| //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the Base ARM implementation of the TargetInstrInfo class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "ARMBaseInstrInfo.h" |
| #include "ARM.h" |
| #include "ARMBaseRegisterInfo.h" |
| #include "ARMConstantPoolValue.h" |
| #include "ARMHazardRecognizer.h" |
| #include "ARMMachineFunctionInfo.h" |
| #include "MCTargetDesc/ARMAddressingModes.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/CodeGen/LiveVariables.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/SelectionDAGNodes.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/Support/BranchProbability.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| |
| #define GET_INSTRINFO_CTOR |
| #include "ARMGenInstrInfo.inc" |
| |
| using namespace llvm; |
| |
| static cl::opt<bool> |
| EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden, |
| cl::desc("Enable ARM 2-addr to 3-addr conv")); |
| |
| static cl::opt<bool> |
| WidenVMOVS("widen-vmovs", cl::Hidden, cl::init(true), |
| cl::desc("Widen ARM vmovs to vmovd when possible")); |
| |
| static cl::opt<unsigned> |
| SwiftPartialUpdateClearance("swift-partial-update-clearance", |
| cl::Hidden, cl::init(12), |
| cl::desc("Clearance before partial register updates")); |
| |
| /// ARM_MLxEntry - Record information about MLA / MLS instructions. |
| struct ARM_MLxEntry { |
| uint16_t MLxOpc; // MLA / MLS opcode |
| uint16_t MulOpc; // Expanded multiplication opcode |
| uint16_t AddSubOpc; // Expanded add / sub opcode |
| bool NegAcc; // True if the acc is negated before the add / sub. |
| bool HasLane; // True if instruction has an extra "lane" operand. |
| }; |
| |
| static const ARM_MLxEntry ARM_MLxTable[] = { |
| // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane |
| // fp scalar ops |
| { ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false }, |
| { ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false }, |
| { ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false }, |
| { ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false }, |
| { ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false }, |
| { ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false }, |
| { ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false }, |
| { ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false }, |
| |
| // fp SIMD ops |
| { ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false }, |
| { ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false }, |
| { ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false }, |
| { ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false }, |
| { ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true }, |
| { ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true }, |
| { ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true }, |
| { ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true }, |
| }; |
| |
| ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI) |
| : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP), |
| Subtarget(STI) { |
| for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) { |
| if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second) |
| assert(false && "Duplicated entries?"); |
| MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc); |
| MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc); |
| } |
| } |
| |
| // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl |
| // currently defaults to no prepass hazard recognizer. |
| ScheduleHazardRecognizer *ARMBaseInstrInfo:: |
| CreateTargetHazardRecognizer(const TargetMachine *TM, |
| const ScheduleDAG *DAG) const { |
| if (usePreRAHazardRecognizer()) { |
| const InstrItineraryData *II = TM->getInstrItineraryData(); |
| return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched"); |
| } |
| return TargetInstrInfo::CreateTargetHazardRecognizer(TM, DAG); |
| } |
| |
| ScheduleHazardRecognizer *ARMBaseInstrInfo:: |
| CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, |
| const ScheduleDAG *DAG) const { |
| if (Subtarget.isThumb2() || Subtarget.hasVFP2()) |
| return (ScheduleHazardRecognizer *) |
| new ARMHazardRecognizer(II, *this, getRegisterInfo(), Subtarget, DAG); |
| return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG); |
| } |
| |
| MachineInstr * |
| ARMBaseInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, |
| MachineBasicBlock::iterator &MBBI, |
| LiveVariables *LV) const { |
| // FIXME: Thumb2 support. |
| |
| if (!EnableARM3Addr) |
| return NULL; |
| |
| MachineInstr *MI = MBBI; |
| MachineFunction &MF = *MI->getParent()->getParent(); |
| uint64_t TSFlags = MI->getDesc().TSFlags; |
| bool isPre = false; |
| switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) { |
| default: return NULL; |
| case ARMII::IndexModePre: |
| isPre = true; |
| break; |
| case ARMII::IndexModePost: |
| break; |
| } |
| |
| // Try splitting an indexed load/store to an un-indexed one plus an add/sub |
| // operation. |
| unsigned MemOpc = getUnindexedOpcode(MI->getOpcode()); |
| if (MemOpc == 0) |
| return NULL; |
| |
| MachineInstr *UpdateMI = NULL; |
| MachineInstr *MemMI = NULL; |
| unsigned AddrMode = (TSFlags & ARMII::AddrModeMask); |
| const MCInstrDesc &MCID = MI->getDesc(); |
| unsigned NumOps = MCID.getNumOperands(); |
| bool isLoad = !MI->mayStore(); |
| const MachineOperand &WB = isLoad ? MI->getOperand(1) : MI->getOperand(0); |
| const MachineOperand &Base = MI->getOperand(2); |
| const MachineOperand &Offset = MI->getOperand(NumOps-3); |
| unsigned WBReg = WB.getReg(); |
| unsigned BaseReg = Base.getReg(); |
| unsigned OffReg = Offset.getReg(); |
| unsigned OffImm = MI->getOperand(NumOps-2).getImm(); |
| ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NumOps-1).getImm(); |
| switch (AddrMode) { |
| default: llvm_unreachable("Unknown indexed op!"); |
| case ARMII::AddrMode2: { |
| bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub; |
| unsigned Amt = ARM_AM::getAM2Offset(OffImm); |
| if (OffReg == 0) { |
| if (ARM_AM::getSOImmVal(Amt) == -1) |
| // Can't encode it in a so_imm operand. This transformation will |
| // add more than 1 instruction. Abandon! |
| return NULL; |
| UpdateMI = BuildMI(MF, MI->getDebugLoc(), |
| get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) |
| .addReg(BaseReg).addImm(Amt) |
| .addImm(Pred).addReg(0).addReg(0); |
| } else if (Amt != 0) { |
| ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm); |
| unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt); |
| UpdateMI = BuildMI(MF, MI->getDebugLoc(), |
| get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg) |
| .addReg(BaseReg).addReg(OffReg).addReg(0).addImm(SOOpc) |
| .addImm(Pred).addReg(0).addReg(0); |
| } else |
| UpdateMI = BuildMI(MF, MI->getDebugLoc(), |
| get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) |
| .addReg(BaseReg).addReg(OffReg) |
| .addImm(Pred).addReg(0).addReg(0); |
| break; |
| } |
| case ARMII::AddrMode3 : { |
| bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub; |
| unsigned Amt = ARM_AM::getAM3Offset(OffImm); |
| if (OffReg == 0) |
| // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand. |
| UpdateMI = BuildMI(MF, MI->getDebugLoc(), |
| get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) |
| .addReg(BaseReg).addImm(Amt) |
| .addImm(Pred).addReg(0).addReg(0); |
| else |
| UpdateMI = BuildMI(MF, MI->getDebugLoc(), |
| get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) |
| .addReg(BaseReg).addReg(OffReg) |
| .addImm(Pred).addReg(0).addReg(0); |
| break; |
| } |
| } |
| |
| std::vector<MachineInstr*> NewMIs; |
| if (isPre) { |
| if (isLoad) |
| MemMI = BuildMI(MF, MI->getDebugLoc(), |
| get(MemOpc), MI->getOperand(0).getReg()) |
| .addReg(WBReg).addImm(0).addImm(Pred); |
| else |
| MemMI = BuildMI(MF, MI->getDebugLoc(), |
| get(MemOpc)).addReg(MI->getOperand(1).getReg()) |
| .addReg(WBReg).addReg(0).addImm(0).addImm(Pred); |
| NewMIs.push_back(MemMI); |
| NewMIs.push_back(UpdateMI); |
| } else { |
| if (isLoad) |
| MemMI = BuildMI(MF, MI->getDebugLoc(), |
| get(MemOpc), MI->getOperand(0).getReg()) |
| .addReg(BaseReg).addImm(0).addImm(Pred); |
| else |
| MemMI = BuildMI(MF, MI->getDebugLoc(), |
| get(MemOpc)).addReg(MI->getOperand(1).getReg()) |
| .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred); |
| if (WB.isDead()) |
| UpdateMI->getOperand(0).setIsDead(); |
| NewMIs.push_back(UpdateMI); |
| NewMIs.push_back(MemMI); |
| } |
| |
| // Transfer LiveVariables states, kill / dead info. |
| if (LV) { |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) { |
| unsigned Reg = MO.getReg(); |
| |
| LiveVariables::VarInfo &VI = LV->getVarInfo(Reg); |
| if (MO.isDef()) { |
| MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI; |
| if (MO.isDead()) |
| LV->addVirtualRegisterDead(Reg, NewMI); |
| } |
| if (MO.isUse() && MO.isKill()) { |
| for (unsigned j = 0; j < 2; ++j) { |
| // Look at the two new MI's in reverse order. |
| MachineInstr *NewMI = NewMIs[j]; |
| if (!NewMI->readsRegister(Reg)) |
| continue; |
| LV->addVirtualRegisterKilled(Reg, NewMI); |
| if (VI.removeKill(MI)) |
| VI.Kills.push_back(NewMI); |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| MFI->insert(MBBI, NewMIs[1]); |
| MFI->insert(MBBI, NewMIs[0]); |
| return NewMIs[0]; |
| } |
| |
| // Branch analysis. |
| bool |
| ARMBaseInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB, |
| MachineBasicBlock *&FBB, |
| SmallVectorImpl<MachineOperand> &Cond, |
| bool AllowModify) const { |
| // If the block has no terminators, it just falls into the block after it. |
| MachineBasicBlock::iterator I = MBB.end(); |
| if (I == MBB.begin()) |
| return false; |
| --I; |
| while (I->isDebugValue()) { |
| if (I == MBB.begin()) |
| return false; |
| --I; |
| } |
| if (!isUnpredicatedTerminator(I)) |
| return false; |
| |
| // Get the last instruction in the block. |
| MachineInstr *LastInst = I; |
| |
| // If there is only one terminator instruction, process it. |
| unsigned LastOpc = LastInst->getOpcode(); |
| if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) { |
| if (isUncondBranchOpcode(LastOpc)) { |
| TBB = LastInst->getOperand(0).getMBB(); |
| return false; |
| } |
| if (isCondBranchOpcode(LastOpc)) { |
| // Block ends with fall-through condbranch. |
| TBB = LastInst->getOperand(0).getMBB(); |
| Cond.push_back(LastInst->getOperand(1)); |
| Cond.push_back(LastInst->getOperand(2)); |
| return false; |
| } |
| return true; // Can't handle indirect branch. |
| } |
| |
| // Get the instruction before it if it is a terminator. |
| MachineInstr *SecondLastInst = I; |
| unsigned SecondLastOpc = SecondLastInst->getOpcode(); |
| |
| // If AllowModify is true and the block ends with two or more unconditional |
| // branches, delete all but the first unconditional branch. |
| if (AllowModify && isUncondBranchOpcode(LastOpc)) { |
| while (isUncondBranchOpcode(SecondLastOpc)) { |
| LastInst->eraseFromParent(); |
| LastInst = SecondLastInst; |
| LastOpc = LastInst->getOpcode(); |
| if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) { |
| // Return now the only terminator is an unconditional branch. |
| TBB = LastInst->getOperand(0).getMBB(); |
| return false; |
| } else { |
| SecondLastInst = I; |
| SecondLastOpc = SecondLastInst->getOpcode(); |
| } |
| } |
| } |
| |
| // If there are three terminators, we don't know what sort of block this is. |
| if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I)) |
| return true; |
| |
| // If the block ends with a B and a Bcc, handle it. |
| if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) { |
| TBB = SecondLastInst->getOperand(0).getMBB(); |
| Cond.push_back(SecondLastInst->getOperand(1)); |
| Cond.push_back(SecondLastInst->getOperand(2)); |
| FBB = LastInst->getOperand(0).getMBB(); |
| return false; |
| } |
| |
| // If the block ends with two unconditional branches, handle it. The second |
| // one is not executed, so remove it. |
| if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) { |
| TBB = SecondLastInst->getOperand(0).getMBB(); |
| I = LastInst; |
| if (AllowModify) |
| I->eraseFromParent(); |
| return false; |
| } |
| |
| // ...likewise if it ends with a branch table followed by an unconditional |
| // branch. The branch folder can create these, and we must get rid of them for |
| // correctness of Thumb constant islands. |
| if ((isJumpTableBranchOpcode(SecondLastOpc) || |
| isIndirectBranchOpcode(SecondLastOpc)) && |
| isUncondBranchOpcode(LastOpc)) { |
| I = LastInst; |
| if (AllowModify) |
| I->eraseFromParent(); |
| return true; |
| } |
| |
| // Otherwise, can't handle this. |
| return true; |
| } |
| |
| |
| unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { |
| MachineBasicBlock::iterator I = MBB.end(); |
| if (I == MBB.begin()) return 0; |
| --I; |
| while (I->isDebugValue()) { |
| if (I == MBB.begin()) |
| return 0; |
| --I; |
| } |
| if (!isUncondBranchOpcode(I->getOpcode()) && |
| !isCondBranchOpcode(I->getOpcode())) |
| return 0; |
| |
| // Remove the branch. |
| I->eraseFromParent(); |
| |
| I = MBB.end(); |
| |
| if (I == MBB.begin()) return 1; |
| --I; |
| if (!isCondBranchOpcode(I->getOpcode())) |
| return 1; |
| |
| // Remove the branch. |
| I->eraseFromParent(); |
| return 2; |
| } |
| |
| unsigned |
| ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, |
| MachineBasicBlock *FBB, |
| const SmallVectorImpl<MachineOperand> &Cond, |
| DebugLoc DL) const { |
| ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>(); |
| int BOpc = !AFI->isThumbFunction() |
| ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB); |
| int BccOpc = !AFI->isThumbFunction() |
| ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc); |
| bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function(); |
| |
| // Shouldn't be a fall through. |
| assert(TBB && "InsertBranch must not be told to insert a fallthrough"); |
| assert((Cond.size() == 2 || Cond.size() == 0) && |
| "ARM branch conditions have two components!"); |
| |
| if (FBB == 0) { |
| if (Cond.empty()) { // Unconditional branch? |
| if (isThumb) |
| BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).addImm(ARMCC::AL).addReg(0); |
| else |
| BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB); |
| } else |
| BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB) |
| .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()); |
| return 1; |
| } |
| |
| // Two-way conditional branch. |
| BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB) |
| .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()); |
| if (isThumb) |
| BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).addImm(ARMCC::AL).addReg(0); |
| else |
| BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB); |
| return 2; |
| } |
| |
| bool ARMBaseInstrInfo:: |
| ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { |
| ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm(); |
| Cond[0].setImm(ARMCC::getOppositeCondition(CC)); |
| return false; |
| } |
| |
| bool ARMBaseInstrInfo::isPredicated(const MachineInstr *MI) const { |
| if (MI->isBundle()) { |
| MachineBasicBlock::const_instr_iterator I = MI; |
| MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end(); |
| while (++I != E && I->isInsideBundle()) { |
| int PIdx = I->findFirstPredOperandIdx(); |
| if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL) |
| return true; |
| } |
| return false; |
| } |
| |
| int PIdx = MI->findFirstPredOperandIdx(); |
| return PIdx != -1 && MI->getOperand(PIdx).getImm() != ARMCC::AL; |
| } |
| |
| bool ARMBaseInstrInfo:: |
| PredicateInstruction(MachineInstr *MI, |
| const SmallVectorImpl<MachineOperand> &Pred) const { |
| unsigned Opc = MI->getOpcode(); |
| if (isUncondBranchOpcode(Opc)) { |
| MI->setDesc(get(getMatchingCondBranchOpcode(Opc))); |
| MachineInstrBuilder(*MI->getParent()->getParent(), MI) |
| .addImm(Pred[0].getImm()) |
| .addReg(Pred[1].getReg()); |
| return true; |
| } |
| |
| int PIdx = MI->findFirstPredOperandIdx(); |
| if (PIdx != -1) { |
| MachineOperand &PMO = MI->getOperand(PIdx); |
| PMO.setImm(Pred[0].getImm()); |
| MI->getOperand(PIdx+1).setReg(Pred[1].getReg()); |
| return true; |
| } |
| return false; |
| } |
| |
| bool ARMBaseInstrInfo:: |
| SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1, |
| const SmallVectorImpl<MachineOperand> &Pred2) const { |
| if (Pred1.size() > 2 || Pred2.size() > 2) |
| return false; |
| |
| ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm(); |
| ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm(); |
| if (CC1 == CC2) |
| return true; |
| |
| switch (CC1) { |
| default: |
| return false; |
| case ARMCC::AL: |
| return true; |
| case ARMCC::HS: |
| return CC2 == ARMCC::HI; |
| case ARMCC::LS: |
| return CC2 == ARMCC::LO || CC2 == ARMCC::EQ; |
| case ARMCC::GE: |
| return CC2 == ARMCC::GT; |
| case ARMCC::LE: |
| return CC2 == ARMCC::LT; |
| } |
| } |
| |
| bool ARMBaseInstrInfo::DefinesPredicate(MachineInstr *MI, |
| std::vector<MachineOperand> &Pred) const { |
| bool Found = false; |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = MI->getOperand(i); |
| if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) || |
| (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) { |
| Pred.push_back(MO); |
| Found = true; |
| } |
| } |
| |
| return Found; |
| } |
| |
| /// isPredicable - Return true if the specified instruction can be predicated. |
| /// By default, this returns true for every instruction with a |
| /// PredicateOperand. |
| bool ARMBaseInstrInfo::isPredicable(MachineInstr *MI) const { |
| if (!MI->isPredicable()) |
| return false; |
| |
| if ((MI->getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) { |
| ARMFunctionInfo *AFI = |
| MI->getParent()->getParent()->getInfo<ARMFunctionInfo>(); |
| return AFI->isThumb2Function(); |
| } |
| return true; |
| } |
| |
| /// FIXME: Works around a gcc miscompilation with -fstrict-aliasing. |
| LLVM_ATTRIBUTE_NOINLINE |
| static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT, |
| unsigned JTI); |
| static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT, |
| unsigned JTI) { |
| assert(JTI < JT.size()); |
| return JT[JTI].MBBs.size(); |
| } |
| |
| /// GetInstSize - Return the size of the specified MachineInstr. |
| /// |
| unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const { |
| const MachineBasicBlock &MBB = *MI->getParent(); |
| const MachineFunction *MF = MBB.getParent(); |
| const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo(); |
| |
| const MCInstrDesc &MCID = MI->getDesc(); |
| if (MCID.getSize()) |
| return MCID.getSize(); |
| |
| // If this machine instr is an inline asm, measure it. |
| if (MI->getOpcode() == ARM::INLINEASM) |
| return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI); |
| if (MI->isLabel()) |
| return 0; |
| unsigned Opc = MI->getOpcode(); |
| switch (Opc) { |
| case TargetOpcode::IMPLICIT_DEF: |
| case TargetOpcode::KILL: |
| case TargetOpcode::PROLOG_LABEL: |
| case TargetOpcode::EH_LABEL: |
| case TargetOpcode::DBG_VALUE: |
| return 0; |
| case TargetOpcode::BUNDLE: |
| return getInstBundleLength(MI); |
| case ARM::MOVi16_ga_pcrel: |
| case ARM::MOVTi16_ga_pcrel: |
| case ARM::t2MOVi16_ga_pcrel: |
| case ARM::t2MOVTi16_ga_pcrel: |
| return 4; |
| case ARM::MOVi32imm: |
| case ARM::t2MOVi32imm: |
| return 8; |
| case ARM::CONSTPOOL_ENTRY: |
| // If this machine instr is a constant pool entry, its size is recorded as |
| // operand #2. |
| return MI->getOperand(2).getImm(); |
| case ARM::Int_eh_sjlj_longjmp: |
| return 16; |
| case ARM::tInt_eh_sjlj_longjmp: |
| return 10; |
| case ARM::Int_eh_sjlj_setjmp: |
| case ARM::Int_eh_sjlj_setjmp_nofp: |
| return 20; |
| case ARM::tInt_eh_sjlj_setjmp: |
| case ARM::t2Int_eh_sjlj_setjmp: |
| case ARM::t2Int_eh_sjlj_setjmp_nofp: |
| return 12; |
| case ARM::BR_JTr: |
| case ARM::BR_JTm: |
| case ARM::BR_JTadd: |
| case ARM::tBR_JTr: |
| case ARM::t2BR_JT: |
| case ARM::t2TBB_JT: |
| case ARM::t2TBH_JT: { |
| // These are jumptable branches, i.e. a branch followed by an inlined |
| // jumptable. The size is 4 + 4 * number of entries. For TBB, each |
| // entry is one byte; TBH two byte each. |
| unsigned EntrySize = (Opc == ARM::t2TBB_JT) |
| ? 1 : ((Opc == ARM::t2TBH_JT) ? 2 : 4); |
| unsigned NumOps = MCID.getNumOperands(); |
| MachineOperand JTOP = |
| MI->getOperand(NumOps - (MI->isPredicable() ? 3 : 2)); |
| unsigned JTI = JTOP.getIndex(); |
| const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); |
| assert(MJTI != 0); |
| const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); |
| assert(JTI < JT.size()); |
| // Thumb instructions are 2 byte aligned, but JT entries are 4 byte |
| // 4 aligned. The assembler / linker may add 2 byte padding just before |
| // the JT entries. The size does not include this padding; the |
| // constant islands pass does separate bookkeeping for it. |
| // FIXME: If we know the size of the function is less than (1 << 16) *2 |
| // bytes, we can use 16-bit entries instead. Then there won't be an |
| // alignment issue. |
| unsigned InstSize = (Opc == ARM::tBR_JTr || Opc == ARM::t2BR_JT) ? 2 : 4; |
| unsigned NumEntries = getNumJTEntries(JT, JTI); |
| if (Opc == ARM::t2TBB_JT && (NumEntries & 1)) |
| // Make sure the instruction that follows TBB is 2-byte aligned. |
| // FIXME: Constant island pass should insert an "ALIGN" instruction |
| // instead. |
| ++NumEntries; |
| return NumEntries * EntrySize + InstSize; |
| } |
| default: |
| // Otherwise, pseudo-instruction sizes are zero. |
| return 0; |
| } |
| } |
| |
| unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr *MI) const { |
| unsigned Size = 0; |
| MachineBasicBlock::const_instr_iterator I = MI; |
| MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end(); |
| while (++I != E && I->isInsideBundle()) { |
| assert(!I->isBundle() && "No nested bundle!"); |
| Size += GetInstSizeInBytes(&*I); |
| } |
| return Size; |
| } |
| |
| void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I, DebugLoc DL, |
| unsigned DestReg, unsigned SrcReg, |
| bool KillSrc) const { |
| bool GPRDest = ARM::GPRRegClass.contains(DestReg); |
| bool GPRSrc = ARM::GPRRegClass.contains(SrcReg); |
| |
| if (GPRDest && GPRSrc) { |
| AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg) |
| .addReg(SrcReg, getKillRegState(KillSrc)))); |
| return; |
| } |
| |
| bool SPRDest = ARM::SPRRegClass.contains(DestReg); |
| bool SPRSrc = ARM::SPRRegClass.contains(SrcReg); |
| |
| unsigned Opc = 0; |
| if (SPRDest && SPRSrc) |
| Opc = ARM::VMOVS; |
| else if (GPRDest && SPRSrc) |
| Opc = ARM::VMOVRS; |
| else if (SPRDest && GPRSrc) |
| Opc = ARM::VMOVSR; |
| else if (ARM::DPRRegClass.contains(DestReg, SrcReg)) |
| Opc = ARM::VMOVD; |
| else if (ARM::QPRRegClass.contains(DestReg, SrcReg)) |
| Opc = ARM::VORRq; |
| |
| if (Opc) { |
| MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg); |
| MIB.addReg(SrcReg, getKillRegState(KillSrc)); |
| if (Opc == ARM::VORRq) |
| MIB.addReg(SrcReg, getKillRegState(KillSrc)); |
| AddDefaultPred(MIB); |
| return; |
| } |
| |
| // Handle register classes that require multiple instructions. |
| unsigned BeginIdx = 0; |
| unsigned SubRegs = 0; |
| int Spacing = 1; |
| |
| // Use VORRq when possible. |
| if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) |
| Opc = ARM::VORRq, BeginIdx = ARM::qsub_0, SubRegs = 2; |
| else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) |
| Opc = ARM::VORRq, BeginIdx = ARM::qsub_0, SubRegs = 4; |
| // Fall back to VMOVD. |
| else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) |
| Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 2; |
| else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) |
| Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 3; |
| else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) |
| Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 4; |
| else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) |
| Opc = ARM::MOVr, BeginIdx = ARM::gsub_0, SubRegs = 2; |
| |
| else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) |
| Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 2, Spacing = 2; |
| else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) |
| Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 3, Spacing = 2; |
| else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) |
| Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 4, Spacing = 2; |
| |
| assert(Opc && "Impossible reg-to-reg copy"); |
| |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| MachineInstrBuilder Mov; |
| |
| // Copy register tuples backward when the first Dest reg overlaps with SrcReg. |
| if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) { |
| BeginIdx = BeginIdx + ((SubRegs-1)*Spacing); |
| Spacing = -Spacing; |
| } |
| #ifndef NDEBUG |
| SmallSet<unsigned, 4> DstRegs; |
| #endif |
| for (unsigned i = 0; i != SubRegs; ++i) { |
| unsigned Dst = TRI->getSubReg(DestReg, BeginIdx + i*Spacing); |
| unsigned Src = TRI->getSubReg(SrcReg, BeginIdx + i*Spacing); |
| assert(Dst && Src && "Bad sub-register"); |
| #ifndef NDEBUG |
| assert(!DstRegs.count(Src) && "destructive vector copy"); |
| DstRegs.insert(Dst); |
| #endif |
| Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst) |
| .addReg(Src); |
| // VORR takes two source operands. |
| if (Opc == ARM::VORRq) |
| Mov.addReg(Src); |
| Mov = AddDefaultPred(Mov); |
| } |
| // Add implicit super-register defs and kills to the last instruction. |
| Mov->addRegisterDefined(DestReg, TRI); |
| if (KillSrc) |
| Mov->addRegisterKilled(SrcReg, TRI); |
| } |
| |
| static const |
| MachineInstrBuilder &AddDReg(MachineInstrBuilder &MIB, |
| unsigned Reg, unsigned SubIdx, unsigned State, |
| const TargetRegisterInfo *TRI) { |
| if (!SubIdx) |
| return MIB.addReg(Reg, State); |
| |
| if (TargetRegisterInfo::isPhysicalRegister(Reg)) |
| return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State); |
| return MIB.addReg(Reg, State, SubIdx); |
| } |
| |
| void ARMBaseInstrInfo:: |
| storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, |
| unsigned SrcReg, bool isKill, int FI, |
| const TargetRegisterClass *RC, |
| const TargetRegisterInfo *TRI) const { |
| DebugLoc DL; |
| if (I != MBB.end()) DL = I->getDebugLoc(); |
| MachineFunction &MF = *MBB.getParent(); |
| MachineFrameInfo &MFI = *MF.getFrameInfo(); |
| unsigned Align = MFI.getObjectAlignment(FI); |
| |
| MachineMemOperand *MMO = |
| MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI), |
| MachineMemOperand::MOStore, |
| MFI.getObjectSize(FI), |
| Align); |
| |
| switch (RC->getSize()) { |
| case 4: |
| if (ARM::GPRRegClass.hasSubClassEq(RC)) { |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STRi12)) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); |
| } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRS)) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 8: |
| if (ARM::DPRRegClass.hasSubClassEq(RC)) { |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRD)) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); |
| } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { |
| MachineInstrBuilder MIB = |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STMIA)) |
| .addFrameIndex(FI)) |
| .addMemOperand(MMO); |
| MIB = AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); |
| AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 16: |
| if (ARM::DPairRegClass.hasSubClassEq(RC)) { |
| // Use aligned spills if the stack can be realigned. |
| if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1q64)) |
| .addFrameIndex(FI).addImm(16) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addMemOperand(MMO)); |
| } else { |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMQIA)) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addFrameIndex(FI) |
| .addMemOperand(MMO)); |
| } |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 24: |
| if (ARM::DTripleRegClass.hasSubClassEq(RC)) { |
| // Use aligned spills if the stack can be realigned. |
| if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64TPseudo)) |
| .addFrameIndex(FI).addImm(16) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addMemOperand(MMO)); |
| } else { |
| MachineInstrBuilder MIB = |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA)) |
| .addFrameIndex(FI)) |
| .addMemOperand(MMO); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); |
| AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); |
| } |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 32: |
| if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) { |
| if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { |
| // FIXME: It's possible to only store part of the QQ register if the |
| // spilled def has a sub-register index. |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64QPseudo)) |
| .addFrameIndex(FI).addImm(16) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addMemOperand(MMO)); |
| } else { |
| MachineInstrBuilder MIB = |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA)) |
| .addFrameIndex(FI)) |
| .addMemOperand(MMO); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); |
| AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); |
| } |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 64: |
| if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { |
| MachineInstrBuilder MIB = |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA)) |
| .addFrameIndex(FI)) |
| .addMemOperand(MMO); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI); |
| AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI); |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| default: |
| llvm_unreachable("Unknown reg class!"); |
| } |
| } |
| |
| unsigned |
| ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr *MI, |
| int &FrameIndex) const { |
| switch (MI->getOpcode()) { |
| default: break; |
| case ARM::STRrs: |
| case ARM::t2STRs: // FIXME: don't use t2STRs to access frame. |
| if (MI->getOperand(1).isFI() && |
| MI->getOperand(2).isReg() && |
| MI->getOperand(3).isImm() && |
| MI->getOperand(2).getReg() == 0 && |
| MI->getOperand(3).getImm() == 0) { |
| FrameIndex = MI->getOperand(1).getIndex(); |
| return MI->getOperand(0).getReg(); |
| } |
| break; |
| case ARM::STRi12: |
| case ARM::t2STRi12: |
| case ARM::tSTRspi: |
| case ARM::VSTRD: |
| case ARM::VSTRS: |
| if (MI->getOperand(1).isFI() && |
| MI->getOperand(2).isImm() && |
| MI->getOperand(2).getImm() == 0) { |
| FrameIndex = MI->getOperand(1).getIndex(); |
| return MI->getOperand(0).getReg(); |
| } |
| break; |
| case ARM::VST1q64: |
| case ARM::VST1d64TPseudo: |
| case ARM::VST1d64QPseudo: |
| if (MI->getOperand(0).isFI() && |
| MI->getOperand(2).getSubReg() == 0) { |
| FrameIndex = MI->getOperand(0).getIndex(); |
| return MI->getOperand(2).getReg(); |
| } |
| break; |
| case ARM::VSTMQIA: |
| if (MI->getOperand(1).isFI() && |
| MI->getOperand(0).getSubReg() == 0) { |
| FrameIndex = MI->getOperand(1).getIndex(); |
| return MI->getOperand(0).getReg(); |
| } |
| break; |
| } |
| |
| return 0; |
| } |
| |
| unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI, |
| int &FrameIndex) const { |
| const MachineMemOperand *Dummy; |
| return MI->mayStore() && hasStoreToStackSlot(MI, Dummy, FrameIndex); |
| } |
| |
| void ARMBaseInstrInfo:: |
| loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, |
| unsigned DestReg, int FI, |
| const TargetRegisterClass *RC, |
| const TargetRegisterInfo *TRI) const { |
| DebugLoc DL; |
| if (I != MBB.end()) DL = I->getDebugLoc(); |
| MachineFunction &MF = *MBB.getParent(); |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| MachineFrameInfo &MFI = *MF.getFrameInfo(); |
| unsigned Align = MFI.getObjectAlignment(FI); |
| MachineMemOperand *MMO = |
| MF.getMachineMemOperand( |
| MachinePointerInfo::getFixedStack(FI), |
| MachineMemOperand::MOLoad, |
| MFI.getObjectSize(FI), |
| Align); |
| |
| switch (RC->getSize()) { |
| case 4: |
| if (ARM::GPRRegClass.hasSubClassEq(RC)) { |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg) |
| .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); |
| |
| } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg) |
| .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 8: |
| if (ARM::DPRRegClass.hasSubClassEq(RC)) { |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg) |
| .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); |
| } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { |
| unsigned LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA : ARM::LDMIA; |
| MachineInstrBuilder MIB = |
| AddDefaultPred(BuildMI(MBB, I, DL, get(LdmOpc)) |
| .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); |
| MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); |
| if (TargetRegisterInfo::isPhysicalRegister(DestReg)) |
| MIB.addReg(DestReg, RegState::ImplicitDefine); |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 16: |
| if (ARM::DPairRegClass.hasSubClassEq(RC)) { |
| if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg) |
| .addFrameIndex(FI).addImm(16) |
| .addMemOperand(MMO)); |
| } else { |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg) |
| .addFrameIndex(FI) |
| .addMemOperand(MMO)); |
| } |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 24: |
| if (ARM::DTripleRegClass.hasSubClassEq(RC)) { |
| if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg) |
| .addFrameIndex(FI).addImm(16) |
| .addMemOperand(MMO)); |
| } else { |
| MachineInstrBuilder MIB = |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) |
| .addFrameIndex(FI) |
| .addMemOperand(MMO)); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); |
| if (TargetRegisterInfo::isPhysicalRegister(DestReg)) |
| MIB.addReg(DestReg, RegState::ImplicitDefine); |
| } |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 32: |
| if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) { |
| if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg) |
| .addFrameIndex(FI).addImm(16) |
| .addMemOperand(MMO)); |
| } else { |
| MachineInstrBuilder MIB = |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) |
| .addFrameIndex(FI)) |
| .addMemOperand(MMO); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); |
| if (TargetRegisterInfo::isPhysicalRegister(DestReg)) |
| MIB.addReg(DestReg, RegState::ImplicitDefine); |
| } |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 64: |
| if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { |
| MachineInstrBuilder MIB = |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) |
| .addFrameIndex(FI)) |
| .addMemOperand(MMO); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI); |
| if (TargetRegisterInfo::isPhysicalRegister(DestReg)) |
| MIB.addReg(DestReg, RegState::ImplicitDefine); |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| default: |
| llvm_unreachable("Unknown regclass!"); |
| } |
| } |
| |
| unsigned |
| ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, |
| int &FrameIndex) const { |
| switch (MI->getOpcode()) { |
| default: break; |
| case ARM::LDRrs: |
| case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame. |
| if (MI->getOperand(1).isFI() && |
| MI->getOperand(2).isReg() && |
| MI->getOperand(3).isImm() && |
| MI->getOperand(2).getReg() == 0 && |
| MI->getOperand(3).getImm() == 0) { |
| FrameIndex = MI->getOperand(1).getIndex(); |
| return MI->getOperand(0).getReg(); |
| } |
| break; |
| case ARM::LDRi12: |
| case ARM::t2LDRi12: |
| case ARM::tLDRspi: |
| case ARM::VLDRD: |
| case ARM::VLDRS: |
| if (MI->getOperand(1).isFI() && |
| MI->getOperand(2).isImm() && |
| MI->getOperand(2).getImm() == 0) { |
| FrameIndex = MI->getOperand(1).getIndex(); |
| return MI->getOperand(0).getReg(); |
| } |
| break; |
| case ARM::VLD1q64: |
| case ARM::VLD1d64TPseudo: |
| case ARM::VLD1d64QPseudo: |
| if (MI->getOperand(1).isFI() && |
| MI->getOperand(0).getSubReg() == 0) { |
| FrameIndex = MI->getOperand(1).getIndex(); |
| return MI->getOperand(0).getReg(); |
| } |
| break; |
| case ARM::VLDMQIA: |
| if (MI->getOperand(1).isFI() && |
| MI->getOperand(0).getSubReg() == 0) { |
| FrameIndex = MI->getOperand(1).getIndex(); |
| return MI->getOperand(0).getReg(); |
| } |
| break; |
| } |
| |
| return 0; |
| } |
| |
| unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI, |
| int &FrameIndex) const { |
| const MachineMemOperand *Dummy; |
| return MI->mayLoad() && hasLoadFromStackSlot(MI, Dummy, FrameIndex); |
| } |
| |
| bool ARMBaseInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const{ |
| // This hook gets to expand COPY instructions before they become |
| // copyPhysReg() calls. Look for VMOVS instructions that can legally be |
| // widened to VMOVD. We prefer the VMOVD when possible because it may be |
| // changed into a VORR that can go down the NEON pipeline. |
| if (!WidenVMOVS || !MI->isCopy()) |
| return false; |
| |
| // Look for a copy between even S-registers. That is where we keep floats |
| // when using NEON v2f32 instructions for f32 arithmetic. |
| unsigned DstRegS = MI->getOperand(0).getReg(); |
| unsigned SrcRegS = MI->getOperand(1).getReg(); |
| if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS)) |
| return false; |
| |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0, |
| &ARM::DPRRegClass); |
| unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0, |
| &ARM::DPRRegClass); |
| if (!DstRegD || !SrcRegD) |
| return false; |
| |
| // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only |
| // legal if the COPY already defines the full DstRegD, and it isn't a |
| // sub-register insertion. |
| if (!MI->definesRegister(DstRegD, TRI) || MI->readsRegister(DstRegD, TRI)) |
| return false; |
| |
| // A dead copy shouldn't show up here, but reject it just in case. |
| if (MI->getOperand(0).isDead()) |
| return false; |
| |
| // All clear, widen the COPY. |
| DEBUG(dbgs() << "widening: " << *MI); |
| MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI); |
| |
| // Get rid of the old <imp-def> of DstRegD. Leave it if it defines a Q-reg |
| // or some other super-register. |
| int ImpDefIdx = MI->findRegisterDefOperandIdx(DstRegD); |
| if (ImpDefIdx != -1) |
| MI->RemoveOperand(ImpDefIdx); |
| |
| // Change the opcode and operands. |
| MI->setDesc(get(ARM::VMOVD)); |
| MI->getOperand(0).setReg(DstRegD); |
| MI->getOperand(1).setReg(SrcRegD); |
| AddDefaultPred(MIB); |
| |
| // We are now reading SrcRegD instead of SrcRegS. This may upset the |
| // register scavenger and machine verifier, so we need to indicate that we |
| // are reading an undefined value from SrcRegD, but a proper value from |
| // SrcRegS. |
| MI->getOperand(1).setIsUndef(); |
| MIB.addReg(SrcRegS, RegState::Implicit); |
| |
| // SrcRegD may actually contain an unrelated value in the ssub_1 |
| // sub-register. Don't kill it. Only kill the ssub_0 sub-register. |
| if (MI->getOperand(1).isKill()) { |
| MI->getOperand(1).setIsKill(false); |
| MI->addRegisterKilled(SrcRegS, TRI, true); |
| } |
| |
| DEBUG(dbgs() << "replaced by: " << *MI); |
| return true; |
| } |
| |
| MachineInstr* |
| ARMBaseInstrInfo::emitFrameIndexDebugValue(MachineFunction &MF, |
| int FrameIx, uint64_t Offset, |
| const MDNode *MDPtr, |
| DebugLoc DL) const { |
| MachineInstrBuilder MIB = BuildMI(MF, DL, get(ARM::DBG_VALUE)) |
| .addFrameIndex(FrameIx).addImm(0).addImm(Offset).addMetadata(MDPtr); |
| return &*MIB; |
| } |
| |
| /// Create a copy of a const pool value. Update CPI to the new index and return |
| /// the label UID. |
| static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) { |
| MachineConstantPool *MCP = MF.getConstantPool(); |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| |
| const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI]; |
| assert(MCPE.isMachineConstantPoolEntry() && |
| "Expecting a machine constantpool entry!"); |
| ARMConstantPoolValue *ACPV = |
| static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal); |
| |
| unsigned PCLabelId = AFI->createPICLabelUId(); |
| ARMConstantPoolValue *NewCPV = 0; |
| // FIXME: The below assumes PIC relocation model and that the function |
| // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and |
| // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR |
| // instructions, so that's probably OK, but is PIC always correct when |
| // we get here? |
| if (ACPV->isGlobalValue()) |
| NewCPV = ARMConstantPoolConstant:: |
| Create(cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, |
| ARMCP::CPValue, 4); |
| else if (ACPV->isExtSymbol()) |
| NewCPV = ARMConstantPoolSymbol:: |
| Create(MF.getFunction()->getContext(), |
| cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4); |
| else if (ACPV->isBlockAddress()) |
| NewCPV = ARMConstantPoolConstant:: |
| Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId, |
| ARMCP::CPBlockAddress, 4); |
| else if (ACPV->isLSDA()) |
| NewCPV = ARMConstantPoolConstant::Create(MF.getFunction(), PCLabelId, |
| ARMCP::CPLSDA, 4); |
| else if (ACPV->isMachineBasicBlock()) |
| NewCPV = ARMConstantPoolMBB:: |
| Create(MF.getFunction()->getContext(), |
| cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4); |
| else |
| llvm_unreachable("Unexpected ARM constantpool value type!!"); |
| CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment()); |
| return PCLabelId; |
| } |
| |
| void ARMBaseInstrInfo:: |
| reMaterialize(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I, |
| unsigned DestReg, unsigned SubIdx, |
| const MachineInstr *Orig, |
| const TargetRegisterInfo &TRI) const { |
| unsigned Opcode = Orig->getOpcode(); |
| switch (Opcode) { |
| default: { |
| MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); |
| MI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI); |
| MBB.insert(I, MI); |
| break; |
| } |
| case ARM::tLDRpci_pic: |
| case ARM::t2LDRpci_pic: { |
| MachineFunction &MF = *MBB.getParent(); |
| unsigned CPI = Orig->getOperand(1).getIndex(); |
| unsigned PCLabelId = duplicateCPV(MF, CPI); |
| MachineInstrBuilder MIB = BuildMI(MBB, I, Orig->getDebugLoc(), get(Opcode), |
| DestReg) |
| .addConstantPoolIndex(CPI).addImm(PCLabelId); |
| MIB->setMemRefs(Orig->memoperands_begin(), Orig->memoperands_end()); |
| break; |
| } |
| } |
| } |
| |
| MachineInstr * |
| ARMBaseInstrInfo::duplicate(MachineInstr *Orig, MachineFunction &MF) const { |
| MachineInstr *MI = TargetInstrInfo::duplicate(Orig, MF); |
| switch(Orig->getOpcode()) { |
| case ARM::tLDRpci_pic: |
| case ARM::t2LDRpci_pic: { |
| unsigned CPI = Orig->getOperand(1).getIndex(); |
| unsigned PCLabelId = duplicateCPV(MF, CPI); |
| Orig->getOperand(1).setIndex(CPI); |
| Orig->getOperand(2).setImm(PCLabelId); |
| break; |
| } |
| } |
| return MI; |
| } |
| |
| bool ARMBaseInstrInfo::produceSameValue(const MachineInstr *MI0, |
| const MachineInstr *MI1, |
| const MachineRegisterInfo *MRI) const { |
| int Opcode = MI0->getOpcode(); |
| if (Opcode == ARM::t2LDRpci || |
| Opcode == ARM::t2LDRpci_pic || |
| Opcode == ARM::tLDRpci || |
| Opcode == ARM::tLDRpci_pic || |
| Opcode == ARM::MOV_ga_dyn || |
| Opcode == ARM::MOV_ga_pcrel || |
| Opcode == ARM::MOV_ga_pcrel_ldr || |
| Opcode == ARM::t2MOV_ga_dyn || |
| Opcode == ARM::t2MOV_ga_pcrel) { |
| if (MI1->getOpcode() != Opcode) |
| return false; |
| if (MI0->getNumOperands() != MI1->getNumOperands()) |
| return false; |
| |
| const MachineOperand &MO0 = MI0->getOperand(1); |
| const MachineOperand &MO1 = MI1->getOperand(1); |
| if (MO0.getOffset() != MO1.getOffset()) |
| return false; |
| |
| if (Opcode == ARM::MOV_ga_dyn || |
| Opcode == ARM::MOV_ga_pcrel || |
| Opcode == ARM::MOV_ga_pcrel_ldr || |
| Opcode == ARM::t2MOV_ga_dyn || |
| Opcode == ARM::t2MOV_ga_pcrel) |
| // Ignore the PC labels. |
| return MO0.getGlobal() == MO1.getGlobal(); |
| |
| const MachineFunction *MF = MI0->getParent()->getParent(); |
| const MachineConstantPool *MCP = MF->getConstantPool(); |
| int CPI0 = MO0.getIndex(); |
| int CPI1 = MO1.getIndex(); |
| const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0]; |
| const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1]; |
| bool isARMCP0 = MCPE0.isMachineConstantPoolEntry(); |
| bool isARMCP1 = MCPE1.isMachineConstantPoolEntry(); |
| if (isARMCP0 && isARMCP1) { |
| ARMConstantPoolValue *ACPV0 = |
| static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal); |
| ARMConstantPoolValue *ACPV1 = |
| static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal); |
| return ACPV0->hasSameValue(ACPV1); |
| } else if (!isARMCP0 && !isARMCP1) { |
| return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal; |
| } |
| return false; |
| } else if (Opcode == ARM::PICLDR) { |
| if (MI1->getOpcode() != Opcode) |
| return false; |
| if (MI0->getNumOperands() != MI1->getNumOperands()) |
| return false; |
| |
| unsigned Addr0 = MI0->getOperand(1).getReg(); |
| unsigned Addr1 = MI1->getOperand(1).getReg(); |
| if (Addr0 != Addr1) { |
| if (!MRI || |
| !TargetRegisterInfo::isVirtualRegister(Addr0) || |
| !TargetRegisterInfo::isVirtualRegister(Addr1)) |
| return false; |
| |
| // This assumes SSA form. |
| MachineInstr *Def0 = MRI->getVRegDef(Addr0); |
| MachineInstr *Def1 = MRI->getVRegDef(Addr1); |
| // Check if the loaded value, e.g. a constantpool of a global address, are |
| // the same. |
| if (!produceSameValue(Def0, Def1, MRI)) |
| return false; |
| } |
| |
| for (unsigned i = 3, e = MI0->getNumOperands(); i != e; ++i) { |
| // %vreg12<def> = PICLDR %vreg11, 0, pred:14, pred:%noreg |
| const MachineOperand &MO0 = MI0->getOperand(i); |
| const MachineOperand &MO1 = MI1->getOperand(i); |
| if (!MO0.isIdenticalTo(MO1)) |
| return false; |
| } |
| return true; |
| } |
| |
| return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); |
| } |
| |
| /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to |
| /// determine if two loads are loading from the same base address. It should |
| /// only return true if the base pointers are the same and the only differences |
| /// between the two addresses is the offset. It also returns the offsets by |
| /// reference. |
| /// |
| /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched |
| /// is permanently disabled. |
| bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, |
| int64_t &Offset1, |
| int64_t &Offset2) const { |
| // Don't worry about Thumb: just ARM and Thumb2. |
| if (Subtarget.isThumb1Only()) return false; |
| |
| if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) |
| return false; |
| |
| switch (Load1->getMachineOpcode()) { |
| default: |
| return false; |
| case ARM::LDRi12: |
| case ARM::LDRBi12: |
| case ARM::LDRD: |
| case ARM::LDRH: |
| case ARM::LDRSB: |
| case ARM::LDRSH: |
| case ARM::VLDRD: |
| case ARM::VLDRS: |
| case ARM::t2LDRi8: |
| case ARM::t2LDRDi8: |
| case ARM::t2LDRSHi8: |
| case ARM::t2LDRi12: |
| case ARM::t2LDRSHi12: |
| break; |
| } |
| |
| switch (Load2->getMachineOpcode()) { |
| default: |
| return false; |
| case ARM::LDRi12: |
| case ARM::LDRBi12: |
| case ARM::LDRD: |
| case ARM::LDRH: |
| case ARM::LDRSB: |
| case ARM::LDRSH: |
| case ARM::VLDRD: |
| case ARM::VLDRS: |
| case ARM::t2LDRi8: |
| case ARM::t2LDRSHi8: |
| case ARM::t2LDRi12: |
| case ARM::t2LDRSHi12: |
| break; |
| } |
| |
| // Check if base addresses and chain operands match. |
| if (Load1->getOperand(0) != Load2->getOperand(0) || |
| Load1->getOperand(4) != Load2->getOperand(4)) |
| return false; |
| |
| // Index should be Reg0. |
| if (Load1->getOperand(3) != Load2->getOperand(3)) |
| return false; |
| |
| // Determine the offsets. |
| if (isa<ConstantSDNode>(Load1->getOperand(1)) && |
| isa<ConstantSDNode>(Load2->getOperand(1))) { |
| Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue(); |
| Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to |
| /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should |
| /// be scheduled togther. On some targets if two loads are loading from |
| /// addresses in the same cache line, it's better if they are scheduled |
| /// together. This function takes two integers that represent the load offsets |
| /// from the common base address. It returns true if it decides it's desirable |
| /// to schedule the two loads together. "NumLoads" is the number of loads that |
| /// have already been scheduled after Load1. |
| /// |
| /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched |
| /// is permanently disabled. |
| bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, |
| int64_t Offset1, int64_t Offset2, |
| unsigned NumLoads) const { |
| // Don't worry about Thumb: just ARM and Thumb2. |
| if (Subtarget.isThumb1Only()) return false; |
| |
| assert(Offset2 > Offset1); |
| |
| if ((Offset2 - Offset1) / 8 > 64) |
| return false; |
| |
| if (Load1->getMachineOpcode() != Load2->getMachineOpcode()) |
| return false; // FIXME: overly conservative? |
| |
| // Four loads in a row should be sufficient. |
| if (NumLoads >= 3) |
| return false; |
| |
| return true; |
| } |
| |
| bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr *MI, |
| const MachineBasicBlock *MBB, |
| const MachineFunction &MF) const { |
| // Debug info is never a scheduling boundary. It's necessary to be explicit |
| // due to the special treatment of IT instructions below, otherwise a |
| // dbg_value followed by an IT will result in the IT instruction being |
| // considered a scheduling hazard, which is wrong. It should be the actual |
| // instruction preceding the dbg_value instruction(s), just like it is |
| // when debug info is not present. |
| if (MI->isDebugValue()) |
| return false; |
| |
| // Terminators and labels can't be scheduled around. |
| if (MI->isTerminator() || MI->isLabel()) |
| return true; |
| |
| // Treat the start of the IT block as a scheduling boundary, but schedule |
| // t2IT along with all instructions following it. |
| // FIXME: This is a big hammer. But the alternative is to add all potential |
| // true and anti dependencies to IT block instructions as implicit operands |
| // to the t2IT instruction. The added compile time and complexity does not |
| // seem worth it. |
| MachineBasicBlock::const_iterator I = MI; |
| // Make sure to skip any dbg_value instructions |
| while (++I != MBB->end() && I->isDebugValue()) |
| ; |
| if (I != MBB->end() && I->getOpcode() == ARM::t2IT) |
| return true; |
| |
| // Don't attempt to schedule around any instruction that defines |
| // a stack-oriented pointer, as it's unlikely to be profitable. This |
| // saves compile time, because it doesn't require every single |
| // stack slot reference to depend on the instruction that does the |
| // modification. |
| // Calls don't actually change the stack pointer, even if they have imp-defs. |
| // No ARM calling conventions change the stack pointer. (X86 calling |
| // conventions sometimes do). |
| if (!MI->isCall() && MI->definesRegister(ARM::SP)) |
| return true; |
| |
| return false; |
| } |
| |
| bool ARMBaseInstrInfo:: |
| isProfitableToIfCvt(MachineBasicBlock &MBB, |
| unsigned NumCycles, unsigned ExtraPredCycles, |
| const BranchProbability &Probability) const { |
| if (!NumCycles) |
| return false; |
| |
| // Attempt to estimate the relative costs of predication versus branching. |
| unsigned UnpredCost = Probability.getNumerator() * NumCycles; |
| UnpredCost /= Probability.getDenominator(); |
| UnpredCost += 1; // The branch itself |
| UnpredCost += Subtarget.getMispredictionPenalty() / 10; |
| |
| return (NumCycles + ExtraPredCycles) <= UnpredCost; |
| } |
| |
| bool ARMBaseInstrInfo:: |
| isProfitableToIfCvt(MachineBasicBlock &TMBB, |
| unsigned TCycles, unsigned TExtra, |
| MachineBasicBlock &FMBB, |
| unsigned FCycles, unsigned FExtra, |
| const BranchProbability &Probability) const { |
| if (!TCycles || !FCycles) |
| return false; |
| |
| // Attempt to estimate the relative costs of predication versus branching. |
| unsigned TUnpredCost = Probability.getNumerator() * TCycles; |
| TUnpredCost /= Probability.getDenominator(); |
| |
| uint32_t Comp = Probability.getDenominator() - Probability.getNumerator(); |
| unsigned FUnpredCost = Comp * FCycles; |
| FUnpredCost /= Probability.getDenominator(); |
| |
| unsigned UnpredCost = TUnpredCost + FUnpredCost; |
| UnpredCost += 1; // The branch itself |
| UnpredCost += Subtarget.getMispredictionPenalty() / 10; |
| |
| return (TCycles + FCycles + TExtra + FExtra) <= UnpredCost; |
| } |
| |
| bool |
| ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB, |
| MachineBasicBlock &FMBB) const { |
| // Reduce false anti-dependencies to let Swift's out-of-order execution |
| // engine do its thing. |
| return Subtarget.isSwift(); |
| } |
| |
| /// getInstrPredicate - If instruction is predicated, returns its predicate |
| /// condition, otherwise returns AL. It also returns the condition code |
| /// register by reference. |
| ARMCC::CondCodes |
| llvm::getInstrPredicate(const MachineInstr *MI, unsigned &PredReg) { |
| int PIdx = MI->findFirstPredOperandIdx(); |
| if (PIdx == -1) { |
| PredReg = 0; |
| return ARMCC::AL; |
| } |
| |
| PredReg = MI->getOperand(PIdx+1).getReg(); |
| return (ARMCC::CondCodes)MI->getOperand(PIdx).getImm(); |
| } |
| |
| |
| int llvm::getMatchingCondBranchOpcode(int Opc) { |
| if (Opc == ARM::B) |
| return ARM::Bcc; |
| if (Opc == ARM::tB) |
| return ARM::tBcc; |
| if (Opc == ARM::t2B) |
| return ARM::t2Bcc; |
| |
| llvm_unreachable("Unknown unconditional branch opcode!"); |
| } |
| |
| /// commuteInstruction - Handle commutable instructions. |
| MachineInstr * |
| ARMBaseInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const { |
| switch (MI->getOpcode()) { |
| case ARM::MOVCCr: |
| case ARM::t2MOVCCr: { |
| // MOVCC can be commuted by inverting the condition. |
| unsigned PredReg = 0; |
| ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg); |
| // MOVCC AL can't be inverted. Shouldn't happen. |
| if (CC == ARMCC::AL || PredReg != ARM::CPSR) |
| return NULL; |
| MI = TargetInstrInfo::commuteInstruction(MI, NewMI); |
| if (!MI) |
| return NULL; |
| // After swapping the MOVCC operands, also invert the condition. |
| MI->getOperand(MI->findFirstPredOperandIdx()) |
| .setImm(ARMCC::getOppositeCondition(CC)); |
| return MI; |
| } |
| } |
| return TargetInstrInfo::commuteInstruction(MI, NewMI); |
| } |
| |
| /// Identify instructions that can be folded into a MOVCC instruction, and |
| /// return the defining instruction. |
| static MachineInstr *canFoldIntoMOVCC(unsigned Reg, |
| const MachineRegisterInfo &MRI, |
| const TargetInstrInfo *TII) { |
| if (!TargetRegisterInfo::isVirtualRegister(Reg)) |
| return 0; |
| if (!MRI.hasOneNonDBGUse(Reg)) |
| return 0; |
| MachineInstr *MI = MRI.getVRegDef(Reg); |
| if (!MI) |
| return 0; |
| // MI is folded into the MOVCC by predicating it. |
| if (!MI->isPredicable()) |
| return 0; |
| // Check if MI has any non-dead defs or physreg uses. This also detects |
| // predicated instructions which will be reading CPSR. |
| for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = MI->getOperand(i); |
| // Reject frame index operands, PEI can't handle the predicated pseudos. |
| if (MO.isFI() || MO.isCPI() || MO.isJTI()) |
| return 0; |
| if (!MO.isReg()) |
| continue; |
| // MI can't have any tied operands, that would conflict with predication. |
| if (MO.isTied()) |
| return 0; |
| if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) |
| return 0; |
| if (MO.isDef() && !MO.isDead()) |
| return 0; |
| } |
| bool DontMoveAcrossStores = true; |
| if (!MI->isSafeToMove(TII, /* AliasAnalysis = */ 0, DontMoveAcrossStores)) |
| return 0; |
| return MI; |
| } |
| |
| bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr *MI, |
| SmallVectorImpl<MachineOperand> &Cond, |
| unsigned &TrueOp, unsigned &FalseOp, |
| bool &Optimizable) const { |
| assert((MI->getOpcode() == ARM::MOVCCr || MI->getOpcode() == ARM::t2MOVCCr) && |
| "Unknown select instruction"); |
| // MOVCC operands: |
| // 0: Def. |
| // 1: True use. |
| // 2: False use. |
| // 3: Condition code. |
| // 4: CPSR use. |
| TrueOp = 1; |
| FalseOp = 2; |
| Cond.push_back(MI->getOperand(3)); |
| Cond.push_back(MI->getOperand(4)); |
| // We can always fold a def. |
| Optimizable = true; |
| return false; |
| } |
| |
| MachineInstr *ARMBaseInstrInfo::optimizeSelect(MachineInstr *MI, |
| bool PreferFalse) const { |
| assert((MI->getOpcode() == ARM::MOVCCr || MI->getOpcode() == ARM::t2MOVCCr) && |
| "Unknown select instruction"); |
| const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); |
| MachineInstr *DefMI = canFoldIntoMOVCC(MI->getOperand(2).getReg(), MRI, this); |
| bool Invert = !DefMI; |
| if (!DefMI) |
| DefMI = canFoldIntoMOVCC(MI->getOperand(1).getReg(), MRI, this); |
| if (!DefMI) |
| return 0; |
| |
| // Create a new predicated version of DefMI. |
| // Rfalse is the first use. |
| MachineInstrBuilder NewMI = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), |
| DefMI->getDesc(), |
| MI->getOperand(0).getReg()); |
| |
| // Copy all the DefMI operands, excluding its (null) predicate. |
| const MCInstrDesc &DefDesc = DefMI->getDesc(); |
| for (unsigned i = 1, e = DefDesc.getNumOperands(); |
| i != e && !DefDesc.OpInfo[i].isPredicate(); ++i) |
| NewMI.addOperand(DefMI->getOperand(i)); |
| |
| unsigned CondCode = MI->getOperand(3).getImm(); |
| if (Invert) |
| NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode))); |
| else |
| NewMI.addImm(CondCode); |
| NewMI.addOperand(MI->getOperand(4)); |
| |
| // DefMI is not the -S version that sets CPSR, so add an optional %noreg. |
| if (NewMI->hasOptionalDef()) |
| AddDefaultCC(NewMI); |
| |
| // The output register value when the predicate is false is an implicit |
| // register operand tied to the first def. |
| // The tie makes the register allocator ensure the FalseReg is allocated the |
| // same register as operand 0. |
| MachineOperand FalseReg = MI->getOperand(Invert ? 2 : 1); |
| FalseReg.setImplicit(); |
| NewMI.addOperand(FalseReg); |
| NewMI->tieOperands(0, NewMI->getNumOperands() - 1); |
| |
| // The caller will erase MI, but not DefMI. |
| DefMI->eraseFromParent(); |
| return NewMI; |
| } |
| |
| /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the |
| /// instruction is encoded with an 'S' bit is determined by the optional CPSR |
| /// def operand. |
| /// |
| /// This will go away once we can teach tblgen how to set the optional CPSR def |
| /// operand itself. |
| struct AddSubFlagsOpcodePair { |
| uint16_t PseudoOpc; |
| uint16_t MachineOpc; |
| }; |
| |
| static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = { |
| {ARM::ADDSri, ARM::ADDri}, |
| {ARM::ADDSrr, ARM::ADDrr}, |
| {ARM::ADDSrsi, ARM::ADDrsi}, |
| {ARM::ADDSrsr, ARM::ADDrsr}, |
| |
| {ARM::SUBSri, ARM::SUBri}, |
| {ARM::SUBSrr, ARM::SUBrr}, |
| {ARM::SUBSrsi, ARM::SUBrsi}, |
| {ARM::SUBSrsr, ARM::SUBrsr}, |
| |
| {ARM::RSBSri, ARM::RSBri}, |
| {ARM::RSBSrsi, ARM::RSBrsi}, |
| {ARM::RSBSrsr, ARM::RSBrsr}, |
| |
| {ARM::t2ADDSri, ARM::t2ADDri}, |
| {ARM::t2ADDSrr, ARM::t2ADDrr}, |
| {ARM::t2ADDSrs, ARM::t2ADDrs}, |
| |
| {ARM::t2SUBSri, ARM::t2SUBri}, |
| {ARM::t2SUBSrr, ARM::t2SUBrr}, |
| {ARM::t2SUBSrs, ARM::t2SUBrs}, |
| |
| {ARM::t2RSBSri, ARM::t2RSBri}, |
| {ARM::t2RSBSrs, ARM::t2RSBrs}, |
| }; |
| |
| unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) { |
| for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i) |
| if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc) |
| return AddSubFlagsOpcodeMap[i].MachineOpc; |
| return 0; |
| } |
| |
| void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator &MBBI, DebugLoc dl, |
| unsigned DestReg, unsigned BaseReg, int NumBytes, |
| ARMCC::CondCodes Pred, unsigned PredReg, |
| const ARMBaseInstrInfo &TII, unsigned MIFlags) { |
| bool isSub = NumBytes < 0; |
| if (isSub) NumBytes = -NumBytes; |
| |
| while (NumBytes) { |
| unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes); |
| unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt); |
| assert(ThisVal && "Didn't extract field correctly"); |
| |
| // We will handle these bits from offset, clear them. |
| NumBytes &= ~ThisVal; |
| |
| assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?"); |
| |
| // Build the new ADD / SUB. |
| unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri; |
| BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg) |
| .addReg(BaseReg, RegState::Kill).addImm(ThisVal) |
| .addImm((unsigned)Pred).addReg(PredReg).addReg(0) |
| .setMIFlags(MIFlags); |
| BaseReg = DestReg; |
| } |
| } |
| |
| bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx, |
| unsigned FrameReg, int &Offset, |
| const ARMBaseInstrInfo &TII) { |
| unsigned Opcode = MI.getOpcode(); |
| const MCInstrDesc &Desc = MI.getDesc(); |
| unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); |
| bool isSub = false; |
| |
| // Memory operands in inline assembly always use AddrMode2. |
| if (Opcode == ARM::INLINEASM) |
| AddrMode = ARMII::AddrMode2; |
| |
| if (Opcode == ARM::ADDri) { |
| Offset += MI.getOperand(FrameRegIdx+1).getImm(); |
| if (Offset == 0) { |
| // Turn it into a move. |
| MI.setDesc(TII.get(ARM::MOVr)); |
| MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); |
| MI.RemoveOperand(FrameRegIdx+1); |
| Offset = 0; |
| return true; |
| } else if (Offset < 0) { |
| Offset = -Offset; |
| isSub = true; |
| MI.setDesc(TII.get(ARM::SUBri)); |
| } |
| |
| // Common case: small offset, fits into instruction. |
| if (ARM_AM::getSOImmVal(Offset) != -1) { |
| // Replace the FrameIndex with sp / fp |
| MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); |
| MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset); |
| Offset = 0; |
| return true; |
| } |
| |
| // Otherwise, pull as much of the immedidate into this ADDri/SUBri |
| // as possible. |
| unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset); |
| unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt); |
| |
| // We will handle these bits from offset, clear them. |
| Offset &= ~ThisImmVal; |
| |
| // Get the properly encoded SOImmVal field. |
| assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 && |
| "Bit extraction didn't work?"); |
| MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal); |
| } else { |
| unsigned ImmIdx = 0; |
| int InstrOffs = 0; |
| unsigned NumBits = 0; |
| unsigned Scale = 1; |
| switch (AddrMode) { |
| case ARMII::AddrMode_i12: { |
| ImmIdx = FrameRegIdx + 1; |
| InstrOffs = MI.getOperand(ImmIdx).getImm(); |
| NumBits = 12; |
| break; |
| } |
| case ARMII::AddrMode2: { |
| ImmIdx = FrameRegIdx+2; |
| InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm()); |
| if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) |
| InstrOffs *= -1; |
| NumBits = 12; |
| break; |
| } |
| case ARMII::AddrMode3: { |
| ImmIdx = FrameRegIdx+2; |
| InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm()); |
| if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) |
| InstrOffs *= -1; |
| NumBits = 8; |
| break; |
| } |
| case ARMII::AddrMode4: |
| case ARMII::AddrMode6: |
| // Can't fold any offset even if it's zero. |
| return false; |
| case ARMII::AddrMode5: { |
| ImmIdx = FrameRegIdx+1; |
| InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); |
| if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) |
| InstrOffs *= -1; |
| NumBits = 8; |
| Scale = 4; |
| break; |
| } |
| default: |
| llvm_unreachable("Unsupported addressing mode!"); |
| } |
| |
| Offset += InstrOffs * Scale; |
| assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!"); |
| if (Offset < 0) { |
| Offset = -Offset; |
| isSub = true; |
| } |
| |
| // Attempt to fold address comp. if opcode has offset bits |
| if (NumBits > 0) { |
| // Common case: small offset, fits into instruction. |
| MachineOperand &ImmOp = MI.getOperand(ImmIdx); |
| int ImmedOffset = Offset / Scale; |
| unsigned Mask = (1 << NumBits) - 1; |
| if ((unsigned)Offset <= Mask * Scale) { |
| // Replace the FrameIndex with sp |
| MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); |
| // FIXME: When addrmode2 goes away, this will simplify (like the |
| // T2 version), as the LDR.i12 versions don't need the encoding |
| // tricks for the offset value. |
| if (isSub) { |
| if (AddrMode == ARMII::AddrMode_i12) |
| ImmedOffset = -ImmedOffset; |
| else |
| ImmedOffset |= 1 << NumBits; |
| } |
| ImmOp.ChangeToImmediate(ImmedOffset); |
| Offset = 0; |
| return true; |
| } |
| |
| // Otherwise, it didn't fit. Pull in what we can to simplify the immed. |
| ImmedOffset = ImmedOffset & Mask; |
| if (isSub) { |
| if (AddrMode == ARMII::AddrMode_i12) |
| ImmedOffset = -ImmedOffset; |
| else |
| ImmedOffset |= 1 << NumBits; |
| } |
| ImmOp.ChangeToImmediate(ImmedOffset); |
| Offset &= ~(Mask*Scale); |
| } |
| } |
| |
| Offset = (isSub) ? -Offset : Offset; |
| return Offset == 0; |
| } |
| |
| /// analyzeCompare - For a comparison instruction, return the source registers |
| /// in SrcReg and SrcReg2 if having two register operands, and the value it |
| /// compares against in CmpValue. Return true if the comparison instruction |
| /// can be analyzed. |
| bool ARMBaseInstrInfo:: |
| analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2, |
| int &CmpMask, int &CmpValue) const { |
| switch (MI->getOpcode()) { |
| default: break; |
| case ARM::CMPri: |
| case ARM::t2CMPri: |
| SrcReg = MI->getOperand(0).getReg(); |
| SrcReg2 = 0; |
| CmpMask = ~0; |
| CmpValue = MI->getOperand(1).getImm(); |
| return true; |
| case ARM::CMPrr: |
| case ARM::t2CMPrr: |
| SrcReg = MI->getOperand(0).getReg(); |
| SrcReg2 = MI->getOperand(1).getReg(); |
| CmpMask = ~0; |
| CmpValue = 0; |
| return true; |
| case ARM::TSTri: |
| case ARM::t2TSTri: |
| SrcReg = MI->getOperand(0).getReg(); |
| SrcReg2 = 0; |
| CmpMask = MI->getOperand(1).getImm(); |
| CmpValue = 0; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// isSuitableForMask - Identify a suitable 'and' instruction that |
| /// operates on the given source register and applies the same mask |
| /// as a 'tst' instruction. Provide a limited look-through for copies. |
| /// When successful, MI will hold the found instruction. |
| static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg, |
| int CmpMask, bool CommonUse) { |
| switch (MI->getOpcode()) { |
| case ARM::ANDri: |
| case ARM::t2ANDri: |
| if (CmpMask != MI->getOperand(2).getImm()) |
| return false; |
| if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg()) |
| return true; |
| break; |
| case ARM::COPY: { |
| // Walk down one instruction which is potentially an 'and'. |
| const MachineInstr &Copy = *MI; |
| MachineBasicBlock::iterator AND( |
| llvm::next(MachineBasicBlock::iterator(MI))); |
| if (AND == MI->getParent()->end()) return false; |
| MI = AND; |
| return isSuitableForMask(MI, Copy.getOperand(0).getReg(), |
| CmpMask, true); |
| } |
| } |
| |
| return false; |
| } |
| |
| /// getSwappedCondition - assume the flags are set by MI(a,b), return |
| /// the condition code if we modify the instructions such that flags are |
| /// set by MI(b,a). |
| inline static ARMCC::CondCodes getSwappedCondition(ARMCC::CondCodes CC) { |
| switch (CC) { |
| default: return ARMCC::AL; |
| case ARMCC::EQ: return ARMCC::EQ; |
| case ARMCC::NE: return ARMCC::NE; |
| case ARMCC::HS: return ARMCC::LS; |
| case ARMCC::LO: return ARMCC::HI; |
| case ARMCC::HI: return ARMCC::LO; |
| case ARMCC::LS: return ARMCC::HS; |
| case ARMCC::GE: return ARMCC::LE; |
| case ARMCC::LT: return ARMCC::GT; |
| case ARMCC::GT: return ARMCC::LT; |
| case ARMCC::LE: return ARMCC::GE; |
| } |
| } |
| |
| /// isRedundantFlagInstr - check whether the first instruction, whose only |
| /// purpose is to update flags, can be made redundant. |
| /// CMPrr can be made redundant by SUBrr if the operands are the same. |
| /// CMPri can be made redundant by SUBri if the operands are the same. |
| /// This function can be extended later on. |
| inline static bool isRedundantFlagInstr(MachineInstr *CmpI, unsigned SrcReg, |
| unsigned SrcReg2, int ImmValue, |
| MachineInstr *OI) { |
| if ((CmpI->getOpcode() == ARM::CMPrr || |
| CmpI->getOpcode() == ARM::t2CMPrr) && |
| (OI->getOpcode() == ARM::SUBrr || |
| OI->getOpcode() == ARM::t2SUBrr) && |
| ((OI->getOperand(1).getReg() == SrcReg && |
| OI->getOperand(2).getReg() == SrcReg2) || |
| (OI->getOperand(1).getReg() == SrcReg2 && |
| OI->getOperand(2).getReg() == SrcReg))) |
| return true; |
| |
| if ((CmpI->getOpcode() == ARM::CMPri || |
| CmpI->getOpcode() == ARM::t2CMPri) && |
| (OI->getOpcode() == ARM::SUBri || |
| OI->getOpcode() == ARM::t2SUBri) && |
| OI->getOperand(1).getReg() == SrcReg && |
| OI->getOperand(2).getImm() == ImmValue) |
| return true; |
| return false; |
| } |
| |
| /// optimizeCompareInstr - Convert the instruction supplying the argument to the |
| /// comparison into one that sets the zero bit in the flags register; |
| /// Remove a redundant Compare instruction if an earlier instruction can set the |
| /// flags in the same way as Compare. |
| /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two |
| /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the |
| /// condition code of instructions which use the flags. |
| bool ARMBaseInstrInfo:: |
| optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2, |
| int CmpMask, int CmpValue, |
| const MachineRegisterInfo *MRI) const { |
| // Get the unique definition of SrcReg. |
| MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); |
| if (!MI) return false; |
| |
| // Masked compares sometimes use the same register as the corresponding 'and'. |
| if (CmpMask != ~0) { |
| if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(MI)) { |
| MI = 0; |
| for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SrcReg), |
| UE = MRI->use_end(); UI != UE; ++UI) { |
| if (UI->getParent() != CmpInstr->getParent()) continue; |
| MachineInstr *PotentialAND = &*UI; |
| if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) || |
| isPredicated(PotentialAND)) |
| continue; |
| MI = PotentialAND; |
| break; |
| } |
| if (!MI) return false; |
| } |
| } |
| |
| // Get ready to iterate backward from CmpInstr. |
| MachineBasicBlock::iterator I = CmpInstr, E = MI, |
| B = CmpInstr->getParent()->begin(); |
| |
| // Early exit if CmpInstr is at the beginning of the BB. |
| if (I == B) return false; |
| |
| // There are two possible candidates which can be changed to set CPSR: |
| // One is MI, the other is a SUB instruction. |
| // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). |
| // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue). |
| MachineInstr *Sub = NULL; |
| if (SrcReg2 != 0) |
| // MI is not a candidate for CMPrr. |
| MI = NULL; |
| else if (MI->getParent() != CmpInstr->getParent() || CmpValue != 0) { |
| // Conservatively refuse to convert an instruction which isn't in the same |
| // BB as the comparison. |
| // For CMPri, we need to check Sub, thus we can't return here. |
| if (CmpInstr->getOpcode() == ARM::CMPri || |
| CmpInstr->getOpcode() == ARM::t2CMPri) |
| MI = NULL; |
| else |
| return false; |
| } |
| |
| // Check that CPSR isn't set between the comparison instruction and the one we |
| // want to change. At the same time, search for Sub. |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| --I; |
| for (; I != E; --I) { |
| const MachineInstr &Instr = *I; |
| |
| if (Instr.modifiesRegister(ARM::CPSR, TRI) || |
| Instr.readsRegister(ARM::CPSR, TRI)) |
| // This instruction modifies or uses CPSR after the one we want to |
| // change. We can't do this transformation. |
| return false; |
| |
| // Check whether CmpInstr can be made redundant by the current instruction. |
| if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, &*I)) { |
| Sub = &*I; |
| break; |
| } |
| |
| if (I == B) |
| // The 'and' is below the comparison instruction. |
| return false; |
| } |
| |
| // Return false if no candidates exist. |
| if (!MI && !Sub) |
| return false; |
| |
| // The single candidate is called MI. |
| if (!MI) MI = Sub; |
| |
| // We can't use a predicated instruction - it doesn't always write the flags. |
| if (isPredicated(MI)) |
| return false; |
| |
| switch (MI->getOpcode()) { |
| default: break; |
| case ARM::RSBrr: |
| case ARM::RSBri: |
| case ARM::RSCrr: |
| case ARM::RSCri: |
| case ARM::ADDrr: |
| case ARM::ADDri: |
| case ARM::ADCrr: |
| case ARM::ADCri: |
| case ARM::SUBrr: |
| case ARM::SUBri: |
| case ARM::SBCrr: |
| case ARM::SBCri: |
| case ARM::t2RSBri: |
| case ARM::t2ADDrr: |
| case ARM::t2ADDri: |
| case ARM::t2ADCrr: |
| case ARM::t2ADCri: |
| case ARM::t2SUBrr: |
| case ARM::t2SUBri: |
| case ARM::t2SBCrr: |
| case ARM::t2SBCri: |
| case ARM::ANDrr: |
| case ARM::ANDri: |
| case ARM::t2ANDrr: |
| case ARM::t2ANDri: |
| case ARM::ORRrr: |
| case ARM::ORRri: |
| case ARM::t2ORRrr: |
| case ARM::t2ORRri: |
| case ARM::EORrr: |
| case ARM::EORri: |
| case ARM::t2EORrr: |
| case ARM::t2EORri: { |
| // Scan forward for the use of CPSR |
| // When checking against MI: if it's a conditional code requires |
| // checking of V bit, then this is not safe to do. |
| // It is safe to remove CmpInstr if CPSR is redefined or killed. |
| // If we are done with the basic block, we need to check whether CPSR is |
| // live-out. |
| SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4> |
| OperandsToUpdate; |
| bool isSafe = false; |
| I = CmpInstr; |
| E = CmpInstr->getParent()->end(); |
| while (!isSafe && ++I != E) { |
| const MachineInstr &Instr = *I; |
| for (unsigned IO = 0, EO = Instr.getNumOperands(); |
| !isSafe && IO != EO; ++IO) { |
| const MachineOperand &MO = Instr.getOperand(IO); |
| if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) { |
| isSafe = true; |
| break; |
| } |
| if (!MO.isReg() || MO.getReg() != ARM::CPSR) |
| continue; |
| if (MO.isDef()) { |
| isSafe = true; |
| break; |
| } |
| // Condition code is after the operand before CPSR. |
| ARMCC::CondCodes CC = (ARMCC::CondCodes)Instr.getOperand(IO-1).getImm(); |
| if (Sub) { |
| ARMCC::CondCodes NewCC = getSwappedCondition(CC); |
| if (NewCC == ARMCC::AL) |
| return false; |
| // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based |
| // on CMP needs to be updated to be based on SUB. |
| // Push the condition code operands to OperandsToUpdate. |
| // If it is safe to remove CmpInstr, the condition code of these |
| // operands will be modified. |
| if (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && |
| Sub->getOperand(2).getReg() == SrcReg) |
| OperandsToUpdate.push_back(std::make_pair(&((*I).getOperand(IO-1)), |
| NewCC)); |
| } |
| else |
| switch (CC) { |
| default: |
| // CPSR can be used multiple times, we should continue. |
| break; |
| case ARMCC::VS: |
| case ARMCC::VC: |
| case ARMCC::GE: |
| case ARMCC::LT: |
| case ARMCC::GT: |
| case ARMCC::LE: |
| return false; |
| } |
| } |
| } |
| |
| // If CPSR is not killed nor re-defined, we should check whether it is |
| // live-out. If it is live-out, do not optimize. |
| if (!isSafe) { |
| MachineBasicBlock *MBB = CmpInstr->getParent(); |
| for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), |
| SE = MBB->succ_end(); SI != SE; ++SI) |
| if ((*SI)->isLiveIn(ARM::CPSR)) |
| return false; |
| } |
| |
| // Toggle the optional operand to CPSR. |
| MI->getOperand(5).setReg(ARM::CPSR); |
| MI->getOperand(5).setIsDef(true); |
| assert(!isPredicated(MI) && "Can't use flags from predicated instruction"); |
| CmpInstr->eraseFromParent(); |
| |
| // Modify the condition code of operands in OperandsToUpdate. |
| // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to |
| // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. |
| for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++) |
| OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool ARMBaseInstrInfo::FoldImmediate(MachineInstr *UseMI, |
| MachineInstr *DefMI, unsigned Reg, |
| MachineRegisterInfo *MRI) const { |
| // Fold large immediates into add, sub, or, xor. |
| unsigned DefOpc = DefMI->getOpcode(); |
| if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm) |
| return false; |
| if (!DefMI->getOperand(1).isImm()) |
| // Could be t2MOVi32imm <ga:xx> |
| return false; |
| |
| if (!MRI->hasOneNonDBGUse(Reg)) |
| return false; |
| |
| const MCInstrDesc &DefMCID = DefMI->getDesc(); |
| if (DefMCID.hasOptionalDef()) { |
| unsigned NumOps = DefMCID.getNumOperands(); |
| const MachineOperand &MO = DefMI->getOperand(NumOps-1); |
| if (MO.getReg() == ARM::CPSR && !MO.isDead()) |
| // If DefMI defines CPSR and it is not dead, it's obviously not safe |
| // to delete DefMI. |
| return false; |
| } |
| |
| const MCInstrDesc &UseMCID = UseMI->getDesc(); |
| if (UseMCID.hasOptionalDef()) { |
| unsigned NumOps = UseMCID.getNumOperands(); |
| if (UseMI->getOperand(NumOps-1).getReg() == ARM::CPSR) |
| // If the instruction sets the flag, do not attempt this optimization |
| // since it may change the semantics of the code. |
| return false; |
| } |
| |
| unsigned UseOpc = UseMI->getOpcode(); |
| unsigned NewUseOpc = 0; |
| uint32_t ImmVal = (uint32_t)DefMI->getOperand(1).getImm(); |
| uint32_t SOImmValV1 = 0, SOImmValV2 = 0; |
| bool Commute = false; |
| switch (UseOpc) { |
| default: return false; |
| case ARM::SUBrr: |
| case ARM::ADDrr: |
| case ARM::ORRrr: |
| case ARM::EORrr: |
| case ARM::t2SUBrr: |
| case ARM::t2ADDrr: |
| case ARM::t2ORRrr: |
| case ARM::t2EORrr: { |
| Commute = UseMI->getOperand(2).getReg() != Reg; |
| switch (UseOpc) { |
| default: break; |
| case ARM::SUBrr: { |
| if (Commute) |
| return false; |
| ImmVal = -ImmVal; |
| NewUseOpc = ARM::SUBri; |
| // Fallthrough |
| } |
| case ARM::ADDrr: |
| case ARM::ORRrr: |
| case ARM::EORrr: { |
| if (!ARM_AM::isSOImmTwoPartVal(ImmVal)) |
| return false; |
| SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); |
| SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); |
| switch (UseOpc) { |
| default: break; |
| case ARM::ADDrr: NewUseOpc = ARM::ADDri; break; |
| case ARM::ORRrr: NewUseOpc = ARM::ORRri; break; |
| case ARM::EORrr: NewUseOpc = ARM::EORri; break; |
| } |
| break; |
| } |
| case ARM::t2SUBrr: { |
| if (Commute) |
| return false; |
| ImmVal = -ImmVal; |
| NewUseOpc = ARM::t2SUBri; |
| // Fallthrough |
| } |
| case ARM::t2ADDrr: |
| case ARM::t2ORRrr: |
| case ARM::t2EORrr: { |
| if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal)) |
| return false; |
| SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); |
| SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); |
| switch (UseOpc) { |
| default: break; |
| case ARM::t2ADDrr: NewUseOpc = ARM::t2ADDri; break; |
| case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break; |
| case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break; |
| } |
| break; |
| } |
| } |
| } |
| } |
| |
| unsigned OpIdx = Commute ? 2 : 1; |
| unsigned Reg1 = UseMI->getOperand(OpIdx).getReg(); |
| bool isKill = UseMI->getOperand(OpIdx).isKill(); |
| unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg)); |
| AddDefaultCC(AddDefaultPred(BuildMI(*UseMI->getParent(), |
| UseMI, UseMI->getDebugLoc(), |
| get(NewUseOpc), NewReg) |
| .addReg(Reg1, getKillRegState(isKill)) |
| .addImm(SOImmValV1))); |
| UseMI->setDesc(get(NewUseOpc)); |
| UseMI->getOperand(1).setReg(NewReg); |
| UseMI->getOperand(1).setIsKill(); |
| UseMI->getOperand(2).ChangeToImmediate(SOImmValV2); |
| DefMI->eraseFromParent(); |
| return true; |
| } |
| |
| static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData, |
| const MachineInstr *MI) { |
| switch (MI->getOpcode()) { |
| default: { |
| const MCInstrDesc &Desc = MI->getDesc(); |
| int UOps = ItinData->getNumMicroOps(Desc.getSchedClass()); |
| assert(UOps >= 0 && "bad # UOps"); |
| return UOps; |
| } |
| |
| case ARM::LDRrs: |
| case ARM::LDRBrs: |
| case ARM::STRrs: |
| case ARM::STRBrs: { |
| unsigned ShOpVal = MI->getOperand(3).getImm(); |
| bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; |
| unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); |
| if (!isSub && |
| (ShImm == 0 || |
| ((ShImm == 1 || ShImm == 2 || ShImm == 3) && |
| ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) |
| return 1; |
| return 2; |
| } |
| |
| case ARM::LDRH: |
| case ARM::STRH: { |
| if (!MI->getOperand(2).getReg()) |
| return 1; |
| |
| unsigned ShOpVal = MI->getOperand(3).getImm(); |
| bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; |
| unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); |
| if (!isSub && |
| (ShImm == 0 || |
| ((ShImm == 1 || ShImm == 2 || ShImm == 3) && |
| ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) |
| return 1; |
| return 2; |
| } |
| |
| case ARM::LDRSB: |
| case ARM::LDRSH: |
| return (ARM_AM::getAM3Op(MI->getOperand(3).getImm()) == ARM_AM::sub) ? 3:2; |
| |
| case ARM::LDRSB_POST: |
| case ARM::LDRSH_POST: { |
| unsigned Rt = MI->getOperand(0).getReg(); |
| unsigned Rm = MI->getOperand(3).getReg(); |
| return (Rt == Rm) ? 4 : 3; |
| } |
| |
| case ARM::LDR_PRE_REG: |
| case ARM::LDRB_PRE_REG: { |
| unsigned Rt = MI->getOperand(0).getReg(); |
| unsigned Rm = MI->getOperand(3).getReg(); |
| if (Rt == Rm) |
| return 3; |
| unsigned ShOpVal = MI->getOperand(4).getImm(); |
| bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; |
| unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); |
| if (!isSub && |
| (ShImm == 0 || |
| ((ShImm == 1 || ShImm == 2 || ShImm == 3) && |
| ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) |
| return 2; |
| return 3; |
| } |
| |
| case ARM::STR_PRE_REG: |
| case ARM::STRB_PRE_REG: { |
| unsigned ShOpVal = MI->getOperand(4).getImm(); |
| bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; |
| unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); |
| if (!isSub && |
| (ShImm == 0 || |
| ((ShImm == 1 || ShImm == 2 || ShImm == 3) && |
| ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) |
| return 2; |
| return 3; |
| } |
| |
| case ARM::LDRH_PRE: |
| case ARM::STRH_PRE: { |
| unsigned Rt = MI->getOperand(0).getReg(); |
| unsigned Rm = MI->getOperand(3).getReg(); |
| if (!Rm) |
| return 2; |
| if (Rt == Rm) |
| return 3; |
| return (ARM_AM::getAM3Op(MI->getOperand(4).getImm()) == ARM_AM::sub) |
| ? 3 : 2; |
| } |
| |
| case ARM::LDR_POST_REG: |
| case ARM::LDRB_POST_REG: |
| case ARM::LDRH_POST: { |
| unsigned Rt = MI->getOperand(0).getReg(); |
| unsigned Rm = MI->getOperand(3).getReg(); |
| return (Rt == Rm) ? 3 : 2; |
| } |
| |
| case ARM::LDR_PRE_IMM: |
| case ARM::LDRB_PRE_IMM: |
| case ARM::LDR_POST_IMM: |
| case ARM::LDRB_POST_IMM: |
| case ARM::STRB_POST_IMM: |
| case ARM::STRB_POST_REG: |
| case ARM::STRB_PRE_IMM: |
| case ARM::STRH_POST: |
| case ARM::STR_POST_IMM: |
| case ARM::STR_POST_REG: |
| case ARM::STR_PRE_IMM: |
| return 2; |
| |
| case ARM::LDRSB_PRE: |
| case ARM::LDRSH_PRE: { |
| unsigned Rm = MI->getOperand(3).getReg(); |
| if (Rm == 0) |
| return 3; |
| unsigned Rt = MI->getOperand(0).getReg(); |
| if (Rt == Rm) |
| return 4; |
| unsigned ShOpVal = MI->getOperand(4).getImm(); |
| bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; |
| unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); |
| if (!isSub && |
| (ShImm == 0 || |
| ((ShImm == 1 || ShImm == 2 || ShImm == 3) && |
| ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) |
| return 3; |
| return 4; |
| } |
| |
| case ARM::LDRD: { |
| unsigned Rt = MI->getOperand(0).getReg(); |
| unsigned Rn = MI->getOperand(2).getReg(); |
| unsigned Rm = MI->getOperand(3).getReg(); |
| if (Rm) |
| return (ARM_AM::getAM3Op(MI->getOperand(4).getImm()) == ARM_AM::sub) ?4:3; |
| return (Rt == Rn) ? 3 : 2; |
| } |
| |
| case ARM::STRD: { |
| unsigned Rm = MI->getOperand(3).getReg(); |
| if (Rm) |
| return (ARM_AM::getAM3Op(MI->getOperand(4).getImm()) == ARM_AM::sub) ?4:3; |
| return 2; |
| } |
| |
| case ARM::LDRD_POST: |
| case ARM::t2LDRD_POST: |
| return 3; |
| |
| case ARM::STRD_POST: |
| case ARM::t2STRD_POST: |
| return 4; |
| |
| case ARM::LDRD_PRE: { |
| unsigned Rt = MI->getOperand(0).getReg(); |
| unsigned Rn = MI->getOperand(3).getReg(); |
| unsigned Rm = MI->getOperand(4).getReg(); |
| if (Rm) |
| return (ARM_AM::getAM3Op(MI->getOperand(5).getImm()) == ARM_AM::sub) ?5:4; |
| return (Rt == Rn) ? 4 : 3; |
| } |
| |
| case ARM::t2LDRD_PRE: { |
| unsigned Rt = MI->getOperand(0).getReg(); |
| unsigned Rn = MI->getOperand(3).getReg(); |
| return (Rt == Rn) ? 4 : 3; |
| } |
| |
| case ARM::STRD_PRE: { |
| unsigned Rm = MI->getOperand(4).getReg(); |
| if (Rm) |
| return (ARM_AM::getAM3Op(MI->getOperand(5).getImm()) == ARM_AM::sub) ?5:4; |
| return 3; |
| } |
| |
| case ARM::t2STRD_PRE: |
| return 3; |
| |
| case ARM::t2LDR_POST: |
| case ARM::t2LDRB_POST: |
| case ARM::t2LDRB_PRE: |
| case ARM::t2LDRSBi12: |
| case ARM::t2LDRSBi8: |
| case ARM::t2LDRSBpci: |
| case ARM::t2LDRSBs: |
| case ARM::t2LDRH_POST: |
| case ARM::t2LDRH_PRE: |
| case ARM::t2LDRSBT: |
| case ARM::t2LDRSB_POST: |
| case ARM::t2LDRSB_PRE: |
| case ARM::t2LDRSH_POST: |
| case ARM::t2LDRSH_PRE: |
| case ARM::t2LDRSHi12: |
| case ARM::t2LDRSHi8: |
| case ARM::t2LDRSHpci: |
| case ARM::t2LDRSHs: |
| return 2; |
| |
| case ARM::t2LDRDi8: { |
| unsigned Rt = MI->getOperand(0).getReg(); |
| unsigned Rn = MI->getOperand(2).getReg(); |
| return (Rt == Rn) ? 3 : 2; |
| } |
| |
| case ARM::t2STRB_POST: |
| case ARM::t2STRB_PRE: |
| case ARM::t2STRBs: |
| case ARM::t2STRDi8: |
| case ARM::t2STRH_POST: |
| case ARM::t2STRH_PRE: |
| case ARM::t2STRHs: |
| case ARM::t2STR_POST: |
| case ARM::t2STR_PRE: |
| case ARM::t2STRs: |
| return 2; |
| } |
| } |
| |
| // Return the number of 32-bit words loaded by LDM or stored by STM. If this |
| // can't be easily determined return 0 (missing MachineMemOperand). |
| // |
| // FIXME: The current MachineInstr design does not support relying on machine |
| // mem operands to determine the width of a memory access. Instead, we expect |
| // the target to provide this information based on the instruction opcode and |
| // operands. However, using MachineMemOperand is a the best solution now for |
| // two reasons: |
| // |
| // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI |
| // operands. This is much more dangerous than using the MachineMemOperand |
| // sizes because CodeGen passes can insert/remove optional machine operands. In |
| // fact, it's totally incorrect for preRA passes and appears to be wrong for |
| // postRA passes as well. |
| // |
| // 2) getNumLDMAddresses is only used by the scheduling machine model and any |
| // machine model that calls this should handle the unknown (zero size) case. |
| // |
| // Long term, we should require a target hook that verifies MachineMemOperand |
| // sizes during MC lowering. That target hook should be local to MC lowering |
| // because we can't ensure that it is aware of other MI forms. Doing this will |
| // ensure that MachineMemOperands are correctly propagated through all passes. |
| unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr *MI) const { |
| unsigned Size = 0; |
| for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), |
| E = MI->memoperands_end(); I != E; ++I) { |
| Size += (*I)->getSize(); |
| } |
| return Size / 4; |
| } |
| |
| unsigned |
| ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, |
| const MachineInstr *MI) const { |
| if (!ItinData || ItinData->isEmpty()) |
| return 1; |
| |
| const MCInstrDesc &Desc = MI->getDesc(); |
| unsigned Class = Desc.getSchedClass(); |
| int ItinUOps = ItinData->getNumMicroOps(Class); |
| if (ItinUOps >= 0) { |
| if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore())) |
| return getNumMicroOpsSwiftLdSt(ItinData, MI); |
| |
| return ItinUOps; |
| } |
| |
| unsigned Opc = MI->getOpcode(); |
| switch (Opc) { |
| default: |
| llvm_unreachable("Unexpected multi-uops instruction!"); |
| case ARM::VLDMQIA: |
| case ARM::VSTMQIA: |
| return 2; |
| |
| // The number of uOps for load / store multiple are determined by the number |
| // registers. |
| // |
| // On Cortex-A8, each pair of register loads / stores can be scheduled on the |
| // same cycle. The scheduling for the first load / store must be done |
| // separately by assuming the address is not 64-bit aligned. |
| // |
| // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address |
| // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON |
| // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1. |
| case ARM::VLDMDIA: |
| case ARM::VLDMDIA_UPD: |
| case ARM::VLDMDDB_UPD: |
| case ARM::VLDMSIA: |
| case ARM::VLDMSIA_UPD: |
| case ARM::VLDMSDB_UPD: |
| case ARM::VSTMDIA: |
| case ARM::VSTMDIA_UPD: |
| case ARM::VSTMDDB_UPD: |
| case ARM::VSTMSIA: |
| case ARM::VSTMSIA_UPD: |
| case ARM::VSTMSDB_UPD: { |
| unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands(); |
| return (NumRegs / 2) + (NumRegs % 2) + 1; |
| } |
| |
| case ARM::LDMIA_RET: |
| case ARM::LDMIA: |
| case ARM::LDMDA: |
| case ARM::LDMDB: |
| case ARM::LDMIB: |
| case ARM::LDMIA_UPD: |
| case ARM::LDMDA_UPD: |
| case ARM::LDMDB_UPD: |
| case ARM::LDMIB_UPD: |
| case ARM::STMIA: |
| case ARM::STMDA: |
| case ARM::STMDB: |
| case ARM::STMIB: |
| case ARM::STMIA_UPD: |
| case ARM::STMDA_UPD: |
| case ARM::STMDB_UPD: |
| case ARM::STMIB_UPD: |
| case ARM::tLDMIA: |
| case ARM::tLDMIA_UPD: |
| case ARM::tSTMIA_UPD: |
| case ARM::tPOP_RET: |
| case ARM::tPOP: |
| case ARM::tPUSH: |
| case ARM::t2LDMIA_RET: |
| case ARM::t2LDMIA: |
| case ARM::t2LDMDB: |
| case ARM::t2LDMIA_UPD: |
| case ARM::t2LDMDB_UPD: |
| case ARM::t2STMIA: |
| case ARM::t2STMDB: |
| case ARM::t2STMIA_UPD: |
| case ARM::t2STMDB_UPD: { |
| unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands() + 1; |
| if (Subtarget.isSwift()) { |
| int UOps = 1 + NumRegs; // One for address computation, one for each ld / st. |
| switch (Opc) { |
| default: break; |
| case ARM::VLDMDIA_UPD: |
| case ARM::VLDMDDB_UPD: |
| case ARM::VLDMSIA_UPD: |
| case ARM::VLDMSDB_UPD: |
| case ARM::VSTMDIA_UPD: |
| case ARM::VSTMDDB_UPD: |
| case ARM::VSTMSIA_UPD: |
| case ARM::VSTMSDB_UPD: |
| case ARM::LDMIA_UPD: |
| case ARM::LDMDA_UPD: |
| case ARM::LDMDB_UPD: |
| case ARM::LDMIB_UPD: |
| case ARM::STMIA_UPD: |
| case ARM::STMDA_UPD: |
| case ARM::STMDB_UPD: |
| case ARM::STMIB_UPD: |
| case ARM::tLDMIA_UPD: |
| case ARM::tSTMIA_UPD: |
| case ARM::t2LDMIA_UPD: |
| case ARM::t2LDMDB_UPD: |
| case ARM::t2STMIA_UPD: |
| case ARM::t2STMDB_UPD: |
| ++UOps; // One for base register writeback. |
| break; |
| case ARM::LDMIA_RET: |
| case ARM::tPOP_RET: |
| case ARM::t2LDMIA_RET: |
| UOps += 2; // One for base reg wb, one for write to pc. |
| break; |
| } |
| return UOps; |
| } else if (Subtarget.isCortexA8()) { |
| if (NumRegs < 4) |
| return 2; |
| // 4 registers would be issued: 2, 2. |
| // 5 registers would be issued: 2, 2, 1. |
| int A8UOps = (NumRegs / 2); |
| if (NumRegs % 2) |
| ++A8UOps; |
| return A8UOps; |
| } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { |
| int A9UOps = (NumRegs / 2); |
| // If there are odd number of registers or if it's not 64-bit aligned, |
| // then it takes an extra AGU (Address Generation Unit) cycle. |
| if ((NumRegs % 2) || |
| !MI->hasOneMemOperand() || |
| (*MI->memoperands_begin())->getAlignment() < 8) |
| ++A9UOps; |
| return A9UOps; |
| } else { |
| // Assume the worst. |
| return NumRegs; |
| } |
| } |
| } |
| } |
| |
| int |
| ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData, |
| const MCInstrDesc &DefMCID, |
| unsigned DefClass, |
| unsigned DefIdx, unsigned DefAlign) const { |
| int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; |
| if (RegNo <= 0) |
| // Def is the address writeback. |
| return ItinData->getOperandCycle(DefClass, DefIdx); |
| |
| int DefCycle; |
| if (Subtarget.isCortexA8()) { |
| // (regno / 2) + (regno % 2) + 1 |
| DefCycle = RegNo / 2 + 1; |
| if (RegNo % 2) |
| ++DefCycle; |
| } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { |
| DefCycle = RegNo; |
| bool isSLoad = false; |
| |
| switch (DefMCID.getOpcode()) { |
| default: break; |
| case ARM::VLDMSIA: |
| case ARM::VLDMSIA_UPD: |
| case ARM::VLDMSDB_UPD: |
| isSLoad = true; |
| break; |
| } |
| |
| // If there are odd number of 'S' registers or if it's not 64-bit aligned, |
| // then it takes an extra cycle. |
| if ((isSLoad && (RegNo % 2)) || DefAlign < 8) |
| ++DefCycle; |
| } else { |
| // Assume the worst. |
| DefCycle = RegNo + 2; |
| } |
| |
| return DefCycle; |
| } |
| |
| int |
| ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData, |
| const MCInstrDesc &DefMCID, |
| unsigned DefClass, |
| unsigned DefIdx, unsigned DefAlign) const { |
| int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; |
| if (RegNo <= 0) |
| // Def is the address writeback. |
| return ItinData->getOperandCycle(DefClass, DefIdx); |
| |
| int DefCycle; |
| if (Subtarget.isCortexA8()) { |
| // 4 registers would be issued: 1, 2, 1. |
| // 5 registers would be issued: 1, 2, 2. |
| DefCycle = RegNo / 2; |
| if (DefCycle < 1) |
| DefCycle = 1; |
| // Result latency is issue cycle + 2: E2. |
| DefCycle += 2; |
| } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { |
| DefCycle = (RegNo / 2); |
| // If there are odd number of registers or if it's not 64-bit aligned, |
| // then it takes an extra AGU (Address Generation Unit) cycle. |
| if ((RegNo % 2) || DefAlign < 8) |
| ++DefCycle; |
| // Result latency is AGU cycles + 2. |
| DefCycle += 2; |
| } else { |
| // Assume the worst. |
| DefCycle = RegNo + 2; |
| } |
| |
| return DefCycle; |
| } |
| |
| int |
| ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData, |
| const MCInstrDesc &UseMCID, |
| unsigned UseClass, |
| unsigned UseIdx, unsigned UseAlign) const { |
| int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; |
| if (RegNo <= 0) |
| return ItinData->getOperandCycle(UseClass, UseIdx); |
| |
| int UseCycle; |
| if (Subtarget.isCortexA8()) { |
| // (regno / 2) + (regno % 2) + 1 |
| UseCycle = RegNo / 2 + 1; |
| if (RegNo % 2) |
| ++UseCycle; |
| } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { |
| UseCycle = RegNo; |
| bool isSStore = false; |
| |
| switch (UseMCID.getOpcode()) { |
| default: break; |
| case ARM::VSTMSIA: |
| case ARM::VSTMSIA_UPD: |
| case ARM::VSTMSDB_UPD: |
| isSStore = true; |
| break; |
| } |
| |
| // If there are odd number of 'S' registers or if it's not 64-bit aligned, |
| // then it takes an extra cycle. |
| if ((isSStore && (RegNo % 2)) || UseAlign < 8) |
| ++UseCycle; |
| } else { |
| // Assume the worst. |
| UseCycle = RegNo + 2; |
| } |
| |
| return UseCycle; |
| } |
| |
| int |
| ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData, |
| const MCInstrDesc &UseMCID, |
| unsigned UseClass, |
| unsigned UseIdx, unsigned UseAlign) const { |
| int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; |
| if (RegNo <= 0) |
| return ItinData->getOperandCycle(UseClass, UseIdx); |
| |
| int UseCycle; |
| if (Subtarget.isCortexA8()) { |
| UseCycle = RegNo / 2; |
| if (UseCycle < 2) |
| UseCycle = 2; |
| // Read in E3. |
| UseCycle += 2; |
| } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { |
| UseCycle = (RegNo / 2); |
| // If there are odd number of registers or if it's not 64-bit aligned, |
| // then it takes an extra AGU (Address Generation Unit) cycle. |
| if ((RegNo % 2) || UseAlign < 8) |
| ++UseCycle; |
| } else { |
| // Assume the worst. |
| UseCycle = 1; |
| } |
| return UseCycle; |
| } |
| |
| int |
| ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, |
| const MCInstrDesc &DefMCID, |
| unsigned DefIdx, unsigned DefAlign, |
| const MCInstrDesc &UseMCID, |
| unsigned UseIdx, unsigned UseAlign) const { |
| unsigned DefClass = DefMCID.getSchedClass(); |
| unsigned UseClass = UseMCID.getSchedClass(); |
| |
| if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands()) |
| return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); |
| |
| // This may be a def / use of a variable_ops instruction, the operand |
| // latency might be determinable dynamically. Let the target try to |
| // figure it out. |
| int DefCycle = -1; |
| bool LdmBypass = false; |
| switch (DefMCID.getOpcode()) { |
| default: |
| DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); |
| break; |
| |
| case ARM::VLDMDIA: |
| case ARM::VLDMDIA_UPD: |
| case ARM::VLDMDDB_UPD: |
| case ARM::VLDMSIA: |
| case ARM::VLDMSIA_UPD: |
| case ARM::VLDMSDB_UPD: |
| DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); |
| break; |
| |
| case ARM::LDMIA_RET: |
| case ARM::LDMIA: |
| case ARM::LDMDA: |
| case ARM::LDMDB: |
| case ARM::LDMIB: |
| case ARM::LDMIA_UPD: |
| case ARM::LDMDA_UPD: |
| case ARM::LDMDB_UPD: |
| case ARM::LDMIB_UPD: |
| case ARM::tLDMIA: |
| case ARM::tLDMIA_UPD: |
| case ARM::tPUSH: |
| case ARM::t2LDMIA_RET: |
| case ARM::t2LDMIA: |
| case ARM::t2LDMDB: |
| case ARM::t2LDMIA_UPD: |
| case ARM::t2LDMDB_UPD: |
| LdmBypass = 1; |
| DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); |
| break; |
| } |
| |
| if (DefCycle == -1) |
| // We can't seem to determine the result latency of the def, assume it's 2. |
| DefCycle = 2; |
| |
| int UseCycle = -1; |
| switch (UseMCID.getOpcode()) { |
| default: |
| UseCycle = ItinData->getOperandCycle(UseClass, UseIdx); |
| break; |
| |
| case ARM::VSTMDIA: |
| case ARM::VSTMDIA_UPD: |
| case ARM::VSTMDDB_UPD: |
| case ARM::VSTMSIA: |
| case ARM::VSTMSIA_UPD: |
| case ARM::VSTMSDB_UPD: |
| UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); |
| break; |
| |
| case ARM::STMIA: |
| case ARM::STMDA: |
| case ARM::STMDB: |
| case ARM::STMIB: |
| case ARM::STMIA_UPD: |
| case ARM::STMDA_UPD: |
| case ARM::STMDB_UPD: |
| case ARM::STMIB_UPD: |
| case ARM::tSTMIA_UPD: |
| case ARM::tPOP_RET: |
| case ARM::tPOP: |
| case ARM::t2STMIA: |
| case ARM::t2STMDB: |
| case ARM::t2STMIA_UPD: |
| case ARM::t2STMDB_UPD: |
| UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); |
| break; |
| } |
| |
| if (UseCycle == -1) |
| // Assume it's read in the first stage. |
| UseCycle = 1; |
| |
| UseCycle = DefCycle - UseCycle + 1; |
| if (UseCycle > 0) { |
| if (LdmBypass) { |
| // It's a variable_ops instruction so we can't use DefIdx here. Just use |
| // first def operand. |
| if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1, |
| UseClass, UseIdx)) |
| --UseCycle; |
| } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx, |
| UseClass, UseIdx)) { |
| --UseCycle; |
| } |
| } |
| |
| return UseCycle; |
| } |
| |
| static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI, |
| const MachineInstr *MI, unsigned Reg, |
| unsigned &DefIdx, unsigned &Dist) { |
| Dist = 0; |
| |
| MachineBasicBlock::const_iterator I = MI; ++I; |
| MachineBasicBlock::const_instr_iterator II = |
| llvm::prior(I.getInstrIterator()); |
| assert(II->isInsideBundle() && "Empty bundle?"); |
| |
| int Idx = -1; |
| while (II->isInsideBundle()) { |
| Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI); |
| if (Idx != -1) |
| break; |
| --II; |
| ++Dist; |
| } |
| |
| assert(Idx != -1 && "Cannot find bundled definition!"); |
| DefIdx = Idx; |
| return II; |
| } |
| |
| static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI, |
| const MachineInstr *MI, unsigned Reg, |
| unsigned &UseIdx, unsigned &Dist) { |
| Dist = 0; |
| |
| MachineBasicBlock::const_instr_iterator II = MI; ++II; |
| assert(II->isInsideBundle() && "Empty bundle?"); |
| MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end(); |
| |
| // FIXME: This doesn't properly handle multiple uses. |
| int Idx = -1; |
| while (II != E && II->isInsideBundle()) { |
| Idx = II->findRegisterUseOperandIdx(Reg, false, TRI); |
| if (Idx != -1) |
| break; |
| if (II->getOpcode() != ARM::t2IT) |
| ++Dist; |
| ++II; |
| } |
| |
| if (Idx == -1) { |
| Dist = 0; |
| return 0; |
| } |
| |
| UseIdx = Idx; |
| return II; |
| } |
| |
| /// Return the number of cycles to add to (or subtract from) the static |
| /// itinerary based on the def opcode and alignment. The caller will ensure that |
| /// adjusted latency is at least one cycle. |
| static int adjustDefLatency(const ARMSubtarget &Subtarget, |
| const MachineInstr *DefMI, |
| const MCInstrDesc *DefMCID, unsigned DefAlign) { |
| int Adjust = 0; |
| if (Subtarget.isCortexA8() || Subtarget.isLikeA9()) { |
| // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] |
| // variants are one cycle cheaper. |
| switch (DefMCID->getOpcode()) { |
| default: break; |
| case ARM::LDRrs: |
| case ARM::LDRBrs: { |
| unsigned ShOpVal = DefMI->getOperand(3).getImm(); |
| unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); |
| if (ShImm == 0 || |
| (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) |
| --Adjust; |
| break; |
| } |
| case ARM::t2LDRs: |
| case ARM::t2LDRBs: |
| case ARM::t2LDRHs: |
| case ARM::t2LDRSHs: { |
| // Thumb2 mode: lsl only. |
| unsigned ShAmt = DefMI->getOperand(3).getImm(); |
| if (ShAmt == 0 || ShAmt == 2) |
| --Adjust; |
| break; |
| } |
| } |
| } else if (Subtarget.isSwift()) { |
| // FIXME: Properly handle all of the latency adjustments for address |
| // writeback. |
| switch (DefMCID->getOpcode()) { |
| default: break; |
| case ARM::LDRrs: |
| case ARM::LDRBrs: { |
| unsigned ShOpVal = DefMI->getOperand(3).getImm(); |
| bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; |
| unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); |
| if (!isSub && |
| (ShImm == 0 || |
| ((ShImm == 1 || ShImm == 2 || ShImm == 3) && |
| ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) |
| Adjust -= 2; |
| else if (!isSub && |
| ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) |
| --Adjust; |
| break; |
| } |
| case ARM::t2LDRs: |
| case ARM::t2LDRBs: |
| case ARM::t2LDRHs: |
| case ARM::t2LDRSHs: { |
| // Thumb2 mode: lsl only. |
| unsigned ShAmt = DefMI->getOperand(3).getImm(); |
| if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3) |
| Adjust -= 2; |
| break; |
| } |
| } |
| } |
| |
| if (DefAlign < 8 && Subtarget.isLikeA9()) { |
| switch (DefMCID->getOpcode()) { |
| default: break; |
| case ARM::VLD1q8: |
| case ARM::VLD1q16: |
| case ARM::VLD1q32: |
| case ARM::VLD1q64: |
| case ARM::VLD1q8wb_fixed: |
| case ARM::VLD1q16wb_fixed: |
| case ARM::VLD1q32wb_fixed: |
| case ARM::VLD1q64wb_fixed: |
| case ARM::VLD1q8wb_register: |
| case ARM::VLD1q16wb_register: |
| case ARM::VLD1q32wb_register: |
| case ARM::VLD1q64wb_register: |
| case ARM::VLD2d8: |
| case ARM::VLD2d16: |
| case ARM::VLD2d32: |
| case ARM::VLD2q8: |
| case ARM::VLD2q16: |
| case ARM::VLD2q32: |
| case ARM::VLD2d8wb_fixed: |
| case ARM::VLD2d16wb_fixed: |
| case ARM::VLD2d32wb_fixed: |
| case ARM::VLD2q8wb_fixed: |
| case ARM::VLD2q16wb_fixed: |
| case ARM::VLD2q32wb_fixed: |
| case ARM::VLD2d8wb_register: |
| case ARM::VLD2d16wb_register: |
| case ARM::VLD2d32wb_register: |
| case ARM::VLD2q8wb_register: |
| case ARM::VLD2q16wb_register: |
| case ARM::VLD2q32wb_register: |
| case ARM::VLD3d8: |
| case ARM::VLD3d16: |
| case ARM::VLD3d32: |
| case ARM::VLD1d64T: |
| case ARM::VLD3d8_UPD: |
| case ARM::VLD3d16_UPD: |
| case ARM::VLD3d32_UPD: |
| case ARM::VLD1d64Twb_fixed: |
| case ARM::VLD1d64Twb_register: |
| case ARM::VLD3q8_UPD: |
| case ARM::VLD3q16_UPD: |
| case ARM::VLD3q32_UPD: |
| case ARM::VLD4d8: |
| case ARM::VLD4d16: |
| case ARM::VLD4d32: |
| case ARM::VLD1d64Q: |
| case ARM::VLD4d8_UPD: |
| case ARM::VLD4d16_UPD: |
| case ARM::VLD4d32_UPD: |
| case ARM::VLD1d64Qwb_fixed: |
| case ARM::VLD1d64Qwb_register: |
| case ARM::VLD4q8_UPD: |
| case ARM::VLD4q16_UPD: |
| case ARM::VLD4q32_UPD: |
| case ARM::VLD1DUPq8: |
| case ARM::VLD1DUPq16: |
| case ARM::VLD1DUPq32: |
| case ARM::VLD1DUPq8wb_fixed: |
| case ARM::VLD1DUPq16wb_fixed: |
| case ARM::VLD1DUPq32wb_fixed: |
| case ARM::VLD1DUPq8wb_register: |
| case ARM::VLD1DUPq16wb_register: |
| case ARM::VLD1DUPq32wb_register: |
| case ARM::VLD2DUPd8: |
| case ARM::VLD2DUPd16: |
| case ARM::VLD2DUPd32: |
| case ARM::VLD2DUPd8wb_fixed: |
| case ARM::VLD2DUPd16wb_fixed: |
| case ARM::VLD2DUPd32wb_fixed: |
| case ARM::VLD2DUPd8wb_register: |
| case ARM::VLD2DUPd16wb_register: |
| case ARM::VLD2DUPd32wb_register: |
| case ARM::VLD4DUPd8: |
| case ARM::VLD4DUPd16: |
| case ARM::VLD4DUPd32: |
| case ARM::VLD4DUPd8_UPD: |
| case ARM::VLD4DUPd16_UPD: |
| case ARM::VLD4DUPd32_UPD: |
| case ARM::VLD1LNd8: |
| case ARM::VLD1LNd16: |
| case ARM::VLD1LNd32: |
| case ARM::VLD1LNd8_UPD: |
| case ARM::VLD1LNd16_UPD: |
| case ARM::VLD1LNd32_UPD: |
| case ARM::VLD2LNd8: |
| case ARM::VLD2LNd16: |
| case ARM::VLD2LNd32: |
| case ARM::VLD2LNq16: |
| case ARM::VLD2LNq32: |
| case ARM::VLD2LNd8_UPD: |
| case ARM::VLD2LNd16_UPD: |
| case ARM::VLD2LNd32_UPD: |
| case ARM::VLD2LNq16_UPD: |
| case ARM::VLD2LNq32_UPD: |
| case ARM::VLD4LNd8: |
| case ARM::VLD4LNd16: |
| case ARM::VLD4LNd32: |
| case ARM::VLD4LNq16: |
| case ARM::VLD4LNq32: |
| case ARM::VLD4LNd8_UPD: |
| case ARM::VLD4LNd16_UPD: |
| case ARM::VLD4LNd32_UPD: |
| case ARM::VLD4LNq16_UPD: |
| case ARM::VLD4LNq32_UPD: |
| // If the address is not 64-bit aligned, the latencies of these |
| // instructions increases by one. |
| ++Adjust; |
| break; |
| } |
| } |
| return Adjust; |
| } |
| |
| |
| |
| int |
| ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, |
| const MachineInstr *DefMI, unsigned DefIdx, |
| const MachineInstr *UseMI, |
| unsigned UseIdx) const { |
| // No operand latency. The caller may fall back to getInstrLatency. |
| if (!ItinData || ItinData->isEmpty()) |
| return -1; |
| |
| const MachineOperand &DefMO = DefMI->getOperand(DefIdx); |
| unsigned Reg = DefMO.getReg(); |
| const MCInstrDesc *DefMCID = &DefMI->getDesc(); |
| const MCInstrDesc *UseMCID = &UseMI->getDesc(); |
| |
| unsigned DefAdj = 0; |
| if (DefMI->isBundle()) { |
| DefMI = getBundledDefMI(&getRegisterInfo(), DefMI, Reg, DefIdx, DefAdj); |
| DefMCID = &DefMI->getDesc(); |
| } |
| if (DefMI->isCopyLike() || DefMI->isInsertSubreg() || |
| DefMI->isRegSequence() || DefMI->isImplicitDef()) { |
| return 1; |
| } |
| |
| unsigned UseAdj = 0; |
| if (UseMI->isBundle()) { |
| unsigned NewUseIdx; |
| const MachineInstr *NewUseMI = getBundledUseMI(&getRegisterInfo(), UseMI, |
| Reg, NewUseIdx, UseAdj); |
| if (!NewUseMI) |
| return -1; |
| |
| UseMI = NewUseMI; |
| UseIdx = NewUseIdx; |
| UseMCID = &UseMI->getDesc(); |
| } |
| |
| if (Reg == ARM::CPSR) { |
| if (DefMI->getOpcode() == ARM::FMSTAT) { |
| // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?) |
| return Subtarget.isLikeA9() ? 1 : 20; |
| } |
| |
| // CPSR set and branch can be paired in the same cycle. |
| if (UseMI->isBranch()) |
| return 0; |
| |
| // Otherwise it takes the instruction latency (generally one). |
| unsigned Latency = getInstrLatency(ItinData, DefMI); |
| |
| // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to |
| // its uses. Instructions which are otherwise scheduled between them may |
| // incur a code size penalty (not able to use the CPSR setting 16-bit |
| // instructions). |
| if (Latency > 0 && Subtarget.isThumb2()) { |
| const MachineFunction *MF = DefMI->getParent()->getParent(); |
| if (MF->getFunction()->getAttributes(). |
| hasAttribute(AttributeSet::FunctionIndex, |
| Attribute::OptimizeForSize)) |
| --Latency; |
| } |
| return Latency; |
| } |
| |
| if (DefMO.isImplicit() || UseMI->getOperand(UseIdx).isImplicit()) |
| return -1; |
| |
| unsigned DefAlign = DefMI->hasOneMemOperand() |
| ? (*DefMI->memoperands_begin())->getAlignment() : 0; |
| unsigned UseAlign = UseMI->hasOneMemOperand() |
| ? (*UseMI->memoperands_begin())->getAlignment() : 0; |
| |
| // Get the itinerary's latency if possible, and handle variable_ops. |
| int Latency = getOperandLatency(ItinData, *DefMCID, DefIdx, DefAlign, |
| *UseMCID, UseIdx, UseAlign); |
| // Unable to find operand latency. The caller may resort to getInstrLatency. |
| if (Latency < 0) |
| return Latency; |
| |
| // Adjust for IT block position. |
| int Adj = DefAdj + UseAdj; |
| |
| // Adjust for dynamic def-side opcode variants not captured by the itinerary. |
| Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign); |
| if (Adj >= 0 || (int)Latency > -Adj) { |
| return Latency + Adj; |
| } |
| // Return the itinerary latency, which may be zero but not less than zero. |
| return Latency; |
| } |
| |
| int |
| ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, |
| SDNode *DefNode, unsigned DefIdx, |
| SDNode *UseNode, unsigned UseIdx) const { |
| if (!DefNode->isMachineOpcode()) |
| return 1; |
| |
| const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode()); |
| |
| if (isZeroCost(DefMCID.Opcode)) |
| return 0; |
| |
| if (!ItinData || ItinData->isEmpty()) |
| return DefMCID.mayLoad() ? 3 : 1; |
| |
| if (!UseNode->isMachineOpcode()) { |
| int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx); |
| if (Subtarget.isLikeA9() || Subtarget.isSwift()) |
| return Latency <= 2 ? 1 : Latency - 1; |
| else |
| return Latency <= 3 ? 1 : Latency - 2; |
| } |
| |
| const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode()); |
| const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode); |
| unsigned DefAlign = !DefMN->memoperands_empty() |
| ? (*DefMN->memoperands_begin())->getAlignment() : 0; |
| const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode); |
| unsigned UseAlign = !UseMN->memoperands_empty() |
| ? (*UseMN->memoperands_begin())->getAlignment() : 0; |
| int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, |
| UseMCID, UseIdx, UseAlign); |
| |
| if (Latency > 1 && |
| (Subtarget.isCortexA8() || Subtarget.isLikeA9())) { |
| // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] |
| // variants are one cycle cheaper. |
| switch (DefMCID.getOpcode()) { |
| default: break; |
| case ARM::LDRrs: |
| case ARM::LDRBrs: { |
| unsigned ShOpVal = |
| cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); |
| unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); |
| if (ShImm == 0 || |
| (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) |
| --Latency; |
| break; |
| } |
| case ARM::t2LDRs: |
| case ARM::t2LDRBs: |
| case ARM::t2LDRHs: |
| case ARM::t2LDRSHs: { |
| // Thumb2 mode: lsl only. |
| unsigned ShAmt = |
| cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); |
| if (ShAmt == 0 || ShAmt == 2) |
| --Latency; |
| break; |
| } |
| } |
| } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) { |
| // FIXME: Properly handle all of the latency adjustments for address |
| // writeback. |
| switch (DefMCID.getOpcode()) { |
| default: break; |
| case ARM::LDRrs: |
| case ARM::LDRBrs: { |
| unsigned ShOpVal = |
| cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); |
| unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); |
| if (ShImm == 0 || |
| ((ShImm == 1 || ShImm == 2 || ShImm == 3) && |
| ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) |
| Latency -= 2; |
| else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) |
| --Latency; |
| break; |
| } |
| case ARM::t2LDRs: |
| case ARM::t2LDRBs: |
| case ARM::t2LDRHs: |
| case ARM::t2LDRSHs: { |
| // Thumb2 mode: lsl 0-3 only. |
| Latency -= 2; |
| break; |
| } |
| } |
| } |
| |
| if (DefAlign < 8 && Subtarget.isLikeA9()) |
| switch (DefMCID.getOpcode()) { |
| default: break; |
| case ARM::VLD1q8: |
| case ARM::VLD1q16: |
| case ARM::VLD1q32: |
| case ARM::VLD1q64: |
| case ARM::VLD1q8wb_register: |
| case ARM::VLD1q16wb_register: |
| case ARM::VLD1q32wb_register: |
| case ARM::VLD1q64wb_register: |
| case ARM::VLD1q8wb_fixed: |
| case ARM::VLD1q16wb_fixed: |
| case ARM::VLD1q32wb_fixed: |
| case ARM::VLD1q64wb_fixed: |
| case ARM::VLD2d8: |
| case ARM::VLD2d16: |
| case ARM::VLD2d32: |
| case ARM::VLD2q8Pseudo: |
| case ARM::VLD2q16Pseudo: |
| case ARM::VLD2q32Pseudo: |
| case ARM::VLD2d8wb_fixed: |
| case ARM::VLD2d16wb_fixed: |
| case ARM::VLD2d32wb_fixed: |
| case ARM::VLD2q8PseudoWB_fixed: |
| case ARM::VLD2q16PseudoWB_fixed: |
| case ARM::VLD2q32PseudoWB_fixed: |
| case ARM::VLD2d8wb_register: |
| case ARM::VLD2d16wb_register: |
| case ARM::VLD2d32wb_register: |
| case ARM::VLD2q8PseudoWB_register: |
| case ARM::VLD2q16PseudoWB_register: |
| case ARM::VLD2q32PseudoWB_register: |
| case ARM::VLD3d8Pseudo: |
| case ARM::VLD3d16Pseudo: |
| case ARM::VLD3d32Pseudo: |
| case ARM::VLD1d64TPseudo: |
| case ARM::VLD3d8Pseudo_UPD: |
| case ARM::VLD3d16Pseudo_UPD: |
| case ARM::VLD3d32Pseudo_UPD: |
| case ARM::VLD3q8Pseudo_UPD: |
| case ARM::VLD3q16Pseudo_UPD: |
| case ARM::VLD3q32Pseudo_UPD: |
| case ARM::VLD3q8oddPseudo: |
| case ARM::VLD3q16oddPseudo: |
| case ARM::VLD3q32oddPseudo: |
| case ARM::VLD3q8oddPseudo_UPD: |
| case ARM::VLD3q16oddPseudo_UPD: |
| case ARM::VLD3q32oddPseudo_UPD: |
| case ARM::VLD4d8Pseudo: |
| case ARM::VLD4d16Pseudo: |
| case ARM::VLD4d32Pseudo: |
| case ARM::VLD1d64QPseudo: |
| case ARM::VLD4d8Pseudo_UPD: |
| case ARM::VLD4d16Pseudo_UPD: |
| case ARM::VLD4d32Pseudo_UPD: |
| case ARM::VLD4q8Pseudo_UPD: |
| case ARM::VLD4q16Pseudo_UPD: |
| case ARM::VLD4q32Pseudo_UPD: |
| case ARM::VLD4q8oddPseudo: |
| case ARM::VLD4q16oddPseudo: |
| case ARM::VLD4q32oddPseudo: |
| case ARM::VLD4q8oddPseudo_UPD: |
| case ARM::VLD4q16oddPseudo_UPD: |
| case ARM::VLD4q32oddPseudo_UPD: |
| case ARM::VLD1DUPq8: |
| case ARM::VLD1DUPq16: |
| case ARM::VLD1DUPq32: |
| case ARM::VLD1DUPq8wb_fixed: |
| case ARM::VLD1DUPq16wb_fixed: |
| case ARM::VLD1DUPq32wb_fixed: |
| case ARM::VLD1DUPq8wb_register: |
| case ARM::VLD1DUPq16wb_register: |
| case ARM::VLD1DUPq32wb_register: |
| case ARM::VLD2DUPd8: |
| case ARM::VLD2DUPd16: |
| case ARM::VLD2DUPd32: |
| case ARM::VLD2DUPd8wb_fixed: |
| case ARM::VLD2DUPd16wb_fixed: |
| case ARM::VLD2DUPd32wb_fixed: |
| case ARM::VLD2DUPd8wb_register: |
| case ARM::VLD2DUPd16wb_register: |
| case ARM::VLD2DUPd32wb_register: |
| case ARM::VLD4DUPd8Pseudo: |
| case ARM::VLD4DUPd16Pseudo: |
| case ARM::VLD4DUPd32Pseudo: |
| case ARM::VLD4DUPd8Pseudo_UPD: |
| case ARM::VLD4DUPd16Pseudo_UPD: |
| case ARM::VLD4DUPd32Pseudo_UPD: |
| case ARM::VLD1LNq8Pseudo: |
| case ARM::VLD1LNq16Pseudo: |
| case ARM::VLD1LNq32Pseudo: |
| case ARM::VLD1LNq8Pseudo_UPD: |
| case ARM::VLD1LNq16Pseudo_UPD: |
| case ARM::VLD1LNq32Pseudo_UPD: |
| case ARM::VLD2LNd8Pseudo: |
| case ARM::VLD2LNd16Pseudo: |
| case ARM::VLD2LNd32Pseudo: |
| case ARM::VLD2LNq16Pseudo: |
| case ARM::VLD2LNq32Pseudo: |
| case ARM::VLD2LNd8Pseudo_UPD: |
| case ARM::VLD2LNd16Pseudo_UPD: |
| case ARM::VLD2LNd32Pseudo_UPD: |
| case ARM::VLD2LNq16Pseudo_UPD: |
| case ARM::VLD2LNq32Pseudo_UPD: |
| case ARM::VLD4LNd8Pseudo: |
| case ARM::VLD4LNd16Pseudo: |
| case ARM::VLD4LNd32Pseudo: |
| case ARM::VLD4LNq16Pseudo: |
| case ARM::VLD4LNq32Pseudo: |
| case ARM::VLD4LNd8Pseudo_UPD: |
| case ARM::VLD4LNd16Pseudo_UPD: |
| case ARM::VLD4LNd32Pseudo_UPD: |
| case ARM::VLD4LNq16Pseudo_UPD: |
| case ARM::VLD4LNq32Pseudo_UPD: |
| // If the address is not 64-bit aligned, the latencies of these |
| // instructions increases by one. |
| ++Latency; |
| break; |
| } |
| |
| return Latency; |
| } |
| |
| unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, |
| const MachineInstr *MI, |
| unsigned *PredCost) const { |
| if (MI->isCopyLike() || MI->isInsertSubreg() || |
| MI->isRegSequence() || MI->isImplicitDef()) |
| return 1; |
| |
| // An instruction scheduler typically runs on unbundled instructions, however |
| // other passes may query the latency of a bundled instruction. |
| if (MI->isBundle()) { |
| unsigned Latency = 0; |
| MachineBasicBlock::const_instr_iterator I = MI; |
| MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end(); |
| while (++I != E && I->isInsideBundle()) { |
| if (I->getOpcode() != ARM::t2IT) |
| Latency += getInstrLatency(ItinData, I, PredCost); |
| } |
| return Latency; |
| } |
| |
| const MCInstrDesc &MCID = MI->getDesc(); |
| if (PredCost && (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR))) { |
| // When predicated, CPSR is an additional source operand for CPSR updating |
| // instructions, this apparently increases their latencies. |
| *PredCost = 1; |
| } |
| // Be sure to call getStageLatency for an empty itinerary in case it has a |
| // valid MinLatency property. |
| if (!ItinData) |
| return MI->mayLoad() ? 3 : 1; |
| |
| unsigned Class = MCID.getSchedClass(); |
| |
| // For instructions with variable uops, use uops as latency. |
| if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0) |
| return getNumMicroOps(ItinData, MI); |
| |
| // For the common case, fall back on the itinerary's latency. |
| unsigned Latency = ItinData->getStageLatency(Class); |
| |
| // Adjust for dynamic def-side opcode variants not captured by the itinerary. |
| unsigned DefAlign = MI->hasOneMemOperand() |
| ? (*MI->memoperands_begin())->getAlignment() : 0; |
| int Adj = adjustDefLatency(Subtarget, MI, &MCID, DefAlign); |
| if (Adj >= 0 || (int)Latency > -Adj) { |
| return Latency + Adj; |
| } |
| return Latency; |
| } |
| |
| int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, |
| SDNode *Node) const { |
| if (!Node->isMachineOpcode()) |
| return 1; |
| |
| if (!ItinData || ItinData->isEmpty()) |
| return 1; |
| |
| unsigned Opcode = Node->getMachineOpcode(); |
| switch (Opcode) { |
| default: |
| return ItinData->getStageLatency(get(Opcode).getSchedClass()); |
| case ARM::VLDMQIA: |
| case ARM::VSTMQIA: |
| return 2; |
| } |
| } |
| |
| bool ARMBaseInstrInfo:: |
| hasHighOperandLatency(const InstrItineraryData *ItinData, |
| const MachineRegisterInfo *MRI, |
| const MachineInstr *DefMI, unsigned DefIdx, |
| const MachineInstr *UseMI, unsigned UseIdx) const { |
| unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask; |
| unsigned UDomain = UseMI->getDesc().TSFlags & ARMII::DomainMask; |
| if (Subtarget.isCortexA8() && |
| (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP)) |
| // CortexA8 VFP instructions are not pipelined. |
| return true; |
| |
| // Hoist VFP / NEON instructions with 4 or higher latency. |
| int Latency = computeOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx, |
| /*FindMin=*/false); |
| if (Latency < 0) |
| Latency = getInstrLatency(ItinData, DefMI); |
| if (Latency <= 3) |
| return false; |
| return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON || |
| UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON; |
| } |
| |
| bool ARMBaseInstrInfo:: |
| hasLowDefLatency(const InstrItineraryData *ItinData, |
| const MachineInstr *DefMI, unsigned DefIdx) const { |
| if (!ItinData || ItinData->isEmpty()) |
| return false; |
| |
| unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask; |
| if (DDomain == ARMII::DomainGeneral) { |
| unsigned DefClass = DefMI->getDesc().getSchedClass(); |
| int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); |
| return (DefCycle != -1 && DefCycle <= 2); |
| } |
| return false; |
| } |
| |
| bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr *MI, |
| StringRef &ErrInfo) const { |
| if (convertAddSubFlagsOpcode(MI->getOpcode())) { |
| ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG"; |
| return false; |
| } |
| return true; |
| } |
| |
| bool |
| ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc, |
| unsigned &AddSubOpc, |
| bool &NegAcc, bool &HasLane) const { |
| DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode); |
| if (I == MLxEntryMap.end()) |
| return false; |
| |
| const ARM_MLxEntry &Entry = ARM_MLxTable[I->second]; |
| MulOpc = Entry.MulOpc; |
| AddSubOpc = Entry.AddSubOpc; |
| NegAcc = Entry.NegAcc; |
| HasLane = Entry.HasLane; |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Execution domains. |
| //===----------------------------------------------------------------------===// |
| // |
| // Some instructions go down the NEON pipeline, some go down the VFP pipeline, |
| // and some can go down both. The vmov instructions go down the VFP pipeline, |
| // but they can be changed to vorr equivalents that are executed by the NEON |
| // pipeline. |
| // |
| // We use the following execution domain numbering: |
| // |
| enum ARMExeDomain { |
| ExeGeneric = 0, |
| ExeVFP = 1, |
| ExeNEON = 2 |
| }; |
| // |
| // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h |
| // |
| std::pair<uint16_t, uint16_t> |
| ARMBaseInstrInfo::getExecutionDomain(const MachineInstr *MI) const { |
| // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON |
| // if they are not predicated. |
| if (MI->getOpcode() == ARM::VMOVD && !isPredicated(MI)) |
| return std::make_pair(ExeVFP, (1<<ExeVFP) | (1<<ExeNEON)); |
| |
| // A9-like cores are particularly picky about mixing the two and want these |
| // converted. |
| if (Subtarget.isLikeA9() && !isPredicated(MI) && |
| (MI->getOpcode() == ARM::VMOVRS || |
| MI->getOpcode() == ARM::VMOVSR || |
| MI->getOpcode() == ARM::VMOVS)) |
| return std::make_pair(ExeVFP, (1<<ExeVFP) | (1<<ExeNEON)); |
| |
| // No other instructions can be swizzled, so just determine their domain. |
| unsigned Domain = MI->getDesc().TSFlags & ARMII::DomainMask; |
| |
| if (Domain & ARMII::DomainNEON) |
| return std::make_pair(ExeNEON, 0); |
| |
| // Certain instructions can go either way on Cortex-A8. |
| // Treat them as NEON instructions. |
| if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8()) |
| return std::make_pair(ExeNEON, 0); |
| |
| if (Domain & ARMII::DomainVFP) |
| return std::make_pair(ExeVFP, 0); |
| |
| return std::make_pair(ExeGeneric, 0); |
| } |
| |
| static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI, |
| unsigned SReg, unsigned &Lane) { |
| unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass); |
| Lane = 0; |
| |
| if (DReg != ARM::NoRegister) |
| return DReg; |
| |
| Lane = 1; |
| DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass); |
| |
| assert(DReg && "S-register with no D super-register?"); |
| return DReg; |
| } |
| |
| /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane, |
| /// set ImplicitSReg to a register number that must be marked as implicit-use or |
| /// zero if no register needs to be defined as implicit-use. |
| /// |
| /// If the function cannot determine if an SPR should be marked implicit use or |
| /// not, it returns false. |
| /// |
| /// This function handles cases where an instruction is being modified from taking |
| /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict |
| /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other |
| /// lane of the DPR). |
| /// |
| /// If the other SPR is defined, an implicit-use of it should be added. Else, |
| /// (including the case where the DPR itself is defined), it should not. |
| /// |
| static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI, |
| MachineInstr *MI, |
| unsigned DReg, unsigned Lane, |
| unsigned &ImplicitSReg) { |
| // If the DPR is defined or used already, the other SPR lane will be chained |
| // correctly, so there is nothing to be done. |
| if (MI->definesRegister(DReg, TRI) || MI->readsRegister(DReg, TRI)) { |
| ImplicitSReg = 0; |
| return true; |
| } |
| |
| // Otherwise we need to go searching to see if the SPR is set explicitly. |
| ImplicitSReg = TRI->getSubReg(DReg, |
| (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1); |
| MachineBasicBlock::LivenessQueryResult LQR = |
| MI->getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI); |
| |
| if (LQR == MachineBasicBlock::LQR_Live) |
| return true; |
| else if (LQR == MachineBasicBlock::LQR_Unknown) |
| return false; |
| |
| // If the register is known not to be live, there is no need to add an |
| // implicit-use. |
| ImplicitSReg = 0; |
| return true; |
| } |
| |
| void |
| ARMBaseInstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const { |
| unsigned DstReg, SrcReg, DReg; |
| unsigned Lane; |
| MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI); |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| switch (MI->getOpcode()) { |
| default: |
| llvm_unreachable("cannot handle opcode!"); |
| break; |
| case ARM::VMOVD: |
| if (Domain != ExeNEON) |
| break; |
| |
| // Zap the predicate operands. |
| assert(!isPredicated(MI) && "Cannot predicate a VORRd"); |
| |
| // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits) |
| DstReg = MI->getOperand(0).getReg(); |
| SrcReg = MI->getOperand(1).getReg(); |
| |
| for (unsigned i = MI->getDesc().getNumOperands(); i; --i) |
| MI->RemoveOperand(i-1); |
| |
| // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits) |
| MI->setDesc(get(ARM::VORRd)); |
| AddDefaultPred(MIB.addReg(DstReg, RegState::Define) |
| .addReg(SrcReg) |
| .addReg(SrcReg)); |
| break; |
| case ARM::VMOVRS: |
| if (Domain != ExeNEON) |
| break; |
| assert(!isPredicated(MI) && "Cannot predicate a VGETLN"); |
| |
| // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits) |
| DstReg = MI->getOperand(0).getReg(); |
| SrcReg = MI->getOperand(1).getReg(); |
| |
| for (unsigned i = MI->getDesc().getNumOperands(); i; --i) |
| MI->RemoveOperand(i-1); |
| |
| DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane); |
| |
| // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps) |
| // Note that DSrc has been widened and the other lane may be undef, which |
| // contaminates the entire register. |
| MI->setDesc(get(ARM::VGETLNi32)); |
| AddDefaultPred(MIB.addReg(DstReg, RegState::Define) |
| .addReg(DReg, RegState::Undef) |
| .addImm(Lane)); |
| |
| // The old source should be an implicit use, otherwise we might think it |
| // was dead before here. |
| MIB.addReg(SrcReg, RegState::Implicit); |
| break; |
| case ARM::VMOVSR: { |
| if (Domain != ExeNEON) |
| break; |
| assert(!isPredicated(MI) && "Cannot predicate a VSETLN"); |
| |
| // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits) |
| DstReg = MI->getOperand(0).getReg(); |
| SrcReg = MI->getOperand(1).getReg(); |
| |
| DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane); |
| |
| unsigned ImplicitSReg; |
| if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg)) |
| break; |
| |
| for (unsigned i = MI->getDesc().getNumOperands(); i; --i) |
| MI->RemoveOperand(i-1); |
| |
| // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps) |
| // Again DDst may be undefined at the beginning of this instruction. |
| MI->setDesc(get(ARM::VSETLNi32)); |
| MIB.addReg(DReg, RegState::Define) |
| .addReg(DReg, getUndefRegState(!MI->readsRegister(DReg, TRI))) |
| .addReg(SrcReg) |
| .addImm(Lane); |
| AddDefaultPred(MIB); |
| |
| // The narrower destination must be marked as set to keep previous chains |
| // in place. |
| MIB.addReg(DstReg, RegState::Define | RegState::Implicit); |
| if (ImplicitSReg != 0) |
| MIB.addReg(ImplicitSReg, RegState::Implicit); |
| break; |
| } |
| case ARM::VMOVS: { |
| if (Domain != ExeNEON) |
| break; |
| |
| // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits) |
| DstReg = MI->getOperand(0).getReg(); |
| SrcReg = MI->getOperand(1).getReg(); |
| |
| unsigned DstLane = 0, SrcLane = 0, DDst, DSrc; |
| DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane); |
| DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane); |
| |
| unsigned ImplicitSReg; |
| if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg)) |
| break; |
| |
| for (unsigned i = MI->getDesc().getNumOperands(); i; --i) |
| MI->RemoveOperand(i-1); |
| |
| if (DSrc == DDst) { |
| // Destination can be: |
| // %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits) |
| MI->setDesc(get(ARM::VDUPLN32d)); |
| MIB.addReg(DDst, RegState::Define) |
| .addReg(DDst, getUndefRegState(!MI->readsRegister(DDst, TRI))) |
| .addImm(SrcLane); |
| AddDefaultPred(MIB); |
| |
| // Neither the source or the destination are naturally represented any |
| // more, so add them in manually. |
| MIB.addReg(DstReg, RegState::Implicit | RegState::Define); |
| MIB.addReg(SrcReg, RegState::Implicit); |
| if (ImplicitSReg != 0) |
| MIB.addReg(ImplicitSReg, RegState::Implicit); |
| break; |
| } |
| |
| // In general there's no single instruction that can perform an S <-> S |
| // move in NEON space, but a pair of VEXT instructions *can* do the |
| // job. It turns out that the VEXTs needed will only use DSrc once, with |
| // the position based purely on the combination of lane-0 and lane-1 |
| // involved. For example |
| // vmov s0, s2 -> vext.32 d0, d0, d1, #1 vext.32 d0, d0, d0, #1 |
| // vmov s1, s3 -> vext.32 d0, d1, d0, #1 vext.32 d0, d0, d0, #1 |
| // vmov s0, s3 -> vext.32 d0, d0, d0, #1 vext.32 d0, d1, d0, #1 |
| // vmov s1, s2 -> vext.32 d0, d0, d0, #1 vext.32 d0, d0, d1, #1 |
| // |
| // Pattern of the MachineInstrs is: |
| // %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits) |
| MachineInstrBuilder NewMIB; |
| NewMIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), |
| get(ARM::VEXTd32), DDst); |
| |
| // On the first instruction, both DSrc and DDst may be <undef> if present. |
| // Specifically when the original instruction didn't have them as an |
| // <imp-use>. |
| unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst; |
| bool CurUndef = !MI->readsRegister(CurReg, TRI); |
| NewMIB.addReg(CurReg, getUndefRegState(CurUndef)); |
| |
| CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst; |
| CurUndef = !MI->readsRegister(CurReg, TRI); |
| NewMIB.addReg(CurReg, getUndefRegState(CurUndef)); |
| |
| NewMIB.addImm(1); |
| AddDefaultPred(NewMIB); |
| |
| if (SrcLane == DstLane) |
| NewMIB.addReg(SrcReg, RegState::Implicit); |
| |
| MI->setDesc(get(ARM::VEXTd32)); |
| MIB.addReg(DDst, RegState::Define); |
| |
| // On the second instruction, DDst has definitely been defined above, so |
| // it is not <undef>. DSrc, if present, can be <undef> as above. |
| CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst; |
| CurUndef = CurReg == DSrc && !MI->readsRegister(CurReg, TRI); |
| MIB.addReg(CurReg, getUndefRegState(CurUndef)); |
| |
| CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst; |
| CurUndef = CurReg == DSrc && !MI->readsRegister(CurReg, TRI); |
| MIB.addReg(CurReg, getUndefRegState(CurUndef)); |
| |
| MIB.addImm(1); |
| AddDefaultPred(MIB); |
| |
| if (SrcLane != DstLane) |
| MIB.addReg(SrcReg, RegState::Implicit); |
| |
| // As before, the original destination is no longer represented, add it |
| // implicitly. |
| MIB.addReg(DstReg, RegState::Define | RegState::Implicit); |
| if (ImplicitSReg != 0) |
| MIB.addReg(ImplicitSReg, RegState::Implicit); |
| break; |
| } |
| } |
| |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Partial register updates |
| //===----------------------------------------------------------------------===// |
| // |
| // Swift renames NEON registers with 64-bit granularity. That means any |
| // instruction writing an S-reg implicitly reads the containing D-reg. The |
| // problem is mostly avoided by translating f32 operations to v2f32 operations |
| // on D-registers, but f32 loads are still a problem. |
| // |
| // These instructions can load an f32 into a NEON register: |
| // |
| // VLDRS - Only writes S, partial D update. |
| // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops. |
| // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops. |
| // |
| // FCONSTD can be used as a dependency-breaking instruction. |
| |
| |
| unsigned ARMBaseInstrInfo:: |
| getPartialRegUpdateClearance(const MachineInstr *MI, |
| unsigned OpNum, |
| const TargetRegisterInfo *TRI) const { |
| // Only Swift has partial register update problems. |
| if (!SwiftPartialUpdateClearance || !Subtarget.isSwift()) |
| return 0; |
| |
| assert(TRI && "Need TRI instance"); |
| |
| const MachineOperand &MO = MI->getOperand(OpNum); |
| if (MO.readsReg()) |
| return 0; |
| unsigned Reg = MO.getReg(); |
| int UseOp = -1; |
| |
| switch(MI->getOpcode()) { |
| // Normal instructions writing only an S-register. |
| case ARM::VLDRS: |
| case ARM::FCONSTS: |
| case ARM::VMOVSR: |
| case ARM::VMOVv8i8: |
| case ARM::VMOVv4i16: |
| case ARM::VMOVv2i32: |
| case ARM::VMOVv2f32: |
| case ARM::VMOVv1i64: |
| UseOp = MI->findRegisterUseOperandIdx(Reg, false, TRI); |
| break; |
| |
| // Explicitly reads the dependency. |
| case ARM::VLD1LNd32: |
| UseOp = 1; |
| break; |
| default: |
| return 0; |
| } |
| |
| // If this instruction actually reads a value from Reg, there is no unwanted |
| // dependency. |
| if (UseOp != -1 && MI->getOperand(UseOp).readsReg()) |
| return 0; |
| |
| // We must be able to clobber the whole D-reg. |
| if (TargetRegisterInfo::isVirtualRegister(Reg)) { |
| // Virtual register must be a foo:ssub_0<def,undef> operand. |
| if (!MO.getSubReg() || MI->readsVirtualRegister(Reg)) |
| return 0; |
| } else if (ARM::SPRRegClass.contains(Reg)) { |
| // Physical register: MI must define the full D-reg. |
| unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0, |
| &ARM::DPRRegClass); |
| if (!DReg || !MI->definesRegister(DReg, TRI)) |
| return 0; |
| } |
| |
| // MI has an unwanted D-register dependency. |
| // Avoid defs in the previous N instructrions. |
| return SwiftPartialUpdateClearance; |
| } |
| |
| // Break a partial register dependency after getPartialRegUpdateClearance |
| // returned non-zero. |
| void ARMBaseInstrInfo:: |
| breakPartialRegDependency(MachineBasicBlock::iterator MI, |
| unsigned OpNum, |
| const TargetRegisterInfo *TRI) const { |
| assert(MI && OpNum < MI->getDesc().getNumDefs() && "OpNum is not a def"); |
| assert(TRI && "Need TRI instance"); |
| |
| const MachineOperand &MO = MI->getOperand(OpNum); |
| unsigned Reg = MO.getReg(); |
| assert(TargetRegisterInfo::isPhysicalRegister(Reg) && |
| "Can't break virtual register dependencies."); |
| unsigned DReg = Reg; |
| |
| // If MI defines an S-reg, find the corresponding D super-register. |
| if (ARM::SPRRegClass.contains(Reg)) { |
| DReg = ARM::D0 + (Reg - ARM::S0) / 2; |
| assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken"); |
| } |
| |
| assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps"); |
| assert(MI->definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg"); |
| |
| // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines |
| // the full D-register by loading the same value to both lanes. The |
| // instruction is micro-coded with 2 uops, so don't do this until we can |
| // properly schedule micro-coded instuctions. The dispatcher stalls cause |
| // too big regressions. |
| |
| // Insert the dependency-breaking FCONSTD before MI. |
| // 96 is the encoding of 0.5, but the actual value doesn't matter here. |
| AddDefaultPred(BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), |
| get(ARM::FCONSTD), DReg).addImm(96)); |
| MI->addRegisterKilled(DReg, TRI, true); |
| } |
| |
| bool ARMBaseInstrInfo::hasNOP() const { |
| return (Subtarget.getFeatureBits() & ARM::HasV6T2Ops) != 0; |
| } |