPR64:$Rn))), (FCVTZSwd FPR64:$Rn)>; |
| def : Pat<(i64 (fp_to_sint (f64 FPR64:$Rn))), (FCVTZSxd FPR64:$Rn)>; |
| def : Pat<(i32 (fp_to_uint (f64 FPR64:$Rn))), (FCVTZUwd FPR64:$Rn)>; |
| def : Pat<(i64 (fp_to_uint (f64 FPR64:$Rn))), (FCVTZUxd FPR64:$Rn)>; |
| |
| multiclass A64I_inttofp<bit o0, string asmop> { |
| def CVTFsw : A64I_fpintI<0b0, 0b00, 0b00, {0, 1, o0}, FPR32, GPR32, asmop>; |
| def CVTFsx : A64I_fpintI<0b1, 0b00, 0b00, {0, 1, o0}, FPR32, GPR64, asmop>; |
| def CVTFdw : A64I_fpintI<0b0, 0b01, 0b00, {0, 1, o0}, FPR64, GPR32, asmop>; |
| def CVTFdx : A64I_fpintI<0b1, 0b01, 0b00, {0, 1, o0}, FPR64, GPR64, asmop>; |
| } |
| |
| defm S : A64I_inttofp<0b0, "scvtf">; |
| defm U : A64I_inttofp<0b1, "ucvtf">; |
| |
| def : Pat<(f32 (sint_to_fp GPR32:$Rn)), (SCVTFsw GPR32:$Rn)>; |
| def : Pat<(f32 (sint_to_fp GPR64:$Rn)), (SCVTFsx GPR64:$Rn)>; |
| def : Pat<(f64 (sint_to_fp GPR32:$Rn)), (SCVTFdw GPR32:$Rn)>; |
| def : Pat<(f64 (sint_to_fp GPR64:$Rn)), (SCVTFdx GPR64:$Rn)>; |
| def : Pat<(f32 (uint_to_fp GPR32:$Rn)), (UCVTFsw GPR32:$Rn)>; |
| def : Pat<(f32 (uint_to_fp GPR64:$Rn)), (UCVTFsx GPR64:$Rn)>; |
| def : Pat<(f64 (uint_to_fp GPR32:$Rn)), (UCVTFdw GPR32:$Rn)>; |
| def : Pat<(f64 (uint_to_fp GPR64:$Rn)), (UCVTFdx GPR64:$Rn)>; |
| |
| def FMOVws : A64I_fpintI<0b0, 0b00, 0b00, 0b110, GPR32, FPR32, "fmov">; |
| def FMOVsw : A64I_fpintI<0b0, 0b00, 0b00, 0b111, FPR32, GPR32, "fmov">; |
| def FMOVxd : A64I_fpintI<0b1, 0b01, 0b00, 0b110, GPR64, FPR64, "fmov">; |
| def FMOVdx : A64I_fpintI<0b1, 0b01, 0b00, 0b111, FPR64, GPR64, "fmov">; |
| |
| def : Pat<(i32 (bitconvert (f32 FPR32:$Rn))), (FMOVws FPR32:$Rn)>; |
| def : Pat<(f32 (bitconvert (i32 GPR32:$Rn))), (FMOVsw GPR32:$Rn)>; |
| def : Pat<(i64 (bitconvert (f64 FPR64:$Rn))), (FMOVxd FPR64:$Rn)>; |
| def : Pat<(f64 (bitconvert (i64 GPR64:$Rn))), (FMOVdx GPR64:$Rn)>; |
| |
| def lane1_asmoperand : AsmOperandClass { |
| let Name = "Lane1"; |
| let RenderMethod = "addImmOperands"; |
| let DiagnosticType = "Lane1"; |
| } |
| |
| def lane1 : Operand<i32> { |
| let ParserMatchClass = lane1_asmoperand; |
| let PrintMethod = "printBareImmOperand"; |
| } |
| |
| let DecoderMethod = "DecodeFMOVLaneInstruction" in { |
| def FMOVxv : A64I_fpint<0b1, 0b0, 0b10, 0b01, 0b110, |
| (outs GPR64:$Rd), (ins VPR128:$Rn, lane1:$Lane), |
| "fmov\t$Rd, $Rn.d[$Lane]", [], NoItinerary>; |
| |
| def FMOVvx : A64I_fpint<0b1, 0b0, 0b10, 0b01, 0b111, |
| (outs VPR128:$Rd), (ins GPR64:$Rn, lane1:$Lane), |
| "fmov\t$Rd.d[$Lane], $Rn", [], NoItinerary>; |
| } |
| |
| def : InstAlias<"fmov $Rd, $Rn.2d[$Lane]", |
| (FMOVxv GPR64:$Rd, VPR128:$Rn, lane1:$Lane), 0b0>; |
| |
| def : InstAlias<"fmov $Rd.2d[$Lane], $Rn", |
| (FMOVvx VPR128:$Rd, GPR64:$Rn, lane1:$Lane), 0b0>; |
| |
| //===----------------------------------------------------------------------===// |
| // Floating-point immediate instructions |
| //===----------------------------------------------------------------------===// |
| // Contains: FMOV |
| |
| def fpimm_asmoperand : AsmOperandClass { |
| let Name = "FMOVImm"; |
| let ParserMethod = "ParseFPImmOperand"; |
| let DiagnosticType = "FPImm"; |
| } |
| |
| // The MCOperand for these instructions are the encoded 8-bit values. |
| def SDXF_fpimm : SDNodeXForm<fpimm, [{ |
| uint32_t Imm8; |
| A64Imms::isFPImm(N->getValueAPF(), Imm8); |
| return CurDAG->getTargetConstant(Imm8, MVT::i32); |
| }]>; |
| |
| class fmov_operand<ValueType FT> |
| : Operand<i32>, |
| PatLeaf<(FT fpimm), [{ return A64Imms::isFPImm(N->getValueAPF()); }], |
| SDXF_fpimm> { |
| let PrintMethod = "printFPImmOperand"; |
| let ParserMatchClass = fpimm_asmoperand; |
| } |
| |
| def fmov32_operand : fmov_operand<f32>; |
| def fmov64_operand : fmov_operand<f64>; |
| |
| class A64I_fpimm_impl<bits<2> type, RegisterClass Reg, ValueType VT, |
| Operand fmov_operand> |
| : A64I_fpimm<0b0, 0b0, type, 0b00000, |
| (outs Reg:$Rd), |
| (ins fmov_operand:$Imm8), |
| "fmov\t$Rd, $Imm8", |
| [(set (VT Reg:$Rd), fmov_operand:$Imm8)], |
| NoItinerary>; |
| |
| def FMOVsi : A64I_fpimm_impl<0b00, FPR32, f32, fmov32_operand>; |
| def FMOVdi : A64I_fpimm_impl<0b01, FPR64, f64, fmov64_operand>; |
| |
| //===----------------------------------------------------------------------===// |
| // Load-register (literal) instructions |
| //===----------------------------------------------------------------------===// |
| // Contains: LDR, LDRSW, PRFM |
| |
| def ldrlit_label_asmoperand : AsmOperandClass { |
| let Name = "LoadLitLabel"; |
| let RenderMethod = "addLabelOperands<19, 4>"; |
| let DiagnosticType = "Label"; |
| } |
| |
| def ldrlit_label : Operand<i64> { |
| let EncoderMethod = "getLoadLitLabelOpValue"; |
| |
| // This label is a 19-bit offset from PC, scaled by the instruction-width: 4. |
| let PrintMethod = "printLabelOperand<19, 4>"; |
| let ParserMatchClass = ldrlit_label_asmoperand; |
| let OperandType = "OPERAND_PCREL"; |
| } |
| |
| // Various instructions take an immediate value (which can always be used), |
| // where some numbers have a symbolic name to make things easier. These operands |
| // and the associated functions abstract away the differences. |
| multiclass namedimm<string prefix, string mapper> { |
| def _asmoperand : AsmOperandClass { |
| let Name = "NamedImm" # prefix; |
| let PredicateMethod = "isUImm"; |
| let RenderMethod = "addImmOperands"; |
| let ParserMethod = "ParseNamedImmOperand<" # mapper # ">"; |
| let DiagnosticType = "NamedImm_" # prefix; |
| } |
| |
| def _op : Operand<i32> { |
| let ParserMatchClass = !cast<AsmOperandClass>(prefix # "_asmoperand"); |
| let PrintMethod = "printNamedImmOperand<" # mapper # ">"; |
| let DecoderMethod = "DecodeNamedImmOperand<" # mapper # ">"; |
| } |
| } |
| |
| defm prefetch : namedimm<"prefetch", "A64PRFM::PRFMMapper">; |
| |
| class A64I_LDRlitSimple<bits<2> opc, bit v, RegisterClass OutReg, |
| list<dag> patterns = []> |
| : A64I_LDRlit<opc, v, (outs OutReg:$Rt), (ins ldrlit_label:$Imm19), |
| "ldr\t$Rt, $Imm19", patterns, NoItinerary>; |
| |
| let mayLoad = 1 in { |
| def LDRw_lit : A64I_LDRlitSimple<0b00, 0b0, GPR32>; |
| def LDRx_lit : A64I_LDRlitSimple<0b01, 0b0, GPR64>; |
| } |
| |
| def LDRs_lit : A64I_LDRlitSimple<0b00, 0b1, FPR32>; |
| def LDRd_lit : A64I_LDRlitSimple<0b01, 0b1, FPR64>; |
| |
| let mayLoad = 1 in { |
| def LDRq_lit : A64I_LDRlitSimple<0b10, 0b1, FPR128>; |
| |
| |
| def LDRSWx_lit : A64I_LDRlit<0b10, 0b0, |
| (outs GPR64:$Rt), |
| (ins ldrlit_label:$Imm19), |
| "ldrsw\t$Rt, $Imm19", |
| [], NoItinerary>; |
| |
| def PRFM_lit : A64I_LDRlit<0b11, 0b0, |
| (outs), (ins prefetch_op:$Rt, ldrlit_label:$Imm19), |
| "prfm\t$Rt, $Imm19", |
| [], NoItinerary>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Load-store exclusive instructions |
| //===----------------------------------------------------------------------===// |
| // Contains: STXRB, STXRH, STXR, LDXRB, LDXRH, LDXR. STXP, LDXP, STLXRB, |
| // STLXRH, STLXR, LDAXRB, LDAXRH, LDAXR, STLXP, LDAXP, STLRB, |
| // STLRH, STLR, LDARB, LDARH, LDAR |
| |
| // Since these instructions have the undefined register bits set to 1 in |
| // their canonical form, we need a post encoder method to set those bits |
| // to 1 when encoding these instructions. We do this using the |
| // fixLoadStoreExclusive function. This function has template parameters: |
| // |
| // fixLoadStoreExclusive<int hasRs, int hasRt2> |
| // |
| // hasRs indicates that the instruction uses the Rs field, so we won't set |
| // it to 1 (and the same for Rt2). We don't need template parameters for |
| // the other register fiels since Rt and Rn are always used. |
| |
| // This operand parses a GPR64xsp register, followed by an optional immediate |
| // #0. |
| def GPR64xsp0_asmoperand : AsmOperandClass { |
| let Name = "GPR64xsp0"; |
| let PredicateMethod = "isWrappedReg"; |
| let RenderMethod = "addRegOperands"; |
| let ParserMethod = "ParseLSXAddressOperand"; |
| // Diagnostics are provided by ParserMethod |
| } |
| |
| def GPR64xsp0 : RegisterOperand<GPR64xsp> { |
| let ParserMatchClass = GPR64xsp0_asmoperand; |
| } |
| |
| //===---------------------------------- |
| // Store-exclusive (releasing & normal) |
| //===---------------------------------- |
| |
| class A64I_SRexs_impl<bits<2> size, bits<3> opcode, string asm, dag outs, |
| dag ins, list<dag> pat, |
| InstrItinClass itin> : |
| A64I_LDSTex_stn <size, |
| opcode{2}, 0, opcode{1}, opcode{0}, |
| outs, ins, |
| !strconcat(asm, "\t$Rs, $Rt, [$Rn]"), |
| pat, itin> { |
| let mayStore = 1; |
| let PostEncoderMethod = "fixLoadStoreExclusive<1,0>"; |
| } |
| |
| multiclass A64I_SRex<string asmstr, bits<3> opcode, string prefix> { |
| def _byte: A64I_SRexs_impl<0b00, opcode, !strconcat(asmstr, "b"), |
| (outs GPR32:$Rs), (ins GPR32:$Rt, GPR64xsp0:$Rn), |
| [], NoItinerary>; |
| |
| def _hword: A64I_SRexs_impl<0b01, opcode, !strconcat(asmstr, "h"), |
| (outs GPR32:$Rs), (ins GPR32:$Rt, GPR64xsp0:$Rn), |
| [],NoItinerary>; |
| |
| def _word: A64I_SRexs_impl<0b10, opcode, asmstr, |
| (outs GPR32:$Rs), (ins GPR32:$Rt, GPR64xsp0:$Rn), |
| [], NoItinerary>; |
| |
| def _dword: A64I_SRexs_impl<0b11, opcode, asmstr, |
| (outs GPR32:$Rs), (ins GPR64:$Rt, GPR64xsp0:$Rn), |
| [], NoItinerary>; |
| } |
| |
| defm STXR : A64I_SRex<"stxr", 0b000, "STXR">; |
| defm STLXR : A64I_SRex<"stlxr", 0b001, "STLXR">; |
| |
| //===---------------------------------- |
| // Loads |
| //===---------------------------------- |
| |
| class A64I_LRexs_impl<bits<2> size, bits<3> opcode, string asm, dag outs, |
| dag ins, list<dag> pat, |
| InstrItinClass itin> : |
| A64I_LDSTex_tn <size, |
| opcode{2}, 1, opcode{1}, opcode{0}, |
| outs, ins, |
| !strconcat(asm, "\t$Rt, [$Rn]"), |
| pat, itin> { |
| let mayLoad = 1; |
| let PostEncoderMethod = "fixLoadStoreExclusive<0,0>"; |
| } |
| |
| multiclass A64I_LRex<string asmstr, bits<3> opcode> { |
| def _byte: A64I_LRexs_impl<0b00, opcode, !strconcat(asmstr, "b"), |
| (outs GPR32:$Rt), (ins GPR64xsp0:$Rn), |
| [], NoItinerary>; |
| |
| def _hword: A64I_LRexs_impl<0b01, opcode, !strconcat(asmstr, "h"), |
| (outs GPR32:$Rt), (ins GPR64xsp0:$Rn), |
| [], NoItinerary>; |
| |
| def _word: A64I_LRexs_impl<0b10, opcode, asmstr, |
| (outs GPR32:$Rt), (ins GPR64xsp0:$Rn), |
| [], NoItinerary>; |
| |
| def _dword: A64I_LRexs_impl<0b11, opcode, asmstr, |
| (outs GPR64:$Rt), (ins GPR64xsp0:$Rn), |
| [], NoItinerary>; |
| } |
| |
| defm LDXR : A64I_LRex<"ldxr", 0b000>; |
| defm LDAXR : A64I_LRex<"ldaxr", 0b001>; |
| defm LDAR : A64I_LRex<"ldar", 0b101>; |
| |
| class acquiring_load<PatFrag base> |
| : PatFrag<(ops node:$ptr), (base node:$ptr), [{ |
| return cast<AtomicSDNode>(N)->getOrdering() == Acquire; |
| }]>; |
| |
| def atomic_load_acquire_8 : acquiring_load<atomic_load_8>; |
| def atomic_load_acquire_16 : acquiring_load<atomic_load_16>; |
| def atomic_load_acquire_32 : acquiring_load<atomic_load_32>; |
| def atomic_load_acquire_64 : acquiring_load<atomic_load_64>; |
| |
| def : Pat<(atomic_load_acquire_8 GPR64xsp:$Rn), (LDAR_byte GPR64xsp0:$Rn)>; |
| def : Pat<(atomic_load_acquire_16 GPR64xsp:$Rn), (LDAR_hword GPR64xsp0:$Rn)>; |
| def : Pat<(atomic_load_acquire_32 GPR64xsp:$Rn), (LDAR_word GPR64xsp0:$Rn)>; |
| def : Pat<(atomic_load_acquire_64 GPR64xsp:$Rn), (LDAR_dword GPR64xsp0:$Rn)>; |
| |
| //===---------------------------------- |
| // Store-release (no exclusivity) |
| //===---------------------------------- |
| |
| class A64I_SLexs_impl<bits<2> size, bits<3> opcode, string asm, dag outs, |
| dag ins, list<dag> pat, |
| InstrItinClass itin> : |
| A64I_LDSTex_tn <size, |
| opcode{2}, 0, opcode{1}, opcode{0}, |
| outs, ins, |
| !strconcat(asm, "\t$Rt, [$Rn]"), |
| pat, itin> { |
| let mayStore = 1; |
| let PostEncoderMethod = "fixLoadStoreExclusive<0,0>"; |
| } |
| |
| class releasing_store<PatFrag base> |
| : PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val), [{ |
| return cast<AtomicSDNode>(N)->getOrdering() == Release; |
| }]>; |
| |
| def atomic_store_release_8 : releasing_store<atomic_store_8>; |
| def atomic_store_release_16 : releasing_store<atomic_store_16>; |
| def atomic_store_release_32 : releasing_store<atomic_store_32>; |
| def atomic_store_release_64 : releasing_store<atomic_store_64>; |
| |
| multiclass A64I_SLex<string asmstr, bits<3> opcode, string prefix> { |
| def _byte: A64I_SLexs_impl<0b00, opcode, !strconcat(asmstr, "b"), |
| (outs), (ins GPR32:$Rt, GPR64xsp0:$Rn), |
| [(atomic_store_release_8 GPR64xsp0:$Rn, GPR32:$Rt)], |
| NoItinerary>; |
| |
| def _hword: A64I_SLexs_impl<0b01, opcode, !strconcat(asmstr, "h"), |
| (outs), (ins GPR32:$Rt, GPR64xsp0:$Rn), |
| [(atomic_store_release_16 GPR64xsp0:$Rn, GPR32:$Rt)], |
| NoItinerary>; |
| |
| def _word: A64I_SLexs_impl<0b10, opcode, asmstr, |
| (outs), (ins GPR32:$Rt, GPR64xsp0:$Rn), |
| [(atomic_store_release_32 GPR64xsp0:$Rn, GPR32:$Rt)], |
| NoItinerary>; |
| |
| def _dword: A64I_SLexs_impl<0b11, opcode, asmstr, |
| (outs), (ins GPR64:$Rt, GPR64xsp0:$Rn), |
| [(atomic_store_release_64 GPR64xsp0:$Rn, GPR64:$Rt)], |
| NoItinerary>; |
| } |
| |
| defm STLR : A64I_SLex<"stlr", 0b101, "STLR">; |
| |
| //===---------------------------------- |
| // Store-exclusive pair (releasing & normal) |
| //===---------------------------------- |
| |
| class A64I_SPexs_impl<bits<2> size, bits<3> opcode, string asm, dag outs, |
| dag ins, list<dag> pat, |
| InstrItinClass itin> : |
| A64I_LDSTex_stt2n <size, |
| opcode{2}, 0, opcode{1}, opcode{0}, |
| outs, ins, |
| !strconcat(asm, "\t$Rs, $Rt, $Rt2, [$Rn]"), |
| pat, itin> { |
| let mayStore = 1; |
| } |
| |
| |
| multiclass A64I_SPex<string asmstr, bits<3> opcode> { |
| def _word: A64I_SPexs_impl<0b10, opcode, asmstr, (outs), |
| (ins GPR32:$Rs, GPR32:$Rt, GPR32:$Rt2, |
| GPR64xsp0:$Rn), |
| [], NoItinerary>; |
| |
| def _dword: A64I_SPexs_impl<0b11, opcode, asmstr, (outs), |
| (ins GPR32:$Rs, GPR64:$Rt, GPR64:$Rt2, |
| GPR64xsp0:$Rn), |
| [], NoItinerary>; |
| } |
| |
| defm STXP : A64I_SPex<"stxp", 0b010>; |
| defm STLXP : A64I_SPex<"stlxp", 0b011>; |
| |
| //===---------------------------------- |
| // Load-exclusive pair (acquiring & normal) |
| //===---------------------------------- |
| |
| class A64I_LPexs_impl<bits<2> size, bits<3> opcode, string asm, dag outs, |
| dag ins, list<dag> pat, |
| InstrItinClass itin> : |
| A64I_LDSTex_tt2n <size, |
| opcode{2}, 1, opcode{1}, opcode{0}, |
| outs, ins, |
| !strconcat(asm, "\t$Rt, $Rt2, [$Rn]"), |
| pat, itin>{ |
| let mayLoad = 1; |
| let DecoderMethod = "DecodeLoadPairExclusiveInstruction"; |
| let PostEncoderMethod = "fixLoadStoreExclusive<0,1>"; |
| } |
| |
| multiclass A64I_LPex<string asmstr, bits<3> opcode> { |
| def _word: A64I_LPexs_impl<0b10, opcode, asmstr, |
| (outs GPR32:$Rt, GPR32:$Rt2), |
| (ins GPR64xsp0:$Rn), |
| [], NoItinerary>; |
| |
| def _dword: A64I_LPexs_impl<0b11, opcode, asmstr, |
| (outs GPR64:$Rt, GPR64:$Rt2), |
| (ins GPR64xsp0:$Rn), |
| [], NoItinerary>; |
| } |
| |
| defm LDXP : A64I_LPex<"ldxp", 0b010>; |
| defm LDAXP : A64I_LPex<"ldaxp", 0b011>; |
| |
| //===----------------------------------------------------------------------===// |
| // Load-store register (unscaled immediate) instructions |
| //===----------------------------------------------------------------------===// |
| // Contains: LDURB, LDURH, LDRUSB, LDRUSH, LDRUSW, STUR, STURB, STURH and PRFUM |
| // |
| // and |
| // |
| //===----------------------------------------------------------------------===// |
| // Load-store register (register offset) instructions |
| //===----------------------------------------------------------------------===// |
| // Contains: LDRB, LDRH, LDRSB, LDRSH, LDRSW, STR, STRB, STRH and PRFM |
| // |
| // and |
| // |
| //===----------------------------------------------------------------------===// |
| // Load-store register (unsigned immediate) instructions |
| //===----------------------------------------------------------------------===// |
| // Contains: LDRB, LDRH, LDRSB, LDRSH, LDRSW, STR, STRB, STRH and PRFM |
| // |
| // and |
| // |
| //===----------------------------------------------------------------------===// |
| // Load-store register (immediate post-indexed) instructions |
| //===----------------------------------------------------------------------===// |
| // Contains: STRB, STRH, STR, LDRB, LDRH, LDR, LDRSB, LDRSH, LDRSW |
| // |
| // and |
| // |
| //===----------------------------------------------------------------------===// |
| // Load-store register (immediate pre-indexed) instructions |
| //===----------------------------------------------------------------------===// |
| // Contains: STRB, STRH, STR, LDRB, LDRH, LDR, LDRSB, LDRSH, LDRSW |
| |
| // Note that patterns are much later on in a completely separate section (they |
| // need ADRPxi to be defined). |
| |
| //===------------------------------- |
| // 1. Various operands needed |
| //===------------------------------- |
| |
| //===------------------------------- |
| // 1.1 Unsigned 12-bit immediate operands |
| //===------------------------------- |
| // The addressing mode for these instructions consists of an unsigned 12-bit |
| // immediate which is scaled by the size of the memory access. |
| // |
| // We represent this in the MC layer by two operands: |
| // 1. A base register. |
| // 2. A 12-bit immediate: not multiplied by access size, so "LDR x0,[x0,#8]" |
| // would have '1' in this field. |
| // This means that separate functions are needed for converting representations |
| // which *are* aware of the intended access size. |
| |
| // Anything that creates an MCInst (Decoding, selection and AsmParsing) has to |
| // know the access size via some means. An isolated operand does not have this |
| // information unless told from here, which means we need separate tablegen |
| // Operands for each access size. This multiclass takes care of instantiating |
| // the correct template functions in the rest of the backend. |
| |
| //===------------------------------- |
| // 1.1 Unsigned 12-bit immediate operands |
| //===------------------------------- |
| |
| multiclass offsets_uimm12<int MemSize, string prefix> { |
| def uimm12_asmoperand : AsmOperandClass { |
| let Name = "OffsetUImm12_" # MemSize; |
| let PredicateMethod = "isOffsetUImm12<" # MemSize # ">"; |
| let RenderMethod = "addOffsetUImm12Operands<" # MemSize # ">"; |
| let DiagnosticType = "LoadStoreUImm12_" # MemSize; |
| } |
| |
| // Pattern is really no more than an ImmLeaf, but predicated on MemSize which |
| // complicates things beyond TableGen's ken. |
| def uimm12 : Operand<i64>, |
| ComplexPattern<i64, 1, "SelectOffsetUImm12<" # MemSize # ">"> { |
| let ParserMatchClass |
| = !cast<AsmOperandClass>(prefix # uimm12_asmoperand); |
| |
| let PrintMethod = "printOffsetUImm12Operand<" # MemSize # ">"; |
| let EncoderMethod = "getOffsetUImm12OpValue<" # MemSize # ">"; |
| } |
| } |
| |
| defm byte_ : offsets_uimm12<1, "byte_">; |
| defm hword_ : offsets_uimm12<2, "hword_">; |
| defm word_ : offsets_uimm12<4, "word_">; |
| defm dword_ : offsets_uimm12<8, "dword_">; |
| defm qword_ : offsets_uimm12<16, "qword_">; |
| |
| //===------------------------------- |
| // 1.1 Signed 9-bit immediate operands |
| //===------------------------------- |
| |
| // The MCInst is expected to store the bit-wise encoding of the value, |
| // which amounts to lopping off the extended sign bits. |
| def SDXF_simm9 : SDNodeXForm<imm, [{ |
| return CurDAG->getTargetConstant(N->getZExtValue() & 0x1ff, MVT::i32); |
| }]>; |
| |
| def simm9_asmoperand : AsmOperandClass { |
| let Name = "SImm9"; |
| let PredicateMethod = "isSImm<9>"; |
| let RenderMethod = "addSImmOperands<9>"; |
| let DiagnosticType = "LoadStoreSImm9"; |
| } |
| |
| def simm9 : Operand<i64>, |
| ImmLeaf<i64, [{ return Imm >= -0x100 && Imm <= 0xff; }], |
| SDXF_simm9> { |
| let PrintMethod = "printOffsetSImm9Operand"; |
| let ParserMatchClass = simm9_asmoperand; |
| } |
| |
| |
| //===------------------------------- |
| // 1.3 Register offset extensions |
| //===------------------------------- |
| |
| // The assembly-syntax for these addressing-modes is: |
| // [<Xn|SP>, <R><m> {, <extend> {<amount>}}] |
| // |
| // The essential semantics are: |
| // + <amount> is a shift: #<log(transfer size)> or #0 |
| // + <R> can be W or X. |
| // + If <R> is W, <extend> can be UXTW or SXTW |
| // + If <R> is X, <extend> can be LSL or SXTX |
| // |
| // The trickiest of those constraints is that Rm can be either GPR32 or GPR64, |
| // which will need separate instructions for LLVM type-consistency. We'll also |
| // need separate operands, of course. |
| multiclass regexts<int MemSize, int RmSize, RegisterClass GPR, |
| string Rm, string prefix> { |
| def regext_asmoperand : AsmOperandClass { |
| let Name = "AddrRegExtend_" # MemSize # "_" # Rm; |
| let PredicateMethod = "isAddrRegExtend<" # MemSize # "," # RmSize # ">"; |
| let RenderMethod = "addAddrRegExtendOperands<" # MemSize # ">"; |
| let DiagnosticType = "LoadStoreExtend" # RmSize # "_" # MemSize; |
| } |
| |
| def regext : Operand<i64> { |
| let PrintMethod |
| = "printAddrRegExtendOperand<" # MemSize # ", " # RmSize # ">"; |
| |
| let DecoderMethod = "DecodeAddrRegExtendOperand"; |
| let ParserMatchClass |
| = !cast<AsmOperandClass>(prefix # regext_asmoperand); |
| } |
| } |
| |
| multiclass regexts_wx<int MemSize, string prefix> { |
| // Rm is an X-register if LSL or SXTX are specified as the shift. |
| defm Xm_ : regexts<MemSize, 64, GPR64, "Xm", prefix # "Xm_">; |
| |
| // Rm is a W-register if UXTW or SXTW are specified as the shift. |
| defm Wm_ : regexts<MemSize, 32, GPR32, "Wm", prefix # "Wm_">; |
| } |
| |
| defm byte_ : regexts_wx<1, "byte_">; |
| defm hword_ : regexts_wx<2, "hword_">; |
| defm word_ : regexts_wx<4, "word_">; |
| defm dword_ : regexts_wx<8, "dword_">; |
| defm qword_ : regexts_wx<16, "qword_">; |
| |
| |
| //===------------------------------ |
| // 2. The instructions themselves. |
| //===------------------------------ |
| |
| // We have the following instructions to implement: |
| // | | B | H | W | X | |
| // |-----------------+-------+-------+-------+--------| |
| // | unsigned str | STRB | STRH | STR | STR | |
| // | unsigned ldr | LDRB | LDRH | LDR | LDR | |
| // | signed ldr to W | LDRSB | LDRSH | - | - | |
| // | signed ldr to X | LDRSB | LDRSH | LDRSW | (PRFM) | |
| |
| // This will instantiate the LDR/STR instructions you'd expect to use for an |
| // unsigned datatype (first two rows above) or floating-point register, which is |
| // reasonably uniform across all access sizes. |
| |
| |
| //===------------------------------ |
| // 2.1 Regular instructions |
| //===------------------------------ |
| |
| // This class covers the basic unsigned or irrelevantly-signed loads and stores, |
| // to general-purpose and floating-point registers. |
| |
| class AddrParams<string prefix> { |
| Operand uimm12 = !cast<Operand>(prefix # "_uimm12"); |
| |
| Operand regextWm = !cast<Operand>(prefix # "_Wm_regext"); |
| Operand regextXm = !cast<Operand>(prefix # "_Xm_regext"); |
| } |
| |
| def byte_addrparams : AddrParams<"byte">; |
| def hword_addrparams : AddrParams<"hword">; |
| def word_addrparams : AddrParams<"word">; |
| def dword_addrparams : AddrParams<"dword">; |
| def qword_addrparams : AddrParams<"qword">; |
| |
| multiclass A64I_LDRSTR_unsigned<string prefix, bits<2> size, bit v, |
| bit high_opc, string asmsuffix, |
| RegisterClass GPR, AddrParams params> { |
| // Unsigned immediate |
| def _STR : A64I_LSunsigimm<size, v, {high_opc, 0b0}, |
| (outs), (ins GPR:$Rt, GPR64xsp:$Rn, params.uimm12:$UImm12), |
| "str" # asmsuffix # "\t$Rt, [$Rn, $UImm12]", |
| [], NoItinerary> { |
| let mayStore = 1; |
| } |
| def : InstAlias<"str" # asmsuffix # " $Rt, [$Rn]", |
| (!cast<Instruction>(prefix # "_STR") GPR:$Rt, GPR64xsp:$Rn, 0)>; |
| |
| def _LDR : A64I_LSunsigimm<size, v, {high_opc, 0b1}, |
| (outs GPR:$Rt), (ins GPR64xsp:$Rn, params.uimm12:$UImm12), |
| "ldr" # asmsuffix # "\t$Rt, [$Rn, $UImm12]", |
| [], NoItinerary> { |
| let mayLoad = 1; |
| } |
| def : InstAlias<"ldr" # asmsuffix # " $Rt, [$Rn]", |
| (!cast<Instruction>(prefix # "_LDR") GPR:$Rt, GPR64xsp:$Rn, 0)>; |
| |
| // Register offset (four of these: load/store and Wm/Xm). |
| let mayLoad = 1 in { |
| def _Wm_RegOffset_LDR : A64I_LSregoff<size, v, {high_opc, 0b1}, 0b0, |
| (outs GPR:$Rt), |
| (ins GPR64xsp:$Rn, GPR32:$Rm, params.regextWm:$Ext), |
| "ldr" # asmsuffix # "\t$Rt, [$Rn, $Rm, $Ext]", |
| [], NoItinerary>; |
| |
| def _Xm_RegOffset_LDR : A64I_LSregoff<size, v, {high_opc, 0b1}, 0b1, |
| (outs GPR:$Rt), |
| (ins GPR64xsp:$Rn, GPR64:$Rm, params.regextXm:$Ext), |
| "ldr" # asmsuffix # "\t$Rt, [$Rn, $Rm, $Ext]", |
| [], NoItinerary>; |
| } |
| def : InstAlias<"ldr" # asmsuffix # " $Rt, [$Rn, $Rm]", |
| (!cast<Instruction>(prefix # "_Xm_RegOffset_LDR") GPR:$Rt, GPR64xsp:$Rn, |
| GPR64:$Rm, 2)>; |
| |
| let mayStore = 1 in { |
| def _Wm_RegOffset_STR : A64I_LSregoff<size, v, {high_opc, 0b0}, 0b0, |
| (outs), (ins GPR:$Rt, GPR64xsp:$Rn, GPR32:$Rm, |
| params.regextWm:$Ext), |
| "str" # asmsuffix # "\t$Rt, [$Rn, $Rm, $Ext]", |
| [], NoItinerary>; |
| |
| def _Xm_RegOffset_STR : A64I_LSregoff<size, v, {high_opc, 0b0}, 0b1, |
| (outs), (ins GPR:$Rt, GPR64xsp:$Rn, GPR64:$Rm, |
| params.regextXm:$Ext), |
| "str" # asmsuffix # "\t$Rt, [$Rn, $Rm, $Ext]", |
| [], NoItinerary>; |
| } |
| def : InstAlias<"str" # asmsuffix # " $Rt, [$Rn, $Rm]", |
| (!cast<Instruction>(prefix # "_Xm_RegOffset_STR") GPR:$Rt, GPR64xsp:$Rn, |
| GPR64:$Rm, 2)>; |
| |
| // Unaligned immediate |
| def _STUR : A64I_LSunalimm<size, v, {high_opc, 0b0}, |
| (outs), (ins GPR:$Rt, GPR64xsp:$Rn, simm9:$SImm9), |
| "stur" # asmsuffix # "\t$Rt, [$Rn, $SImm9]", |
| [], NoItinerary> { |
| let mayStore = 1; |
| } |
| def : InstAlias<"stur" # asmsuffix # " $Rt, [$Rn]", |
| (!cast<Instruction>(prefix # "_STUR") GPR:$Rt, GPR64xsp:$Rn, 0)>; |
| |
| def _LDUR : A64I_LSunalimm<size, v, {high_opc, 0b1}, |
| (outs GPR:$Rt), (ins GPR64xsp:$Rn, simm9:$SImm9), |
| "ldur" # asmsuffix # "\t$Rt, [$Rn, $SImm9]", |
| [], NoItinerary> { |
| let mayLoad = 1; |
| } |
| def : InstAlias<"ldur" # asmsuffix # " $Rt, [$Rn]", |
| (!cast<Instruction>(prefix # "_LDUR") GPR:$Rt, GPR64xsp:$Rn, 0)>; |
| |
| // Post-indexed |
| def _PostInd_STR : A64I_LSpostind<size, v, {high_opc, 0b0}, |
| (outs GPR64xsp:$Rn_wb), |
| (ins GPR:$Rt, GPR64xsp:$Rn, simm9:$SImm9), |
| "str" # asmsuffix # "\t$Rt, [$Rn], $SImm9", |
| [], NoItinerary> { |
| let Constraints = "$Rn = $Rn_wb"; |
| let mayStore = 1; |
| |
| // Decoder only needed for unpredictability checking (FIXME). |
| let DecoderMethod = "DecodeSingleIndexedInstruction"; |
| } |
| |
| def _PostInd_LDR : A64I_LSpostind<size, v, {high_opc, 0b1}, |
| (outs GPR:$Rt, GPR64xsp:$Rn_wb), |
| (ins GPR64xsp:$Rn, simm9:$SImm9), |
| "ldr" # asmsuffix # "\t$Rt, [$Rn], $SImm9", |
| [], NoItinerary> { |
| let mayLoad = 1; |
| let Constraints = "$Rn = $Rn_wb"; |
| let DecoderMethod = "DecodeSingleIndexedInstruction"; |
| } |
| |
| // Pre-indexed |
| def _PreInd_STR : A64I_LSpreind<size, v, {high_opc, 0b0}, |
| (outs GPR64xsp:$Rn_wb), |
| (ins GPR:$Rt, GPR64xsp:$Rn, simm9:$SImm9), |
| "str" # asmsuffix # "\t$Rt, [$Rn, $SImm9]!", |
| [], NoItinerary> { |
| let Constraints = "$Rn = $Rn_wb"; |
| let mayStore = 1; |
| |
| // Decoder only needed for unpredictability checking (FIXME). |
| let DecoderMethod = "DecodeSingleIndexedInstruction"; |
| } |
| |
| def _PreInd_LDR : A64I_LSpreind<size, v, {high_opc, 0b1}, |
| (outs GPR:$Rt, GPR64xsp:$Rn_wb), |
| (ins GPR64xsp:$Rn, simm9:$SImm9), |
| "ldr" # asmsuffix # "\t$Rt, [$Rn, $SImm9]!", |
| [], NoItinerary> { |
| let mayLoad = 1; |
| let Constraints = "$Rn = $Rn_wb"; |
| let DecoderMethod = "DecodeSingleIndexedInstruction"; |
| } |
| |
| } |
| |
| // STRB/LDRB: First define the instructions |
| defm LS8 |
| : A64I_LDRSTR_unsigned<"LS8", 0b00, 0b0, 0b0, "b", GPR32, byte_addrparams>; |
| |
| // STRH/LDRH |
| defm LS16 |
| : A64I_LDRSTR_unsigned<"LS16", 0b01, 0b0, 0b0, "h", GPR32, hword_addrparams>; |
| |
| |
| // STR/LDR to/from a W register |
| defm LS32 |
| : A64I_LDRSTR_unsigned<"LS32", 0b10, 0b0, 0b0, "", GPR32, word_addrparams>; |
| |
| // STR/LDR to/from an X register |
| defm LS64 |
| : A64I_LDRSTR_unsigned<"LS64", 0b11, 0b0, 0b0, "", GPR64, dword_addrparams>; |
| |
| // STR/LDR to/from a B register |
| defm LSFP8 |
| : A64I_LDRSTR_unsigned<"LSFP8", 0b00, 0b1, 0b0, "", FPR8, byte_addrparams>; |
| |
| // STR/LDR to/from an H register |
| defm LSFP16 |
| : A64I_LDRSTR_unsigned<"LSFP16", 0b01, 0b1, 0b0, "", FPR16, hword_addrparams>; |
| |
| // STR/LDR to/from an S register |
| defm LSFP32 |
| : A64I_LDRSTR_unsigned<"LSFP32", 0b10, 0b1, 0b0, "", FPR32, word_addrparams>; |
| // STR/LDR to/from a D register |
| defm LSFP64 |
| : A64I_LDRSTR_unsigned<"LSFP64", 0b11, 0b1, 0b0, "", FPR64, dword_addrparams>; |
| // STR/LDR to/from a Q register |
| defm LSFP128 |
| : A64I_LDRSTR_unsigned<"LSFP128", 0b00, 0b1, 0b1, "", FPR128, |
| qword_addrparams>; |
| |
| //===------------------------------ |
| // 2.3 Signed loads |
| //===------------------------------ |
| |
| // Byte and half-word signed loads can both go into either an X or a W register, |
| // so it's worth factoring out. Signed word loads don't fit because there is no |
| // W version. |
| multiclass A64I_LDR_signed<bits<2> size, string asmopcode, AddrParams params, |
| string prefix> { |
| // Unsigned offset |
| def w : A64I_LSunsigimm<size, 0b0, 0b11, |
| (outs GPR32:$Rt), |
| (ins GPR64xsp:$Rn, params.uimm12:$UImm12), |
| "ldrs" # asmopcode # "\t$Rt, [$Rn, $UImm12]", |
| [], NoItinerary> { |
| let mayLoad = 1; |
| } |
| def : InstAlias<"ldrs" # asmopcode # " $Rt, [$Rn]", |
| (!cast<Instruction>(prefix # w) GPR32:$Rt, GPR64xsp:$Rn, 0)>; |
| |
| def x : A64I_LSunsigimm<size, 0b0, 0b10, |
| (outs GPR64:$Rt), |
| (ins GPR64xsp:$Rn, params.uimm12:$UImm12), |
| "ldrs" # asmopcode # "\t$Rt, [$Rn, $UImm12]", |
| [], NoItinerary> { |
| let mayLoad = 1; |
| } |
| def : InstAlias<"ldrs" # asmopcode # " $Rt, [$Rn]", |
| (!cast<Instruction>(prefix # x) GPR64:$Rt, GPR64xsp:$Rn, 0)>; |
| |
| // Register offset |
| let mayLoad = 1 in { |
| def w_Wm_RegOffset : A64I_LSregoff<size, 0b0, 0b11, 0b0, |
| (outs GPR32:$Rt), |
| (ins GPR64xsp:$Rn, GPR32:$Rm, params.regextWm:$Ext), |
| "ldrs" # asmopcode # "\t$Rt, [$Rn, $Rm, $Ext]", |
| [], NoItinerary>; |
| |
| def w_Xm_RegOffset : A64I_LSregoff<size, 0b0, 0b11, 0b1, |
| (outs GPR32:$Rt), |
| (ins GPR64xsp:$Rn, GPR64:$Rm, params.regextXm:$Ext), |
| "ldrs" # asmopcode # "\t$Rt, [$Rn, $Rm, $Ext]", |
| [], NoItinerary>; |
| |
| def x_Wm_RegOffset : A64I_LSregoff<size, 0b0, 0b10, 0b0, |
| (outs GPR64:$Rt), |
| (ins GPR64xsp:$Rn, GPR32:$Rm, params.regextWm:$Ext), |
| "ldrs" # asmopcode # "\t$Rt, [$Rn, $Rm, $Ext]", |
| [], NoItinerary>; |
| |
| def x_Xm_RegOffset : A64I_LSregoff<size, 0b0, 0b10, 0b1, |
| (outs GPR64:$Rt), |
| (ins GPR64xsp:$Rn, GPR64:$Rm, params.regextXm:$Ext), |
| "ldrs" # asmopcode # "\t$Rt, [$Rn, $Rm, $Ext]", |
| [], NoItinerary>; |
| } |
| def : InstAlias<"ldrs" # asmopcode # " $Rt, [$Rn, $Rm]", |
| (!cast<Instruction>(prefix # "w_Xm_RegOffset") GPR32:$Rt, GPR64xsp:$Rn, |
| GPR64:$Rm, 2)>; |
| |
| def : InstAlias<"ldrs" # asmopcode # " $Rt, [$Rn, $Rm]", |
| (!cast<Instruction>(prefix # "x_Xm_RegOffset") GPR64:$Rt, GPR64xsp:$Rn, |
| GPR64:$Rm, 2)>; |
| |
| |
| let mayLoad = 1 in { |
| // Unaligned offset |
| def w_U : A64I_LSunalimm<size, 0b0, 0b11, |
| (outs GPR32:$Rt), |
| (ins GPR64xsp:$Rn, simm9:$SImm9), |
| "ldurs" # asmopcode # "\t$Rt, [$Rn, $SImm9]", |
| [], NoItinerary>; |
| |
| def x_U : A64I_LSunalimm<size, 0b0, 0b10, |
| (outs GPR64:$Rt), |
| (ins GPR64xsp:$Rn, simm9:$SImm9), |
| "ldurs" # asmopcode # "\t$Rt, [$Rn, $SImm9]", |
| [], NoItinerary>; |
| |
| |
| // Post-indexed |
| def w_PostInd : A64I_LSpostind<size, 0b0, 0b11, |
| (outs GPR32:$Rt, GPR64xsp:$Rn_wb), |
| (ins GPR64xsp:$Rn, simm9:$SImm9), |
| "ldrs" # asmopcode # "\t$Rt, [$Rn], $SImm9", |
| [], NoItinerary> { |
| let Constraints = "$Rn = $Rn_wb"; |
| let DecoderMethod = "DecodeSingleIndexedInstruction"; |
| } |
| |
| def x_PostInd : A64I_LSpostind<size, 0b0, 0b10, |
| (outs GPR64:$Rt, GPR64xsp:$Rn_wb), |
| (ins GPR64xsp:$Rn, simm9:$SImm9), |
| "ldrs" # asmopcode # "\t$Rt, [$Rn], $SImm9", |
| [], NoItinerary> { |
| let Constraints = "$Rn = $Rn_wb"; |
| let DecoderMethod = "DecodeSingleIndexedInstruction"; |
| } |
| |
| // Pre-indexed |
| def w_PreInd : A64I_LSpreind<size, 0b0, 0b11, |
| (outs GPR32:$Rt, GPR64xsp:$Rn_wb), |
| (ins GPR64xsp:$Rn, simm9:$SImm9), |
| "ldrs" # asmopcode # "\t$Rt, [$Rn, $SImm9]!", |
| [], NoItinerary> { |
| let Constraints = "$Rn = $Rn_wb"; |
| let DecoderMethod = "DecodeSingleIndexedInstruction"; |
| } |
| |
| def x_PreInd : A64I_LSpreind<size, 0b0, 0b10, |
| (outs GPR64:$Rt, GPR64xsp:$Rn_wb), |
| (ins GPR64xsp:$Rn, simm9:$SImm9), |
| "ldrs" # asmopcode # "\t$Rt, [$Rn, $SImm9]!", |
| [], NoItinerary> { |
| let Constraints = "$Rn = $Rn_wb"; |
| let DecoderMethod = "DecodeSingleIndexedInstruction"; |
| } |
| } // let mayLoad = 1 |
| } |
| |
| // LDRSB |
| defm LDRSB : A64I_LDR_signed<0b00, "b", byte_addrparams, "LDRSB">; |
| // LDRSH |
| defm LDRSH : A64I_LDR_signed<0b01, "h", hword_addrparams, "LDRSH">; |
| |
| // LDRSW: load a 32-bit register, sign-extending to 64-bits. |
| def LDRSWx |
| : A64I_LSunsigimm<0b10, 0b0, 0b10, |
| (outs GPR64:$Rt), |
| (ins GPR64xsp:$Rn, word_uimm12:$UImm12), |
| "ldrsw\t$Rt, [$Rn, $UImm12]", |
| [], NoItinerary> { |
| let mayLoad = 1; |
| } |
| def : InstAlias<"ldrsw $Rt, [$Rn]", (LDRSWx GPR64:$Rt, GPR64xsp:$Rn, 0)>; |
| |
| let mayLoad = 1 in { |
| def LDRSWx_Wm_RegOffset : A64I_LSregoff<0b10, 0b0, 0b10, 0b0, |
| (outs GPR64:$Rt), |
| (ins GPR64xsp:$Rn, GPR32:$Rm, word_Wm_regext:$Ext), |
| "ldrsw\t$Rt, [$Rn, $Rm, $Ext]", |
| [], NoItinerary>; |
| |
| def LDRSWx_Xm_RegOffset : A64I_LSregoff<0b10, 0b0, 0b10, 0b1, |
| (outs GPR64:$Rt), |
| (ins GPR64xsp:$Rn, GPR64:$Rm, word_Xm_regext:$Ext), |
| "ldrsw\t$Rt, [$Rn, $Rm, $Ext]", |
| [], NoItinerary>; |
| } |
| def : InstAlias<"ldrsw $Rt, [$Rn, $Rm]", |
| (LDRSWx_Xm_RegOffset GPR64:$Rt, GPR64xsp:$Rn, GPR64:$Rm, 2)>; |
| |
| |
| def LDURSWx |
| : A64I_LSunalimm<0b10, 0b0, 0b10, |
| (outs GPR64:$Rt), |
| (ins GPR64xsp:$Rn, simm9:$SImm9), |
| "ldursw\t$Rt, [$Rn, $SImm9]", |
| [], NoItinerary> { |
| let mayLoad = 1; |
| } |
| def : InstAlias<"ldursw $Rt, [$Rn]", (LDURSWx GPR64:$Rt, GPR64xsp:$Rn, 0)>; |
| |
| def LDRSWx_PostInd |
| : A64I_LSpostind<0b10, 0b0, 0b10, |
| (outs GPR64:$Rt, GPR64xsp:$Rn_wb), |
| (ins GPR64xsp:$Rn, simm9:$SImm9), |
| "ldrsw\t$Rt, [$Rn], $SImm9", |
| [], NoItinerary> { |
| let mayLoad = 1; |
| let Constraints = "$Rn = $Rn_wb"; |
| let DecoderMethod = "DecodeSingleIndexedInstruction"; |
| } |
| |
| def LDRSWx_PreInd : A64I_LSpreind<0b10, 0b0, 0b10, |
| (outs GPR64:$Rt, GPR64xsp:$Rn_wb), |
| (ins GPR64xsp:$Rn, simm9:$SImm9), |
| "ldrsw\t$Rt, [$Rn, $SImm9]!", |
| [], NoItinerary> { |
| let mayLoad = 1; |
| let Constraints = "$Rn = $Rn_wb"; |
| let DecoderMethod = "DecodeSingleIndexedInstruction"; |
| } |
| |
| //===------------------------------ |
| // 2.4 Prefetch operations |
| //===------------------------------ |
| |
| def PRFM : A64I_LSunsigimm<0b11, 0b0, 0b10, (outs), |
| (ins prefetch_op:$Rt, GPR64xsp:$Rn, dword_uimm12:$UImm12), |
| "prfm\t$Rt, [$Rn, $UImm12]", |
| [], NoItinerary> { |
| let mayLoad = 1; |
| } |
| def : InstAlias<"prfm $Rt, [$Rn]", |
| (PRFM prefetch_op:$Rt, GPR64xsp:$Rn, 0)>; |
| |
| let mayLoad = 1 in { |
| def PRFM_Wm_RegOffset : A64I_LSregoff<0b11, 0b0, 0b10, 0b0, (outs), |
| (ins prefetch_op:$Rt, GPR64xsp:$Rn, |
| GPR32:$Rm, dword_Wm_regext:$Ext), |
| "prfm\t$Rt, [$Rn, $Rm, $Ext]", |
| [], NoItinerary>; |
| def PRFM_Xm_RegOffset : A64I_LSregoff<0b11, 0b0, 0b10, 0b1, (outs), |
| (ins prefetch_op:$Rt, GPR64xsp:$Rn, |
| GPR64:$Rm, dword_Xm_regext:$Ext), |
| "prfm\t$Rt, [$Rn, $Rm, $Ext]", |
| [], NoItinerary>; |
| } |
| |
| def : InstAlias<"prfm $Rt, [$Rn, $Rm]", |
| (PRFM_Xm_RegOffset prefetch_op:$Rt, GPR64xsp:$Rn, |
| GPR64:$Rm, 2)>; |
| |
| |
| def PRFUM : A64I_LSunalimm<0b11, 0b0, 0b10, (outs), |
| (ins prefetch_op:$Rt, GPR64xsp:$Rn, simm9:$SImm9), |
| "prfum\t$Rt, [$Rn, $SImm9]", |
| [], NoItinerary> { |
| let mayLoad = 1; |
| } |
| def : InstAlias<"prfum $Rt, [$Rn]", |
| (PRFUM prefetch_op:$Rt, GPR64xsp:$Rn, 0)>; |
| |
| //===----------------------------------------------------------------------===// |
| // Load-store register (unprivileged) instructions |
| //===----------------------------------------------------------------------===// |
| // Contains: LDTRB, LDTRH, LDTRSB, LDTRSH, LDTRSW, STTR, STTRB and STTRH |
| |
| // These instructions very much mirror the "unscaled immediate" loads, but since |
| // there are no floating-point variants we need to split them out into their own |
| // section to avoid instantiation of "ldtr d0, [sp]" etc. |
| |
| multiclass A64I_LDTRSTTR<bits<2> size, string asmsuffix, RegisterClass GPR, |
| string prefix> { |
| def _UnPriv_STR : A64I_LSunpriv<size, 0b0, 0b00, |
| (outs), (ins GPR:$Rt, GPR64xsp:$Rn, simm9:$SImm9), |
| "sttr" # asmsuffix # "\t$Rt, [$Rn, $SImm9]", |
| [], NoItinerary> { |
| let mayStore = 1; |
| } |
| |
| def : InstAlias<"sttr" # asmsuffix # " $Rt, [$Rn]", |
| (!cast<Instruction>(prefix # "_UnPriv_STR") GPR:$Rt, GPR64xsp:$Rn, 0)>; |
| |
| def _UnPriv_LDR : A64I_LSunpriv<size, 0b0, 0b01, |
| (outs GPR:$Rt), (ins GPR64xsp:$Rn, simm9:$SImm9), |
| "ldtr" # asmsuffix # "\t$Rt, [$Rn, $SImm9]", |
| [], NoItinerary> { |
| let mayLoad = 1; |
| } |
| |
| def : InstAlias<"ldtr" # asmsuffix # " $Rt, [$Rn]", |
| (!cast<Instruction>(prefix # "_UnPriv_LDR") GPR:$Rt, GPR64xsp:$Rn, 0)>; |
| |
| } |
| |
| // STTRB/LDTRB: First define the instructions |
| defm LS8 : A64I_LDTRSTTR<0b00, "b", GPR32, "LS8">; |
| |
| // STTRH/LDTRH |
| defm LS16 : A64I_LDTRSTTR<0b01, "h", GPR32, "LS16">; |
| |
| // STTR/LDTR to/from a W register |
| defm LS32 : A64I_LDTRSTTR<0b10, "", GPR32, "LS32">; |
| |
| // STTR/LDTR to/from an X register |
| defm LS64 : A64I_LDTRSTTR<0b11, "", GPR64, "LS64">; |
| |
| // Now a class for the signed instructions that can go to either 32 or 64 |
| // bits... |
| multiclass A64I_LDTR_signed<bits<2> size, string asmopcode, string prefix> { |
| let mayLoad = 1 in { |
| def w : A64I_LSunpriv<size, 0b0, 0b11, |
| (outs GPR32:$Rt), |
| (ins GPR64xsp:$Rn, simm9:$SImm9), |
| "ldtrs" # asmopcode # "\t$Rt, [$Rn, $SImm9]", |
| [], NoItinerary>; |
| |
| def x : A64I_LSunpriv<size, 0b0, 0b10, |
| (outs GPR64:$Rt), |
| (ins GPR64xsp:$Rn, simm9:$SImm9), |
| "ldtrs" # asmopcode # "\t$Rt, [$Rn, $SImm9]", |
| [], NoItinerary>; |
| } |
| |
| def : InstAlias<"ldtrs" # asmopcode # " $Rt, [$Rn]", |
| (!cast<Instruction>(prefix # "w") GPR32:$Rt, GPR64xsp:$Rn, 0)>; |
| |
| def : InstAlias<"ldtrs" # asmopcode # " $Rt, [$Rn]", |
| (!cast<Instruction>(prefix # "x") GPR64:$Rt, GPR64xsp:$Rn, 0)>; |
| |
| } |
| |
| // LDTRSB |
| defm LDTRSB : A64I_LDTR_signed<0b00, "b", "LDTRSB">; |
| // LDTRSH |
| defm LDTRSH : A64I_LDTR_signed<0b01, "h", "LDTRSH">; |
| |
| // And finally LDTRSW which only goes to 64 bits. |
| def LDTRSWx : A64I_LSunpriv<0b10, 0b0, 0b10, |
| (outs GPR64:$Rt), |
| (ins GPR64xsp:$Rn, simm9:$SImm9), |
| "ldtrsw\t$Rt, [$Rn, $SImm9]", |
| [], NoItinerary> { |
| let mayLoad = 1; |
| } |
| def : InstAlias<"ldtrsw $Rt, [$Rn]", (LDTRSWx GPR64:$Rt, GPR64xsp:$Rn, 0)>; |
| |
| //===----------------------------------------------------------------------===// |
| // Load-store register pair (offset) instructions |
| //===----------------------------------------------------------------------===// |
| // |
| // and |
| // |
| //===----------------------------------------------------------------------===// |
| // Load-store register pair (post-indexed) instructions |
| //===----------------------------------------------------------------------===// |
| // Contains: STP, LDP, LDPSW |
| // |
| // and |
| // |
| //===----------------------------------------------------------------------===// |
| // Load-store register pair (pre-indexed) instructions |
| //===----------------------------------------------------------------------===// |
| // Contains: STP, LDP, LDPSW |
| // |
| // and |
| // |
| //===----------------------------------------------------------------------===// |
| // Load-store non-temporal register pair (offset) instructions |
| //===----------------------------------------------------------------------===// |
| // Contains: STNP, LDNP |
| |
| |
| // Anything that creates an MCInst (Decoding, selection and AsmParsing) has to |
| // know the access size via some means. An isolated operand does not have this |
| // information unless told from here, which means we need separate tablegen |
| // Operands for each access size. This multiclass takes care of instantiating |
| // the correct template functions in the rest of the backend. |
| |
| multiclass offsets_simm7<string MemSize, string prefix> { |
| // The bare signed 7-bit immediate is used in post-indexed instructions, but |
| // because of the scaling performed a generic "simm7" operand isn't |
| // appropriate here either. |
| def simm7_asmoperand : AsmOperandClass { |
| let Name = "SImm7_Scaled" # MemSize; |
| let PredicateMethod = "isSImm7Scaled<" # MemSize # ">"; |
| let RenderMethod = "addSImm7ScaledOperands<" # MemSize # ">"; |
| let DiagnosticType = "LoadStoreSImm7_" # MemSize; |
| } |
| |
| def simm7 : Operand<i64> { |
| let PrintMethod = "printSImm7ScaledOperand<" # MemSize # ">"; |
| let ParserMatchClass = !cast<AsmOperandClass>(prefix # "simm7_asmoperand"); |
| } |
| } |
| |
| defm word_ : offsets_simm7<"4", "word_">; |
| defm dword_ : offsets_simm7<"8", "dword_">; |
| defm qword_ : offsets_simm7<"16", "qword_">; |
| |
| multiclass A64I_LSPsimple<bits<2> opc, bit v, RegisterClass SomeReg, |
| Operand simm7, string prefix> { |
| def _STR : A64I_LSPoffset<opc, v, 0b0, (outs), |
| (ins SomeReg:$Rt, SomeReg:$Rt2, GPR64xsp:$Rn, simm7:$SImm7), |
| "stp\t$Rt, $Rt2, [$Rn, $SImm7]", [], NoItinerary> { |
| let mayStore = 1; |
| let DecoderMethod = "DecodeLDSTPairInstruction"; |
| } |
| def : InstAlias<"stp $Rt, $Rt2, [$Rn]", |
| (!cast<Instruction>(prefix # "_STR") SomeReg:$Rt, |
| SomeReg:$Rt2, GPR64xsp:$Rn, 0)>; |
| |
| def _LDR : A64I_LSPoffset<opc, v, 0b1, |
| (outs SomeReg:$Rt, SomeReg:$Rt2), |
| (ins GPR64xsp:$Rn, simm7:$SImm7), |
| "ldp\t$Rt, $Rt2, [$Rn, $SImm7]", [], NoItinerary> { |
| let mayLoad = 1; |
| let DecoderMethod = "DecodeLDSTPairInstruction"; |
| } |
| def : InstAlias<"ldp $Rt, $Rt2, [$Rn]", |
| (!cast<Instruction>(prefix # "_LDR") SomeReg:$Rt, |
| SomeReg:$Rt2, GPR64xsp:$Rn, 0)>; |
| |
| def _PostInd_STR : A64I_LSPpostind<opc, v, 0b0, |
| (outs GPR64xsp:$Rn_wb), |
| (ins SomeReg:$Rt, SomeReg:$Rt2, |
| GPR64xsp:$Rn, |
| simm7:$SImm7), |
| "stp\t$Rt, $Rt2, [$Rn], $SImm7", |
| [], NoItinerary> { |
| let mayStore = 1; |
| let Constraints = "$Rn = $Rn_wb"; |
| |
| // Decoder only needed for unpredictability checking (FIXME). |
| let DecoderMethod = "DecodeLDSTPairInstruction"; |
| } |
| |
| def _PostInd_LDR : A64I_LSPpostind<opc, v, 0b1, |
| (outs SomeReg:$Rt, SomeReg:$Rt2, GPR64xsp:$Rn_wb), |
| (ins GPR64xsp:$Rn, simm7:$SImm7), |
| "ldp\t$Rt, $Rt2, [$Rn], $SImm7", |
| [], NoItinerary> { |
| let mayLoad = 1; |
| let Constraints = "$Rn = $Rn_wb"; |
| let DecoderMethod = "DecodeLDSTPairInstruction"; |
| } |
| |
| def _PreInd_STR : A64I_LSPpreind<opc, v, 0b0, (outs GPR64xsp:$Rn_wb), |
| (ins SomeReg:$Rt, SomeReg:$Rt2, GPR64xsp:$Rn, simm7:$SImm7), |
| "stp\t$Rt, $Rt2, [$Rn, $SImm7]!", |
| [], NoItinerary> { |
| let mayStore = 1; |
| let Constraints = "$Rn = $Rn_wb"; |
| let DecoderMethod = "DecodeLDSTPairInstruction"; |
| } |
| |
| def _PreInd_LDR : A64I_LSPpreind<opc, v, 0b1, |
| (outs SomeReg:$Rt, SomeReg:$Rt2, GPR64xsp:$Rn_wb), |
| (ins GPR64xsp:$Rn, simm7:$SImm7), |
| "ldp\t$Rt, $Rt2, [$Rn, $SImm7]!", |
| [], NoItinerary> { |
| let mayLoad = 1; |
| let Constraints = "$Rn = $Rn_wb"; |
| let DecoderMethod = "DecodeLDSTPairInstruction"; |
| } |
| |
| def _NonTemp_STR : A64I_LSPnontemp<opc, v, 0b0, (outs), |
| (ins SomeReg:$Rt, SomeReg:$Rt2, GPR64xsp:$Rn, simm7:$SImm7), |
| "stnp\t$Rt, $Rt2, [$Rn, $SImm7]", [], NoItinerary> { |
| let mayStore = 1; |
| let DecoderMethod = "DecodeLDSTPairInstruction"; |
| } |
| def : InstAlias<"stnp $Rt, $Rt2, [$Rn]", |
| (!cast<Instruction>(prefix # "_NonTemp_STR") SomeReg:$Rt, |
| SomeReg:$Rt2, GPR64xsp:$Rn, 0)>; |
| |
| def _NonTemp_LDR : A64I_LSPnontemp<opc, v, 0b1, |
| (outs SomeReg:$Rt, SomeReg:$Rt2), |
| (ins GPR64xsp:$Rn, simm7:$SImm7), |
| "ldnp\t$Rt, $Rt2, [$Rn, $SImm7]", [], NoItinerary> { |
| let mayLoad = 1; |
| let DecoderMethod = "DecodeLDSTPairInstruction"; |
| } |
| def : InstAlias<"ldnp $Rt, $Rt2, [$Rn]", |
| (!cast<Instruction>(prefix # "_NonTemp_LDR") SomeReg:$Rt, |
| SomeReg:$Rt2, GPR64xsp:$Rn, 0)>; |
| |
| } |
| |
| |
| defm LSPair32 : A64I_LSPsimple<0b00, 0b0, GPR32, word_simm7, "LSPair32">; |
| defm LSPair64 : A64I_LSPsimple<0b10, 0b0, GPR64, dword_simm7, "LSPair64">; |
| defm LSFPPair32 : A64I_LSPsimple<0b00, 0b1, FPR32, word_simm7, "LSFPPair32">; |
| defm LSFPPair64 : A64I_LSPsimple<0b01, 0b1, FPR64, dword_simm7, "LSFPPair64">; |
| defm LSFPPair128 : A64I_LSPsimple<0b10, 0b1, FPR128, qword_simm7, |
| "LSFPPair128">; |
| |
| |
| def LDPSWx : A64I_LSPoffset<0b01, 0b0, 0b1, |
| (outs GPR64:$Rt, GPR64:$Rt2), |
| (ins GPR64xsp:$Rn, word_simm7:$SImm7), |
| "ldpsw\t$Rt, $Rt2, [$Rn, $SImm7]", [], NoItinerary> { |
| let mayLoad = 1; |
| let DecoderMethod = "DecodeLDSTPairInstruction"; |
| } |
| def : InstAlias<"ldpsw $Rt, $Rt2, [$Rn]", |
| (LDPSWx GPR64:$Rt, GPR64:$Rt2, GPR64xsp:$Rn, 0)>; |
| |
| def LDPSWx_PostInd : A64I_LSPpostind<0b01, 0b0, 0b1, |
| (outs GPR64:$Rt, GPR64:$Rt2, GPR64:$Rn_wb), |
| (ins GPR64xsp:$Rn, word_simm7:$SImm7), |
| "ldpsw\t$Rt, $Rt2, [$Rn], $SImm7", |
| [], NoItinerary> { |
| let mayLoad = 1; |
| let Constraints = "$Rn = $Rn_wb"; |
| let DecoderMethod = "DecodeLDSTPairInstruction"; |
| } |
| |
| def LDPSWx_PreInd : A64I_LSPpreind<0b01, 0b0, 0b1, |
| (outs GPR64:$Rt, GPR64:$Rt2, GPR64:$Rn_wb), |
| (ins GPR64xsp:$Rn, word_simm7:$SImm7), |
| "ldpsw\t$Rt, $Rt2, [$Rn, $SImm7]!", |
| [], NoItinerary> { |
| let mayLoad = 1; |
| let Constraints = "$Rn = $Rn_wb"; |
| let DecoderMethod = "DecodeLDSTPairInstruction"; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Logical (immediate) instructions |
| //===----------------------------------------------------------------------===// |
| // Contains: AND, ORR, EOR, ANDS, + aliases TST, MOV |
| |
| multiclass logical_imm_operands<string prefix, string note, |
| int size, ValueType VT> { |
| def _asmoperand : AsmOperandClass { |
| let Name = "LogicalImm" # note # size; |
| let PredicateMethod = "isLogicalImm" # note # "<" # size # ">"; |
| let RenderMethod = "addLogicalImmOperands<" # size # ">"; |
| let DiagnosticType = "LogicalSecondSource"; |
| } |
| |
| def _operand |
| : Operand<VT>, ComplexPattern<VT, 1, "SelectLogicalImm", [imm]> { |
| let ParserMatchClass = !cast<AsmOperandClass>(prefix # "_asmoperand"); |
| let PrintMethod = "printLogicalImmOperand<" # size # ">"; |
| let DecoderMethod = "DecodeLogicalImmOperand<" # size # ">"; |
| } |
| } |
| |
| defm logical_imm32 : logical_imm_operands<"logical_imm32", "", 32, i32>; |
| defm logical_imm64 : logical_imm_operands<"logical_imm64", "", 64, i64>; |
| |
| // The mov versions only differ in assembly parsing, where they |
| // exclude values representable with either MOVZ or MOVN. |
| defm logical_imm32_mov |
| : logical_imm_operands<"logical_imm32_mov", "MOV", 32, i32>; |
| defm logical_imm64_mov |
| : logical_imm_operands<"logical_imm64_mov", "MOV", 64, i64>; |
| |
| |
| multiclass A64I_logimmSizes<bits<2> opc, string asmop, SDNode opnode> { |
| def wwi : A64I_logicalimm<0b0, opc, (outs GPR32wsp:$Rd), |
| (ins GPR32:$Rn, logical_imm32_operand:$Imm), |
| !strconcat(asmop, "\t$Rd, $Rn, $Imm"), |
| [(set GPR32wsp:$Rd, |
| (opnode GPR32:$Rn, logical_imm32_operand:$Imm))], |
| NoItinerary>; |
| |
| def xxi : A64I_logicalimm<0b1, opc, (outs GPR64xsp:$Rd), |
| (ins GPR64:$Rn, logical_imm64_operand:$Imm), |
| !strconcat(asmop, "\t$Rd, $Rn, $Imm"), |
| [(set GPR64xsp:$Rd, |
| (opnode GPR64:$Rn, logical_imm64_operand:$Imm))], |
| NoItinerary>; |
| } |
| |
| defm AND : A64I_logimmSizes<0b00, "and", and>; |
| defm ORR : A64I_logimmSizes<0b01, "orr", or>; |
| defm EOR : A64I_logimmSizes<0b10, "eor", xor>; |
| |
| let Defs = [NZCV] in { |
| def ANDSwwi : A64I_logicalimm<0b0, 0b11, (outs GPR32:$Rd), |
| (ins GPR32:$Rn, logical_imm32_operand:$Imm), |
| "ands\t$Rd, $Rn, $Imm", |
| [], NoItinerary>; |
| |
| def ANDSxxi : A64I_logicalimm<0b1, 0b11, (outs GPR64:$Rd), |
| (ins GPR64:$Rn, logical_imm64_operand:$Imm), |
| "ands\t$Rd, $Rn, $Imm", |
| [], NoItinerary>; |
| } |
| |
| |
| def : InstAlias<"tst $Rn, $Imm", |
| (ANDSwwi WZR, GPR32:$Rn, logical_imm32_operand:$Imm)>; |
| def : InstAlias<"tst $Rn, $Imm", |
| (ANDSxxi XZR, GPR64:$Rn, logical_imm64_operand:$Imm)>; |
| def : InstAlias<"mov $Rd, $Imm", |
| (ORRwwi GPR32wsp:$Rd, WZR, logical_imm32_mov_operand:$Imm)>; |
| def : InstAlias<"mov $Rd, $Imm", |
| (ORRxxi GPR64xsp:$Rd, XZR, logical_imm64_mov_operand:$Imm)>; |
| |
| //===----------------------------------------------------------------------===// |
| // Logical (shifted register) instructions |
| //===----------------------------------------------------------------------===// |
| // Contains: AND, BIC, ORR, ORN, EOR, EON, ANDS, BICS + aliases TST, MVN, MOV |
| |
| // Operand for optimizing (icmp (and LHS, RHS), 0, SomeCode). In theory "ANDS" |
| // behaves differently for unsigned comparisons, so we defensively only allow |
| // signed or n/a as the operand. In practice "unsigned greater than 0" is "not |
| // equal to 0" and LLVM gives us this. |
| def signed_cond : PatLeaf<(cond), [{ |
| return !isUnsignedIntSetCC(N->get()); |
| }]>; |
| |
| |
| // These instructions share their "shift" operands with add/sub (shifted |
| // register instructions). They are defined there. |
| |
| // N.b. the commutable parameter is just !N. It will be first against the wall |
| // when the revolution comes. |
| multiclass logical_shifts<string prefix, bit sf, bits<2> opc, |
| bit N, bit commutable, |
| string asmop, SDPatternOperator opfrag, string sty, |
| RegisterClass GPR, list<Register> defs> { |
| let isCommutable = commutable, Defs = defs in { |
| def _lsl : A64I_logicalshift<sf, opc, 0b00, N, |
| (outs GPR:$Rd), |
| (ins GPR:$Rn, GPR:$Rm, |
| !cast<Operand>("lsl_operand_" # sty):$Imm6), |
| !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"), |
| [(set GPR:$Rd, (opfrag GPR:$Rn, (shl GPR:$Rm, |
| !cast<Operand>("lsl_operand_" # sty):$Imm6)) |
| )], |
| NoItinerary>; |
| |
| def _lsr : A64I_logicalshift<sf, opc, 0b01, N, |
| (outs GPR:$Rd), |
| (ins GPR:$Rn, GPR:$Rm, |
| !cast<Operand>("lsr_operand_" # sty):$Imm6), |
| !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"), |
| [(set GPR:$Rd, (opfrag GPR:$Rn, (srl GPR:$Rm, |
| !cast<Operand>("lsr_operand_" # sty):$Imm6)) |
| )], |
| NoItinerary>; |
| |
| def _asr : A64I_logicalshift<sf, opc, 0b10, N, |
| (outs GPR:$Rd), |
| (ins GPR:$Rn, GPR:$Rm, |
| !cast<Operand>("asr_operand_" # sty):$Imm6), |
| !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"), |
| [(set GPR:$Rd, (opfrag GPR:$Rn, (sra GPR:$Rm, |
| !cast<Operand>("asr_operand_" # sty):$Imm6)) |
| )], |
| NoItinerary>; |
| |
| def _ror : A64I_logicalshift<sf, opc, 0b11, N, |
| (outs GPR:$Rd), |
| (ins GPR:$Rn, GPR:$Rm, |
| !cast<Operand>("ror_operand_" # sty):$Imm6), |
| !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"), |
| [(set GPR:$Rd, (opfrag GPR:$Rn, (rotr GPR:$Rm, |
| !cast<Operand>("ror_operand_" # sty):$Imm6)) |
| )], |
| NoItinerary>; |
| } |
| |
| def _noshift |
| : InstAlias<!strconcat(asmop, " $Rd, $Rn, $Rm"), |
| (!cast<Instruction>(prefix # "_lsl") GPR:$Rd, GPR:$Rn, |
| GPR:$Rm, 0)>; |
| |
| def : Pat<(opfrag GPR:$Rn, GPR:$Rm), |
| (!cast<Instruction>(prefix # "_lsl") GPR:$Rn, GPR:$Rm, 0)>; |
| } |
| |
| multiclass logical_sizes<string prefix, bits<2> opc, bit N, bit commutable, |
| string asmop, SDPatternOperator opfrag, |
| list<Register> defs> { |
| defm xxx : logical_shifts<prefix # "xxx", 0b1, opc, N, |
| commutable, asmop, opfrag, "i64", GPR64, defs>; |
| defm www : logical_shifts<prefix # "www", 0b0, opc, N, |
| commutable, asmop, opfrag, "i32", GPR32, defs>; |
| } |
| |
| |
| defm AND : logical_sizes<"AND", 0b00, 0b0, 0b1, "and", and, []>; |
| defm ORR : logical_sizes<"ORR", 0b01, 0b0, 0b1, "orr", or, []>; |
| defm EOR : logical_sizes<"EOR", 0b10, 0b0, 0b1, "eor", xor, []>; |
| defm ANDS : logical_sizes<"ANDS", 0b11, 0b0, 0b1, "ands", |
| PatFrag<(ops node:$lhs, node:$rhs), (and node:$lhs, node:$rhs), |
| [{ (void)N; return false; }]>, |
| [NZCV]>; |
| |
| defm BIC : logical_sizes<"BIC", 0b00, 0b1, 0b0, "bic", |
| PatFrag<(ops node:$lhs, node:$rhs), |
| (and node:$lhs, (not node:$rhs))>, []>; |
| defm ORN : logical_sizes<"ORN", 0b01, 0b1, 0b0, "orn", |
| PatFrag<(ops node:$lhs, node:$rhs), |
| (or node:$lhs, (not node:$rhs))>, []>; |
| defm EON : logical_sizes<"EON", 0b10, 0b1, 0b0, "eon", |
| PatFrag<(ops node:$lhs, node:$rhs), |
| (xor node:$lhs, (not node:$rhs))>, []>; |
| defm BICS : logical_sizes<"BICS", 0b11, 0b1, 0b0, "bics", |
| PatFrag<(ops node:$lhs, node:$rhs), |
| (and node:$lhs, (not node:$rhs)), |
| [{ (void)N; return false; }]>, |
| [NZCV]>; |
| |
| multiclass tst_shifts<string prefix, bit sf, string sty, RegisterClass GPR> { |
| let isCommutable = 1, Rd = 0b11111, Defs = [NZCV] in { |
| def _lsl : A64I_logicalshift<sf, 0b11, 0b00, 0b0, |
| (outs), |
| (ins GPR:$Rn, GPR:$Rm, |
| !cast<Operand>("lsl_operand_" # sty):$Imm6), |
| "tst\t$Rn, $Rm, $Imm6", |
| [(set NZCV, (A64setcc (and GPR:$Rn, (shl GPR:$Rm, |
| !cast<Operand>("lsl_operand_" # sty):$Imm6)), |
| 0, signed_cond))], |
| NoItinerary>; |
| |
| |
| def _lsr : A64I_logicalshift<sf, 0b11, 0b01, 0b0, |
| (outs), |
| (ins GPR:$Rn, GPR:$Rm, |
| !cast<Operand>("lsr_operand_" # sty):$Imm6), |
| "tst\t$Rn, $Rm, $Imm6", |
| [(set NZCV, (A64setcc (and GPR:$Rn, (srl GPR:$Rm, |
| !cast<Operand>("lsr_operand_" # sty):$Imm6)), |
| 0, signed_cond))], |
| NoItinerary>; |
| |
| def _asr : A64I_logicalshift<sf, 0b11, 0b10, 0b0, |
| (outs), |
| (ins GPR:$Rn, GPR:$Rm, |
| !cast<Operand>("asr_operand_" # sty):$Imm6), |
| "tst\t$Rn, $Rm, $Imm6", |
| [(set NZCV, (A64setcc (and GPR:$Rn, (sra GPR:$Rm, |
| !cast<Operand>("asr_operand_" # sty):$Imm6)), |
| 0, signed_cond))], |
| NoItinerary>; |
| |
| def _ror : A64I_logicalshift<sf, 0b11, 0b11, 0b0, |
| (outs), |
| (ins GPR:$Rn, GPR:$Rm, |
| !cast<Operand>("ror_operand_" # sty):$Imm6), |
| "tst\t$Rn, $Rm, $Imm6", |
| [(set NZCV, (A64setcc (and GPR:$Rn, (rotr GPR:$Rm, |
| !cast<Operand>("ror_operand_" # sty):$Imm6)), |
| 0, signed_cond))], |
| NoItinerary>; |
| } |
| |
| def _noshift : InstAlias<"tst $Rn, $Rm", |
| (!cast<Instruction>(prefix # "_lsl") GPR:$Rn, GPR:$Rm, 0)>; |
| |
| def : Pat<(A64setcc (and GPR:$Rn, GPR:$Rm), 0, signed_cond), |
| (!cast<Instruction>(prefix # "_lsl") GPR:$Rn, GPR:$Rm, 0)>; |
| } |
| |
| defm TSTxx : tst_shifts<"TSTxx", 0b1, "i64", GPR64>; |
| defm TSTww : tst_shifts<"TSTww", 0b0, "i32", GPR32>; |
| |
| |
| multiclass mvn_shifts<string prefix, bit sf, string sty, RegisterClass GPR> { |
| let isCommutable = 0, Rn = 0b11111 in { |
| def _lsl : A64I_logicalshift<sf, 0b01, 0b00, 0b1, |
| (outs GPR:$Rd), |
| (ins GPR:$Rm, |
| !cast<Operand>("lsl_operand_" # sty):$Imm6), |
| "mvn\t$Rd, $Rm, $Imm6", |
| [(set GPR:$Rd, (not (shl GPR:$Rm, |
| !cast<Operand>("lsl_operand_" # sty):$Imm6)))], |
| NoItinerary>; |
| |
| |
| def _lsr : A64I_logicalshift<sf, 0b01, 0b01, 0b1, |
| (outs GPR:$Rd), |
| (ins GPR:$Rm, |
| !cast<Operand>("lsr_operand_" # sty):$Imm6), |
| "mvn\t$Rd, $Rm, $Imm6", |
| [(set GPR:$Rd, (not (srl GPR:$Rm, |
| !cast<Operand>("lsr_operand_" # sty):$Imm6)))], |
| NoItinerary>; |
| |
| def _asr : A64I_logicalshift<sf, 0b01, 0b10, 0b1, |
| (outs GPR:$Rd), |
| (ins GPR:$Rm, |
| !cast<Operand>("asr_operand_" # sty):$Imm6), |
| "mvn\t$Rd, $Rm, $Imm6", |
| [(set GPR:$Rd, (not (sra GPR:$Rm, |
| !cast<Operand>("asr_operand_" # sty):$Imm6)))], |
| NoItinerary>; |
| |
| def _ror : A64I_logicalshift<sf, 0b01, 0b11, 0b1, |
| (outs GPR:$Rd), |
| (ins GPR:$Rm, |
| !cast<Operand>("ror_operand_" # sty):$Imm6), |
| "mvn\t$Rd, $Rm, $Imm6", |
| [(set GPR:$Rd, (not (rotr GPR:$Rm, |
| !cast<Operand>("lsl_operand_" # sty):$Imm6)))], |
| NoItinerary>; |
| } |
| |
| def _noshift : InstAlias<"mvn $Rn, $Rm", |
| (!cast<Instruction>(prefix # "_lsl") GPR:$Rn, GPR:$Rm, 0)>; |
| |
| def : Pat<(not GPR:$Rm), |
| (!cast<Instruction>(prefix # "_lsl") GPR:$Rm, 0)>; |
| } |
| |
| defm MVNxx : mvn_shifts<"MVNxx", 0b1, "i64", GPR64>; |
| defm MVNww : mvn_shifts<"MVNww", 0b0, "i32", GPR32>; |
| |
| def MOVxx :InstAlias<"mov $Rd, $Rm", (ORRxxx_lsl GPR64:$Rd, XZR, GPR64:$Rm, 0)>; |
| def MOVww :InstAlias<"mov $Rd, $Rm", (ORRwww_lsl GPR32:$Rd, WZR, GPR32:$Rm, 0)>; |
| |
| //===----------------------------------------------------------------------===// |
| // Move wide (immediate) instructions |
| //===----------------------------------------------------------------------===// |
| // Contains: MOVN, MOVZ, MOVK + MOV aliases |
| |
| // A wide variety of different relocations are needed for variants of these |
| // instructions, so it turns out that we need a different operand for all of |
| // them. |
| multiclass movw_operands<string prefix, string instname, int width> { |
| def _imm_asmoperand : AsmOperandClass { |
| let Name = instname # width # "Shifted" # shift; |
| let PredicateMethod = "is" # instname # width # "Imm"; |
| let RenderMethod = "addMoveWideImmOperands"; |
| let ParserMethod = "ParseImmWithLSLOperand"; |
| let DiagnosticType = "MOVWUImm16"; |
| } |
| |
| def _imm : Operand<i32> { |
| let ParserMatchClass = !cast<AsmOperandClass>(prefix # "_imm_asmoperand"); |
| let PrintMethod = "printMoveWideImmOperand"; |
| let EncoderMethod = "getMoveWideImmOpValue"; |
| let DecoderMethod = "DecodeMoveWideImmOperand<" # width # ">"; |
| |
| let MIOperandInfo = (ops uimm16:$UImm16, imm:$Shift); |
| } |
| } |
| |
| defm movn32 : movw_operands<"movn32", "MOVN", 32>; |
| defm movn64 : movw_operands<"movn64", "MOVN", 64>; |
| defm movz32 : movw_operands<"movz32", "MOVZ", 32>; |
| defm movz64 : movw_operands<"movz64", "MOVZ", 64>; |
| defm movk32 : movw_operands<"movk32", "MOVK", 32>; |
| defm movk64 : movw_operands<"movk64", "MOVK", 64>; |
| |
| multiclass A64I_movwSizes<bits<2> opc, string asmop, dag ins32bit, |
| dag ins64bit> { |
| |
| def wii : A64I_movw<0b0, opc, (outs GPR32:$Rd), ins32bit, |
| !strconcat(asmop, "\t$Rd, $FullImm"), |
| [], NoItinerary> { |
| bits<18> FullImm; |
| let UImm16 = FullImm{15-0}; |
| let Shift = FullImm{17-16}; |
| } |
| |
| def xii : A64I_movw<0b1, opc, (outs GPR64:$Rd), ins64bit, |
| !strconcat(asmop, "\t$Rd, $FullImm"), |
| [], NoItinerary> { |
| bits<18> FullImm; |
| let UImm16 = FullImm{15-0}; |
| let Shift = FullImm{17-16}; |
| } |
| } |
| |
| let isMoveImm = 1, isReMaterializable = 1, |
| isAsCheapAsAMove = 1, hasSideEffects = 0 in { |
| defm MOVN : A64I_movwSizes<0b00, "movn", |
| (ins movn32_imm:$FullImm), |
| (ins movn64_imm:$FullImm)>; |
| |
| // Some relocations are able to convert between a MOVZ and a MOVN. If these |
| // are applied the instruction must be emitted with the corresponding bits as |
| // 0, which means a MOVZ needs to override that bit from the default. |
| let PostEncoderMethod = "fixMOVZ" in |
| defm MOVZ : A64I_movwSizes<0b10, "movz", |
| (ins movz32_imm:$FullImm), |
| (ins movz64_imm:$FullImm)>; |
| } |
| |
| let Constraints = "$src = $Rd" in |
| defm MOVK : A64I_movwSizes<0b11, "movk", |
| (ins GPR32:$src, movk32_imm:$FullImm), |
| (ins GPR64:$src, movk64_imm:$FullImm)>; |
| |
| |
| // And now the "MOV" aliases. These also need their own operands because what |
| // they accept is completely different to what the base instructions accept. |
| multiclass movalias_operand<string prefix, string basename, |
| string immpredicate, int width> { |
| def _asmoperand : AsmOperandClass { |
| let Name = basename # width # "MovAlias"; |
| let PredicateMethod |
| = "isMoveWideMovAlias<" # width # ", A64Imms::" # immpredicate # ">"; |
| let RenderMethod |
| = "addMoveWideMovAliasOperands<" # width # ", " |
| # "A64Imms::" # immpredicate # ">"; |
| } |
| |
| def _movimm : Operand<i32> { |
| let ParserMatchClass = !cast<AsmOperandClass>(prefix # "_asmoperand"); |
| |
| let MIOperandInfo = (ops uimm16:$UImm16, imm:$Shift); |
| } |
| } |
| |
| defm movz32 : movalias_operand<"movz32", "MOVZ", "isMOVZImm", 32>; |
| defm movz64 : movalias_operand<"movz64", "MOVZ", "isMOVZImm", 64>; |
| defm movn32 : movalias_operand<"movn32", "MOVN", "isOnlyMOVNImm", 32>; |
| defm movn64 : movalias_operand<"movn64", "MOVN", "isOnlyMOVNImm", 64>; |
| |
| // FIXME: these are officially canonical aliases, but TableGen is too limited to |
| // print them at the moment. I believe in this case an "AliasPredicate" method |
| // will need to be implemented. to allow it, as well as the more generally |
| // useful handling of non-register, non-constant operands. |
| class movalias<Instruction INST, RegisterClass GPR, Operand operand> |
| : InstAlias<"mov $Rd, $FullImm", (INST GPR:$Rd, operand:$FullImm)>; |
| |
| def : movalias<MOVZwii, GPR32, movz32_movimm>; |
| def : movalias<MOVZxii, GPR64, movz64_movimm>; |
| def : movalias<MOVNwii, GPR32, movn32_movimm>; |
| def : movalias<MOVNxii, GPR64, movn64_movimm>; |
| |
| //===----------------------------------------------------------------------===// |
| // PC-relative addressing instructions |
| //===----------------------------------------------------------------------===// |
| // Contains: ADR, ADRP |
| |
| def adr_label : Operand<i64> { |
| let EncoderMethod = "getLabelOpValue<AArch64::fixup_a64_adr_prel>"; |
| |
| // This label is a 21-bit offset from PC, unscaled |
| let PrintMethod = "printLabelOperand<21, 1>"; |
| let ParserMatchClass = label_asmoperand<21, 1>; |
| let OperandType = "OPERAND_PCREL"; |
| } |
| |
| def adrp_label_asmoperand : AsmOperandClass { |
| let Name = "AdrpLabel"; |
| let RenderMethod = "addLabelOperands<21, 4096>"; |
| let DiagnosticType = "Label"; |
| } |
| |
| def adrp_label : Operand<i64> { |
| let EncoderMethod = "getAdrpLabelOpValue"; |
| |
| // This label is a 21-bit offset from PC, scaled by the page-size: 4096. |
| let PrintMethod = "printLabelOperand<21, 4096>"; |
| let ParserMatchClass = adrp_label_asmoperand; |
| let OperandType = "OPERAND_PCREL"; |
| } |
| |
| let hasSideEffects = 0 in { |
| def ADRxi : A64I_PCADR<0b0, (outs GPR64:$Rd), (ins adr_label:$Label), |
| "adr\t$Rd, $Label", [], NoItinerary>; |
| |
| def ADRPxi : A64I_PCADR<0b1, (outs GPR64:$Rd), (ins adrp_label:$Label), |
| "adrp\t$Rd, $Label", [], NoItinerary>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // System instructions |
| //===----------------------------------------------------------------------===// |
| // Contains: HINT, CLREX, DSB, DMB, ISB, MSR, SYS, SYSL, MRS |
| // + aliases IC, DC, AT, TLBI, NOP, YIELD, WFE, WFI, SEV, SEVL |
| |
| // Op1 and Op2 fields are sometimes simple 3-bit unsigned immediate values. |
| def uimm3_asmoperand : AsmOperandClass { |
| let Name = "UImm3"; |
| let PredicateMethod = "isUImm<3>"; |
| let RenderMethod = "addImmOperands"; |
| let DiagnosticType = "UImm3"; |
| } |
| |
| def uimm3 : Operand<i32> { |
| let ParserMatchClass = uimm3_asmoperand; |
| } |
| |
| // The HINT alias can accept a simple unsigned 7-bit immediate. |
| def uimm7_asmoperand : AsmOperandClass { |
| let Name = "UImm7"; |
| let PredicateMethod = "isUImm<7>"; |
| let RenderMethod = "addImmOperands"; |
| let DiagnosticType = "UImm7"; |
| } |
| |
| def uimm7 : Operand<i32> { |
| let ParserMatchClass = uimm7_asmoperand; |
| } |
| |
| // Multiclass namedimm is defined with the prefetch operands. Most of these fit |
| // into the NamedImmMapper scheme well: they either accept a named operand or |
| // any immediate under a particular value (which may be 0, implying no immediate |
| // is allowed). |
| defm dbarrier : namedimm<"dbarrier", "A64DB::DBarrierMapper">; |
| defm isb : namedimm<"isb", "A64ISB::ISBMapper">; |
| defm ic : namedimm<"ic", "A64IC::ICMapper">; |
| defm dc : namedimm<"dc", "A64DC::DCMapper">; |
| defm at : namedimm<"at", "A64AT::ATMapper">; |
| defm tlbi : namedimm<"tlbi", "A64TLBI::TLBIMapper">; |
| |
| // However, MRS and MSR are more complicated for a few reasons: |
| // * There are ~1000 generic names S3_<op1>_<CRn>_<CRm>_<Op2> which have an |
| // implementation-defined effect |
| // * Most registers are shared, but some are read-only or write-only. |
| // * There is a variant of MSR which accepts the same register name (SPSel), |
| // but which would have a different encoding. |
| |
| // In principle these could be resolved in with more complicated subclasses of |
| // NamedImmMapper, however that imposes an overhead on other "named |
| // immediates". Both in concrete terms with virtual tables and in unnecessary |
| // abstraction. |
| |
| // The solution adopted here is to take the MRS/MSR Mappers out of the usual |
| // hierarchy (they're not derived from NamedImmMapper) and to add logic for |
| // their special situation. |
| def mrs_asmoperand : AsmOperandClass { |
| let Name = "MRS"; |
| let ParserMethod = "ParseSysRegOperand"; |
| let DiagnosticType = "MRS"; |
| } |
| |
| def mrs_op : Operand<i32> { |
| let ParserMatchClass = mrs_asmoperand; |
| let PrintMethod = "printMRSOperand"; |
| let DecoderMethod = "DecodeMRSOperand"; |
| } |
| |
| def msr_asmoperand : AsmOperandClass { |
| let Name = "MSRWithReg"; |
| |
| // Note that SPSel is valid for both this and the pstate operands, but with |
| // different immediate encodings. This is why these operands provide a string |
| // AArch64Operand rather than an immediate. The overlap is small enough that |
| // it could be resolved with hackery now, but who can say in future? |
| let ParserMethod = "ParseSysRegOperand"; |
| let DiagnosticType = "MSR"; |
| } |
| |
| def msr_op : Operand<i32> { |
| let ParserMatchClass = msr_asmoperand; |
| let PrintMethod = "printMSROperand"; |
| let DecoderMethod = "DecodeMSROperand"; |
| } |
| |
| def pstate_asmoperand : AsmOperandClass { |
| let Name = "MSRPState"; |
| // See comment above about parser. |
| let ParserMethod = "ParseSysRegOperand"; |
| let DiagnosticType = "MSR"; |
| } |
| |
| def pstate_op : Operand<i32> { |
| let ParserMatchClass = pstate_asmoperand; |
| let PrintMethod = "printNamedImmOperand<A64PState::PStateMapper>"; |
| let DecoderMethod = "DecodeNamedImmOperand<A64PState::PStateMapper>"; |
| } |
| |
| // When <CRn> is specified, an assembler should accept something like "C4", not |
| // the usual "#4" immediate. |
| def CRx_asmoperand : AsmOperandClass { |
| let Name = "CRx"; |
| let PredicateMethod = "isUImm<4>"; |
| let RenderMethod = "addImmOperands"; |
| let ParserMethod = "ParseCRxOperand"; |
| // Diagnostics are handled in all cases by ParseCRxOperand. |
| } |
| |
| def CRx : Operand<i32> { |
| let ParserMatchClass = CRx_asmoperand; |
| let PrintMethod = "printCRxOperand"; |
| } |
| |
| |
| // Finally, we can start defining the instructions. |
| |
| // HINT is straightforward, with a few aliases. |
| def HINTi : A64I_system<0b0, (outs), (ins uimm7:$UImm7), "hint\t$UImm7", |
| [], NoItinerary> { |
| bits<7> UImm7; |
| let CRm = UImm7{6-3}; |
| let Op2 = UImm7{2-0}; |
| |
| let Op0 = 0b00; |
| let Op1 = 0b011; |
| let CRn = 0b0010; |
| let Rt = 0b11111; |
| } |
| |
| def : InstAlias<"nop", (HINTi 0)>; |
| def : InstAlias<"yield", (HINTi 1)>; |
| def : InstAlias<"wfe", (HINTi 2)>; |
| def : InstAlias<"wfi", (HINTi 3)>; |
| def : InstAlias<"sev", (HINTi 4)>; |
| def : InstAlias<"sevl", (HINTi 5)>; |
| |
| // Quite a few instructions then follow a similar pattern of fixing common |
| // fields in the bitpattern, we'll define a helper-class for them. |
| class simple_sys<bits<2> op0, bits<3> op1, bits<4> crn, bits<3> op2, |
| Operand operand, string asmop> |
| : A64I_system<0b0, (outs), (ins operand:$CRm), !strconcat(asmop, "\t$CRm"), |
| [], NoItinerary> { |
| let Op0 = op0; |
| let Op1 = op1; |
| let CRn = crn; |
| let Op2 = op2; |
| let Rt = 0b11111; |
| } |
| |
| |
| def CLREXi : simple_sys<0b00, 0b011, 0b0011, 0b010, uimm4, "clrex">; |
| def DSBi : simple_sys<0b00, 0b011, 0b0011, 0b100, dbarrier_op, "dsb">; |
| def DMBi : simple_sys<0b00, 0b011, 0b0011, 0b101, dbarrier_op, "dmb">; |
| def ISBi : simple_sys<0b00, 0b011, 0b0011, 0b110, isb_op, "isb">; |
| |
| def : InstAlias<"clrex", (CLREXi 0b1111)>; |
| def : InstAlias<"isb", (ISBi 0b1111)>; |
| |
| // (DMBi 0xb) is a "DMB ISH" instruciton, appropriate for Linux SMP |
| // configurations at least. |
| def : Pat<(atomic_fence imm, imm), (DMBi 0xb)>; |
| |
| // Any SYS bitpattern can be represented with a complex and opaque "SYS" |
| // instruction. |
| def SYSiccix : A64I_system<0b0, (outs), |
| (ins uimm3:$Op1, CRx:$CRn, CRx:$CRm, |
| uimm3:$Op2, GPR64:$Rt), |
| "sys\t$Op1, $CRn, $CRm, $Op2, $Rt", |
| [], NoItinerary> { |
| let Op0 = 0b01; |
| } |
| |
| // You can skip the Xt argument whether it makes sense or not for the generic |
| // SYS instruction. |
| def : InstAlias<"sys $Op1, $CRn, $CRm, $Op2", |
| (SYSiccix uimm3:$Op1, CRx:$CRn, CRx:$CRm, uimm3:$Op2, XZR)>; |
| |
| |
| // But many have aliases, which obviously don't fit into |
| class SYSalias<dag ins, string asmstring> |
| : A64I_system<0b0, (outs), ins, asmstring, [], NoItinerary> { |
| let isAsmParserOnly = 1; |
| |
| bits<14> SysOp; |
| let Op0 = 0b01; |
| let Op1 = SysOp{13-11}; |
| let CRn = SysOp{10-7}; |
| let CRm = SysOp{6-3}; |
| let Op2 = SysOp{2-0}; |
| } |
| |
| def ICix : SYSalias<(ins ic_op:$SysOp, GPR64:$Rt), "ic\t$SysOp, $Rt">; |
| |
| def ICi : SYSalias<(ins ic_op:$SysOp), "ic\t$SysOp"> { |
| let Rt = 0b11111; |
| } |
| |
| def DCix : SYSalias<(ins dc_op:$SysOp, GPR64:$Rt), "dc\t$SysOp, $Rt">; |
| def ATix : SYSalias<(ins at_op:$SysOp, GPR64:$Rt), "at\t$SysOp, $Rt">; |
| |
| def TLBIix : SYSalias<(ins tlbi_op:$SysOp, GPR64:$Rt), "tlbi\t$SysOp, $Rt">; |
| |
| def TLBIi : SYSalias<(ins tlbi_op:$SysOp), "tlbi\t$SysOp"> { |
| let Rt = 0b11111; |
| } |
| |
| |
| def SYSLxicci : A64I_system<0b1, (outs GPR64:$Rt), |
| (ins uimm3:$Op1, CRx:$CRn, CRx:$CRm, uimm3:$Op2), |
| "sysl\t$Rt, $Op1, $CRn, $CRm, $Op2", |
| [], NoItinerary> { |
| let Op0 = 0b01; |
| } |
| |
| // The instructions themselves are rather simple for MSR and MRS. |
| def MSRix : A64I_system<0b0, (outs), (ins msr_op:$SysReg, GPR64:$Rt), |
| "msr\t$SysReg, $Rt", [], NoItinerary> { |
| bits<16> SysReg; |
| let Op0 = SysReg{15-14}; |
| let Op1 = SysReg{13-11}; |
| let CRn = SysReg{10-7}; |
| let CRm = SysReg{6-3}; |
| let Op2 = SysReg{2-0}; |
| } |
| |
| def MRSxi : A64I_system<0b1, (outs GPR64:$Rt), (ins mrs_op:$SysReg), |
| "mrs\t$Rt, $SysReg", [], NoItinerary> { |
| bits<16> SysReg; |
| let Op0 = SysReg{15-14}; |
| let Op1 = SysReg{13-11}; |
| let CRn = SysReg{10-7}; |
| let CRm = SysReg{6-3}; |
| let Op2 = SysReg{2-0}; |
| } |
| |
| def MSRii : A64I_system<0b0, (outs), (ins pstate_op:$PState, uimm4:$CRm), |
| "msr\t$PState, $CRm", [], NoItinerary> { |
| bits<6> PState; |
| |
| let Op0 = 0b00; |
| let Op1 = PState{5-3}; |
| let CRn = 0b0100; |
| let Op2 = PState{2-0}; |
| let Rt = 0b11111; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Test & branch (immediate) instructions |
| //===----------------------------------------------------------------------===// |
| // Contains: TBZ, TBNZ |
| |
| // The bit to test is a simple unsigned 6-bit immediate in the X-register |
| // versions. |
| def uimm6 : Operand<i64> { |
| let ParserMatchClass = uimm6_asmoperand; |
| } |
| |
| def label_wid14_scal4_asmoperand : label_asmoperand<14, 4>; |
| |
| def tbimm_target : Operand<OtherVT> { |
| let EncoderMethod = "getLabelOpValue<AArch64::fixup_a64_tstbr>"; |
| |
| // This label is a 14-bit offset from PC, scaled by the instruction-width: 4. |
| let PrintMethod = "printLabelOperand<14, 4>"; |
| let ParserMatchClass = label_wid14_scal4_asmoperand; |
| |
| let OperandType = "OPERAND_PCREL"; |
| } |
| |
| def A64eq : ImmLeaf<i32, [{ return Imm == A64CC::EQ; }]>; |
| def A64ne : ImmLeaf<i32, [{ return Imm == A64CC::NE; }]>; |
| |
| // These instructions correspond to patterns involving "and" with a power of |
| // two, which we need to be able to select. |
| def tstb64_pat : ComplexPattern<i64, 1, "SelectTSTBOperand<64>">; |
| def tstb32_pat : ComplexPattern<i32, 1, "SelectTSTBOperand<32>">; |
| |
| let isBranch = 1, isTerminator = 1 in { |
| def TBZxii : A64I_TBimm<0b0, (outs), |
| (ins GPR64:$Rt, uimm6:$Imm, tbimm_target:$Label), |
| "tbz\t$Rt, $Imm, $Label", |
| [(A64br_cc (A64cmp (and GPR64:$Rt, tstb64_pat:$Imm), 0), |
| A64eq, bb:$Label)], |
| NoItinerary>; |
| |
| def TBNZxii : A64I_TBimm<0b1, (outs), |
| (ins GPR64:$Rt, uimm6:$Imm, tbimm_target:$Label), |
| "tbnz\t$Rt, $Imm, $Label", |
| [(A64br_cc (A64cmp (and GPR64:$Rt, tstb64_pat:$Imm), 0), |
| A64ne, bb:$Label)], |
| NoItinerary>; |
| |
| |
| // Note, these instructions overlap with the above 64-bit patterns. This is |
| // intentional, "tbz x3, #1, somewhere" and "tbz w3, #1, somewhere" would both |
| // do the same thing and are both permitted assembly. They also both have |
| // sensible DAG patterns. |
| def TBZwii : A64I_TBimm<0b0, (outs), |
| (ins GPR32:$Rt, uimm5:$Imm, tbimm_target:$Label), |
| "tbz\t$Rt, $Imm, $Label", |
| [(A64br_cc (A64cmp (and GPR32:$Rt, tstb32_pat:$Imm), 0), |
| A64eq, bb:$Label)], |
| NoItinerary> { |
| let Imm{5} = 0b0; |
| } |
| |
| def TBNZwii : A64I_TBimm<0b1, (outs), |
| (ins GPR32:$Rt, uimm5:$Imm, tbimm_target:$Label), |
| "tbnz\t$Rt, $Imm, $Label", |
| [(A64br_cc (A64cmp (and GPR32:$Rt, tstb32_pat:$Imm), 0), |
| A64ne, bb:$Label)], |
| NoItinerary> { |
| let Imm{5} = 0b0; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Unconditional branch (immediate) instructions |
| //===----------------------------------------------------------------------===// |
| // Contains: B, BL |
| |
| def label_wid26_scal4_asmoperand : label_asmoperand<26, 4>; |
| |
| def bimm_target : Operand<OtherVT> { |
| let EncoderMethod = "getLabelOpValue<AArch64::fixup_a64_uncondbr>"; |
| |
| // This label is a 26-bit offset from PC, scaled by the instruction-width: 4. |
| let PrintMethod = "printLabelOperand<26, 4>"; |
| let ParserMatchClass = label_wid26_scal4_asmoperand; |
| |
| let OperandType = "OPERAND_PCREL"; |
| } |
| |
| def blimm_target : Operand<i64> { |
| let EncoderMethod = "getLabelOpValue<AArch64::fixup_a64_call>"; |
| |
| // This label is a 26-bit offset from PC, scaled by the instruction-width: 4. |
| let PrintMethod = "printLabelOperand<26, 4>"; |
| let ParserMatchClass = label_wid26_scal4_asmoperand; |
| |
| let OperandType = "OPERAND_PCREL"; |
| } |
| |
| class A64I_BimmImpl<bit op, string asmop, list<dag> patterns, Operand lbl_type> |
| : A64I_Bimm<op, (outs), (ins lbl_type:$Label), |
| !strconcat(asmop, "\t$Label"), patterns, |
| NoItinerary>; |
| |
| let isBranch = 1 in { |
| def Bimm : A64I_BimmImpl<0b0, "b", [(br bb:$Label)], bimm_target> { |
| let isTerminator = 1; |
| let isBarrier = 1; |
| } |
| |
| def BLimm : A64I_BimmImpl<0b1, "bl", |
| [(AArch64Call tglobaladdr:$Label)], blimm_target> { |
| let isCall = 1; |
| let Defs = [X30]; |
| } |
| } |
| |
| def : Pat<(AArch64Call texternalsym:$Label), (BLimm texternalsym:$Label)>; |
| |
| //===----------------------------------------------------------------------===// |
| // Unconditional branch (register) instructions |
| //===----------------------------------------------------------------------===// |
| // Contains: BR, BLR, RET, ERET, DRP. |
| |
| // Most of the notional opcode fields in the A64I_Breg format are fixed in A64 |
| // at the moment. |
| class A64I_BregImpl<bits<4> opc, |
| dag outs, dag ins, string asmstr, list<dag> patterns, |
| InstrItinClass itin = NoItinerary> |
| : A64I_Breg<opc, 0b11111, 0b000000, 0b00000, |
| outs, ins, asmstr, patterns, itin> { |
| let isBranch = 1; |
| let isIndirectBranch = 1; |
| } |
| |
| // Note that these are not marked isCall or isReturn because as far as LLVM is |
| // concerned they're not. "ret" is just another jump unless it has been selected |
| // by LLVM as the function's return. |
| |
| let isBranch = 1 in { |
| def BRx : A64I_BregImpl<0b0000,(outs), (ins GPR64:$Rn), |
| "br\t$Rn", [(brind GPR64:$Rn)]> { |
| let isBarrier = 1; |
| let isTerminator = 1; |
| } |
| |
| def BLRx : A64I_BregImpl<0b0001, (outs), (ins GPR64:$Rn), |
| "blr\t$Rn", [(AArch64Call GPR64:$Rn)]> { |
| let isBarrier = 0; |
| let isCall = 1; |
| let Defs = [X30]; |
| } |
| |
| def RETx : A64I_BregImpl<0b0010, (outs), (ins GPR64:$Rn), |
| "ret\t$Rn", []> { |
| let isBarrier = 1; |
| let isTerminator = 1; |
| let isReturn = 1; |
| } |
| |
| // Create a separate pseudo-instruction for codegen to use so that we don't |
| // flag x30 as used in every function. It'll be restored before the RET by the |
| // epilogue if it's legitimately used. |
| def RET : A64PseudoExpand<(outs), (ins), [(A64ret)], (RETx (ops X30))> { |
| let isTerminator = 1; |
| let isBarrier = 1; |
| let isReturn = 1; |
| } |
| |
| def ERET : A64I_BregImpl<0b0100, (outs), (ins), "eret", []> { |
| let Rn = 0b11111; |
| let isBarrier = 1; |
| let isTerminator = 1; |
| let isReturn = 1; |
| } |
| |
| def DRPS : A64I_BregImpl<0b0101, (outs), (ins), "drps", []> { |
| let Rn = 0b11111; |
| let isBarrier = 1; |
| } |
| } |
| |
| def RETAlias : InstAlias<"ret", (RETx X30)>; |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Address generation patterns |
| //===----------------------------------------------------------------------===// |
| |
| // Primary method of address generation for the small/absolute memory model is |
| // an ADRP/ADR pair: |
| // ADRP x0, some_variable |
| // ADD x0, x0, #:lo12:some_variable |
| // |
| // The load/store elision of the ADD is accomplished when selecting |
| // addressing-modes. This just mops up the cases where that doesn't work and we |
| // really need an address in some register. |
| |
| // This wrapper applies a LO12 modifier to the address. Otherwise we could just |
| // use the same address. |
| |
| class ADRP_ADD<SDNode Wrapper, SDNode addrop> |
| : Pat<(Wrapper addrop:$Hi, addrop:$Lo12, (i32 imm)), |
| (ADDxxi_lsl0_s (ADRPxi addrop:$Hi), addrop:$Lo12)>; |
| |
| def : ADRP_ADD<A64WrapperSmall, tblockaddress>; |
| def : ADRP_ADD<A64WrapperSmall, texternalsym>; |
| def : ADRP_ADD<A64WrapperSmall, tglobaladdr>; |
| def : ADRP_ADD<A64WrapperSmall, tglobaltlsaddr>; |
| def : ADRP_ADD<A64WrapperSmall, tjumptable>; |
| |
| //===----------------------------------------------------------------------===// |
| // GOT access patterns |
| //===----------------------------------------------------------------------===// |
| |
| // FIXME: Wibble |
| |
| class GOTLoadSmall<SDNode addrfrag> |
| : Pat<(A64GOTLoad (A64WrapperSmall addrfrag:$Hi, addrfrag:$Lo12, 8)), |
| (LS64_LDR (ADRPxi addrfrag:$Hi), addrfrag:$Lo12)>; |
| |
| def : GOTLoadSmall<texternalsym>; |
| def : GOTLoadSmall<tglobaladdr>; |
| def : GOTLoadSmall<tglobaltlsaddr>; |
| |
| //===----------------------------------------------------------------------===// |
| // Tail call handling |
| //===----------------------------------------------------------------------===// |
| |
| let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [XSP] in { |
| def TC_RETURNdi |
| : PseudoInst<(outs), (ins i64imm:$dst, i32imm:$FPDiff), |
| [(AArch64tcret tglobaladdr:$dst, (i32 timm:$FPDiff))]>; |
| |
| def TC_RETURNxi |
| : PseudoInst<(outs), (ins tcGPR64:$dst, i32imm:$FPDiff), |
| [(AArch64tcret tcGPR64:$dst, (i32 timm:$FPDiff))]>; |
| } |
| |
| let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, |
| Uses = [XSP] in { |
| def TAIL_Bimm : A64PseudoExpand<(outs), (ins bimm_target:$Label), [], |
| (Bimm bimm_target:$Label)>; |
| |
| def TAIL_BRx : A64PseudoExpand<(outs), (ins tcGPR64:$Rd), [], |
| (BRx GPR64:$Rd)>; |
| } |
| |
| |
| def : Pat<(AArch64tcret texternalsym:$dst, (i32 timm:$FPDiff)), |
| (TC_RETURNdi texternalsym:$dst, imm:$FPDiff)>; |
| |
| //===----------------------------------------------------------------------===// |
| // Thread local storage |
| //===----------------------------------------------------------------------===// |
| |
| // This is a pseudo-instruction representing the ".tlsdesccall" directive in |
| // assembly. Its effect is to insert an R_AARCH64_TLSDESC_CALL relocation at the |
| // current location. It should always be immediately followed by a BLR |
| // instruction, and is intended solely for relaxation by the linker. |
| |
| def : Pat<(A64threadpointer), (MRSxi 0xde82)>; |
| |
| def TLSDESCCALL : PseudoInst<(outs), (ins i64imm:$Lbl), []> { |
| let hasSideEffects = 1; |
| } |
| |
| def TLSDESC_BLRx : PseudoInst<(outs), (ins GPR64:$Rn, i64imm:$Var), |
| [(A64tlsdesc_blr GPR64:$Rn, tglobaltlsaddr:$Var)]> { |
| let isCall = 1; |
| let Defs = [X30]; |
| } |
| |
| def : Pat<(A64tlsdesc_blr GPR64:$Rn, texternalsym:$Var), |
| (TLSDESC_BLRx GPR64:$Rn, texternalsym:$Var)>; |
| |
| //===----------------------------------------------------------------------===// |
| // Bitfield patterns |
| //===----------------------------------------------------------------------===// |
| |
| def bfi32_lsb_to_immr : SDNodeXForm<imm, [{ |
| return CurDAG->getTargetConstant((32 - N->getZExtValue()) % 32, MVT::i64); |
| }]>; |
| |
| def bfi64_lsb_to_immr : SDNodeXForm<imm, [{ |
| return CurDAG->getTargetConstant((64 - N->getZExtValue()) % 64, MVT::i64); |
| }]>; |
| |
| def bfi_width_to_imms : SDNodeXForm<imm, [{ |
| return CurDAG->getTargetConstant(N->getZExtValue() - 1, MVT::i64); |
| }]>; |
| |
| |
| // The simpler patterns deal with cases where no AND mask is actually needed |
| // (either all bits are used or the low 32 bits are used). |
| let AddedComplexity = 10 in { |
| |
| def : Pat<(A64Bfi GPR64:$src, GPR64:$Rn, imm:$ImmR, imm:$ImmS), |
| (BFIxxii GPR64:$src, GPR64:$Rn, |
| (bfi64_lsb_to_immr (i64 imm:$ImmR)), |
| (bfi_width_to_imms (i64 imm:$ImmS)))>; |
| |
| def : Pat<(A64Bfi GPR32:$src, GPR32:$Rn, imm:$ImmR, imm:$ImmS), |
| (BFIwwii GPR32:$src, GPR32:$Rn, |
| (bfi32_lsb_to_immr (i64 imm:$ImmR)), |
| (bfi_width_to_imms (i64 imm:$ImmS)))>; |
| |
| |
| def : Pat<(and (A64Bfi GPR64:$src, GPR64:$Rn, imm:$ImmR, imm:$ImmS), |
| (i64 4294967295)), |
| (SUBREG_TO_REG (i64 0), |
| (BFIwwii (EXTRACT_SUBREG GPR64:$src, sub_32), |
| (EXTRACT_SUBREG GPR64:$Rn, sub_32), |
| (bfi32_lsb_to_immr (i64 imm:$ImmR)), |
| (bfi_width_to_imms (i64 imm:$ImmS))), |
| sub_32)>; |
| |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Miscellaneous patterns |
| //===----------------------------------------------------------------------===// |
| |
| // Truncation from 64 to 32-bits just involves renaming your register. |
| def : Pat<(i32 (trunc (i64 GPR64:$val))), (EXTRACT_SUBREG GPR64:$val, sub_32)>; |
| |
| // Similarly, extension where we don't care about the high bits is |
| // just a rename. |
| def : Pat<(i64 (anyext (i32 GPR32:$val))), |
| (INSERT_SUBREG (IMPLICIT_DEF), GPR32:$val, sub_32)>; |
| |
| // SELECT instructions providing f128 types need to be handled by a |
| // pseudo-instruction since the eventual code will need to introduce basic |
| // blocks and control flow. |
| def F128CSEL : PseudoInst<(outs FPR128:$Rd), |
| (ins FPR128:$Rn, FPR128:$Rm, cond_code_op:$Cond), |
| [(set FPR128:$Rd, (simple_select (f128 FPR128:$Rn), |
| FPR128:$Rm))]> { |
| let Uses = [NZCV]; |
| let usesCustomInserter = 1; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Load/store patterns |
| //===----------------------------------------------------------------------===// |
| |
| // There are lots of patterns here, because we need to allow at least three |
| // parameters to vary independently. |
| // 1. Instruction: "ldrb w9, [sp]", "ldrh w9, [sp]", ... |
| // 2. LLVM source: zextloadi8, anyextloadi8, ... |
| // 3. Address-generation: A64Wrapper, (add BASE, OFFSET), ... |
| // |
| // The biggest problem turns out to be the address-generation variable. At the |
| // point of instantiation we need to produce two DAGs, one for the pattern and |
| // one for the instruction. Doing this at the lowest level of classes doesn't |
| // work. |
| // |
| // Consider the simple uimm12 addressing mode, and the desire to match both (add |
| // GPR64xsp:$Rn, uimm12:$Offset) and GPR64xsp:$Rn, particularly on the |
| // instruction side. We'd need to insert either "GPR64xsp" and "uimm12" or |
| // "GPR64xsp" and "0" into an unknown dag. !subst is not capable of this |
| // operation, and PatFrags are for selection not output. |
| // |
| // As a result, the address-generation patterns are the final |
| // instantiations. However, we do still need to vary the operand for the address |
| // further down (At the point we're deciding A64WrapperSmall, we don't know |
| // the memory width of the operation). |
| |
| //===------------------------------ |
| // 1. Basic infrastructural defs |
| //===------------------------------ |
| |
| // First, some simple classes for !foreach and !subst to use: |
| class Decls { |
| dag pattern; |
| } |
| |
| def decls : Decls; |
| def ALIGN; |
| def INST; |
| def OFFSET; |
| def SHIFT; |
| |
| // You can't use !subst on an actual immediate, but you *can* use it on an |
| // operand record that happens to match a single immediate. So we do. |
| def imm_eq0 : ImmLeaf<i64, [{ return Imm == 0; }]>; |
| def imm_eq1 : ImmLeaf<i64, [{ return Imm == 1; }]>; |
| def imm_eq2 : ImmLeaf<i64, [{ return Imm == 2; }]>; |
| def imm_eq3 : ImmLeaf<i64, [{ return Imm == 3; }]>; |
| def imm_eq4 : ImmLeaf<i64, [{ return Imm == 4; }]>; |
| |
| // If the low bits of a pointer are known to be 0 then an "or" is just as good |
| // as addition for computing an offset. This fragment forwards that check for |
| // TableGen's use. |
| def add_like_or : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs), |
| [{ |
| return CurDAG->isBaseWithConstantOffset(SDValue(N, 0)); |
| }]>; |
| |
| // Load/store (unsigned immediate) operations with relocations against global |
| // symbols (for lo12) are only valid if those symbols have correct alignment |
| // (since the immediate offset is divided by the access scale, it can't have a |
| // remainder). |
| // |
| // The guaranteed alignment is provided as part of the WrapperSmall |
| // operation, and checked against one of these. |
| def any_align : ImmLeaf<i32, [{ (void)Imm; return true; }]>; |
| def min_align2 : ImmLeaf<i32, [{ return Imm >= 2; }]>; |
| def min_align4 : ImmLeaf<i32, [{ return Imm >= 4; }]>; |
| def min_align8 : ImmLeaf<i32, [{ return Imm >= 8; }]>; |
| def min_align16 : ImmLeaf<i32, [{ return Imm >= 16; }]>; |
| |
| // "Normal" load/store instructions can be used on atomic operations, provided |
| // the ordering parameter is at most "monotonic". Anything above that needs |
| // special handling with acquire/release instructions. |
| class simple_load<PatFrag base> |
| : PatFrag<(ops node:$ptr), (base node:$ptr), [{ |
| return cast<AtomicSDNode>(N)->getOrdering() <= Monotonic; |
| }]>; |
| |
| def atomic_load_simple_i8 : simple_load<atomic_load_8>; |
| def atomic_load_simple_i16 : simple_load<atomic_load_16>; |
| def atomic_load_simple_i32 : simple_load<atomic_load_32>; |
| def atomic_load_simple_i64 : simple_load<atomic_load_64>; |
| |
| class simple_store<PatFrag base> |
| : PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val), [{ |
| return cast<AtomicSDNode>(N)->getOrdering() <= Monotonic; |
| }]>; |
| |
| def atomic_store_simple_i8 : simple_store<atomic_store_8>; |
| def atomic_store_simple_i16 : simple_store<atomic_store_16>; |
| def atomic_store_simple_i32 : simple_store<atomic_store_32>; |
| def atomic_store_simple_i64 : simple_store<atomic_store_64>; |
| |
| //===------------------------------ |
| // 2. UImm12 and SImm9 |
| //===------------------------------ |
| |
| // These instructions have two operands providing the address so they can be |
| // treated similarly for most purposes. |
| |
| //===------------------------------ |
| // 2.1 Base patterns covering extend/truncate semantics |
| //===------------------------------ |
| |
| // Atomic patterns can be shared between integer operations of all sizes, a |
| // quick multiclass here allows reuse. |
| multiclass ls_atomic_pats<Instruction LOAD, Instruction STORE, dag Base, |
| dag Offset, dag address, RegisterClass TPR, |
| ValueType sty> { |
| def : Pat<(!cast<PatFrag>("atomic_load_simple_" # sty) address), |
| (LOAD Base, Offset)>; |
| |
| def : Pat<(!cast<PatFrag>("atomic_store_simple_" # sty) address, TPR:$Rt), |
| (STORE TPR:$Rt, Base, Offset)>; |
| } |
| |
| // Instructions accessing a memory chunk smaller than a register (or, in a |
| // pinch, the same size) have a characteristic set of patterns they want to |
| // match: extending loads and truncating stores. This class deals with the |
| // sign-neutral version of those patterns. |
| // |
| // It will be instantiated across multiple addressing-modes. |
| multiclass ls_small_pats<Instruction LOAD, Instruction STORE, |
| dag Base, dag Offset, |
| dag address, ValueType sty> |
| : ls_atomic_pats<LOAD, STORE, Base, Offset, address, GPR32, sty> { |
| def : Pat<(!cast<SDNode>(zextload # sty) address), (LOAD Base, Offset)>; |
| |
| def : Pat<(!cast<SDNode>(extload # sty) address), (LOAD Base, Offset)>; |
| |
| // For zero-extension to 64-bits we have to tell LLVM that the whole 64-bit |
| // register was actually set. |
| def : Pat<(i64 (!cast<SDNode>(zextload # sty) address)), |
| (SUBREG_TO_REG (i64 0), (LOAD Base, Offset), sub_32)>; |
| |
| def : Pat<(i64 (!cast<SDNode>(extload # sty) address)), |
| (SUBREG_TO_REG (i64 0), (LOAD Base, Offset), sub_32)>; |
| |
| def : Pat<(!cast<SDNode>(truncstore # sty) GPR32:$Rt, address), |
| (STORE GPR32:$Rt, Base, Offset)>; |
| |
| // For truncating store from 64-bits, we have to manually tell LLVM to |
| // ignore the high bits of the x register. |
| def : Pat<(!cast<SDNode>(truncstore # sty) GPR64:$Rt, address), |
| (STORE (EXTRACT_SUBREG GPR64:$Rt, sub_32), Base, Offset)>; |
| } |
| |
| // Next come patterns for sign-extending loads. |
| multiclass load_signed_pats<string T, string U, dag Base, dag Offset, |
| dag address, ValueType sty> { |
| def : Pat<(i32 (!cast<SDNode>("sextload" # sty) address)), |
| (!cast<Instruction>("LDRS" # T # "w" # U) Base, Offset)>; |
| |
| def : Pat<(i64 (!cast<SDNode>("sextload" # sty) address)), |
| (!cast<Instruction>("LDRS" # T # "x" # U) Base, Offset)>; |
| |
| } |
| |
| // and finally "natural-width" loads and stores come next. |
| multiclass ls_neutral_pats<Instruction LOAD, Instruction STORE, dag Base, |
| dag Offset, dag address, RegisterClass TPR, |
| ValueType sty> { |
| def : Pat<(sty (load address)), (LOAD Base, Offset)>; |
| def : Pat<(store (sty TPR:$Rt), address), (STORE TPR:$Rt, Base, Offset)>; |
| } |
| |
| // Integer operations also get atomic instructions to select for. |
| multiclass ls_int_neutral_pats<Instruction LOAD, Instruction STORE, dag Base, |
| dag Offset, dag address, RegisterClass TPR, |
| ValueType sty> |
| : ls_neutral_pats<LOAD, STORE, Base, Offset, address, TPR, sty>, |
| ls_atomic_pats<LOAD, STORE, Base, Offset, address, TPR, sty>; |
| |
| //===------------------------------ |
| // 2.2. Addressing-mode instantiations |
| //===------------------------------ |
| |
| multiclass uimm12_pats<dag address, dag Base, dag Offset> { |
| defm : ls_small_pats<LS8_LDR, LS8_STR, Base, |
| !foreach(decls.pattern, Offset, |
| !subst(OFFSET, byte_uimm12, decls.pattern)), |
| !foreach(decls.pattern, address, |
| !subst(OFFSET, byte_uimm12, |
| !subst(ALIGN, any_align, decls.pattern))), |
| i8>; |
| defm : ls_small_pats<LS16_LDR, LS16_STR, Base, |
| !foreach(decls.pattern, Offset, |
| !subst(OFFSET, hword_uimm12, decls.pattern)), |
| !foreach(decls.pattern, address, |
| !subst(OFFSET, hword_uimm12, |
| !subst(ALIGN, min_align2, decls.pattern))), |
| i16>; |
| defm : ls_small_pats<LS32_LDR, LS32_STR, Base, |
| !foreach(decls.pattern, Offset, |
| !subst(OFFSET, word_uimm12, decls.pattern)), |
| !foreach(decls.pattern, address, |
| !subst(OFFSET, word_uimm12, |
| !subst(ALIGN, min_align4, decls.pattern))), |
| i32>; |
| |
| defm : ls_int_neutral_pats<LS32_LDR, LS32_STR, Base, |
| !foreach(decls.pattern, Offset, |
| !subst(OFFSET, word_uimm12, decls.pattern)), |
| !foreach(decls.pattern, address, |
| !subst(OFFSET, word_uimm12, |
| !subst(ALIGN, min_align4, decls.pattern))), |
| GPR32, i32>; |
| |
| defm : ls_int_neutral_pats<LS64_LDR, LS64_STR, Base, |
| !foreach(decls.pattern, Offset, |
| !subst(OFFSET, dword_uimm12, decls.pattern)), |
| !foreach(decls.pattern, address, |
| !subst(OFFSET, dword_uimm12, |
| !subst(ALIGN, min_align8, decls.pattern))), |
| GPR64, i64>; |
| |
| defm : ls_neutral_pats<LSFP16_LDR, LSFP16_STR, Base, |
| !foreach(decls.pattern, Offset, |
| !subst(OFFSET, hword_uimm12, decls.pattern)), |
| !foreach(decls.pattern, address, |
| !subst(OFFSET, hword_uimm12, |
| !subst(ALIGN, min_align2, decls.pattern))), |
| FPR16, f16>; |
| |
| defm : ls_neutral_pats<LSFP32_LDR, LSFP32_STR, Base, |
| !foreach(decls.pattern, Offset, |
| !subst(OFFSET, word_uimm12, decls.pattern)), |
| !foreach(decls.pattern, address, |
| !subst(OFFSET, word_uimm12, |
| !subst(ALIGN, min_align4, decls.pattern))), |
| FPR32, f32>; |
| |
| defm : ls_neutral_pats<LSFP64_LDR, LSFP64_STR, Base, |
| !foreach(decls.pattern, Offset, |
| !subst(OFFSET, dword_uimm12, decls.pattern)), |
| !foreach(decls.pattern, address, |
| !subst(OFFSET, dword_uimm12, |
| !subst(ALIGN, min_align8, decls.pattern))), |
| FPR64, f64>; |
| |
| defm : ls_neutral_pats<LSFP128_LDR, LSFP128_STR, Base, |
| !foreach(decls.pattern, Offset, |
| !subst(OFFSET, qword_uimm12, decls.pattern)), |
| !foreach(decls.pattern, address, |
| !subst(OFFSET, qword_uimm12, |
| !subst(ALIGN, min_align16, decls.pattern))), |
| FPR128, f128>; |
| |
| defm : load_signed_pats<"B", "", Base, |
| !foreach(decls.pattern, Offset, |
| !subst(OFFSET, byte_uimm12, decls.pattern)), |
| !foreach(decls.pattern, address, |
| !subst(OFFSET, byte_uimm12, |
| !subst(ALIGN, any_align, decls.pattern))), |
| i8>; |
| |
| defm : load_signed_pats<"H", "", Base, |
| !foreach(decls.pattern, Offset, |
| !subst(OFFSET, hword_uimm12, decls.pattern)), |
| !foreach(decls.pattern, address, |
| !subst(OFFSET, hword_uimm12, |
| !subst(ALIGN, min_align2, decls.pattern))), |
| i16>; |
| |
| def : Pat<(sextloadi32 !foreach(decls.pattern, address, |
| !subst(OFFSET, word_uimm12, |
| !subst(ALIGN, min_align4, decls.pattern)))), |
| (LDRSWx Base, !foreach(decls.pattern, Offset, |
| !subst(OFFSET, word_uimm12, decls.pattern)))>; |
| } |
| |
| // Straightforward patterns of last resort: a pointer with or without an |
| // appropriate offset. |
| defm : uimm12_pats<(i64 GPR64xsp:$Rn), (i64 GPR64xsp:$Rn), (i64 0)>; |
| defm : uimm12_pats<(add GPR64xsp:$Rn, OFFSET:$UImm12), |
| (i64 GPR64xsp:$Rn), (i64 OFFSET:$UImm12)>; |
| |
| // The offset could be hidden behind an "or", of course: |
| defm : uimm12_pats<(add_like_or GPR64xsp:$Rn, OFFSET:$UImm12), |
| (i64 GPR64xsp:$Rn), (i64 OFFSET:$UImm12)>; |
| |
| // Global addresses under the small-absolute model should use these |
| // instructions. There are ELF relocations specifically for it. |
| defm : uimm12_pats<(A64WrapperSmall tglobaladdr:$Hi, tglobaladdr:$Lo12, ALIGN), |
| (ADRPxi tglobaladdr:$Hi), (i64 tglobaladdr:$Lo12)>; |
| |
| defm : uimm12_pats<(A64WrapperSmall tglobaltlsaddr:$Hi, tglobaltlsaddr:$Lo12, |
| ALIGN), |
| (ADRPxi tglobaltlsaddr:$Hi), (i64 tglobaltlsaddr:$Lo12)>; |
| |
| // External symbols that make it this far should also get standard relocations. |
| defm : uimm12_pats<(A64WrapperSmall texternalsym:$Hi, texternalsym:$Lo12, |
| ALIGN), |
| (ADRPxi texternalsym:$Hi), (i64 texternalsym:$Lo12)>; |
| |
| defm : uimm12_pats<(A64WrapperSmall tconstpool:$Hi, tconstpool:$Lo12, ALIGN), |
| (ADRPxi tconstpool:$Hi), (i64 tconstpool:$Lo12)>; |
| |
| // We also want to use uimm12 instructions for local variables at the moment. |
| def tframeindex_XFORM : SDNodeXForm<frameindex, [{ |
| int FI = cast<FrameIndexSDNode>(N)->getIndex(); |
| return CurDAG->getTargetFrameIndex(FI, MVT::i64); |
| }]>; |
| |
| defm : uimm12_pats<(i64 frameindex:$Rn), |
| (tframeindex_XFORM tframeindex:$Rn), (i64 0)>; |
| |
| // These can be much simpler than uimm12 because we don't to change the operand |
| // type (e.g. LDURB and LDURH take the same operands). |
| multiclass simm9_pats<dag address, dag Base, dag Offset> { |
| defm : ls_small_pats<LS8_LDUR, LS8_STUR, Base, Offset, address, i8>; |
| defm : ls_small_pats<LS16_LDUR, LS16_STUR, Base, Offset, address, i16>; |
| |
| defm : ls_int_neutral_pats<LS32_LDUR, LS32_STUR, Base, Offset, address, |
| GPR32, i32>; |
| defm : ls_int_neutral_pats<LS64_LDUR, LS64_STUR, Base, Offset, address, |
| GPR64, i64>; |
| |
| defm : ls_neutral_pats<LSFP16_LDUR, LSFP16_STUR, Base, Offset, address, |
| FPR16, f16>; |
| defm : ls_neutral_pats<LSFP32_LDUR, LSFP32_STUR, Base, Offset, address, |
| FPR32, f32>; |
| defm : ls_neutral_pats<LSFP64_LDUR, LSFP64_STUR, Base, Offset, address, |
| FPR64, f64>; |
| defm : ls_neutral_pats<LSFP128_LDUR, LSFP128_STUR, Base, Offset, address, |
| FPR128, f128>; |
| |
| def : Pat<(i64 (zextloadi32 address)), |
| (SUBREG_TO_REG (i64 0), (LS32_LDUR Base, Offset), sub_32)>; |
| |
| def : Pat<(truncstorei32 GPR64:$Rt, address), |
| (LS32_STUR (EXTRACT_SUBREG GPR64:$Rt, sub_32), Base, Offset)>; |
| |
| defm : load_signed_pats<"B", "_U", Base, Offset, address, i8>; |
| defm : load_signed_pats<"H", "_U", Base, Offset, address, i16>; |
| def : Pat<(sextloadi32 address), (LDURSWx Base, Offset)>; |
| } |
| |
| defm : simm9_pats<(add GPR64xsp:$Rn, simm9:$SImm9), |
| (i64 GPR64xsp:$Rn), (SDXF_simm9 simm9:$SImm9)>; |
| |
| defm : simm9_pats<(add_like_or GPR64xsp:$Rn, simm9:$SImm9), |
| (i64 GPR64xsp:$Rn), (SDXF_simm9 simm9:$SImm9)>; |
| |
| |
| //===------------------------------ |
| // 3. Register offset patterns |
| //===------------------------------ |
| |
| // Atomic patterns can be shared between integer operations of all sizes, a |
| // quick multiclass here allows reuse. |
| multiclass ro_atomic_pats<Instruction LOAD, Instruction STORE, dag Base, |
| dag Offset, dag Extend, dag address, |
| RegisterClass TPR, ValueType sty> { |
| def : Pat<(!cast<PatFrag>("atomic_load_simple_" # sty) address), |
| (LOAD Base, Offset, Extend)>; |
| |
| def : Pat<(!cast<PatFrag>("atomic_store_simple_" # sty) address, TPR:$Rt), |
| (STORE TPR:$Rt, Base, Offset, Extend)>; |
| } |
| |
| // The register offset instructions take three operands giving the instruction, |
| // and have an annoying split between instructions where Rm is 32-bit and |
| // 64-bit. So we need a special hierarchy to describe them. Other than that the |
| // same operations should be supported as for simm9 and uimm12 addressing. |
| |
| multiclass ro_small_pats<Instruction LOAD, Instruction STORE, |
| dag Base, dag Offset, dag Extend, |
| dag address, ValueType sty> |
| : ro_atomic_pats<LOAD, STORE, Base, Offset, Extend, address, GPR32, sty> { |
| def : Pat<(!cast<SDNode>(zextload # sty) address), |
| (LOAD Base, Offset, Extend)>; |
| |
| def : Pat<(!cast<SDNode>(extload # sty) address), |
| (LOAD Base, Offset, Extend)>; |
| |
| // For zero-extension to 64-bits we have to tell LLVM that the whole 64-bit |
| // register was actually set. |
| def : Pat<(i64 (!cast<SDNode>(zextload # sty) address)), |
| (SUBREG_TO_REG (i64 0), (LOAD Base, Offset, Extend), sub_32)>; |
| |
| def : Pat<(i64 (!cast<SDNode>(extload # sty) address)), |
| (SUBREG_TO_REG (i64 0), (LOAD Base, Offset, Extend), sub_32)>; |
| |
| def : Pat<(!cast<SDNode>(truncstore # sty) GPR32:$Rt, address), |
| (STORE GPR32:$Rt, Base, Offset, Extend)>; |
| |
| // For truncating store from 64-bits, we have to manually tell LLVM to |
| // ignore the high bits of the x register. |
| def : Pat<(!cast<SDNode>(truncstore # sty) GPR64:$Rt, address), |
| (STORE (EXTRACT_SUBREG GPR64:$Rt, sub_32), Base, Offset, Extend)>; |
| |
| } |
| |
| // Next come patterns for sign-extending loads. |
| multiclass ro_signed_pats<string T, string Rm, dag Base, dag Offset, dag Extend, |
| dag address, ValueType sty> { |
| def : Pat<(i32 (!cast<SDNode>("sextload" # sty) address)), |
| (!cast<Instruction>("LDRS" # T # "w_" # Rm # "_RegOffset") |
| Base, Offset, Extend)>; |
| |
| def : Pat<(i64 (!cast<SDNode>("sextload" # sty) address)), |
| (!cast<Instruction>("LDRS" # T # "x_" # Rm # "_RegOffset") |
| Base, Offset, Extend)>; |
| } |
| |
| // and finally "natural-width" loads and stores come next. |
| multiclass ro_neutral_pats<Instruction LOAD, Instruction STORE, |
| dag Base, dag Offset, dag Extend, dag address, |
| RegisterClass TPR, ValueType sty> { |
| def : Pat<(sty (load address)), (LOAD Base, Offset, Extend)>; |
| def : Pat<(store (sty TPR:$Rt), address), |
| (STORE TPR:$Rt, Base, Offset, Extend)>; |
| } |
| |
| multiclass ro_int_neutral_pats<Instruction LOAD, Instruction STORE, |
| dag Base, dag Offset, dag Extend, dag address, |
| RegisterClass TPR, ValueType sty> |
| : ro_neutral_pats<LOAD, STORE, Base, Offset, Extend, address, TPR, sty>, |
| ro_atomic_pats<LOAD, STORE, Base, Offset, Extend, address, TPR, sty>; |
| |
| multiclass regoff_pats<string Rm, dag address, dag Base, dag Offset, |
| dag Extend> { |
| defm : ro_small_pats<!cast<Instruction>("LS8_" # Rm # "_RegOffset_LDR"), |
| !cast<Instruction>("LS8_" # Rm # "_RegOffset_STR"), |
| Base, Offset, Extend, |
| !foreach(decls.pattern, address, |
| !subst(SHIFT, imm_eq0, decls.pattern)), |
| i8>; |
| defm : ro_small_pats<!cast<Instruction>("LS16_" # Rm # "_RegOffset_LDR"), |
| !cast<Instruction>("LS16_" # Rm # "_RegOffset_STR"), |
| Base, Offset, Extend, |
| !foreach(decls.pattern, address, |
| !subst(SHIFT, imm_eq1, decls.pattern)), |
| i16>; |
| defm : ro_small_pats<!cast<Instruction>("LS32_" # Rm # "_RegOffset_LDR"), |
| !cast<Instruction>("LS32_" # Rm # "_RegOffset_STR"), |
| Base, Offset, Extend, |
| !foreach(decls.pattern, address, |
| !subst(SHIFT, imm_eq2, decls.pattern)), |
| i32>; |
| |
| defm : ro_int_neutral_pats< |
| !cast<Instruction>("LS32_" # Rm # "_RegOffset_LDR"), |
| !cast<Instruction>("LS32_" # Rm # "_RegOffset_STR"), |
| Base, Offset, Extend, |
| !foreach(decls.pattern, address, |
| !subst(SHIFT, imm_eq2, decls.pattern)), |
| GPR32, i32>; |
| |
| defm : ro_int_neutral_pats< |
| !cast<Instruction>("LS64_" # Rm # "_RegOffset_LDR"), |
| !cast<Instruction>("LS64_" # Rm # "_RegOffset_STR"), |
| Base, Offset, Extend, |
| !foreach(decls.pattern, address, |
| !subst(SHIFT, imm_eq3, decls.pattern)), |
| GPR64, i64>; |
| |
| defm : ro_neutral_pats<!cast<Instruction>("LSFP16_" # Rm # "_RegOffset_LDR"), |
| !cast<Instruction>("LSFP16_" # Rm # "_RegOffset_STR"), |
| Base, Offset, Extend, |
| !foreach(decls.pattern, address, |
| !subst(SHIFT, imm_eq1, decls.pattern)), |
| FPR16, f16>; |
| |
| defm : ro_neutral_pats<!cast<Instruction>("LSFP32_" # Rm # "_RegOffset_LDR"), |
| !cast<Instruction>("LSFP32_" # Rm # "_RegOffset_STR"), |
| Base, Offset, Extend, |
| !foreach(decls.pattern, address, |
| !subst(SHIFT, imm_eq2, decls.pattern)), |
| FPR32, f32>; |
| |
| defm : ro_neutral_pats<!cast<Instruction>("LSFP64_" # Rm # "_RegOffset_LDR"), |
| !cast<Instruction>("LSFP64_" # Rm # "_RegOffset_STR"), |
| Base, Offset, Extend, |
| !foreach(decls.pattern, address, |
| !subst(SHIFT, imm_eq3, decls.pattern)), |
| FPR64, f64>; |
| |
| defm : ro_neutral_pats<!cast<Instruction>("LSFP128_" # Rm # "_RegOffset_LDR"), |
| !cast<Instruction>("LSFP128_" # Rm # "_RegOffset_STR"), |
| Base, Offset, Extend, |
| !foreach(decls.pattern, address, |
| !subst(SHIFT, imm_eq4, decls.pattern)), |
| FPR128, f128>; |
| |
| defm : ro_signed_pats<"B", Rm, Base, Offset, Extend, |
| !foreach(decls.pattern, address, |
| !subst(SHIFT, imm_eq0, decls.pattern)), |
| i8>; |
| |
| defm : ro_signed_pats<"H", Rm, Base, Offset, Extend, |
| !foreach(decls.pattern, address, |
| !subst(SHIFT, imm_eq1, decls.pattern)), |
| i16>; |
| |
| def : Pat<(sextloadi32 !foreach(decls.pattern, address, |
| !subst(SHIFT, imm_eq2, decls.pattern))), |
| (!cast<Instruction>("LDRSWx_" # Rm # "_RegOffset") |
| Base, Offset, Extend)>; |
| } |
| |
| |
| // Finally we're in a position to tell LLVM exactly what addresses are reachable |
| // using register-offset instructions. Essentially a base plus a possibly |
| // extended, possibly shifted (by access size) offset. |
| |
| defm : regoff_pats<"Wm", (add GPR64xsp:$Rn, (sext GPR32:$Rm)), |
| (i64 GPR64xsp:$Rn), (i32 GPR32:$Rm), (i64 6)>; |
| |
| defm : regoff_pats<"Wm", (add GPR64xsp:$Rn, (shl (sext GPR32:$Rm), SHIFT)), |
| (i64 GPR64xsp:$Rn), (i32 GPR32:$Rm), (i64 7)>; |
| |
| defm : regoff_pats<"Wm", (add GPR64xsp:$Rn, (zext GPR32:$Rm)), |
| (i64 GPR64xsp:$Rn), (i32 GPR32:$Rm), (i64 2)>; |
| |
| defm : regoff_pats<"Wm", (add GPR64xsp:$Rn, (shl (zext GPR32:$Rm), SHIFT)), |
| (i64 GPR64xsp:$Rn), (i32 GPR32:$Rm), (i64 3)>; |
| |
| defm : regoff_pats<"Xm", (add GPR64xsp:$Rn, GPR64:$Rm), |
| (i64 GPR64xsp:$Rn), (i64 GPR64:$Rm), (i64 2)>; |
| |
| defm : regoff_pats<"Xm", (add GPR64xsp:$Rn, (shl GPR64:$Rm, SHIFT)), |
| (i64 GPR64xsp:$Rn), (i64 GPR64:$Rm), (i64 3)>; |