| //===- Andersens.cpp - Andersen's Interprocedural Alias Analysis ----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines an implementation of Andersen's interprocedural alias |
| // analysis |
| // |
| // In pointer analysis terms, this is a subset-based, flow-insensitive, |
| // field-sensitive, and context-insensitive algorithm pointer algorithm. |
| // |
| // This algorithm is implemented as three stages: |
| // 1. Object identification. |
| // 2. Inclusion constraint identification. |
| // 3. Offline constraint graph optimization |
| // 4. Inclusion constraint solving. |
| // |
| // The object identification stage identifies all of the memory objects in the |
| // program, which includes globals, heap allocated objects, and stack allocated |
| // objects. |
| // |
| // The inclusion constraint identification stage finds all inclusion constraints |
| // in the program by scanning the program, looking for pointer assignments and |
| // other statements that effect the points-to graph. For a statement like "A = |
| // B", this statement is processed to indicate that A can point to anything that |
| // B can point to. Constraints can handle copies, loads, and stores, and |
| // address taking. |
| // |
| // The offline constraint graph optimization portion includes offline variable |
| // substitution algorithms intended to computer pointer and location |
| // equivalences. Pointer equivalences are those pointers that will have the |
| // same points-to sets, and location equivalences are those variables that |
| // always appear together in points-to sets. |
| // |
| // The inclusion constraint solving phase iteratively propagates the inclusion |
| // constraints until a fixed point is reached. This is an O(N^3) algorithm. |
| // |
| // Function constraints are handled as if they were structs with X fields. |
| // Thus, an access to argument X of function Y is an access to node index |
| // getNode(Y) + X. This representation allows handling of indirect calls |
| // without any issues. To wit, an indirect call Y(a,b) is equivalent to |
| // *(Y + 1) = a, *(Y + 2) = b. |
| // The return node for a function is always located at getNode(F) + |
| // CallReturnPos. The arguments start at getNode(F) + CallArgPos. |
| // |
| // Future Improvements: |
| // Offline detection of online cycles. Use of BDD's. |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "anders-aa" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Module.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/InstIterator.h" |
| #include "llvm/Support/InstVisitor.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/Passes.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/SparseBitVector.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include <algorithm> |
| #include <set> |
| #include <list> |
| #include <stack> |
| #include <vector> |
| #include <queue> |
| |
| // Determining the actual set of nodes the universal set can consist of is very |
| // expensive because it means propagating around very large sets. We rely on |
| // other analysis being able to determine which nodes can never be pointed to in |
| // order to disambiguate further than "points-to anything". |
| #define FULL_UNIVERSAL 0 |
| |
| using namespace llvm; |
| STATISTIC(NumIters , "Number of iterations to reach convergence"); |
| STATISTIC(NumConstraints, "Number of constraints"); |
| STATISTIC(NumNodes , "Number of nodes"); |
| STATISTIC(NumUnified , "Number of variables unified"); |
| STATISTIC(NumErased , "Number of redundant constraints erased"); |
| |
| namespace { |
| const unsigned SelfRep = (unsigned)-1; |
| const unsigned Unvisited = (unsigned)-1; |
| // Position of the function return node relative to the function node. |
| const unsigned CallReturnPos = 1; |
| // Position of the function call node relative to the function node. |
| const unsigned CallFirstArgPos = 2; |
| |
| struct BitmapKeyInfo { |
| static inline SparseBitVector<> *getEmptyKey() { |
| return reinterpret_cast<SparseBitVector<> *>(-1); |
| } |
| static inline SparseBitVector<> *getTombstoneKey() { |
| return reinterpret_cast<SparseBitVector<> *>(-2); |
| } |
| static unsigned getHashValue(const SparseBitVector<> *bitmap) { |
| return bitmap->getHashValue(); |
| } |
| static bool isEqual(const SparseBitVector<> *LHS, |
| const SparseBitVector<> *RHS) { |
| if (LHS == RHS) |
| return true; |
| else if (LHS == getEmptyKey() || RHS == getEmptyKey() |
| || LHS == getTombstoneKey() || RHS == getTombstoneKey()) |
| return false; |
| |
| return *LHS == *RHS; |
| } |
| |
| static bool isPod() { return true; } |
| }; |
| |
| class VISIBILITY_HIDDEN Andersens : public ModulePass, public AliasAnalysis, |
| private InstVisitor<Andersens> { |
| struct Node; |
| |
| /// Constraint - Objects of this structure are used to represent the various |
| /// constraints identified by the algorithm. The constraints are 'copy', |
| /// for statements like "A = B", 'load' for statements like "A = *B", |
| /// 'store' for statements like "*A = B", and AddressOf for statements like |
| /// A = alloca; The Offset is applied as *(A + K) = B for stores, |
| /// A = *(B + K) for loads, and A = B + K for copies. It is |
| /// illegal on addressof constraints (because it is statically |
| /// resolvable to A = &C where C = B + K) |
| |
| struct Constraint { |
| enum ConstraintType { Copy, Load, Store, AddressOf } Type; |
| unsigned Dest; |
| unsigned Src; |
| unsigned Offset; |
| |
| Constraint(ConstraintType Ty, unsigned D, unsigned S, unsigned O = 0) |
| : Type(Ty), Dest(D), Src(S), Offset(O) { |
| assert((Offset == 0 || Ty != AddressOf) && |
| "Offset is illegal on addressof constraints"); |
| } |
| |
| bool operator==(const Constraint &RHS) const { |
| return RHS.Type == Type |
| && RHS.Dest == Dest |
| && RHS.Src == Src |
| && RHS.Offset == Offset; |
| } |
| |
| bool operator!=(const Constraint &RHS) const { |
| return !(*this == RHS); |
| } |
| |
| bool operator<(const Constraint &RHS) const { |
| if (RHS.Type != Type) |
| return RHS.Type < Type; |
| else if (RHS.Dest != Dest) |
| return RHS.Dest < Dest; |
| else if (RHS.Src != Src) |
| return RHS.Src < Src; |
| return RHS.Offset < Offset; |
| } |
| }; |
| |
| // Information DenseSet requires implemented in order to be able to do |
| // it's thing |
| struct PairKeyInfo { |
| static inline std::pair<unsigned, unsigned> getEmptyKey() { |
| return std::make_pair(~0UL, ~0UL); |
| } |
| static inline std::pair<unsigned, unsigned> getTombstoneKey() { |
| return std::make_pair(~0UL - 1, ~0UL - 1); |
| } |
| static unsigned getHashValue(const std::pair<unsigned, unsigned> &P) { |
| return P.first ^ P.second; |
| } |
| static unsigned isEqual(const std::pair<unsigned, unsigned> &LHS, |
| const std::pair<unsigned, unsigned> &RHS) { |
| return LHS == RHS; |
| } |
| }; |
| |
| struct ConstraintKeyInfo { |
| static inline Constraint getEmptyKey() { |
| return Constraint(Constraint::Copy, ~0UL, ~0UL, ~0UL); |
| } |
| static inline Constraint getTombstoneKey() { |
| return Constraint(Constraint::Copy, ~0UL - 1, ~0UL - 1, ~0UL - 1); |
| } |
| static unsigned getHashValue(const Constraint &C) { |
| return C.Src ^ C.Dest ^ C.Type ^ C.Offset; |
| } |
| static bool isEqual(const Constraint &LHS, |
| const Constraint &RHS) { |
| return LHS.Type == RHS.Type && LHS.Dest == RHS.Dest |
| && LHS.Src == RHS.Src && LHS.Offset == RHS.Offset; |
| } |
| }; |
| |
| // Node class - This class is used to represent a node in the constraint |
| // graph. Due to various optimizations, it is not always the case that |
| // there is a mapping from a Node to a Value. In particular, we add |
| // artificial Node's that represent the set of pointed-to variables shared |
| // for each location equivalent Node. |
| struct Node { |
| private: |
| static unsigned Counter; |
| |
| public: |
| Value *Val; |
| SparseBitVector<> *Edges; |
| SparseBitVector<> *PointsTo; |
| SparseBitVector<> *OldPointsTo; |
| std::list<Constraint> Constraints; |
| |
| // Pointer and location equivalence labels |
| unsigned PointerEquivLabel; |
| unsigned LocationEquivLabel; |
| // Predecessor edges, both real and implicit |
| SparseBitVector<> *PredEdges; |
| SparseBitVector<> *ImplicitPredEdges; |
| // Set of nodes that point to us, only use for location equivalence. |
| SparseBitVector<> *PointedToBy; |
| // Number of incoming edges, used during variable substitution to early |
| // free the points-to sets |
| unsigned NumInEdges; |
| // True if our points-to set is in the Set2PEClass map |
| bool StoredInHash; |
| // True if our node has no indirect constraints (complex or otherwise) |
| bool Direct; |
| // True if the node is address taken, *or* it is part of a group of nodes |
| // that must be kept together. This is set to true for functions and |
| // their arg nodes, which must be kept at the same position relative to |
| // their base function node. |
| bool AddressTaken; |
| |
| // Nodes in cycles (or in equivalence classes) are united together using a |
| // standard union-find representation with path compression. NodeRep |
| // gives the index into GraphNodes for the representative Node. |
| unsigned NodeRep; |
| |
| // Modification timestamp. Assigned from Counter. |
| // Used for work list prioritization. |
| unsigned Timestamp; |
| |
| explicit Node(bool direct = true) : |
| Val(0), Edges(0), PointsTo(0), OldPointsTo(0), |
| PointerEquivLabel(0), LocationEquivLabel(0), PredEdges(0), |
| ImplicitPredEdges(0), PointedToBy(0), NumInEdges(0), |
| StoredInHash(false), Direct(direct), AddressTaken(false), |
| NodeRep(SelfRep), Timestamp(0) { } |
| |
| Node *setValue(Value *V) { |
| assert(Val == 0 && "Value already set for this node!"); |
| Val = V; |
| return this; |
| } |
| |
| /// getValue - Return the LLVM value corresponding to this node. |
| /// |
| Value *getValue() const { return Val; } |
| |
| /// addPointerTo - Add a pointer to the list of pointees of this node, |
| /// returning true if this caused a new pointer to be added, or false if |
| /// we already knew about the points-to relation. |
| bool addPointerTo(unsigned Node) { |
| return PointsTo->test_and_set(Node); |
| } |
| |
| /// intersects - Return true if the points-to set of this node intersects |
| /// with the points-to set of the specified node. |
| bool intersects(Node *N) const; |
| |
| /// intersectsIgnoring - Return true if the points-to set of this node |
| /// intersects with the points-to set of the specified node on any nodes |
| /// except for the specified node to ignore. |
| bool intersectsIgnoring(Node *N, unsigned) const; |
| |
| // Timestamp a node (used for work list prioritization) |
| void Stamp() { |
| Timestamp = Counter++; |
| } |
| |
| bool isRep() { |
| return( (int) NodeRep < 0 ); |
| } |
| }; |
| |
| struct WorkListElement { |
| Node* node; |
| unsigned Timestamp; |
| WorkListElement(Node* n, unsigned t) : node(n), Timestamp(t) {} |
| |
| // Note that we reverse the sense of the comparison because we |
| // actually want to give low timestamps the priority over high, |
| // whereas priority is typically interpreted as a greater value is |
| // given high priority. |
| bool operator<(const WorkListElement& that) const { |
| return( this->Timestamp > that.Timestamp ); |
| } |
| }; |
| |
| // Priority-queue based work list specialized for Nodes. |
| class WorkList { |
| std::priority_queue<WorkListElement> Q; |
| |
| public: |
| void insert(Node* n) { |
| Q.push( WorkListElement(n, n->Timestamp) ); |
| } |
| |
| // We automatically discard non-representative nodes and nodes |
| // that were in the work list twice (we keep a copy of the |
| // timestamp in the work list so we can detect this situation by |
| // comparing against the node's current timestamp). |
| Node* pop() { |
| while( !Q.empty() ) { |
| WorkListElement x = Q.top(); Q.pop(); |
| Node* INode = x.node; |
| |
| if( INode->isRep() && |
| INode->Timestamp == x.Timestamp ) { |
| return(x.node); |
| } |
| } |
| return(0); |
| } |
| |
| bool empty() { |
| return Q.empty(); |
| } |
| }; |
| |
| /// GraphNodes - This vector is populated as part of the object |
| /// identification stage of the analysis, which populates this vector with a |
| /// node for each memory object and fills in the ValueNodes map. |
| std::vector<Node> GraphNodes; |
| |
| /// ValueNodes - This map indicates the Node that a particular Value* is |
| /// represented by. This contains entries for all pointers. |
| DenseMap<Value*, unsigned> ValueNodes; |
| |
| /// ObjectNodes - This map contains entries for each memory object in the |
| /// program: globals, alloca's and mallocs. |
| DenseMap<Value*, unsigned> ObjectNodes; |
| |
| /// ReturnNodes - This map contains an entry for each function in the |
| /// program that returns a value. |
| DenseMap<Function*, unsigned> ReturnNodes; |
| |
| /// VarargNodes - This map contains the entry used to represent all pointers |
| /// passed through the varargs portion of a function call for a particular |
| /// function. An entry is not present in this map for functions that do not |
| /// take variable arguments. |
| DenseMap<Function*, unsigned> VarargNodes; |
| |
| |
| /// Constraints - This vector contains a list of all of the constraints |
| /// identified by the program. |
| std::vector<Constraint> Constraints; |
| |
| // Map from graph node to maximum K value that is allowed (for functions, |
| // this is equivalent to the number of arguments + CallFirstArgPos) |
| std::map<unsigned, unsigned> MaxK; |
| |
| /// This enum defines the GraphNodes indices that correspond to important |
| /// fixed sets. |
| enum { |
| UniversalSet = 0, |
| NullPtr = 1, |
| NullObject = 2, |
| NumberSpecialNodes |
| }; |
| // Stack for Tarjan's |
| std::stack<unsigned> SCCStack; |
| // Map from Graph Node to DFS number |
| std::vector<unsigned> Node2DFS; |
| // Map from Graph Node to Deleted from graph. |
| std::vector<bool> Node2Deleted; |
| // Same as Node Maps, but implemented as std::map because it is faster to |
| // clear |
| std::map<unsigned, unsigned> Tarjan2DFS; |
| std::map<unsigned, bool> Tarjan2Deleted; |
| // Current DFS number |
| unsigned DFSNumber; |
| |
| // Work lists. |
| WorkList w1, w2; |
| WorkList *CurrWL, *NextWL; // "current" and "next" work lists |
| |
| // Offline variable substitution related things |
| |
| // Temporary rep storage, used because we can't collapse SCC's in the |
| // predecessor graph by uniting the variables permanently, we can only do so |
| // for the successor graph. |
| std::vector<unsigned> VSSCCRep; |
| // Mapping from node to whether we have visited it during SCC finding yet. |
| std::vector<bool> Node2Visited; |
| // During variable substitution, we create unknowns to represent the unknown |
| // value that is a dereference of a variable. These nodes are known as |
| // "ref" nodes (since they represent the value of dereferences). |
| unsigned FirstRefNode; |
| // During HVN, we create represent address taken nodes as if they were |
| // unknown (since HVN, unlike HU, does not evaluate unions). |
| unsigned FirstAdrNode; |
| // Current pointer equivalence class number |
| unsigned PEClass; |
| // Mapping from points-to sets to equivalence classes |
| typedef DenseMap<SparseBitVector<> *, unsigned, BitmapKeyInfo> BitVectorMap; |
| BitVectorMap Set2PEClass; |
| // Mapping from pointer equivalences to the representative node. -1 if we |
| // have no representative node for this pointer equivalence class yet. |
| std::vector<int> PEClass2Node; |
| // Mapping from pointer equivalences to representative node. This includes |
| // pointer equivalent but not location equivalent variables. -1 if we have |
| // no representative node for this pointer equivalence class yet. |
| std::vector<int> PENLEClass2Node; |
| |
| public: |
| static char ID; |
| Andersens() : ModulePass((intptr_t)&ID) {} |
| |
| bool runOnModule(Module &M) { |
| InitializeAliasAnalysis(this); |
| IdentifyObjects(M); |
| CollectConstraints(M); |
| #undef DEBUG_TYPE |
| #define DEBUG_TYPE "anders-aa-constraints" |
| DEBUG(PrintConstraints()); |
| #undef DEBUG_TYPE |
| #define DEBUG_TYPE "anders-aa" |
| SolveConstraints(); |
| DEBUG(PrintPointsToGraph()); |
| |
| // Free the constraints list, as we don't need it to respond to alias |
| // requests. |
| ObjectNodes.clear(); |
| ReturnNodes.clear(); |
| VarargNodes.clear(); |
| std::vector<Constraint>().swap(Constraints); |
| return false; |
| } |
| |
| void releaseMemory() { |
| // FIXME: Until we have transitively required passes working correctly, |
| // this cannot be enabled! Otherwise, using -count-aa with the pass |
| // causes memory to be freed too early. :( |
| #if 0 |
| // The memory objects and ValueNodes data structures at the only ones that |
| // are still live after construction. |
| std::vector<Node>().swap(GraphNodes); |
| ValueNodes.clear(); |
| #endif |
| } |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AliasAnalysis::getAnalysisUsage(AU); |
| AU.setPreservesAll(); // Does not transform code |
| } |
| |
| //------------------------------------------------ |
| // Implement the AliasAnalysis API |
| // |
| AliasResult alias(const Value *V1, unsigned V1Size, |
| const Value *V2, unsigned V2Size); |
| virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size); |
| virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2); |
| void getMustAliases(Value *P, std::vector<Value*> &RetVals); |
| bool pointsToConstantMemory(const Value *P); |
| |
| virtual void deleteValue(Value *V) { |
| ValueNodes.erase(V); |
| getAnalysis<AliasAnalysis>().deleteValue(V); |
| } |
| |
| virtual void copyValue(Value *From, Value *To) { |
| ValueNodes[To] = ValueNodes[From]; |
| getAnalysis<AliasAnalysis>().copyValue(From, To); |
| } |
| |
| private: |
| /// getNode - Return the node corresponding to the specified pointer scalar. |
| /// |
| unsigned getNode(Value *V) { |
| if (Constant *C = dyn_cast<Constant>(V)) |
| if (!isa<GlobalValue>(C)) |
| return getNodeForConstantPointer(C); |
| |
| DenseMap<Value*, unsigned>::iterator I = ValueNodes.find(V); |
| if (I == ValueNodes.end()) { |
| #ifndef NDEBUG |
| V->dump(); |
| #endif |
| assert(0 && "Value does not have a node in the points-to graph!"); |
| } |
| return I->second; |
| } |
| |
| /// getObject - Return the node corresponding to the memory object for the |
| /// specified global or allocation instruction. |
| unsigned getObject(Value *V) { |
| DenseMap<Value*, unsigned>::iterator I = ObjectNodes.find(V); |
| assert(I != ObjectNodes.end() && |
| "Value does not have an object in the points-to graph!"); |
| return I->second; |
| } |
| |
| /// getReturnNode - Return the node representing the return value for the |
| /// specified function. |
| unsigned getReturnNode(Function *F) { |
| DenseMap<Function*, unsigned>::iterator I = ReturnNodes.find(F); |
| assert(I != ReturnNodes.end() && "Function does not return a value!"); |
| return I->second; |
| } |
| |
| /// getVarargNode - Return the node representing the variable arguments |
| /// formal for the specified function. |
| unsigned getVarargNode(Function *F) { |
| DenseMap<Function*, unsigned>::iterator I = VarargNodes.find(F); |
| assert(I != VarargNodes.end() && "Function does not take var args!"); |
| return I->second; |
| } |
| |
| /// getNodeValue - Get the node for the specified LLVM value and set the |
| /// value for it to be the specified value. |
| unsigned getNodeValue(Value &V) { |
| unsigned Index = getNode(&V); |
| GraphNodes[Index].setValue(&V); |
| return Index; |
| } |
| |
| unsigned UniteNodes(unsigned First, unsigned Second, |
| bool UnionByRank = true); |
| unsigned FindNode(unsigned Node); |
| |
| void IdentifyObjects(Module &M); |
| void CollectConstraints(Module &M); |
| bool AnalyzeUsesOfFunction(Value *); |
| void CreateConstraintGraph(); |
| void OptimizeConstraints(); |
| unsigned FindEquivalentNode(unsigned, unsigned); |
| void ClumpAddressTaken(); |
| void RewriteConstraints(); |
| void HU(); |
| void HVN(); |
| void UnitePointerEquivalences(); |
| void SolveConstraints(); |
| bool QueryNode(unsigned Node); |
| void Condense(unsigned Node); |
| void HUValNum(unsigned Node); |
| void HVNValNum(unsigned Node); |
| unsigned getNodeForConstantPointer(Constant *C); |
| unsigned getNodeForConstantPointerTarget(Constant *C); |
| void AddGlobalInitializerConstraints(unsigned, Constant *C); |
| |
| void AddConstraintsForNonInternalLinkage(Function *F); |
| void AddConstraintsForCall(CallSite CS, Function *F); |
| bool AddConstraintsForExternalCall(CallSite CS, Function *F); |
| |
| |
| void PrintNode(Node *N); |
| void PrintConstraints(); |
| void PrintConstraint(const Constraint &); |
| void PrintLabels(); |
| void PrintPointsToGraph(); |
| |
| //===------------------------------------------------------------------===// |
| // Instruction visitation methods for adding constraints |
| // |
| friend class InstVisitor<Andersens>; |
| void visitReturnInst(ReturnInst &RI); |
| void visitInvokeInst(InvokeInst &II) { visitCallSite(CallSite(&II)); } |
| void visitCallInst(CallInst &CI) { visitCallSite(CallSite(&CI)); } |
| void visitCallSite(CallSite CS); |
| void visitAllocationInst(AllocationInst &AI); |
| void visitLoadInst(LoadInst &LI); |
| void visitStoreInst(StoreInst &SI); |
| void visitGetElementPtrInst(GetElementPtrInst &GEP); |
| void visitPHINode(PHINode &PN); |
| void visitCastInst(CastInst &CI); |
| void visitICmpInst(ICmpInst &ICI) {} // NOOP! |
| void visitFCmpInst(FCmpInst &ICI) {} // NOOP! |
| void visitSelectInst(SelectInst &SI); |
| void visitVAArg(VAArgInst &I); |
| void visitInstruction(Instruction &I); |
| |
| }; |
| |
| char Andersens::ID = 0; |
| RegisterPass<Andersens> X("anders-aa", |
| "Andersen's Interprocedural Alias Analysis"); |
| RegisterAnalysisGroup<AliasAnalysis> Y(X); |
| |
| // Initialize Timestamp Counter (static). |
| unsigned Andersens::Node::Counter = 0; |
| } |
| |
| ModulePass *llvm::createAndersensPass() { return new Andersens(); } |
| |
| //===----------------------------------------------------------------------===// |
| // AliasAnalysis Interface Implementation |
| //===----------------------------------------------------------------------===// |
| |
| AliasAnalysis::AliasResult Andersens::alias(const Value *V1, unsigned V1Size, |
| const Value *V2, unsigned V2Size) { |
| Node *N1 = &GraphNodes[FindNode(getNode(const_cast<Value*>(V1)))]; |
| Node *N2 = &GraphNodes[FindNode(getNode(const_cast<Value*>(V2)))]; |
| |
| // Check to see if the two pointers are known to not alias. They don't alias |
| // if their points-to sets do not intersect. |
| if (!N1->intersectsIgnoring(N2, NullObject)) |
| return NoAlias; |
| |
| return AliasAnalysis::alias(V1, V1Size, V2, V2Size); |
| } |
| |
| AliasAnalysis::ModRefResult |
| Andersens::getModRefInfo(CallSite CS, Value *P, unsigned Size) { |
| // The only thing useful that we can contribute for mod/ref information is |
| // when calling external function calls: if we know that memory never escapes |
| // from the program, it cannot be modified by an external call. |
| // |
| // NOTE: This is not really safe, at least not when the entire program is not |
| // available. The deal is that the external function could call back into the |
| // program and modify stuff. We ignore this technical niggle for now. This |
| // is, after all, a "research quality" implementation of Andersen's analysis. |
| if (Function *F = CS.getCalledFunction()) |
| if (F->isDeclaration()) { |
| Node *N1 = &GraphNodes[FindNode(getNode(P))]; |
| |
| if (N1->PointsTo->empty()) |
| return NoModRef; |
| |
| if (!N1->PointsTo->test(UniversalSet)) |
| return NoModRef; // P doesn't point to the universal set. |
| } |
| |
| return AliasAnalysis::getModRefInfo(CS, P, Size); |
| } |
| |
| AliasAnalysis::ModRefResult |
| Andersens::getModRefInfo(CallSite CS1, CallSite CS2) { |
| return AliasAnalysis::getModRefInfo(CS1,CS2); |
| } |
| |
| /// getMustAlias - We can provide must alias information if we know that a |
| /// pointer can only point to a specific function or the null pointer. |
| /// Unfortunately we cannot determine must-alias information for global |
| /// variables or any other memory memory objects because we do not track whether |
| /// a pointer points to the beginning of an object or a field of it. |
| void Andersens::getMustAliases(Value *P, std::vector<Value*> &RetVals) { |
| Node *N = &GraphNodes[FindNode(getNode(P))]; |
| if (N->PointsTo->count() == 1) { |
| Node *Pointee = &GraphNodes[N->PointsTo->find_first()]; |
| // If a function is the only object in the points-to set, then it must be |
| // the destination. Note that we can't handle global variables here, |
| // because we don't know if the pointer is actually pointing to a field of |
| // the global or to the beginning of it. |
| if (Value *V = Pointee->getValue()) { |
| if (Function *F = dyn_cast<Function>(V)) |
| RetVals.push_back(F); |
| } else { |
| // If the object in the points-to set is the null object, then the null |
| // pointer is a must alias. |
| if (Pointee == &GraphNodes[NullObject]) |
| RetVals.push_back(Constant::getNullValue(P->getType())); |
| } |
| } |
| AliasAnalysis::getMustAliases(P, RetVals); |
| } |
| |
| /// pointsToConstantMemory - If we can determine that this pointer only points |
| /// to constant memory, return true. In practice, this means that if the |
| /// pointer can only point to constant globals, functions, or the null pointer, |
| /// return true. |
| /// |
| bool Andersens::pointsToConstantMemory(const Value *P) { |
| Node *N = &GraphNodes[FindNode(getNode((Value*)P))]; |
| unsigned i; |
| |
| for (SparseBitVector<>::iterator bi = N->PointsTo->begin(); |
| bi != N->PointsTo->end(); |
| ++bi) { |
| i = *bi; |
| Node *Pointee = &GraphNodes[i]; |
| if (Value *V = Pointee->getValue()) { |
| if (!isa<GlobalValue>(V) || (isa<GlobalVariable>(V) && |
| !cast<GlobalVariable>(V)->isConstant())) |
| return AliasAnalysis::pointsToConstantMemory(P); |
| } else { |
| if (i != NullObject) |
| return AliasAnalysis::pointsToConstantMemory(P); |
| } |
| } |
| |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Object Identification Phase |
| //===----------------------------------------------------------------------===// |
| |
| /// IdentifyObjects - This stage scans the program, adding an entry to the |
| /// GraphNodes list for each memory object in the program (global stack or |
| /// heap), and populates the ValueNodes and ObjectNodes maps for these objects. |
| /// |
| void Andersens::IdentifyObjects(Module &M) { |
| unsigned NumObjects = 0; |
| |
| // Object #0 is always the universal set: the object that we don't know |
| // anything about. |
| assert(NumObjects == UniversalSet && "Something changed!"); |
| ++NumObjects; |
| |
| // Object #1 always represents the null pointer. |
| assert(NumObjects == NullPtr && "Something changed!"); |
| ++NumObjects; |
| |
| // Object #2 always represents the null object (the object pointed to by null) |
| assert(NumObjects == NullObject && "Something changed!"); |
| ++NumObjects; |
| |
| // Add all the globals first. |
| for (Module::global_iterator I = M.global_begin(), E = M.global_end(); |
| I != E; ++I) { |
| ObjectNodes[I] = NumObjects++; |
| ValueNodes[I] = NumObjects++; |
| } |
| |
| // Add nodes for all of the functions and the instructions inside of them. |
| for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { |
| // The function itself is a memory object. |
| unsigned First = NumObjects; |
| ValueNodes[F] = NumObjects++; |
| if (isa<PointerType>(F->getFunctionType()->getReturnType())) |
| ReturnNodes[F] = NumObjects++; |
| if (F->getFunctionType()->isVarArg()) |
| VarargNodes[F] = NumObjects++; |
| |
| |
| // Add nodes for all of the incoming pointer arguments. |
| for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); |
| I != E; ++I) |
| { |
| if (isa<PointerType>(I->getType())) |
| ValueNodes[I] = NumObjects++; |
| } |
| MaxK[First] = NumObjects - First; |
| |
| // Scan the function body, creating a memory object for each heap/stack |
| // allocation in the body of the function and a node to represent all |
| // pointer values defined by instructions and used as operands. |
| for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) { |
| // If this is an heap or stack allocation, create a node for the memory |
| // object. |
| if (isa<PointerType>(II->getType())) { |
| ValueNodes[&*II] = NumObjects++; |
| if (AllocationInst *AI = dyn_cast<AllocationInst>(&*II)) |
| ObjectNodes[AI] = NumObjects++; |
| } |
| |
| // Calls to inline asm need to be added as well because the callee isn't |
| // referenced anywhere else. |
| if (CallInst *CI = dyn_cast<CallInst>(&*II)) { |
| Value *Callee = CI->getCalledValue(); |
| if (isa<InlineAsm>(Callee)) |
| ValueNodes[Callee] = NumObjects++; |
| } |
| } |
| } |
| |
| // Now that we know how many objects to create, make them all now! |
| GraphNodes.resize(NumObjects); |
| NumNodes += NumObjects; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Constraint Identification Phase |
| //===----------------------------------------------------------------------===// |
| |
| /// getNodeForConstantPointer - Return the node corresponding to the constant |
| /// pointer itself. |
| unsigned Andersens::getNodeForConstantPointer(Constant *C) { |
| assert(isa<PointerType>(C->getType()) && "Not a constant pointer!"); |
| |
| if (isa<ConstantPointerNull>(C) || isa<UndefValue>(C)) |
| return NullPtr; |
| else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) |
| return getNode(GV); |
| else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { |
| switch (CE->getOpcode()) { |
| case Instruction::GetElementPtr: |
| return getNodeForConstantPointer(CE->getOperand(0)); |
| case Instruction::IntToPtr: |
| return UniversalSet; |
| case Instruction::BitCast: |
| return getNodeForConstantPointer(CE->getOperand(0)); |
| default: |
| cerr << "Constant Expr not yet handled: " << *CE << "\n"; |
| assert(0); |
| } |
| } else { |
| assert(0 && "Unknown constant pointer!"); |
| } |
| return 0; |
| } |
| |
| /// getNodeForConstantPointerTarget - Return the node POINTED TO by the |
| /// specified constant pointer. |
| unsigned Andersens::getNodeForConstantPointerTarget(Constant *C) { |
| assert(isa<PointerType>(C->getType()) && "Not a constant pointer!"); |
| |
| if (isa<ConstantPointerNull>(C)) |
| return NullObject; |
| else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) |
| return getObject(GV); |
| else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { |
| switch (CE->getOpcode()) { |
| case Instruction::GetElementPtr: |
| return getNodeForConstantPointerTarget(CE->getOperand(0)); |
| case Instruction::IntToPtr: |
| return UniversalSet; |
| case Instruction::BitCast: |
| return getNodeForConstantPointerTarget(CE->getOperand(0)); |
| default: |
| cerr << "Constant Expr not yet handled: " << *CE << "\n"; |
| assert(0); |
| } |
| } else { |
| assert(0 && "Unknown constant pointer!"); |
| } |
| return 0; |
| } |
| |
| /// AddGlobalInitializerConstraints - Add inclusion constraints for the memory |
| /// object N, which contains values indicated by C. |
| void Andersens::AddGlobalInitializerConstraints(unsigned NodeIndex, |
| Constant *C) { |
| if (C->getType()->isFirstClassType()) { |
| if (isa<PointerType>(C->getType())) |
| Constraints.push_back(Constraint(Constraint::Copy, NodeIndex, |
| getNodeForConstantPointer(C))); |
| } else if (C->isNullValue()) { |
| Constraints.push_back(Constraint(Constraint::Copy, NodeIndex, |
| NullObject)); |
| return; |
| } else if (!isa<UndefValue>(C)) { |
| // If this is an array or struct, include constraints for each element. |
| assert(isa<ConstantArray>(C) || isa<ConstantStruct>(C)); |
| for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) |
| AddGlobalInitializerConstraints(NodeIndex, |
| cast<Constant>(C->getOperand(i))); |
| } |
| } |
| |
| /// AddConstraintsForNonInternalLinkage - If this function does not have |
| /// internal linkage, realize that we can't trust anything passed into or |
| /// returned by this function. |
| void Andersens::AddConstraintsForNonInternalLinkage(Function *F) { |
| for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) |
| if (isa<PointerType>(I->getType())) |
| // If this is an argument of an externally accessible function, the |
| // incoming pointer might point to anything. |
| Constraints.push_back(Constraint(Constraint::Copy, getNode(I), |
| UniversalSet)); |
| } |
| |
| /// AddConstraintsForCall - If this is a call to a "known" function, add the |
| /// constraints and return true. If this is a call to an unknown function, |
| /// return false. |
| bool Andersens::AddConstraintsForExternalCall(CallSite CS, Function *F) { |
| assert(F->isDeclaration() && "Not an external function!"); |
| |
| // These functions don't induce any points-to constraints. |
| if (F->getName() == "atoi" || F->getName() == "atof" || |
| F->getName() == "atol" || F->getName() == "atoll" || |
| F->getName() == "remove" || F->getName() == "unlink" || |
| F->getName() == "rename" || F->getName() == "memcmp" || |
| F->getName() == "llvm.memset.i32" || |
| F->getName() == "llvm.memset.i64" || |
| F->getName() == "strcmp" || F->getName() == "strncmp" || |
| F->getName() == "execl" || F->getName() == "execlp" || |
| F->getName() == "execle" || F->getName() == "execv" || |
| F->getName() == "execvp" || F->getName() == "chmod" || |
| F->getName() == "puts" || F->getName() == "write" || |
| F->getName() == "open" || F->getName() == "create" || |
| F->getName() == "truncate" || F->getName() == "chdir" || |
| F->getName() == "mkdir" || F->getName() == "rmdir" || |
| F->getName() == "read" || F->getName() == "pipe" || |
| F->getName() == "wait" || F->getName() == "time" || |
| F->getName() == "stat" || F->getName() == "fstat" || |
| F->getName() == "lstat" || F->getName() == "strtod" || |
| F->getName() == "strtof" || F->getName() == "strtold" || |
| F->getName() == "fopen" || F->getName() == "fdopen" || |
| F->getName() == "freopen" || |
| F->getName() == "fflush" || F->getName() == "feof" || |
| F->getName() == "fileno" || F->getName() == "clearerr" || |
| F->getName() == "rewind" || F->getName() == "ftell" || |
| F->getName() == "ferror" || F->getName() == "fgetc" || |
| F->getName() == "fgetc" || F->getName() == "_IO_getc" || |
| F->getName() == "fwrite" || F->getName() == "fread" || |
| F->getName() == "fgets" || F->getName() == "ungetc" || |
| F->getName() == "fputc" || |
| F->getName() == "fputs" || F->getName() == "putc" || |
| F->getName() == "ftell" || F->getName() == "rewind" || |
| F->getName() == "_IO_putc" || F->getName() == "fseek" || |
| F->getName() == "fgetpos" || F->getName() == "fsetpos" || |
| F->getName() == "printf" || F->getName() == "fprintf" || |
| F->getName() == "sprintf" || F->getName() == "vprintf" || |
| F->getName() == "vfprintf" || F->getName() == "vsprintf" || |
| F->getName() == "scanf" || F->getName() == "fscanf" || |
| F->getName() == "sscanf" || F->getName() == "__assert_fail" || |
| F->getName() == "modf") |
| return true; |
| |
| |
| // These functions do induce points-to edges. |
| if (F->getName() == "llvm.memcpy.i32" || F->getName() == "llvm.memcpy.i64" || |
| F->getName() == "llvm.memmove.i32" ||F->getName() == "llvm.memmove.i64" || |
| F->getName() == "memmove") { |
| |
| // *Dest = *Src, which requires an artificial graph node to represent the |
| // constraint. It is broken up into *Dest = temp, temp = *Src |
| unsigned FirstArg = getNode(CS.getArgument(0)); |
| unsigned SecondArg = getNode(CS.getArgument(1)); |
| unsigned TempArg = GraphNodes.size(); |
| GraphNodes.push_back(Node()); |
| Constraints.push_back(Constraint(Constraint::Store, |
| FirstArg, TempArg)); |
| Constraints.push_back(Constraint(Constraint::Load, |
| TempArg, SecondArg)); |
| return true; |
| } |
| |
| // Result = Arg0 |
| if (F->getName() == "realloc" || F->getName() == "strchr" || |
| F->getName() == "strrchr" || F->getName() == "strstr" || |
| F->getName() == "strtok") { |
| Constraints.push_back(Constraint(Constraint::Copy, |
| getNode(CS.getInstruction()), |
| getNode(CS.getArgument(0)))); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| |
| |
| /// AnalyzeUsesOfFunction - Look at all of the users of the specified function. |
| /// If this is used by anything complex (i.e., the address escapes), return |
| /// true. |
| bool Andersens::AnalyzeUsesOfFunction(Value *V) { |
| |
| if (!isa<PointerType>(V->getType())) return true; |
| |
| for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI) |
| if (dyn_cast<LoadInst>(*UI)) { |
| return false; |
| } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) { |
| if (V == SI->getOperand(1)) { |
| return false; |
| } else if (SI->getOperand(1)) { |
| return true; // Storing the pointer |
| } |
| } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) { |
| if (AnalyzeUsesOfFunction(GEP)) return true; |
| } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) { |
| // Make sure that this is just the function being called, not that it is |
| // passing into the function. |
| for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i) |
| if (CI->getOperand(i) == V) return true; |
| } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) { |
| // Make sure that this is just the function being called, not that it is |
| // passing into the function. |
| for (unsigned i = 3, e = II->getNumOperands(); i != e; ++i) |
| if (II->getOperand(i) == V) return true; |
| } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) { |
| if (CE->getOpcode() == Instruction::GetElementPtr || |
| CE->getOpcode() == Instruction::BitCast) { |
| if (AnalyzeUsesOfFunction(CE)) |
| return true; |
| } else { |
| return true; |
| } |
| } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(*UI)) { |
| if (!isa<ConstantPointerNull>(ICI->getOperand(1))) |
| return true; // Allow comparison against null. |
| } else if (dyn_cast<FreeInst>(*UI)) { |
| return false; |
| } else { |
| return true; |
| } |
| return false; |
| } |
| |
| /// CollectConstraints - This stage scans the program, adding a constraint to |
| /// the Constraints list for each instruction in the program that induces a |
| /// constraint, and setting up the initial points-to graph. |
| /// |
| void Andersens::CollectConstraints(Module &M) { |
| // First, the universal set points to itself. |
| Constraints.push_back(Constraint(Constraint::AddressOf, UniversalSet, |
| UniversalSet)); |
| Constraints.push_back(Constraint(Constraint::Store, UniversalSet, |
| UniversalSet)); |
| |
| // Next, the null pointer points to the null object. |
| Constraints.push_back(Constraint(Constraint::AddressOf, NullPtr, NullObject)); |
| |
| // Next, add any constraints on global variables and their initializers. |
| for (Module::global_iterator I = M.global_begin(), E = M.global_end(); |
| I != E; ++I) { |
| // Associate the address of the global object as pointing to the memory for |
| // the global: &G = <G memory> |
| unsigned ObjectIndex = getObject(I); |
| Node *Object = &GraphNodes[ObjectIndex]; |
| Object->setValue(I); |
| Constraints.push_back(Constraint(Constraint::AddressOf, getNodeValue(*I), |
| ObjectIndex)); |
| |
| if (I->hasInitializer()) { |
| AddGlobalInitializerConstraints(ObjectIndex, I->getInitializer()); |
| } else { |
| // If it doesn't have an initializer (i.e. it's defined in another |
| // translation unit), it points to the universal set. |
| Constraints.push_back(Constraint(Constraint::Copy, ObjectIndex, |
| UniversalSet)); |
| } |
| } |
| |
| for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { |
| // Set up the return value node. |
| if (isa<PointerType>(F->getFunctionType()->getReturnType())) |
| GraphNodes[getReturnNode(F)].setValue(F); |
| if (F->getFunctionType()->isVarArg()) |
| GraphNodes[getVarargNode(F)].setValue(F); |
| |
| // Set up incoming argument nodes. |
| for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); |
| I != E; ++I) |
| if (isa<PointerType>(I->getType())) |
| getNodeValue(*I); |
| |
| // At some point we should just add constraints for the escaping functions |
| // at solve time, but this slows down solving. For now, we simply mark |
| // address taken functions as escaping and treat them as external. |
| if (!F->hasInternalLinkage() || AnalyzeUsesOfFunction(F)) |
| AddConstraintsForNonInternalLinkage(F); |
| |
| if (!F->isDeclaration()) { |
| // Scan the function body, creating a memory object for each heap/stack |
| // allocation in the body of the function and a node to represent all |
| // pointer values defined by instructions and used as operands. |
| visit(F); |
| } else { |
| // External functions that return pointers return the universal set. |
| if (isa<PointerType>(F->getFunctionType()->getReturnType())) |
| Constraints.push_back(Constraint(Constraint::Copy, |
| getReturnNode(F), |
| UniversalSet)); |
| |
| // Any pointers that are passed into the function have the universal set |
| // stored into them. |
| for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); |
| I != E; ++I) |
| if (isa<PointerType>(I->getType())) { |
| // Pointers passed into external functions could have anything stored |
| // through them. |
| Constraints.push_back(Constraint(Constraint::Store, getNode(I), |
| UniversalSet)); |
| // Memory objects passed into external function calls can have the |
| // universal set point to them. |
| #if FULL_UNIVERSAL |
| Constraints.push_back(Constraint(Constraint::Copy, |
| UniversalSet, |
| getNode(I))); |
| #else |
| Constraints.push_back(Constraint(Constraint::Copy, |
| getNode(I), |
| UniversalSet)); |
| #endif |
| } |
| |
| // If this is an external varargs function, it can also store pointers |
| // into any pointers passed through the varargs section. |
| if (F->getFunctionType()->isVarArg()) |
| Constraints.push_back(Constraint(Constraint::Store, getVarargNode(F), |
| UniversalSet)); |
| } |
| } |
| NumConstraints += Constraints.size(); |
| } |
| |
| |
| void Andersens::visitInstruction(Instruction &I) { |
| #ifdef NDEBUG |
| return; // This function is just a big assert. |
| #endif |
| if (isa<BinaryOperator>(I)) |
| return; |
| // Most instructions don't have any effect on pointer values. |
| switch (I.getOpcode()) { |
| case Instruction::Br: |
| case Instruction::Switch: |
| case Instruction::Unwind: |
| case Instruction::Unreachable: |
| case Instruction::Free: |
| case Instruction::ICmp: |
| case Instruction::FCmp: |
| return; |
| default: |
| // Is this something we aren't handling yet? |
| cerr << "Unknown instruction: " << I; |
| abort(); |
| } |
| } |
| |
| void Andersens::visitAllocationInst(AllocationInst &AI) { |
| unsigned ObjectIndex = getObject(&AI); |
| GraphNodes[ObjectIndex].setValue(&AI); |
| Constraints.push_back(Constraint(Constraint::AddressOf, getNodeValue(AI), |
| ObjectIndex)); |
| } |
| |
| void Andersens::visitReturnInst(ReturnInst &RI) { |
| if (RI.getNumOperands() && isa<PointerType>(RI.getOperand(0)->getType())) |
| // return V --> <Copy/retval{F}/v> |
| Constraints.push_back(Constraint(Constraint::Copy, |
| getReturnNode(RI.getParent()->getParent()), |
| getNode(RI.getOperand(0)))); |
| } |
| |
| void Andersens::visitLoadInst(LoadInst &LI) { |
| if (isa<PointerType>(LI.getType())) |
| // P1 = load P2 --> <Load/P1/P2> |
| Constraints.push_back(Constraint(Constraint::Load, getNodeValue(LI), |
| getNode(LI.getOperand(0)))); |
| } |
| |
| void Andersens::visitStoreInst(StoreInst &SI) { |
| if (isa<PointerType>(SI.getOperand(0)->getType())) |
| // store P1, P2 --> <Store/P2/P1> |
| Constraints.push_back(Constraint(Constraint::Store, |
| getNode(SI.getOperand(1)), |
| getNode(SI.getOperand(0)))); |
| } |
| |
| void Andersens::visitGetElementPtrInst(GetElementPtrInst &GEP) { |
| // P1 = getelementptr P2, ... --> <Copy/P1/P2> |
| Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(GEP), |
| getNode(GEP.getOperand(0)))); |
| } |
| |
| void Andersens::visitPHINode(PHINode &PN) { |
| if (isa<PointerType>(PN.getType())) { |
| unsigned PNN = getNodeValue(PN); |
| for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) |
| // P1 = phi P2, P3 --> <Copy/P1/P2>, <Copy/P1/P3>, ... |
| Constraints.push_back(Constraint(Constraint::Copy, PNN, |
| getNode(PN.getIncomingValue(i)))); |
| } |
| } |
| |
| void Andersens::visitCastInst(CastInst &CI) { |
| Value *Op = CI.getOperand(0); |
| if (isa<PointerType>(CI.getType())) { |
| if (isa<PointerType>(Op->getType())) { |
| // P1 = cast P2 --> <Copy/P1/P2> |
| Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI), |
| getNode(CI.getOperand(0)))); |
| } else { |
| // P1 = cast int --> <Copy/P1/Univ> |
| #if 0 |
| Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI), |
| UniversalSet)); |
| #else |
| getNodeValue(CI); |
| #endif |
| } |
| } else if (isa<PointerType>(Op->getType())) { |
| // int = cast P1 --> <Copy/Univ/P1> |
| #if 0 |
| Constraints.push_back(Constraint(Constraint::Copy, |
| UniversalSet, |
| getNode(CI.getOperand(0)))); |
| #else |
| getNode(CI.getOperand(0)); |
| #endif |
| } |
| } |
| |
| void Andersens::visitSelectInst(SelectInst &SI) { |
| if (isa<PointerType>(SI.getType())) { |
| unsigned SIN = getNodeValue(SI); |
| // P1 = select C, P2, P3 ---> <Copy/P1/P2>, <Copy/P1/P3> |
| Constraints.push_back(Constraint(Constraint::Copy, SIN, |
| getNode(SI.getOperand(1)))); |
| Constraints.push_back(Constraint(Constraint::Copy, SIN, |
| getNode(SI.getOperand(2)))); |
| } |
| } |
| |
| void Andersens::visitVAArg(VAArgInst &I) { |
| assert(0 && "vaarg not handled yet!"); |
| } |
| |
| /// AddConstraintsForCall - Add constraints for a call with actual arguments |
| /// specified by CS to the function specified by F. Note that the types of |
| /// arguments might not match up in the case where this is an indirect call and |
| /// the function pointer has been casted. If this is the case, do something |
| /// reasonable. |
| void Andersens::AddConstraintsForCall(CallSite CS, Function *F) { |
| Value *CallValue = CS.getCalledValue(); |
| bool IsDeref = F == NULL; |
| |
| // If this is a call to an external function, try to handle it directly to get |
| // some taste of context sensitivity. |
| if (F && F->isDeclaration() && AddConstraintsForExternalCall(CS, F)) |
| return; |
| |
| if (isa<PointerType>(CS.getType())) { |
| unsigned CSN = getNode(CS.getInstruction()); |
| if (!F || isa<PointerType>(F->getFunctionType()->getReturnType())) { |
| if (IsDeref) |
| Constraints.push_back(Constraint(Constraint::Load, CSN, |
| getNode(CallValue), CallReturnPos)); |
| else |
| Constraints.push_back(Constraint(Constraint::Copy, CSN, |
| getNode(CallValue) + CallReturnPos)); |
| } else { |
| // If the function returns a non-pointer value, handle this just like we |
| // treat a nonpointer cast to pointer. |
| Constraints.push_back(Constraint(Constraint::Copy, CSN, |
| UniversalSet)); |
| } |
| } else if (F && isa<PointerType>(F->getFunctionType()->getReturnType())) { |
| #if FULL_UNIVERSAL |
| Constraints.push_back(Constraint(Constraint::Copy, |
| UniversalSet, |
| getNode(CallValue) + CallReturnPos)); |
| #else |
| Constraints.push_back(Constraint(Constraint::Copy, |
| getNode(CallValue) + CallReturnPos, |
| UniversalSet)); |
| #endif |
| |
| |
| } |
| |
| CallSite::arg_iterator ArgI = CS.arg_begin(), ArgE = CS.arg_end(); |
| if (F) { |
| // Direct Call |
| Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end(); |
| for (; AI != AE && ArgI != ArgE; ++AI, ++ArgI) |
| if (isa<PointerType>(AI->getType())) { |
| if (isa<PointerType>((*ArgI)->getType())) { |
| // Copy the actual argument into the formal argument. |
| Constraints.push_back(Constraint(Constraint::Copy, getNode(AI), |
| getNode(*ArgI))); |
| } else { |
| Constraints.push_back(Constraint(Constraint::Copy, getNode(AI), |
| UniversalSet)); |
| } |
| } else if (isa<PointerType>((*ArgI)->getType())) { |
| #if FULL_UNIVERSAL |
| Constraints.push_back(Constraint(Constraint::Copy, |
| UniversalSet, |
| getNode(*ArgI))); |
| #else |
| Constraints.push_back(Constraint(Constraint::Copy, |
| getNode(*ArgI), |
| UniversalSet)); |
| #endif |
| } |
| } else { |
| //Indirect Call |
| unsigned ArgPos = CallFirstArgPos; |
| for (; ArgI != ArgE; ++ArgI) { |
| if (isa<PointerType>((*ArgI)->getType())) { |
| // Copy the actual argument into the formal argument. |
| Constraints.push_back(Constraint(Constraint::Store, |
| getNode(CallValue), |
| getNode(*ArgI), ArgPos++)); |
| } else { |
| Constraints.push_back(Constraint(Constraint::Store, |
| getNode (CallValue), |
| UniversalSet, ArgPos++)); |
| } |
| } |
| } |
| // Copy all pointers passed through the varargs section to the varargs node. |
| if (F && F->getFunctionType()->isVarArg()) |
| for (; ArgI != ArgE; ++ArgI) |
| if (isa<PointerType>((*ArgI)->getType())) |
| Constraints.push_back(Constraint(Constraint::Copy, getVarargNode(F), |
| getNode(*ArgI))); |
| // If more arguments are passed in than we track, just drop them on the floor. |
| } |
| |
| void Andersens::visitCallSite(CallSite CS) { |
| if (isa<PointerType>(CS.getType())) |
| getNodeValue(*CS.getInstruction()); |
| |
| if (Function *F = CS.getCalledFunction()) { |
| AddConstraintsForCall(CS, F); |
| } else { |
| AddConstraintsForCall(CS, NULL); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Constraint Solving Phase |
| //===----------------------------------------------------------------------===// |
| |
| /// intersects - Return true if the points-to set of this node intersects |
| /// with the points-to set of the specified node. |
| bool Andersens::Node::intersects(Node *N) const { |
| return PointsTo->intersects(N->PointsTo); |
| } |
| |
| /// intersectsIgnoring - Return true if the points-to set of this node |
| /// intersects with the points-to set of the specified node on any nodes |
| /// except for the specified node to ignore. |
| bool Andersens::Node::intersectsIgnoring(Node *N, unsigned Ignoring) const { |
| // TODO: If we are only going to call this with the same value for Ignoring, |
| // we should move the special values out of the points-to bitmap. |
| bool WeHadIt = PointsTo->test(Ignoring); |
| bool NHadIt = N->PointsTo->test(Ignoring); |
| bool Result = false; |
| if (WeHadIt) |
| PointsTo->reset(Ignoring); |
| if (NHadIt) |
| N->PointsTo->reset(Ignoring); |
| Result = PointsTo->intersects(N->PointsTo); |
| if (WeHadIt) |
| PointsTo->set(Ignoring); |
| if (NHadIt) |
| N->PointsTo->set(Ignoring); |
| return Result; |
| } |
| |
| void dumpToDOUT(SparseBitVector<> *bitmap) { |
| #ifndef NDEBUG |
| dump(*bitmap, DOUT); |
| #endif |
| } |
| |
| |
| /// Clump together address taken variables so that the points-to sets use up |
| /// less space and can be operated on faster. |
| |
| void Andersens::ClumpAddressTaken() { |
| #undef DEBUG_TYPE |
| #define DEBUG_TYPE "anders-aa-renumber" |
| std::vector<unsigned> Translate; |
| std::vector<Node> NewGraphNodes; |
| |
| Translate.resize(GraphNodes.size()); |
| unsigned NewPos = 0; |
| |
| for (unsigned i = 0; i < Constraints.size(); ++i) { |
| Constraint &C = Constraints[i]; |
| if (C.Type == Constraint::AddressOf) { |
| GraphNodes[C.Src].AddressTaken = true; |
| } |
| } |
| for (unsigned i = 0; i < NumberSpecialNodes; ++i) { |
| unsigned Pos = NewPos++; |
| Translate[i] = Pos; |
| NewGraphNodes.push_back(GraphNodes[i]); |
| DOUT << "Renumbering node " << i << " to node " << Pos << "\n"; |
| } |
| |
| // I believe this ends up being faster than making two vectors and splicing |
| // them. |
| for (unsigned i = NumberSpecialNodes; i < GraphNodes.size(); ++i) { |
| if (GraphNodes[i].AddressTaken) { |
| unsigned Pos = NewPos++; |
| Translate[i] = Pos; |
| NewGraphNodes.push_back(GraphNodes[i]); |
| DOUT << "Renumbering node " << i << " to node " << Pos << "\n"; |
| } |
| } |
| |
| for (unsigned i = NumberSpecialNodes; i < GraphNodes.size(); ++i) { |
| if (!GraphNodes[i].AddressTaken) { |
| unsigned Pos = NewPos++; |
| Translate[i] = Pos; |
| NewGraphNodes.push_back(GraphNodes[i]); |
| DOUT << "Renumbering node " << i << " to node " << Pos << "\n"; |
| } |
| } |
| |
| for (DenseMap<Value*, unsigned>::iterator Iter = ValueNodes.begin(); |
| Iter != ValueNodes.end(); |
| ++Iter) |
| Iter->second = Translate[Iter->second]; |
| |
| for (DenseMap<Value*, unsigned>::iterator Iter = ObjectNodes.begin(); |
| Iter != ObjectNodes.end(); |
| ++Iter) |
| Iter->second = Translate[Iter->second]; |
| |
| for (DenseMap<Function*, unsigned>::iterator Iter = ReturnNodes.begin(); |
| Iter != ReturnNodes.end(); |
| ++Iter) |
| Iter->second = Translate[Iter->second]; |
| |
| for (DenseMap<Function*, unsigned>::iterator Iter = VarargNodes.begin(); |
| Iter != VarargNodes.end(); |
| ++Iter) |
| Iter->second = Translate[Iter->second]; |
| |
| for (unsigned i = 0; i < Constraints.size(); ++i) { |
| Constraint &C = Constraints[i]; |
| C.Src = Translate[C.Src]; |
| C.Dest = Translate[C.Dest]; |
| } |
| |
| GraphNodes.swap(NewGraphNodes); |
| #undef DEBUG_TYPE |
| #define DEBUG_TYPE "anders-aa" |
| } |
| |
| /// The technique used here is described in "Exploiting Pointer and Location |
| /// Equivalence to Optimize Pointer Analysis. In the 14th International Static |
| /// Analysis Symposium (SAS), August 2007." It is known as the "HVN" algorithm, |
| /// and is equivalent to value numbering the collapsed constraint graph without |
| /// evaluating unions. This is used as a pre-pass to HU in order to resolve |
| /// first order pointer dereferences and speed up/reduce memory usage of HU. |
| /// Running both is equivalent to HRU without the iteration |
| /// HVN in more detail: |
| /// Imagine the set of constraints was simply straight line code with no loops |
| /// (we eliminate cycles, so there are no loops), such as: |
| /// E = &D |
| /// E = &C |
| /// E = F |
| /// F = G |
| /// G = F |
| /// Applying value numbering to this code tells us: |
| /// G == F == E |
| /// |
| /// For HVN, this is as far as it goes. We assign new value numbers to every |
| /// "address node", and every "reference node". |
| /// To get the optimal result for this, we use a DFS + SCC (since all nodes in a |
| /// cycle must have the same value number since the = operation is really |
| /// inclusion, not overwrite), and value number nodes we receive points-to sets |
| /// before we value our own node. |
| /// The advantage of HU over HVN is that HU considers the inclusion property, so |
| /// that if you have |
| /// E = &D |
| /// E = &C |
| /// E = F |
| /// F = G |
| /// F = &D |
| /// G = F |
| /// HU will determine that G == F == E. HVN will not, because it cannot prove |
| /// that the points to information ends up being the same because they all |
| /// receive &D from E anyway. |
| |
| void Andersens::HVN() { |
| DOUT << "Beginning HVN\n"; |
| // Build a predecessor graph. This is like our constraint graph with the |
| // edges going in the opposite direction, and there are edges for all the |
| // constraints, instead of just copy constraints. We also build implicit |
| // edges for constraints are implied but not explicit. I.E for the constraint |
| // a = &b, we add implicit edges *a = b. This helps us capture more cycles |
| for (unsigned i = 0, e = Constraints.size(); i != e; ++i) { |
| Constraint &C = Constraints[i]; |
| if (C.Type == Constraint::AddressOf) { |
| GraphNodes[C.Src].AddressTaken = true; |
| GraphNodes[C.Src].Direct = false; |
| |
| // Dest = &src edge |
| unsigned AdrNode = C.Src + FirstAdrNode; |
| if (!GraphNodes[C.Dest].PredEdges) |
| GraphNodes[C.Dest].PredEdges = new SparseBitVector<>; |
| GraphNodes[C.Dest].PredEdges->set(AdrNode); |
| |
| // *Dest = src edge |
| unsigned RefNode = C.Dest + FirstRefNode; |
| if (!GraphNodes[RefNode].ImplicitPredEdges) |
| GraphNodes[RefNode].ImplicitPredEdges = new SparseBitVector<>; |
| GraphNodes[RefNode].ImplicitPredEdges->set(C.Src); |
| } else if (C.Type == Constraint::Load) { |
| if (C.Offset == 0) { |
| // dest = *src edge |
| if (!GraphNodes[C.Dest].PredEdges) |
| GraphNodes[C.Dest].PredEdges = new SparseBitVector<>; |
| GraphNodes[C.Dest].PredEdges->set(C.Src + FirstRefNode); |
| } else { |
| GraphNodes[C.Dest].Direct = false; |
| } |
| } else if (C.Type == Constraint::Store) { |
| if (C.Offset == 0) { |
| // *dest = src edge |
| unsigned RefNode = C.Dest + FirstRefNode; |
| if (!GraphNodes[RefNode].PredEdges) |
| GraphNodes[RefNode].PredEdges = new SparseBitVector<>; |
| GraphNodes[RefNode].PredEdges->set(C.Src); |
| } |
| } else { |
| // Dest = Src edge and *Dest = *Src edge |
| if (!GraphNodes[C.Dest].PredEdges) |
| GraphNodes[C.Dest].PredEdges = new SparseBitVector<>; |
| GraphNodes[C.Dest].PredEdges->set(C.Src); |
| unsigned RefNode = C.Dest + FirstRefNode; |
| if (!GraphNodes[RefNode].ImplicitPredEdges) |
| GraphNodes[RefNode].ImplicitPredEdges = new SparseBitVector<>; |
| GraphNodes[RefNode].ImplicitPredEdges->set(C.Src + FirstRefNode); |
| } |
| } |
| PEClass = 1; |
| // Do SCC finding first to condense our predecessor graph |
| DFSNumber = 0; |
| Node2DFS.insert(Node2DFS.begin(), GraphNodes.size(), 0); |
| Node2Deleted.insert(Node2Deleted.begin(), GraphNodes.size(), false); |
| Node2Visited.insert(Node2Visited.begin(), GraphNodes.size(), false); |
| |
| for (unsigned i = 0; i < FirstRefNode; ++i) { |
| unsigned Node = VSSCCRep[i]; |
| if (!Node2Visited[Node]) |
| HVNValNum(Node); |
| } |
| for (BitVectorMap::iterator Iter = Set2PEClass.begin(); |
| Iter != Set2PEClass.end(); |
| ++Iter) |
| delete Iter->first; |
| Set2PEClass.clear(); |
| Node2DFS.clear(); |
| Node2Deleted.clear(); |
| Node2Visited.clear(); |
| DOUT << "Finished HVN\n"; |
| |
| } |
| |
| /// This is the workhorse of HVN value numbering. We combine SCC finding at the |
| /// same time because it's easy. |
| void Andersens::HVNValNum(unsigned NodeIndex) { |
| unsigned MyDFS = DFSNumber++; |
| Node *N = &GraphNodes[NodeIndex]; |
| Node2Visited[NodeIndex] = true; |
| Node2DFS[NodeIndex] = MyDFS; |
| |
| // First process all our explicit edges |
| if (N->PredEdges) |
| for (SparseBitVector<>::iterator Iter = N->PredEdges->begin(); |
| Iter != N->PredEdges->end(); |
| ++Iter) { |
| unsigned j = VSSCCRep[*Iter]; |
| if (!Node2Deleted[j]) { |
| if (!Node2Visited[j]) |
| HVNValNum(j); |
| if (Node2DFS[NodeIndex] > Node2DFS[j]) |
| Node2DFS[NodeIndex] = Node2DFS[j]; |
| } |
| } |
| |
| // Now process all the implicit edges |
| if (N->ImplicitPredEdges) |
| for (SparseBitVector<>::iterator Iter = N->ImplicitPredEdges->begin(); |
| Iter != N->ImplicitPredEdges->end(); |
| ++Iter) { |
| unsigned j = VSSCCRep[*Iter]; |
| if (!Node2Deleted[j]) { |
| if (!Node2Visited[j]) |
| HVNValNum(j); |
| if (Node2DFS[NodeIndex] > Node2DFS[j]) |
| Node2DFS[NodeIndex] = Node2DFS[j]; |
| } |
| } |
| |
| // See if we found any cycles |
| if (MyDFS == Node2DFS[NodeIndex]) { |
| while (!SCCStack.empty() && Node2DFS[SCCStack.top()] >= MyDFS) { |
| unsigned CycleNodeIndex = SCCStack.top(); |
| Node *CycleNode = &GraphNodes[CycleNodeIndex]; |
| VSSCCRep[CycleNodeIndex] = NodeIndex; |
| // Unify the nodes |
| N->Direct &= CycleNode->Direct; |
| |
| if (CycleNode->PredEdges) { |
| if (!N->PredEdges) |
| N->PredEdges = new SparseBitVector<>; |
| *(N->PredEdges) |= CycleNode->PredEdges; |
| delete CycleNode->PredEdges; |
| CycleNode->PredEdges = NULL; |
| } |
| if (CycleNode->ImplicitPredEdges) { |
| if (!N->ImplicitPredEdges) |
| N->ImplicitPredEdges = new SparseBitVector<>; |
| *(N->ImplicitPredEdges) |= CycleNode->ImplicitPredEdges; |
| delete CycleNode->ImplicitPredEdges; |
| CycleNode->ImplicitPredEdges = NULL; |
| } |
| |
| SCCStack.pop(); |
| } |
| |
| Node2Deleted[NodeIndex] = true; |
| |
| if (!N->Direct) { |
| GraphNodes[NodeIndex].PointerEquivLabel = PEClass++; |
| return; |
| } |
| |
| // Collect labels of successor nodes |
| bool AllSame = true; |
| unsigned First = ~0; |
| SparseBitVector<> *Labels = new SparseBitVector<>; |
| bool Used = false; |
| |
| if (N->PredEdges) |
| for (SparseBitVector<>::iterator Iter = N->PredEdges->begin(); |
| Iter != N->PredEdges->end(); |
| ++Iter) { |
| unsigned j = VSSCCRep[*Iter]; |
| unsigned Label = GraphNodes[j].PointerEquivLabel; |
| // Ignore labels that are equal to us or non-pointers |
| if (j == NodeIndex || Label == 0) |
| continue; |
| if (First == (unsigned)~0) |
| First = Label; |
| else if (First != Label) |
| AllSame = false; |
| Labels->set(Label); |
| } |
| |
| // We either have a non-pointer, a copy of an existing node, or a new node. |
| // Assign the appropriate pointer equivalence label. |
| if (Labels->empty()) { |
| GraphNodes[NodeIndex].PointerEquivLabel = 0; |
| } else if (AllSame) { |
| GraphNodes[NodeIndex].PointerEquivLabel = First; |
| } else { |
| GraphNodes[NodeIndex].PointerEquivLabel = Set2PEClass[Labels]; |
| if (GraphNodes[NodeIndex].PointerEquivLabel == 0) { |
| unsigned EquivClass = PEClass++; |
| Set2PEClass[Labels] = EquivClass; |
| GraphNodes[NodeIndex].PointerEquivLabel = EquivClass; |
| Used = true; |
| } |
| } |
| if (!Used) |
| delete Labels; |
| } else { |
| SCCStack.push(NodeIndex); |
| } |
| } |
| |
| /// The technique used here is described in "Exploiting Pointer and Location |
| /// Equivalence to Optimize Pointer Analysis. In the 14th International Static |
| /// Analysis Symposium (SAS), August 2007." It is known as the "HU" algorithm, |
| /// and is equivalent to value numbering the collapsed constraint graph |
| /// including evaluating unions. |
| void Andersens::HU() { |
| DOUT << "Beginning HU\n"; |
| // Build a predecessor graph. This is like our constraint graph with the |
| // edges going in the opposite direction, and there are edges for all the |
| // constraints, instead of just copy constraints. We also build implicit |
| // edges for constraints are implied but not explicit. I.E for the constraint |
| // a = &b, we add implicit edges *a = b. This helps us capture more cycles |
| for (unsigned i = 0, e = Constraints.size(); i != e; ++i) { |
| Constraint &C = Constraints[i]; |
| if (C.Type == Constraint::AddressOf) { |
| GraphNodes[C.Src].AddressTaken = true; |
| GraphNodes[C.Src].Direct = false; |
| |
| GraphNodes[C.Dest].PointsTo->set(C.Src); |
| // *Dest = src edge |
| unsigned RefNode = C.Dest + FirstRefNode; |
| if (!GraphNodes[RefNode].ImplicitPredEdges) |
| GraphNodes[RefNode].ImplicitPredEdges = new SparseBitVector<>; |
| GraphNodes[RefNode].ImplicitPredEdges->set(C.Src); |
| GraphNodes[C.Src].PointedToBy->set(C.Dest); |
| } else if (C.Type == Constraint::Load) { |
| if (C.Offset == 0) { |
| // dest = *src edge |
| if (!GraphNodes[C.Dest].PredEdges) |
| GraphNodes[C.Dest].PredEdges = new SparseBitVector<>; |
| GraphNodes[C.Dest].PredEdges->set(C.Src + FirstRefNode); |
| } else { |
| GraphNodes[C.Dest].Direct = false; |
| } |
| } else if (C.Type == Constraint::Store) { |
| if (C.Offset == 0) { |
| // *dest = src edge |
| unsigned RefNode = C.Dest + FirstRefNode; |
| if (!GraphNodes[RefNode].PredEdges) |
| GraphNodes[RefNode].PredEdges = new SparseBitVector<>; |
| GraphNodes[RefNode].PredEdges->set(C.Src); |
| } |
| } else { |
| // Dest = Src edge and *Dest = *Src edg |
| if (!GraphNodes[C.Dest].PredEdges) |
| GraphNodes[C.Dest].PredEdges = new SparseBitVector<>; |
| GraphNodes[C.Dest].PredEdges->set(C.Src); |
| unsigned RefNode = C.Dest + FirstRefNode; |
| if (!GraphNodes[RefNode].ImplicitPredEdges) |
| GraphNodes[RefNode].ImplicitPredEdges = new SparseBitVector<>; |
| GraphNodes[RefNode].ImplicitPredEdges->set(C.Src + FirstRefNode); |
| } |
| } |
| PEClass = 1; |
| // Do SCC finding first to condense our predecessor graph |
| DFSNumber = 0; |
| Node2DFS.insert(Node2DFS.begin(), GraphNodes.size(), 0); |
| Node2Deleted.insert(Node2Deleted.begin(), GraphNodes.size(), false); |
| Node2Visited.insert(Node2Visited.begin(), GraphNodes.size(), false); |
| |
| for (unsigned i = 0; i < FirstRefNode; ++i) { |
| if (FindNode(i) == i) { |
| unsigned Node = VSSCCRep[i]; |
| if (!Node2Visited[Node]) |
| Condense(Node); |
| } |
| } |
| |
| // Reset tables for actual labeling |
| Node2DFS.clear(); |
| Node2Visited.clear(); |
| Node2Deleted.clear(); |
| // Pre-grow our densemap so that we don't get really bad behavior |
| Set2PEClass.resize(GraphNodes.size()); |
| |
| // Visit the condensed graph and generate pointer equivalence labels. |
| Node2Visited.insert(Node2Visited.begin(), GraphNodes.size(), false); |
| for (unsigned i = 0; i < FirstRefNode; ++i) { |
| if (FindNode(i) == i) { |
| unsigned Node = VSSCCRep[i]; |
| if (!Node2Visited[Node]) |
| HUValNum(Node); |
| } |
| } |
| // PEClass nodes will be deleted by the deleting of N->PointsTo in our caller. |
| Set2PEClass.clear(); |
| DOUT << "Finished HU\n"; |
| } |
| |
| |
| /// Implementation of standard Tarjan SCC algorithm as modified by Nuutilla. |
| void Andersens::Condense(unsigned NodeIndex) { |
| unsigned MyDFS = DFSNumber++; |
| Node *N = &GraphNodes[NodeIndex]; |
| Node2Visited[NodeIndex] = true; |
| Node2DFS[NodeIndex] = MyDFS; |
| |
| // First process all our explicit edges |
| if (N->PredEdges) |
| for (SparseBitVector<>::iterator Iter = N->PredEdges->begin(); |
| Iter != N->PredEdges->end(); |
| ++Iter) { |
| unsigned j = VSSCCRep[*Iter]; |
| if (!Node2Deleted[j]) { |
| if (!Node2Visited[j]) |
| Condense(j); |
| if (Node2DFS[NodeIndex] > Node2DFS[j]) |
| Node2DFS[NodeIndex] = Node2DFS[j]; |
| } |
| } |
| |
| // Now process all the implicit edges |
| if (N->ImplicitPredEdges) |
| for (SparseBitVector<>::iterator Iter = N->ImplicitPredEdges->begin(); |
| Iter != N->ImplicitPredEdges->end(); |
| ++Iter) { |
| unsigned j = VSSCCRep[*Iter]; |
| if (!Node2Deleted[j]) { |
| if (!Node2Visited[j]) |
| Condense(j); |
| if (Node2DFS[NodeIndex] > Node2DFS[j]) |
| Node2DFS[NodeIndex] = Node2DFS[j]; |
| } |
| } |
| |
| // See if we found any cycles |
| if (MyDFS == Node2DFS[NodeIndex]) { |
| while (!SCCStack.empty() && Node2DFS[SCCStack.top()] >= MyDFS) { |
| unsigned CycleNodeIndex = SCCStack.top(); |
| Node *CycleNode = &GraphNodes[CycleNodeIndex]; |
| VSSCCRep[CycleNodeIndex] = NodeIndex; |
| // Unify the nodes |
| N->Direct &= CycleNode->Direct; |
| |
| *(N->PointsTo) |= CycleNode->PointsTo; |
| delete CycleNode->PointsTo; |
| CycleNode->PointsTo = NULL; |
| if (CycleNode->PredEdges) { |
| if (!N->PredEdges) |
| N->PredEdges = new SparseBitVector<>; |
| *(N->PredEdges) |= CycleNode->PredEdges; |
| delete CycleNode->PredEdges; |
| CycleNode->PredEdges = NULL; |
| } |
| if (CycleNode->ImplicitPredEdges) { |
| if (!N->ImplicitPredEdges) |
| N->ImplicitPredEdges = new SparseBitVector<>; |
| *(N->ImplicitPredEdges) |= CycleNode->ImplicitPredEdges; |
| delete CycleNode->ImplicitPredEdges; |
| CycleNode->ImplicitPredEdges = NULL; |
| } |
| SCCStack.pop(); |
| } |
| |
| Node2Deleted[NodeIndex] = true; |
| |
| // Set up number of incoming edges for other nodes |
| if (N->PredEdges) |
| for (SparseBitVector<>::iterator Iter = N->PredEdges->begin(); |
| Iter != N->PredEdges->end(); |
| ++Iter) |
| ++GraphNodes[VSSCCRep[*Iter]].NumInEdges; |
| } else { |
| SCCStack.push(NodeIndex); |
| } |
| } |
| |
| void Andersens::HUValNum(unsigned NodeIndex) { |
| Node *N = &GraphNodes[NodeIndex]; |
| Node2Visited[NodeIndex] = true; |
| |
| // Eliminate dereferences of non-pointers for those non-pointers we have |
| // already identified. These are ref nodes whose non-ref node: |
| // 1. Has already been visited determined to point to nothing (and thus, a |
| // dereference of it must point to nothing) |
| // 2. Any direct node with no predecessor edges in our graph and with no |
| // points-to set (since it can't point to anything either, being that it |
| // receives no points-to sets and has none). |
| if (NodeIndex >= FirstRefNode) { |
| unsigned j = VSSCCRep[FindNode(NodeIndex - FirstRefNode)]; |
| if ((Node2Visited[j] && !GraphNodes[j].PointerEquivLabel) |
| || (GraphNodes[j].Direct && !GraphNodes[j].PredEdges |
| && GraphNodes[j].PointsTo->empty())){ |
| return; |
| } |
| } |
| // Process all our explicit edges |
| if (N->PredEdges) |
| for (SparseBitVector<>::iterator Iter = N->PredEdges->begin(); |
| Iter != N->PredEdges->end(); |
| ++Iter) { |
| unsigned j = VSSCCRep[*Iter]; |
| if (!Node2Visited[j]) |
| HUValNum(j); |
| |
| // If this edge turned out to be the same as us, or got no pointer |
| // equivalence label (and thus points to nothing) , just decrement our |
| // incoming edges and continue. |
| if (j == NodeIndex || GraphNodes[j].PointerEquivLabel == 0) { |
| --GraphNodes[j].NumInEdges; |
| continue; |
| } |
| |
| *(N->PointsTo) |= GraphNodes[j].PointsTo; |
| |
| // If we didn't end up storing this in the hash, and we're done with all |
| // the edges, we don't need the points-to set anymore. |
| --GraphNodes[j].NumInEdges; |
| if (!GraphNodes[j].NumInEdges && !GraphNodes[j].StoredInHash) { |
| delete GraphNodes[j].PointsTo; |
| GraphNodes[j].PointsTo = NULL; |
| } |
| } |
| // If this isn't a direct node, generate a fresh variable. |
| if (!N->Direct) { |
| N->PointsTo->set(FirstRefNode + NodeIndex); |
| } |
| |
| // See If we have something equivalent to us, if not, generate a new |
| // equivalence class. |
| if (N->PointsTo->empty()) { |
| delete N->PointsTo; |
| N->PointsTo = NULL; |
| } else { |
| if (N->Direct) { |
| N->PointerEquivLabel = Set2PEClass[N->PointsTo]; |
| if (N->PointerEquivLabel == 0) { |
| unsigned EquivClass = PEClass++; |
| N->StoredInHash = true; |
| Set2PEClass[N->PointsTo] = EquivClass; |
| N->PointerEquivLabel = EquivClass; |
| } |
| } else { |
| N->PointerEquivLabel = PEClass++; |
| } |
| } |
| } |
| |
| /// Rewrite our list of constraints so that pointer equivalent nodes are |
| /// replaced by their the pointer equivalence class representative. |
| void Andersens::RewriteConstraints() { |
| std::vector<Constraint> NewConstraints; |
| DenseSet<Constraint, ConstraintKeyInfo> Seen; |
| |
| PEClass2Node.clear(); |
| PENLEClass2Node.clear(); |
| |
| // We may have from 1 to Graphnodes + 1 equivalence classes. |
| PEClass2Node.insert(PEClass2Node.begin(), GraphNodes.size() + 1, -1); |
| PENLEClass2Node.insert(PENLEClass2Node.begin(), GraphNodes.size() + 1, -1); |
| |
| // Rewrite constraints, ignoring non-pointer constraints, uniting equivalent |
| // nodes, and rewriting constraints to use the representative nodes. |
| for (unsigned i = 0, e = Constraints.size(); i != e; ++i) { |
| Constraint &C = Constraints[i]; |
| unsigned RHSNode = FindNode(C.Src); |
| unsigned LHSNode = FindNode(C.Dest); |
| unsigned RHSLabel = GraphNodes[VSSCCRep[RHSNode]].PointerEquivLabel; |
| unsigned LHSLabel = GraphNodes[VSSCCRep[LHSNode]].PointerEquivLabel; |
| |
| // First we try to eliminate constraints for things we can prove don't point |
| // to anything. |
| if (LHSLabel == 0) { |
| DEBUG(PrintNode(&GraphNodes[LHSNode])); |
| DOUT << " is a non-pointer, ignoring constraint.\n"; |
| continue; |
| } |
| if (RHSLabel == 0) { |
| DEBUG(PrintNode(&GraphNodes[RHSNode])); |
| DOUT << " is a non-pointer, ignoring constraint.\n"; |
| continue; |
| } |
| // This constraint may be useless, and it may become useless as we translate |
| // it. |
| if (C.Src == C.Dest && C.Type == Constraint::Copy) |
| continue; |
| |
| C.Src = FindEquivalentNode(RHSNode, RHSLabel); |
| C.Dest = FindEquivalentNode(FindNode(LHSNode), LHSLabel); |
| if ((C.Src == C.Dest && C.Type == Constraint::Copy) |
| || Seen.count(C)) |
| continue; |
| |
| Seen.insert(C); |
| NewConstraints.push_back(C); |
| } |
| Constraints.swap(NewConstraints); |
| PEClass2Node.clear(); |
| } |
| |
| /// See if we have a node that is pointer equivalent to the one being asked |
| /// about, and if so, unite them and return the equivalent node. Otherwise, |
| /// return the original node. |
| unsigned Andersens::FindEquivalentNode(unsigned NodeIndex, |
| unsigned NodeLabel) { |
| if (!GraphNodes[NodeIndex].AddressTaken) { |
| if (PEClass2Node[NodeLabel] != -1) { |
| // We found an existing node with the same pointer label, so unify them. |
| // We specifically request that Union-By-Rank not be used so that |
| // PEClass2Node[NodeLabel] U= NodeIndex and not the other way around. |
| return UniteNodes(PEClass2Node[NodeLabel], NodeIndex, false); |
| } else { |
| PEClass2Node[NodeLabel] = NodeIndex; |
| PENLEClass2Node[NodeLabel] = NodeIndex; |
| } |
| } else if (PENLEClass2Node[NodeLabel] == -1) { |
| PENLEClass2Node[NodeLabel] = NodeIndex; |
| } |
| |
| return NodeIndex; |
| } |
| |
| void Andersens::PrintLabels() { |
| for (unsigned i = 0; i < GraphNodes.size(); ++i) { |
| if (i < FirstRefNode) { |
| PrintNode(&GraphNodes[i]); |
| } else if (i < FirstAdrNode) { |
| DOUT << "REF("; |
| PrintNode(&GraphNodes[i-FirstRefNode]); |
| DOUT <<")"; |
| } else { |
| DOUT << "ADR("; |
| PrintNode(&GraphNodes[i-FirstAdrNode]); |
| DOUT <<")"; |
| } |
| |
| DOUT << " has pointer label " << GraphNodes[i].PointerEquivLabel |
| << " and SCC rep " << VSSCCRep[i] |
| << " and is " << (GraphNodes[i].Direct ? "Direct" : "Not direct") |
| << "\n"; |
| } |
| } |
| |
| /// Optimize the constraints by performing offline variable substitution and |
| /// other optimizations. |
| void Andersens::OptimizeConstraints() { |
| DOUT << "Beginning constraint optimization\n"; |
| |
| // Function related nodes need to stay in the same relative position and can't |
| // be location equivalent. |
| for (std::map<unsigned, unsigned>::iterator Iter = MaxK.begin(); |
| Iter != MaxK.end(); |
| ++Iter) { |
| for (unsigned i = Iter->first; |
| i != Iter->first + Iter->second; |
| ++i) { |
| GraphNodes[i].AddressTaken = true; |
| GraphNodes[i].Direct = false; |
| } |
| } |
| |
| ClumpAddressTaken(); |
| FirstRefNode = GraphNodes.size(); |
| FirstAdrNode = FirstRefNode + GraphNodes.size(); |
| GraphNodes.insert(GraphNodes.end(), 2 * GraphNodes.size(), |
| Node(false)); |
| VSSCCRep.resize(GraphNodes.size()); |
| for (unsigned i = 0; i < GraphNodes.size(); ++i) { |
| VSSCCRep[i] = i; |
| } |
| HVN(); |
| for (unsigned i = 0; i < GraphNodes.size(); ++i) { |
| Node *N = &GraphNodes[i]; |
| delete N->PredEdges; |
| N->PredEdges = NULL; |
| delete N->ImplicitPredEdges; |
| N->ImplicitPredEdges = NULL; |
| } |
| #undef DEBUG_TYPE |
| #define DEBUG_TYPE "anders-aa-labels" |
| DEBUG(PrintLabels()); |
| #undef DEBUG_TYPE |
| #define DEBUG_TYPE "anders-aa" |
| RewriteConstraints(); |
| // Delete the adr nodes. |
| GraphNodes.resize(FirstRefNode * 2); |
| |
| // Now perform HU |
| for (unsigned i = 0; i < GraphNodes.size(); ++i) { |
| Node *N = &GraphNodes[i]; |
| if (FindNode(i) == i) { |
| N->PointsTo = new SparseBitVector<>; |
| N->PointedToBy = new SparseBitVector<>; |
| // Reset our labels |
| } |
| VSSCCRep[i] = i; |
| N->PointerEquivLabel = 0; |
| } |
| HU(); |
| #undef DEBUG_TYPE |
| #define DEBUG_TYPE "anders-aa-labels" |
| DEBUG(PrintLabels()); |
| #undef DEBUG_TYPE |
| #define DEBUG_TYPE "anders-aa" |
| RewriteConstraints(); |
| for (unsigned i = 0; i < GraphNodes.size(); ++i) { |
| if (FindNode(i) == i) { |
| Node *N = &GraphNodes[i]; |
| delete N->PointsTo; |
| delete N->PredEdges; |
| delete N->ImplicitPredEdges; |
| delete N->PointedToBy; |
| } |
| } |
| GraphNodes.erase(GraphNodes.begin() + FirstRefNode, GraphNodes.end()); |
| DOUT << "Finished constraint optimization\n"; |
| FirstRefNode = 0; |
| FirstAdrNode = 0; |
| } |
| |
| /// Unite pointer but not location equivalent variables, now that the constraint |
| /// graph is built. |
| void Andersens::UnitePointerEquivalences() { |
| DOUT << "Uniting remaining pointer equivalences\n"; |
| for (unsigned i = 0; i < GraphNodes.size(); ++i) { |
| if (GraphNodes[i].AddressTaken && GraphNodes[i].isRep()) { |
| unsigned Label = GraphNodes[i].PointerEquivLabel; |
| |
| if (Label && PENLEClass2Node[Label] != -1) |
| UniteNodes(i, PENLEClass2Node[Label]); |
| } |
| } |
| DOUT << "Finished remaining pointer equivalences\n"; |
| PENLEClass2Node.clear(); |
| } |
| |
| /// Create the constraint graph used for solving points-to analysis. |
| /// |
| void Andersens::CreateConstraintGraph() { |
| for (unsigned i = 0, e = Constraints.size(); i != e; ++i) { |
| Constraint &C = Constraints[i]; |
| assert (C.Src < GraphNodes.size() && C.Dest < GraphNodes.size()); |
| if (C.Type == Constraint::AddressOf) |
| GraphNodes[C.Dest].PointsTo->set(C.Src); |
| else if (C.Type == Constraint::Load) |
| GraphNodes[C.Src].Constraints.push_back(C); |
| else if (C.Type == Constraint::Store) |
| GraphNodes[C.Dest].Constraints.push_back(C); |
| else if (C.Offset != 0) |
| GraphNodes[C.Src].Constraints.push_back(C); |
| else |
| GraphNodes[C.Src].Edges->set(C.Dest); |
| } |
| } |
| |
| // Perform DFS and cycle detection. |
| bool Andersens::QueryNode(unsigned Node) { |
| assert(GraphNodes[Node].isRep() && "Querying a non-rep node"); |
| unsigned OurDFS = ++DFSNumber; |
| SparseBitVector<> ToErase; |
| SparseBitVector<> NewEdges; |
| Tarjan2DFS[Node] = OurDFS; |
| |
| // Changed denotes a change from a recursive call that we will bubble up. |
| // Merged is set if we actually merge a node ourselves. |
| bool Changed = false, Merged = false; |
| |
| for (SparseBitVector<>::iterator bi = GraphNodes[Node].Edges->begin(); |
| bi != GraphNodes[Node].Edges->end(); |
| ++bi) { |
| unsigned RepNode = FindNode(*bi); |
| // If this edge points to a non-representative node but we are |
| // already planning to add an edge to its representative, we have no |
| // need for this edge anymore. |
| if (RepNode != *bi && NewEdges.test(RepNode)){ |
| ToErase.set(*bi); |
| continue; |
| } |
| |
| // Continue about our DFS. |
| if (!Tarjan2Deleted[RepNode]){ |
| if (Tarjan2DFS[RepNode] == 0) { |
| Changed |= QueryNode(RepNode); |
| // May have been changed by QueryNode |
| RepNode = FindNode(RepNode); |
| } |
| if (Tarjan2DFS[RepNode] < Tarjan2DFS[Node]) |
| Tarjan2DFS[Node] = Tarjan2DFS[RepNode]; |
| } |
| |
| // We may have just discovered that this node is part of a cycle, in |
| // which case we can also erase it. |
| if (RepNode != *bi) { |
| ToErase.set(*bi); |
| NewEdges.set(RepNode); |
| } |
| } |
| |
| GraphNodes[Node].Edges->intersectWithComplement(ToErase); |
| GraphNodes[Node].Edges |= NewEdges; |
| |
| // If this node is a root of a non-trivial SCC, place it on our |
| // worklist to be processed. |
| if (OurDFS == Tarjan2DFS[Node]) { |
| while (!SCCStack.empty() && Tarjan2DFS[SCCStack.top()] >= OurDFS) { |
| Node = UniteNodes(Node, SCCStack.top()); |
| |
| SCCStack.pop(); |
| Merged = true; |
| } |
| Tarjan2Deleted[Node] = true; |
| |
| if (Merged) |
| NextWL->insert(&GraphNodes[Node]); |
| } else { |
| SCCStack.push(Node); |
| } |
| |
| return(Changed | Merged); |
| } |
| |
| /// SolveConstraints - This stage iteratively processes the constraints list |
| /// propagating constraints (adding edges to the Nodes in the points-to graph) |
| /// until a fixed point is reached. |
| /// |
| /// We use a variant of the technique called "Lazy Cycle Detection", which is |
| /// described in "The Ant and the Grasshopper: Fast and Accurate Pointer |
| /// Analysis for Millions of Lines of Code. In Programming Language Design and |
| /// Implementation (PLDI), June 2007." |
| /// The paper describes performing cycle detection one node at a time, which can |
| /// be expensive if there are no cycles, but there are long chains of nodes that |
| /// it heuristically believes are cycles (because it will DFS from each node |
| /// without state from previous nodes). |
| /// Instead, we use the heuristic to build a worklist of nodes to check, then |
| /// cycle detect them all at the same time to do this more cheaply. This |
| /// catches cycles slightly later than the original technique did, but does it |
| /// make significantly cheaper. |
| |
| void Andersens::SolveConstraints() { |
| CurrWL = &w1; |
| NextWL = &w2; |
| |
| OptimizeConstraints(); |
| #undef DEBUG_TYPE |
| #define DEBUG_TYPE "anders-aa-constraints" |
| DEBUG(PrintConstraints()); |
| #undef DEBUG_TYPE |
| #define DEBUG_TYPE "anders-aa" |
| |
| for (unsigned i = 0; i < GraphNodes.size(); ++i) { |
| Node *N = &GraphNodes[i]; |
| N->PointsTo = new SparseBitVector<>; |
| N->OldPointsTo = new SparseBitVector<>; |
| N->Edges = new SparseBitVector<>; |
| } |
| CreateConstraintGraph(); |
| UnitePointerEquivalences(); |
| assert(SCCStack.empty() && "SCC Stack should be empty by now!"); |
| Node2DFS.clear(); |
| Node2Deleted.clear(); |
| Node2DFS.insert(Node2DFS.begin(), GraphNodes.size(), 0); |
| Node2Deleted.insert(Node2Deleted.begin(), GraphNodes.size(), false); |
| DFSNumber = 0; |
| DenseSet<Constraint, ConstraintKeyInfo> Seen; |
| DenseSet<std::pair<unsigned,unsigned>, PairKeyInfo> EdgesChecked; |
| |
| // Order graph and add initial nodes to work list. |
| for (unsigned i = 0; i < GraphNodes.size(); ++i) { |
| Node *INode = &GraphNodes[i]; |
| |
| // Add to work list if it's a representative and can contribute to the |
| // calculation right now. |
| if (INode->isRep() && !INode->PointsTo->empty() |
| && (!INode->Edges->empty() || !INode->Constraints.empty())) { |
| INode->Stamp(); |
| CurrWL->insert(INode); |
| } |
| } |
| std::queue<unsigned int> TarjanWL; |
| while( !CurrWL->empty() ) { |
| DOUT << "Starting iteration #" << ++NumIters << "\n"; |
| |
| Node* CurrNode; |
| unsigned CurrNodeIndex; |
| |
| // Actual cycle checking code. We cycle check all of the lazy cycle |
| // candidates from the last iteration in one go. |
| if (!TarjanWL.empty()) { |
| DFSNumber = 0; |
| |
| Tarjan2DFS.clear(); |
| Tarjan2Deleted.clear(); |
| while (!TarjanWL.empty()) { |
| unsigned int ToTarjan = TarjanWL.front(); |
| TarjanWL.pop(); |
| if (!Tarjan2Deleted[ToTarjan] |
| && GraphNodes[ToTarjan].isRep() |
| && Tarjan2DFS[ToTarjan] == 0) |
| QueryNode(ToTarjan); |
| } |
| } |
| |
| // Add to work list if it's a representative and can contribute to the |
| // calculation right now. |
| while( (CurrNode = CurrWL->pop()) != NULL ) { |
| CurrNodeIndex = CurrNode - &GraphNodes[0]; |
| CurrNode->Stamp(); |
| |
| |
| // Figure out the changed points to bits |
| SparseBitVector<> CurrPointsTo; |
| CurrPointsTo.intersectWithComplement(CurrNode->PointsTo, |
| CurrNode->OldPointsTo); |
| if (CurrPointsTo.empty()) |
| continue; |
| |
| *(CurrNode->OldPointsTo) |= CurrPointsTo; |
| Seen.clear(); |
| |
| /* Now process the constraints for this node. */ |
| for (std::list<Constraint>::iterator li = CurrNode->Constraints.begin(); |
| li != CurrNode->Constraints.end(); ) { |
| li->Src = FindNode(li->Src); |
| li->Dest = FindNode(li->Dest); |
| |
| // Delete redundant constraints |
| if( Seen.count(*li) ) { |
| std::list<Constraint>::iterator lk = li; li++; |
| |
| CurrNode->Constraints.erase(lk); |
| ++NumErased; |
| continue; |
| } |
| Seen.insert(*li); |
| |
| // Src and Dest will be the vars we are going to process. |
| // This may look a bit ugly, but what it does is allow us to process |
| // both store and load constraints with the same code. |
| // Load constraints say that every member of our RHS solution has K |
| // added to it, and that variable gets an edge to LHS. We also union |
| // RHS+K's solution into the LHS solution. |
| // Store constraints say that every member of our LHS solution has K |
| // added to it, and that variable gets an edge from RHS. We also union |
| // RHS's solution into the LHS+K solution. |
| unsigned *Src; |
| unsigned *Dest; |
| unsigned K = li->Offset; |
| unsigned CurrMember; |
| if (li->Type == Constraint::Load) { |
| Src = &CurrMember; |
| Dest = &li->Dest; |
| } else if (li->Type == Constraint::Store) { |
| Src = &li->Src; |
| Dest = &CurrMember; |
| } else { |
| // TODO Handle offseted copy constraint |
| li++; |
| continue; |
| } |
| // TODO: hybrid cycle detection would go here, we should check |
| // if it was a statically detected offline equivalence that |
| // involves pointers , and if so, remove the redundant constraints. |
| |
| const SparseBitVector<> &Solution = CurrPointsTo; |
| |
| for (SparseBitVector<>::iterator bi = Solution.begin(); |
| bi != Solution.end(); |
| ++bi) { |
| CurrMember = *bi; |
| |
| // Need to increment the member by K since that is where we are |
| // supposed to copy to/from. Note that in positive weight cycles, |
| // which occur in address taking of fields, K can go past |
| // MaxK[CurrMember] elements, even though that is all it could point |
| // to. |
| if (K > 0 && K > MaxK[CurrMember]) |
| continue; |
| else |
| CurrMember = FindNode(CurrMember + K); |
| |
| // Add an edge to the graph, so we can just do regular bitmap ior next |
| // time. It may also let us notice a cycle. |
| #if !FULL_UNIVERSAL |
| if (*Dest < NumberSpecialNodes) |
| continue; |
| #endif |
| if (GraphNodes[*Src].Edges->test_and_set(*Dest)) |
| if (GraphNodes[*Dest].PointsTo |= *(GraphNodes[*Src].PointsTo)) |
| NextWL->insert(&GraphNodes[*Dest]); |
| |
| } |
| li++; |
| } |
| SparseBitVector<> NewEdges; |
| SparseBitVector<> ToErase; |
| |
| // Now all we have left to do is propagate points-to info along the |
| // edges, erasing the redundant edges. |
| for (SparseBitVector<>::iterator bi = CurrNode->Edges->begin(); |
| bi != CurrNode->Edges->end(); |
| ++bi) { |
| |
| unsigned DestVar = *bi; |
| unsigned Rep = FindNode(DestVar); |
| |
| // If we ended up with this node as our destination, or we've already |
| // got an edge for the representative, delete the current edge. |
| if (Rep == CurrNodeIndex || |
| (Rep != DestVar && NewEdges.test(Rep))) { |
| ToErase.set(DestVar); |
| continue; |
| } |
| |
| std::pair<unsigned,unsigned> edge(CurrNodeIndex,Rep); |
| |
| // This is where we do lazy cycle detection. |
| // If this is a cycle candidate (equal points-to sets and this |
| // particular edge has not been cycle-checked previously), add to the |
| // list to check for cycles on the next iteration. |
| if (!EdgesChecked.count(edge) && |
| *(GraphNodes[Rep].PointsTo) == *(CurrNode->PointsTo)) { |
| EdgesChecked.insert(edge); |
| TarjanWL.push(Rep); |
| } |
| // Union the points-to sets into the dest |
| #if !FULL_UNIVERSAL |
| if (Rep >= NumberSpecialNodes) |
| #endif |
| if (GraphNodes[Rep].PointsTo |= CurrPointsTo) { |
| NextWL->insert(&GraphNodes[Rep]); |
| } |
| // If this edge's destination was collapsed, rewrite the edge. |
| if (Rep != DestVar) { |
| ToErase.set(DestVar); |
| NewEdges.set(Rep); |
| } |
| } |
| CurrNode->Edges->intersectWithComplement(ToErase); |
| CurrNode->Edges |= NewEdges; |
| } |
| |
| // Switch to other work list. |
| WorkList* t = CurrWL; CurrWL = NextWL; NextWL = t; |
| } |
| |
| |
| Node2DFS.clear(); |
| Node2Deleted.clear(); |
| for (unsigned i = 0; i < GraphNodes.size(); ++i) { |
| Node *N = &GraphNodes[i]; |
| delete N->OldPointsTo; |
| delete N->Edges; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Union-Find |
| //===----------------------------------------------------------------------===// |
| |
| // Unite nodes First and Second, returning the one which is now the |
| // representative node. First and Second are indexes into GraphNodes |
| unsigned Andersens::UniteNodes(unsigned First, unsigned Second, |
| bool UnionByRank) { |
| assert (First < GraphNodes.size() && Second < GraphNodes.size() && |
| "Attempting to merge nodes that don't exist"); |
| |
| Node *FirstNode = &GraphNodes[First]; |
| Node *SecondNode = &GraphNodes[Second]; |
| |
| assert (SecondNode->isRep() && FirstNode->isRep() && |
| "Trying to unite two non-representative nodes!"); |
| if (First == Second) |
| return First; |
| |
| if (UnionByRank) { |
| int RankFirst = (int) FirstNode ->NodeRep; |
| int RankSecond = (int) SecondNode->NodeRep; |
| |
| // Rank starts at -1 and gets decremented as it increases. |
| // Translation: higher rank, lower NodeRep value, which is always negative. |
| if (RankFirst > RankSecond) { |
| unsigned t = First; First = Second; Second = t; |
| Node* tp = FirstNode; FirstNode = SecondNode; SecondNode = tp; |
| } else if (RankFirst == RankSecond) { |
| FirstNode->NodeRep = (unsigned) (RankFirst - 1); |
| } |
| } |
| |
| SecondNode->NodeRep = First; |
| #if !FULL_UNIVERSAL |
| if (First >= NumberSpecialNodes) |
| #endif |
| if (FirstNode->PointsTo && SecondNode->PointsTo) |
| FirstNode->PointsTo |= *(SecondNode->PointsTo); |
| if (FirstNode->Edges && SecondNode->Edges) |
| FirstNode->Edges |= *(SecondNode->Edges); |
| if (!SecondNode->Constraints.empty()) |
| FirstNode->Constraints.splice(FirstNode->Constraints.begin(), |
| SecondNode->Constraints); |
| if (FirstNode->OldPointsTo) { |
| delete FirstNode->OldPointsTo; |
| FirstNode->OldPointsTo = new SparseBitVector<>; |
| } |
| |
| // Destroy interesting parts of the merged-from node. |
| delete SecondNode->OldPointsTo; |
| delete SecondNode->Edges; |
| delete SecondNode->PointsTo; |
| SecondNode->Edges = NULL; |
| SecondNode->PointsTo = NULL; |
| SecondNode->OldPointsTo = NULL; |
| |
| NumUnified++; |
| DOUT << "Unified Node "; |
| DEBUG(PrintNode(FirstNode)); |
| DOUT << " and Node "; |
| DEBUG(PrintNode(SecondNode)); |
| DOUT << "\n"; |
| |
| // TODO: Handle SDT |
| return First; |
| } |
| |
| // Find the index into GraphNodes of the node representing Node, performing |
| // path compression along the way |
| unsigned Andersens::FindNode(unsigned NodeIndex) { |
| assert (NodeIndex < GraphNodes.size() |
| && "Attempting to find a node that can't exist"); |
| Node *N = &GraphNodes[NodeIndex]; |
| if (N->isRep()) |
| return NodeIndex; |
| else |
| return (N->NodeRep = FindNode(N->NodeRep)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Debugging Output |
| //===----------------------------------------------------------------------===// |
| |
| void Andersens::PrintNode(Node *N) { |
| if (N == &GraphNodes[UniversalSet]) { |
| cerr << "<universal>"; |
| return; |
| } else if (N == &GraphNodes[NullPtr]) { |
| cerr << "<nullptr>"; |
| return; |
| } else if (N == &GraphNodes[NullObject]) { |
| cerr << "<null>"; |
| return; |
| } |
| if (!N->getValue()) { |
| cerr << "artificial" << (intptr_t) N; |
| return; |
| } |
| |
| assert(N->getValue() != 0 && "Never set node label!"); |
| Value *V = N->getValue(); |
| if (Function *F = dyn_cast<Function>(V)) { |
| if (isa<PointerType>(F->getFunctionType()->getReturnType()) && |
| N == &GraphNodes[getReturnNode(F)]) { |
| cerr << F->getName() << ":retval"; |
| return; |
| } else if (F->getFunctionType()->isVarArg() && |
| N == &GraphNodes[getVarargNode(F)]) { |
| cerr << F->getName() << ":vararg"; |
| return; |
| } |
| } |
| |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| cerr << I->getParent()->getParent()->getName() << ":"; |
| else if (Argument *Arg = dyn_cast<Argument>(V)) |
| cerr << Arg->getParent()->getName() << ":"; |
| |
| if (V->hasName()) |
| cerr << V->getName(); |
| else |
| cerr << "(unnamed)"; |
| |
| if (isa<GlobalValue>(V) || isa<AllocationInst>(V)) |
| if (N == &GraphNodes[getObject(V)]) |
| cerr << "<mem>"; |
| } |
| void Andersens::PrintConstraint(const Constraint &C) { |
| if (C.Type == Constraint::Store) { |
| cerr << "*"; |
| if (C.Offset != 0) |
| cerr << "("; |
| } |
| PrintNode(&GraphNodes[C.Dest]); |
| if (C.Type == Constraint::Store && C.Offset != 0) |
| cerr << " + " << C.Offset << ")"; |
| cerr << " = "; |
| if (C.Type == Constraint::Load) { |
| cerr << "*"; |
| if (C.Offset != 0) |
| cerr << "("; |
| } |
| else if (C.Type == Constraint::AddressOf) |
| cerr << "&"; |
| PrintNode(&GraphNodes[C.Src]); |
| if (C.Offset != 0 && C.Type != Constraint::Store) |
| cerr << " + " << C.Offset; |
| if (C.Type == Constraint::Load && C.Offset != 0) |
| cerr << ")"; |
| cerr << "\n"; |
| } |
| |
| void Andersens::PrintConstraints() { |
| cerr << "Constraints:\n"; |
| |
| for (unsigned i = 0, e = Constraints.size(); i != e; ++i) |
| PrintConstraint(Constraints[i]); |
| } |
| |
| void Andersens::PrintPointsToGraph() { |
| cerr << "Points-to graph:\n"; |
| for (unsigned i = 0, e = GraphNodes.size(); i != e; ++i) { |
| Node *N = &GraphNodes[i]; |
| if (FindNode (i) != i) { |
| PrintNode(N); |
| cerr << "\t--> same as "; |
| PrintNode(&GraphNodes[FindNode(i)]); |
| cerr << "\n"; |
| } else { |
| cerr << "[" << (N->PointsTo->count()) << "] "; |
| PrintNode(N); |
| cerr << "\t--> "; |
| |
| bool first = true; |
| for (SparseBitVector<>::iterator bi = N->PointsTo->begin(); |
| bi != N->PointsTo->end(); |
| ++bi) { |
| if (!first) |
| cerr << ", "; |
| PrintNode(&GraphNodes[*bi]); |
| first = false; |
| } |
| cerr << "\n"; |
| } |
| } |
| } |