| //===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run |
| // both before and after the DAG is legalized. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "dagcombine" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Target/TargetFrameInfo.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/MathExtras.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| STATISTIC(NodesCombined , "Number of dag nodes combined"); |
| STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created"); |
| STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created"); |
| |
| namespace { |
| #ifndef NDEBUG |
| static cl::opt<bool> |
| ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden, |
| cl::desc("Pop up a window to show dags before the first " |
| "dag combine pass")); |
| static cl::opt<bool> |
| ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden, |
| cl::desc("Pop up a window to show dags before the second " |
| "dag combine pass")); |
| #else |
| static const bool ViewDAGCombine1 = false; |
| static const bool ViewDAGCombine2 = false; |
| #endif |
| |
| static cl::opt<bool> |
| CombinerAA("combiner-alias-analysis", cl::Hidden, |
| cl::desc("Turn on alias analysis during testing")); |
| |
| static cl::opt<bool> |
| CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden, |
| cl::desc("Include global information in alias analysis")); |
| |
| //------------------------------ DAGCombiner ---------------------------------// |
| |
| class VISIBILITY_HIDDEN DAGCombiner { |
| SelectionDAG &DAG; |
| TargetLowering &TLI; |
| bool AfterLegalize; |
| |
| // Worklist of all of the nodes that need to be simplified. |
| std::vector<SDNode*> WorkList; |
| |
| // AA - Used for DAG load/store alias analysis. |
| AliasAnalysis &AA; |
| |
| /// AddUsersToWorkList - When an instruction is simplified, add all users of |
| /// the instruction to the work lists because they might get more simplified |
| /// now. |
| /// |
| void AddUsersToWorkList(SDNode *N) { |
| for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); |
| UI != UE; ++UI) |
| AddToWorkList(*UI); |
| } |
| |
| /// removeFromWorkList - remove all instances of N from the worklist. |
| /// |
| void removeFromWorkList(SDNode *N) { |
| WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N), |
| WorkList.end()); |
| } |
| |
| /// visit - call the node-specific routine that knows how to fold each |
| /// particular type of node. |
| SDOperand visit(SDNode *N); |
| |
| public: |
| /// AddToWorkList - Add to the work list making sure it's instance is at the |
| /// the back (next to be processed.) |
| void AddToWorkList(SDNode *N) { |
| removeFromWorkList(N); |
| WorkList.push_back(N); |
| } |
| |
| SDOperand CombineTo(SDNode *N, const SDOperand *To, unsigned NumTo, |
| bool AddTo = true) { |
| assert(N->getNumValues() == NumTo && "Broken CombineTo call!"); |
| ++NodesCombined; |
| DOUT << "\nReplacing.1 "; DEBUG(N->dump(&DAG)); |
| DOUT << "\nWith: "; DEBUG(To[0].Val->dump(&DAG)); |
| DOUT << " and " << NumTo-1 << " other values\n"; |
| std::vector<SDNode*> NowDead; |
| DAG.ReplaceAllUsesWith(N, To, &NowDead); |
| |
| if (AddTo) { |
| // Push the new nodes and any users onto the worklist |
| for (unsigned i = 0, e = NumTo; i != e; ++i) { |
| AddToWorkList(To[i].Val); |
| AddUsersToWorkList(To[i].Val); |
| } |
| } |
| |
| // Nodes can be reintroduced into the worklist. Make sure we do not |
| // process a node that has been replaced. |
| removeFromWorkList(N); |
| for (unsigned i = 0, e = NowDead.size(); i != e; ++i) |
| removeFromWorkList(NowDead[i]); |
| |
| // Finally, since the node is now dead, remove it from the graph. |
| DAG.DeleteNode(N); |
| return SDOperand(N, 0); |
| } |
| |
| SDOperand CombineTo(SDNode *N, SDOperand Res, bool AddTo = true) { |
| return CombineTo(N, &Res, 1, AddTo); |
| } |
| |
| SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1, |
| bool AddTo = true) { |
| SDOperand To[] = { Res0, Res1 }; |
| return CombineTo(N, To, 2, AddTo); |
| } |
| |
| private: |
| |
| /// SimplifyDemandedBits - Check the specified integer node value to see if |
| /// it can be simplified or if things it uses can be simplified by bit |
| /// propagation. If so, return true. |
| bool SimplifyDemandedBits(SDOperand Op, uint64_t Demanded = ~0ULL) { |
| TargetLowering::TargetLoweringOpt TLO(DAG, AfterLegalize); |
| uint64_t KnownZero, KnownOne; |
| Demanded &= MVT::getIntVTBitMask(Op.getValueType()); |
| if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) |
| return false; |
| |
| // Revisit the node. |
| AddToWorkList(Op.Val); |
| |
| // Replace the old value with the new one. |
| ++NodesCombined; |
| DOUT << "\nReplacing.2 "; DEBUG(TLO.Old.Val->dump(&DAG)); |
| DOUT << "\nWith: "; DEBUG(TLO.New.Val->dump(&DAG)); |
| DOUT << '\n'; |
| |
| std::vector<SDNode*> NowDead; |
| DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &NowDead); |
| |
| // Push the new node and any (possibly new) users onto the worklist. |
| AddToWorkList(TLO.New.Val); |
| AddUsersToWorkList(TLO.New.Val); |
| |
| // Nodes can end up on the worklist more than once. Make sure we do |
| // not process a node that has been replaced. |
| for (unsigned i = 0, e = NowDead.size(); i != e; ++i) |
| removeFromWorkList(NowDead[i]); |
| |
| // Finally, if the node is now dead, remove it from the graph. The node |
| // may not be dead if the replacement process recursively simplified to |
| // something else needing this node. |
| if (TLO.Old.Val->use_empty()) { |
| removeFromWorkList(TLO.Old.Val); |
| |
| // If the operands of this node are only used by the node, they will now |
| // be dead. Make sure to visit them first to delete dead nodes early. |
| for (unsigned i = 0, e = TLO.Old.Val->getNumOperands(); i != e; ++i) |
| if (TLO.Old.Val->getOperand(i).Val->hasOneUse()) |
| AddToWorkList(TLO.Old.Val->getOperand(i).Val); |
| |
| DAG.DeleteNode(TLO.Old.Val); |
| } |
| return true; |
| } |
| |
| bool CombineToPreIndexedLoadStore(SDNode *N); |
| bool CombineToPostIndexedLoadStore(SDNode *N); |
| |
| |
| /// combine - call the node-specific routine that knows how to fold each |
| /// particular type of node. If that doesn't do anything, try the |
| /// target-specific DAG combines. |
| SDOperand combine(SDNode *N); |
| |
| // Visitation implementation - Implement dag node combining for different |
| // node types. The semantics are as follows: |
| // Return Value: |
| // SDOperand.Val == 0 - No change was made |
| // SDOperand.Val == N - N was replaced, is dead, and is already handled. |
| // otherwise - N should be replaced by the returned Operand. |
| // |
| SDOperand visitTokenFactor(SDNode *N); |
| SDOperand visitADD(SDNode *N); |
| SDOperand visitSUB(SDNode *N); |
| SDOperand visitADDC(SDNode *N); |
| SDOperand visitADDE(SDNode *N); |
| SDOperand visitMUL(SDNode *N); |
| SDOperand visitSDIV(SDNode *N); |
| SDOperand visitUDIV(SDNode *N); |
| SDOperand visitSREM(SDNode *N); |
| SDOperand visitUREM(SDNode *N); |
| SDOperand visitMULHU(SDNode *N); |
| SDOperand visitMULHS(SDNode *N); |
| SDOperand visitSMUL_LOHI(SDNode *N); |
| SDOperand visitUMUL_LOHI(SDNode *N); |
| SDOperand visitSDIVREM(SDNode *N); |
| SDOperand visitUDIVREM(SDNode *N); |
| SDOperand visitAND(SDNode *N); |
| SDOperand visitOR(SDNode *N); |
| SDOperand visitXOR(SDNode *N); |
| SDOperand SimplifyVBinOp(SDNode *N); |
| SDOperand visitSHL(SDNode *N); |
| SDOperand visitSRA(SDNode *N); |
| SDOperand visitSRL(SDNode *N); |
| SDOperand visitCTLZ(SDNode *N); |
| SDOperand visitCTTZ(SDNode *N); |
| SDOperand visitCTPOP(SDNode *N); |
| SDOperand visitSELECT(SDNode *N); |
| SDOperand visitSELECT_CC(SDNode *N); |
| SDOperand visitSETCC(SDNode *N); |
| SDOperand visitSIGN_EXTEND(SDNode *N); |
| SDOperand visitZERO_EXTEND(SDNode *N); |
| SDOperand visitANY_EXTEND(SDNode *N); |
| SDOperand visitSIGN_EXTEND_INREG(SDNode *N); |
| SDOperand visitTRUNCATE(SDNode *N); |
| SDOperand visitBIT_CONVERT(SDNode *N); |
| SDOperand visitFADD(SDNode *N); |
| SDOperand visitFSUB(SDNode *N); |
| SDOperand visitFMUL(SDNode *N); |
| SDOperand visitFDIV(SDNode *N); |
| SDOperand visitFREM(SDNode *N); |
| SDOperand visitFCOPYSIGN(SDNode *N); |
| SDOperand visitSINT_TO_FP(SDNode *N); |
| SDOperand visitUINT_TO_FP(SDNode *N); |
| SDOperand visitFP_TO_SINT(SDNode *N); |
| SDOperand visitFP_TO_UINT(SDNode *N); |
| SDOperand visitFP_ROUND(SDNode *N); |
| SDOperand visitFP_ROUND_INREG(SDNode *N); |
| SDOperand visitFP_EXTEND(SDNode *N); |
| SDOperand visitFNEG(SDNode *N); |
| SDOperand visitFABS(SDNode *N); |
| SDOperand visitBRCOND(SDNode *N); |
| SDOperand visitBR_CC(SDNode *N); |
| SDOperand visitLOAD(SDNode *N); |
| SDOperand visitSTORE(SDNode *N); |
| SDOperand visitINSERT_VECTOR_ELT(SDNode *N); |
| SDOperand visitEXTRACT_VECTOR_ELT(SDNode *N); |
| SDOperand visitBUILD_VECTOR(SDNode *N); |
| SDOperand visitCONCAT_VECTORS(SDNode *N); |
| SDOperand visitVECTOR_SHUFFLE(SDNode *N); |
| |
| SDOperand XformToShuffleWithZero(SDNode *N); |
| SDOperand ReassociateOps(unsigned Opc, SDOperand LHS, SDOperand RHS); |
| |
| SDOperand visitShiftByConstant(SDNode *N, unsigned Amt); |
| |
| bool SimplifySelectOps(SDNode *SELECT, SDOperand LHS, SDOperand RHS); |
| SDOperand SimplifyBinOpWithSameOpcodeHands(SDNode *N); |
| SDOperand SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2); |
| SDOperand SimplifySelectCC(SDOperand N0, SDOperand N1, SDOperand N2, |
| SDOperand N3, ISD::CondCode CC, |
| bool NotExtCompare = false); |
| SDOperand SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1, |
| ISD::CondCode Cond, bool foldBooleans = true); |
| SDOperand SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, |
| unsigned HiOp); |
| SDOperand ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *, MVT::ValueType); |
| SDOperand BuildSDIV(SDNode *N); |
| SDOperand BuildUDIV(SDNode *N); |
| SDNode *MatchRotate(SDOperand LHS, SDOperand RHS); |
| SDOperand ReduceLoadWidth(SDNode *N); |
| |
| SDOperand GetDemandedBits(SDOperand V, uint64_t Mask); |
| |
| /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes, |
| /// looking for aliasing nodes and adding them to the Aliases vector. |
| void GatherAllAliases(SDNode *N, SDOperand OriginalChain, |
| SmallVector<SDOperand, 8> &Aliases); |
| |
| /// isAlias - Return true if there is any possibility that the two addresses |
| /// overlap. |
| bool isAlias(SDOperand Ptr1, int64_t Size1, |
| const Value *SrcValue1, int SrcValueOffset1, |
| SDOperand Ptr2, int64_t Size2, |
| const Value *SrcValue2, int SrcValueOffset2); |
| |
| /// FindAliasInfo - Extracts the relevant alias information from the memory |
| /// node. Returns true if the operand was a load. |
| bool FindAliasInfo(SDNode *N, |
| SDOperand &Ptr, int64_t &Size, |
| const Value *&SrcValue, int &SrcValueOffset); |
| |
| /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, |
| /// looking for a better chain (aliasing node.) |
| SDOperand FindBetterChain(SDNode *N, SDOperand Chain); |
| |
| public: |
| DAGCombiner(SelectionDAG &D, AliasAnalysis &A) |
| : DAG(D), |
| TLI(D.getTargetLoweringInfo()), |
| AfterLegalize(false), |
| AA(A) {} |
| |
| /// Run - runs the dag combiner on all nodes in the work list |
| void Run(bool RunningAfterLegalize); |
| }; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TargetLowering::DAGCombinerInfo implementation |
| //===----------------------------------------------------------------------===// |
| |
| void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) { |
| ((DAGCombiner*)DC)->AddToWorkList(N); |
| } |
| |
| SDOperand TargetLowering::DAGCombinerInfo:: |
| CombineTo(SDNode *N, const std::vector<SDOperand> &To) { |
| return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size()); |
| } |
| |
| SDOperand TargetLowering::DAGCombinerInfo:: |
| CombineTo(SDNode *N, SDOperand Res) { |
| return ((DAGCombiner*)DC)->CombineTo(N, Res); |
| } |
| |
| |
| SDOperand TargetLowering::DAGCombinerInfo:: |
| CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1) { |
| return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Helper Functions |
| //===----------------------------------------------------------------------===// |
| |
| /// isNegatibleForFree - Return 1 if we can compute the negated form of the |
| /// specified expression for the same cost as the expression itself, or 2 if we |
| /// can compute the negated form more cheaply than the expression itself. |
| static char isNegatibleForFree(SDOperand Op, unsigned Depth = 0) { |
| // No compile time optimizations on this type. |
| if (Op.getValueType() == MVT::ppcf128) |
| return 0; |
| |
| // fneg is removable even if it has multiple uses. |
| if (Op.getOpcode() == ISD::FNEG) return 2; |
| |
| // Don't allow anything with multiple uses. |
| if (!Op.hasOneUse()) return 0; |
| |
| // Don't recurse exponentially. |
| if (Depth > 6) return 0; |
| |
| switch (Op.getOpcode()) { |
| default: return false; |
| case ISD::ConstantFP: |
| return 1; |
| case ISD::FADD: |
| // FIXME: determine better conditions for this xform. |
| if (!UnsafeFPMath) return 0; |
| |
| // -(A+B) -> -A - B |
| if (char V = isNegatibleForFree(Op.getOperand(0), Depth+1)) |
| return V; |
| // -(A+B) -> -B - A |
| return isNegatibleForFree(Op.getOperand(1), Depth+1); |
| case ISD::FSUB: |
| // We can't turn -(A-B) into B-A when we honor signed zeros. |
| if (!UnsafeFPMath) return 0; |
| |
| // -(A-B) -> B-A |
| return 1; |
| |
| case ISD::FMUL: |
| case ISD::FDIV: |
| if (HonorSignDependentRoundingFPMath()) return 0; |
| |
| // -(X*Y) -> (-X * Y) or (X*-Y) |
| if (char V = isNegatibleForFree(Op.getOperand(0), Depth+1)) |
| return V; |
| |
| return isNegatibleForFree(Op.getOperand(1), Depth+1); |
| |
| case ISD::FP_EXTEND: |
| case ISD::FP_ROUND: |
| case ISD::FSIN: |
| return isNegatibleForFree(Op.getOperand(0), Depth+1); |
| } |
| } |
| |
| /// GetNegatedExpression - If isNegatibleForFree returns true, this function |
| /// returns the newly negated expression. |
| static SDOperand GetNegatedExpression(SDOperand Op, SelectionDAG &DAG, |
| unsigned Depth = 0) { |
| // fneg is removable even if it has multiple uses. |
| if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0); |
| |
| // Don't allow anything with multiple uses. |
| assert(Op.hasOneUse() && "Unknown reuse!"); |
| |
| assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree"); |
| switch (Op.getOpcode()) { |
| default: assert(0 && "Unknown code"); |
| case ISD::ConstantFP: { |
| APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); |
| V.changeSign(); |
| return DAG.getConstantFP(V, Op.getValueType()); |
| } |
| case ISD::FADD: |
| // FIXME: determine better conditions for this xform. |
| assert(UnsafeFPMath); |
| |
| // -(A+B) -> -A - B |
| if (isNegatibleForFree(Op.getOperand(0), Depth+1)) |
| return DAG.getNode(ISD::FSUB, Op.getValueType(), |
| GetNegatedExpression(Op.getOperand(0), DAG, Depth+1), |
| Op.getOperand(1)); |
| // -(A+B) -> -B - A |
| return DAG.getNode(ISD::FSUB, Op.getValueType(), |
| GetNegatedExpression(Op.getOperand(1), DAG, Depth+1), |
| Op.getOperand(0)); |
| case ISD::FSUB: |
| // We can't turn -(A-B) into B-A when we honor signed zeros. |
| assert(UnsafeFPMath); |
| |
| // -(0-B) -> B |
| if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0))) |
| if (N0CFP->getValueAPF().isZero()) |
| return Op.getOperand(1); |
| |
| // -(A-B) -> B-A |
| return DAG.getNode(ISD::FSUB, Op.getValueType(), Op.getOperand(1), |
| Op.getOperand(0)); |
| |
| case ISD::FMUL: |
| case ISD::FDIV: |
| assert(!HonorSignDependentRoundingFPMath()); |
| |
| // -(X*Y) -> -X * Y |
| if (isNegatibleForFree(Op.getOperand(0), Depth+1)) |
| return DAG.getNode(Op.getOpcode(), Op.getValueType(), |
| GetNegatedExpression(Op.getOperand(0), DAG, Depth+1), |
| Op.getOperand(1)); |
| |
| // -(X*Y) -> X * -Y |
| return DAG.getNode(Op.getOpcode(), Op.getValueType(), |
| Op.getOperand(0), |
| GetNegatedExpression(Op.getOperand(1), DAG, Depth+1)); |
| |
| case ISD::FP_EXTEND: |
| case ISD::FSIN: |
| return DAG.getNode(Op.getOpcode(), Op.getValueType(), |
| GetNegatedExpression(Op.getOperand(0), DAG, Depth+1)); |
| case ISD::FP_ROUND: |
| return DAG.getNode(ISD::FP_ROUND, Op.getValueType(), |
| GetNegatedExpression(Op.getOperand(0), DAG, Depth+1), |
| Op.getOperand(1)); |
| } |
| } |
| |
| |
| // isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc |
| // that selects between the values 1 and 0, making it equivalent to a setcc. |
| // Also, set the incoming LHS, RHS, and CC references to the appropriate |
| // nodes based on the type of node we are checking. This simplifies life a |
| // bit for the callers. |
| static bool isSetCCEquivalent(SDOperand N, SDOperand &LHS, SDOperand &RHS, |
| SDOperand &CC) { |
| if (N.getOpcode() == ISD::SETCC) { |
| LHS = N.getOperand(0); |
| RHS = N.getOperand(1); |
| CC = N.getOperand(2); |
| return true; |
| } |
| if (N.getOpcode() == ISD::SELECT_CC && |
| N.getOperand(2).getOpcode() == ISD::Constant && |
| N.getOperand(3).getOpcode() == ISD::Constant && |
| cast<ConstantSDNode>(N.getOperand(2))->getValue() == 1 && |
| cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) { |
| LHS = N.getOperand(0); |
| RHS = N.getOperand(1); |
| CC = N.getOperand(4); |
| return true; |
| } |
| return false; |
| } |
| |
| // isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only |
| // one use. If this is true, it allows the users to invert the operation for |
| // free when it is profitable to do so. |
| static bool isOneUseSetCC(SDOperand N) { |
| SDOperand N0, N1, N2; |
| if (isSetCCEquivalent(N, N0, N1, N2) && N.Val->hasOneUse()) |
| return true; |
| return false; |
| } |
| |
| SDOperand DAGCombiner::ReassociateOps(unsigned Opc, SDOperand N0, SDOperand N1){ |
| MVT::ValueType VT = N0.getValueType(); |
| // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use |
| // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2)) |
| if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) { |
| if (isa<ConstantSDNode>(N1)) { |
| SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(1), N1); |
| AddToWorkList(OpNode.Val); |
| return DAG.getNode(Opc, VT, OpNode, N0.getOperand(0)); |
| } else if (N0.hasOneUse()) { |
| SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(0), N1); |
| AddToWorkList(OpNode.Val); |
| return DAG.getNode(Opc, VT, OpNode, N0.getOperand(1)); |
| } |
| } |
| // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use |
| // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2)) |
| if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) { |
| if (isa<ConstantSDNode>(N0)) { |
| SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(1), N0); |
| AddToWorkList(OpNode.Val); |
| return DAG.getNode(Opc, VT, OpNode, N1.getOperand(0)); |
| } else if (N1.hasOneUse()) { |
| SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(0), N0); |
| AddToWorkList(OpNode.Val); |
| return DAG.getNode(Opc, VT, OpNode, N1.getOperand(1)); |
| } |
| } |
| return SDOperand(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Main DAG Combiner implementation |
| //===----------------------------------------------------------------------===// |
| |
| void DAGCombiner::Run(bool RunningAfterLegalize) { |
| // set the instance variable, so that the various visit routines may use it. |
| AfterLegalize = RunningAfterLegalize; |
| |
| // Add all the dag nodes to the worklist. |
| for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), |
| E = DAG.allnodes_end(); I != E; ++I) |
| WorkList.push_back(I); |
| |
| // Create a dummy node (which is not added to allnodes), that adds a reference |
| // to the root node, preventing it from being deleted, and tracking any |
| // changes of the root. |
| HandleSDNode Dummy(DAG.getRoot()); |
| |
| // The root of the dag may dangle to deleted nodes until the dag combiner is |
| // done. Set it to null to avoid confusion. |
| DAG.setRoot(SDOperand()); |
| |
| // while the worklist isn't empty, inspect the node on the end of it and |
| // try and combine it. |
| while (!WorkList.empty()) { |
| SDNode *N = WorkList.back(); |
| WorkList.pop_back(); |
| |
| // If N has no uses, it is dead. Make sure to revisit all N's operands once |
| // N is deleted from the DAG, since they too may now be dead or may have a |
| // reduced number of uses, allowing other xforms. |
| if (N->use_empty() && N != &Dummy) { |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) |
| AddToWorkList(N->getOperand(i).Val); |
| |
| DAG.DeleteNode(N); |
| continue; |
| } |
| |
| SDOperand RV = combine(N); |
| |
| if (RV.Val == 0) |
| continue; |
| |
| ++NodesCombined; |
| |
| // If we get back the same node we passed in, rather than a new node or |
| // zero, we know that the node must have defined multiple values and |
| // CombineTo was used. Since CombineTo takes care of the worklist |
| // mechanics for us, we have no work to do in this case. |
| if (RV.Val == N) |
| continue; |
| |
| assert(N->getOpcode() != ISD::DELETED_NODE && |
| RV.Val->getOpcode() != ISD::DELETED_NODE && |
| "Node was deleted but visit returned new node!"); |
| |
| DOUT << "\nReplacing.3 "; DEBUG(N->dump(&DAG)); |
| DOUT << "\nWith: "; DEBUG(RV.Val->dump(&DAG)); |
| DOUT << '\n'; |
| std::vector<SDNode*> NowDead; |
| if (N->getNumValues() == RV.Val->getNumValues()) |
| DAG.ReplaceAllUsesWith(N, RV.Val, &NowDead); |
| else { |
| assert(N->getValueType(0) == RV.getValueType() && |
| N->getNumValues() == 1 && "Type mismatch"); |
| SDOperand OpV = RV; |
| DAG.ReplaceAllUsesWith(N, &OpV, &NowDead); |
| } |
| |
| // Push the new node and any users onto the worklist |
| AddToWorkList(RV.Val); |
| AddUsersToWorkList(RV.Val); |
| |
| // Add any uses of the old node to the worklist in case this node is the |
| // last one that uses them. They may become dead after this node is |
| // deleted. |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) |
| AddToWorkList(N->getOperand(i).Val); |
| |
| // Nodes can be reintroduced into the worklist. Make sure we do not |
| // process a node that has been replaced. |
| removeFromWorkList(N); |
| for (unsigned i = 0, e = NowDead.size(); i != e; ++i) |
| removeFromWorkList(NowDead[i]); |
| |
| // Finally, since the node is now dead, remove it from the graph. |
| DAG.DeleteNode(N); |
| } |
| |
| // If the root changed (e.g. it was a dead load, update the root). |
| DAG.setRoot(Dummy.getValue()); |
| } |
| |
| SDOperand DAGCombiner::visit(SDNode *N) { |
| switch(N->getOpcode()) { |
| default: break; |
| case ISD::TokenFactor: return visitTokenFactor(N); |
| case ISD::ADD: return visitADD(N); |
| case ISD::SUB: return visitSUB(N); |
| case ISD::ADDC: return visitADDC(N); |
| case ISD::ADDE: return visitADDE(N); |
| case ISD::MUL: return visitMUL(N); |
| case ISD::SDIV: return visitSDIV(N); |
| case ISD::UDIV: return visitUDIV(N); |
| case ISD::SREM: return visitSREM(N); |
| case ISD::UREM: return visitUREM(N); |
| case ISD::MULHU: return visitMULHU(N); |
| case ISD::MULHS: return visitMULHS(N); |
| case ISD::SMUL_LOHI: return visitSMUL_LOHI(N); |
| case ISD::UMUL_LOHI: return visitUMUL_LOHI(N); |
| case ISD::SDIVREM: return visitSDIVREM(N); |
| case ISD::UDIVREM: return visitUDIVREM(N); |
| case ISD::AND: return visitAND(N); |
| case ISD::OR: return visitOR(N); |
| case ISD::XOR: return visitXOR(N); |
| case ISD::SHL: return visitSHL(N); |
| case ISD::SRA: return visitSRA(N); |
| case ISD::SRL: return visitSRL(N); |
| case ISD::CTLZ: return visitCTLZ(N); |
| case ISD::CTTZ: return visitCTTZ(N); |
| case ISD::CTPOP: return visitCTPOP(N); |
| case ISD::SELECT: return visitSELECT(N); |
| case ISD::SELECT_CC: return visitSELECT_CC(N); |
| case ISD::SETCC: return visitSETCC(N); |
| case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N); |
| case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N); |
| case ISD::ANY_EXTEND: return visitANY_EXTEND(N); |
| case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N); |
| case ISD::TRUNCATE: return visitTRUNCATE(N); |
| case ISD::BIT_CONVERT: return visitBIT_CONVERT(N); |
| case ISD::FADD: return visitFADD(N); |
| case ISD::FSUB: return visitFSUB(N); |
| case ISD::FMUL: return visitFMUL(N); |
| case ISD::FDIV: return visitFDIV(N); |
| case ISD::FREM: return visitFREM(N); |
| case ISD::FCOPYSIGN: return visitFCOPYSIGN(N); |
| case ISD::SINT_TO_FP: return visitSINT_TO_FP(N); |
| case ISD::UINT_TO_FP: return visitUINT_TO_FP(N); |
| case ISD::FP_TO_SINT: return visitFP_TO_SINT(N); |
| case ISD::FP_TO_UINT: return visitFP_TO_UINT(N); |
| case ISD::FP_ROUND: return visitFP_ROUND(N); |
| case ISD::FP_ROUND_INREG: return visitFP_ROUND_INREG(N); |
| case ISD::FP_EXTEND: return visitFP_EXTEND(N); |
| case ISD::FNEG: return visitFNEG(N); |
| case ISD::FABS: return visitFABS(N); |
| case ISD::BRCOND: return visitBRCOND(N); |
| case ISD::BR_CC: return visitBR_CC(N); |
| case ISD::LOAD: return visitLOAD(N); |
| case ISD::STORE: return visitSTORE(N); |
| case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N); |
| case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N); |
| case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N); |
| case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N); |
| case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N); |
| } |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::combine(SDNode *N) { |
| |
| SDOperand RV = visit(N); |
| |
| // If nothing happened, try a target-specific DAG combine. |
| if (RV.Val == 0) { |
| assert(N->getOpcode() != ISD::DELETED_NODE && |
| "Node was deleted but visit returned NULL!"); |
| |
| if (N->getOpcode() >= ISD::BUILTIN_OP_END || |
| TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) { |
| |
| // Expose the DAG combiner to the target combiner impls. |
| TargetLowering::DAGCombinerInfo |
| DagCombineInfo(DAG, !AfterLegalize, false, this); |
| |
| RV = TLI.PerformDAGCombine(N, DagCombineInfo); |
| } |
| } |
| |
| return RV; |
| } |
| |
| /// getInputChainForNode - Given a node, return its input chain if it has one, |
| /// otherwise return a null sd operand. |
| static SDOperand getInputChainForNode(SDNode *N) { |
| if (unsigned NumOps = N->getNumOperands()) { |
| if (N->getOperand(0).getValueType() == MVT::Other) |
| return N->getOperand(0); |
| else if (N->getOperand(NumOps-1).getValueType() == MVT::Other) |
| return N->getOperand(NumOps-1); |
| for (unsigned i = 1; i < NumOps-1; ++i) |
| if (N->getOperand(i).getValueType() == MVT::Other) |
| return N->getOperand(i); |
| } |
| return SDOperand(0, 0); |
| } |
| |
| SDOperand DAGCombiner::visitTokenFactor(SDNode *N) { |
| // If N has two operands, where one has an input chain equal to the other, |
| // the 'other' chain is redundant. |
| if (N->getNumOperands() == 2) { |
| if (getInputChainForNode(N->getOperand(0).Val) == N->getOperand(1)) |
| return N->getOperand(0); |
| if (getInputChainForNode(N->getOperand(1).Val) == N->getOperand(0)) |
| return N->getOperand(1); |
| } |
| |
| SmallVector<SDNode *, 8> TFs; // List of token factors to visit. |
| SmallVector<SDOperand, 8> Ops; // Ops for replacing token factor. |
| SmallPtrSet<SDNode*, 16> SeenOps; |
| bool Changed = false; // If we should replace this token factor. |
| |
| // Start out with this token factor. |
| TFs.push_back(N); |
| |
| // Iterate through token factors. The TFs grows when new token factors are |
| // encountered. |
| for (unsigned i = 0; i < TFs.size(); ++i) { |
| SDNode *TF = TFs[i]; |
| |
| // Check each of the operands. |
| for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) { |
| SDOperand Op = TF->getOperand(i); |
| |
| switch (Op.getOpcode()) { |
| case ISD::EntryToken: |
| // Entry tokens don't need to be added to the list. They are |
| // rededundant. |
| Changed = true; |
| break; |
| |
| case ISD::TokenFactor: |
| if ((CombinerAA || Op.hasOneUse()) && |
| std::find(TFs.begin(), TFs.end(), Op.Val) == TFs.end()) { |
| // Queue up for processing. |
| TFs.push_back(Op.Val); |
| // Clean up in case the token factor is removed. |
| AddToWorkList(Op.Val); |
| Changed = true; |
| break; |
| } |
| // Fall thru |
| |
| default: |
| // Only add if it isn't already in the list. |
| if (SeenOps.insert(Op.Val)) |
| Ops.push_back(Op); |
| else |
| Changed = true; |
| break; |
| } |
| } |
| } |
| |
| SDOperand Result; |
| |
| // If we've change things around then replace token factor. |
| if (Changed) { |
| if (Ops.empty()) { |
| // The entry token is the only possible outcome. |
| Result = DAG.getEntryNode(); |
| } else { |
| // New and improved token factor. |
| Result = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0], Ops.size()); |
| } |
| |
| // Don't add users to work list. |
| return CombineTo(N, Result, false); |
| } |
| |
| return Result; |
| } |
| |
| static |
| SDOperand combineShlAddConstant(SDOperand N0, SDOperand N1, SelectionDAG &DAG) { |
| MVT::ValueType VT = N0.getValueType(); |
| SDOperand N00 = N0.getOperand(0); |
| SDOperand N01 = N0.getOperand(1); |
| ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01); |
| if (N01C && N00.getOpcode() == ISD::ADD && N00.Val->hasOneUse() && |
| isa<ConstantSDNode>(N00.getOperand(1))) { |
| N0 = DAG.getNode(ISD::ADD, VT, |
| DAG.getNode(ISD::SHL, VT, N00.getOperand(0), N01), |
| DAG.getNode(ISD::SHL, VT, N00.getOperand(1), N01)); |
| return DAG.getNode(ISD::ADD, VT, N0, N1); |
| } |
| return SDOperand(); |
| } |
| |
| static |
| SDOperand combineSelectAndUse(SDNode *N, SDOperand Slct, SDOperand OtherOp, |
| SelectionDAG &DAG) { |
| MVT::ValueType VT = N->getValueType(0); |
| unsigned Opc = N->getOpcode(); |
| bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC; |
| SDOperand LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1); |
| SDOperand RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2); |
| ISD::CondCode CC = ISD::SETCC_INVALID; |
| if (isSlctCC) |
| CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get(); |
| else { |
| SDOperand CCOp = Slct.getOperand(0); |
| if (CCOp.getOpcode() == ISD::SETCC) |
| CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get(); |
| } |
| |
| bool DoXform = false; |
| bool InvCC = false; |
| assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) && |
| "Bad input!"); |
| if (LHS.getOpcode() == ISD::Constant && |
| cast<ConstantSDNode>(LHS)->isNullValue()) |
| DoXform = true; |
| else if (CC != ISD::SETCC_INVALID && |
| RHS.getOpcode() == ISD::Constant && |
| cast<ConstantSDNode>(RHS)->isNullValue()) { |
| std::swap(LHS, RHS); |
| SDOperand Op0 = Slct.getOperand(0); |
| bool isInt = MVT::isInteger(isSlctCC ? Op0.getValueType() |
| : Op0.getOperand(0).getValueType()); |
| CC = ISD::getSetCCInverse(CC, isInt); |
| DoXform = true; |
| InvCC = true; |
| } |
| |
| if (DoXform) { |
| SDOperand Result = DAG.getNode(Opc, VT, OtherOp, RHS); |
| if (isSlctCC) |
| return DAG.getSelectCC(OtherOp, Result, |
| Slct.getOperand(0), Slct.getOperand(1), CC); |
| SDOperand CCOp = Slct.getOperand(0); |
| if (InvCC) |
| CCOp = DAG.getSetCC(CCOp.getValueType(), CCOp.getOperand(0), |
| CCOp.getOperand(1), CC); |
| return DAG.getNode(ISD::SELECT, VT, CCOp, OtherOp, Result); |
| } |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitADD(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| MVT::ValueType VT = N0.getValueType(); |
| |
| // fold vector ops |
| if (MVT::isVector(VT)) { |
| SDOperand FoldedVOp = SimplifyVBinOp(N); |
| if (FoldedVOp.Val) return FoldedVOp; |
| } |
| |
| // fold (add x, undef) -> undef |
| if (N0.getOpcode() == ISD::UNDEF) |
| return N0; |
| if (N1.getOpcode() == ISD::UNDEF) |
| return N1; |
| // fold (add c1, c2) -> c1+c2 |
| if (N0C && N1C) |
| return DAG.getNode(ISD::ADD, VT, N0, N1); |
| // canonicalize constant to RHS |
| if (N0C && !N1C) |
| return DAG.getNode(ISD::ADD, VT, N1, N0); |
| // fold (add x, 0) -> x |
| if (N1C && N1C->isNullValue()) |
| return N0; |
| // fold ((c1-A)+c2) -> (c1+c2)-A |
| if (N1C && N0.getOpcode() == ISD::SUB) |
| if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0))) |
| return DAG.getNode(ISD::SUB, VT, |
| DAG.getConstant(N1C->getValue()+N0C->getValue(), VT), |
| N0.getOperand(1)); |
| // reassociate add |
| SDOperand RADD = ReassociateOps(ISD::ADD, N0, N1); |
| if (RADD.Val != 0) |
| return RADD; |
| // fold ((0-A) + B) -> B-A |
| if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) && |
| cast<ConstantSDNode>(N0.getOperand(0))->isNullValue()) |
| return DAG.getNode(ISD::SUB, VT, N1, N0.getOperand(1)); |
| // fold (A + (0-B)) -> A-B |
| if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) && |
| cast<ConstantSDNode>(N1.getOperand(0))->isNullValue()) |
| return DAG.getNode(ISD::SUB, VT, N0, N1.getOperand(1)); |
| // fold (A+(B-A)) -> B |
| if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1)) |
| return N1.getOperand(0); |
| |
| if (!MVT::isVector(VT) && SimplifyDemandedBits(SDOperand(N, 0))) |
| return SDOperand(N, 0); |
| |
| // fold (a+b) -> (a|b) iff a and b share no bits. |
| if (MVT::isInteger(VT) && !MVT::isVector(VT)) { |
| uint64_t LHSZero, LHSOne; |
| uint64_t RHSZero, RHSOne; |
| uint64_t Mask = MVT::getIntVTBitMask(VT); |
| DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne); |
| if (LHSZero) { |
| DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne); |
| |
| // If all possibly-set bits on the LHS are clear on the RHS, return an OR. |
| // If all possibly-set bits on the RHS are clear on the LHS, return an OR. |
| if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) || |
| (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask)) |
| return DAG.getNode(ISD::OR, VT, N0, N1); |
| } |
| } |
| |
| // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), ) |
| if (N0.getOpcode() == ISD::SHL && N0.Val->hasOneUse()) { |
| SDOperand Result = combineShlAddConstant(N0, N1, DAG); |
| if (Result.Val) return Result; |
| } |
| if (N1.getOpcode() == ISD::SHL && N1.Val->hasOneUse()) { |
| SDOperand Result = combineShlAddConstant(N1, N0, DAG); |
| if (Result.Val) return Result; |
| } |
| |
| // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c)) |
| if (N0.getOpcode() == ISD::SELECT && N0.Val->hasOneUse()) { |
| SDOperand Result = combineSelectAndUse(N, N0, N1, DAG); |
| if (Result.Val) return Result; |
| } |
| if (N1.getOpcode() == ISD::SELECT && N1.Val->hasOneUse()) { |
| SDOperand Result = combineSelectAndUse(N, N1, N0, DAG); |
| if (Result.Val) return Result; |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitADDC(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| MVT::ValueType VT = N0.getValueType(); |
| |
| // If the flag result is dead, turn this into an ADD. |
| if (N->hasNUsesOfValue(0, 1)) |
| return CombineTo(N, DAG.getNode(ISD::ADD, VT, N1, N0), |
| DAG.getNode(ISD::CARRY_FALSE, MVT::Flag)); |
| |
| // canonicalize constant to RHS. |
| if (N0C && !N1C) { |
| SDOperand Ops[] = { N1, N0 }; |
| return DAG.getNode(ISD::ADDC, N->getVTList(), Ops, 2); |
| } |
| |
| // fold (addc x, 0) -> x + no carry out |
| if (N1C && N1C->isNullValue()) |
| return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, MVT::Flag)); |
| |
| // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits. |
| uint64_t LHSZero, LHSOne; |
| uint64_t RHSZero, RHSOne; |
| uint64_t Mask = MVT::getIntVTBitMask(VT); |
| DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne); |
| if (LHSZero) { |
| DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne); |
| |
| // If all possibly-set bits on the LHS are clear on the RHS, return an OR. |
| // If all possibly-set bits on the RHS are clear on the LHS, return an OR. |
| if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) || |
| (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask)) |
| return CombineTo(N, DAG.getNode(ISD::OR, VT, N0, N1), |
| DAG.getNode(ISD::CARRY_FALSE, MVT::Flag)); |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitADDE(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| SDOperand CarryIn = N->getOperand(2); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| //MVT::ValueType VT = N0.getValueType(); |
| |
| // canonicalize constant to RHS |
| if (N0C && !N1C) { |
| SDOperand Ops[] = { N1, N0, CarryIn }; |
| return DAG.getNode(ISD::ADDE, N->getVTList(), Ops, 3); |
| } |
| |
| // fold (adde x, y, false) -> (addc x, y) |
| if (CarryIn.getOpcode() == ISD::CARRY_FALSE) { |
| SDOperand Ops[] = { N1, N0 }; |
| return DAG.getNode(ISD::ADDC, N->getVTList(), Ops, 2); |
| } |
| |
| return SDOperand(); |
| } |
| |
| |
| |
| SDOperand DAGCombiner::visitSUB(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val); |
| MVT::ValueType VT = N0.getValueType(); |
| |
| // fold vector ops |
| if (MVT::isVector(VT)) { |
| SDOperand FoldedVOp = SimplifyVBinOp(N); |
| if (FoldedVOp.Val) return FoldedVOp; |
| } |
| |
| // fold (sub x, x) -> 0 |
| if (N0 == N1) |
| return DAG.getConstant(0, N->getValueType(0)); |
| // fold (sub c1, c2) -> c1-c2 |
| if (N0C && N1C) |
| return DAG.getNode(ISD::SUB, VT, N0, N1); |
| // fold (sub x, c) -> (add x, -c) |
| if (N1C) |
| return DAG.getNode(ISD::ADD, VT, N0, DAG.getConstant(-N1C->getValue(), VT)); |
| // fold (A+B)-A -> B |
| if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1) |
| return N0.getOperand(1); |
| // fold (A+B)-B -> A |
| if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1) |
| return N0.getOperand(0); |
| // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) |
| if (N1.getOpcode() == ISD::SELECT && N1.Val->hasOneUse()) { |
| SDOperand Result = combineSelectAndUse(N, N1, N0, DAG); |
| if (Result.Val) return Result; |
| } |
| // If either operand of a sub is undef, the result is undef |
| if (N0.getOpcode() == ISD::UNDEF) |
| return N0; |
| if (N1.getOpcode() == ISD::UNDEF) |
| return N1; |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitMUL(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| MVT::ValueType VT = N0.getValueType(); |
| |
| // fold vector ops |
| if (MVT::isVector(VT)) { |
| SDOperand FoldedVOp = SimplifyVBinOp(N); |
| if (FoldedVOp.Val) return FoldedVOp; |
| } |
| |
| // fold (mul x, undef) -> 0 |
| if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) |
| return DAG.getConstant(0, VT); |
| // fold (mul c1, c2) -> c1*c2 |
| if (N0C && N1C) |
| return DAG.getNode(ISD::MUL, VT, N0, N1); |
| // canonicalize constant to RHS |
| if (N0C && !N1C) |
| return DAG.getNode(ISD::MUL, VT, N1, N0); |
| // fold (mul x, 0) -> 0 |
| if (N1C && N1C->isNullValue()) |
| return N1; |
| // fold (mul x, -1) -> 0-x |
| if (N1C && N1C->isAllOnesValue()) |
| return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0); |
| // fold (mul x, (1 << c)) -> x << c |
| if (N1C && isPowerOf2_64(N1C->getValue())) |
| return DAG.getNode(ISD::SHL, VT, N0, |
| DAG.getConstant(Log2_64(N1C->getValue()), |
| TLI.getShiftAmountTy())); |
| // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c |
| if (N1C && isPowerOf2_64(-N1C->getSignExtended())) { |
| // FIXME: If the input is something that is easily negated (e.g. a |
| // single-use add), we should put the negate there. |
| return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), |
| DAG.getNode(ISD::SHL, VT, N0, |
| DAG.getConstant(Log2_64(-N1C->getSignExtended()), |
| TLI.getShiftAmountTy()))); |
| } |
| |
| // (mul (shl X, c1), c2) -> (mul X, c2 << c1) |
| if (N1C && N0.getOpcode() == ISD::SHL && |
| isa<ConstantSDNode>(N0.getOperand(1))) { |
| SDOperand C3 = DAG.getNode(ISD::SHL, VT, N1, N0.getOperand(1)); |
| AddToWorkList(C3.Val); |
| return DAG.getNode(ISD::MUL, VT, N0.getOperand(0), C3); |
| } |
| |
| // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one |
| // use. |
| { |
| SDOperand Sh(0,0), Y(0,0); |
| // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)). |
| if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) && |
| N0.Val->hasOneUse()) { |
| Sh = N0; Y = N1; |
| } else if (N1.getOpcode() == ISD::SHL && |
| isa<ConstantSDNode>(N1.getOperand(1)) && N1.Val->hasOneUse()) { |
| Sh = N1; Y = N0; |
| } |
| if (Sh.Val) { |
| SDOperand Mul = DAG.getNode(ISD::MUL, VT, Sh.getOperand(0), Y); |
| return DAG.getNode(ISD::SHL, VT, Mul, Sh.getOperand(1)); |
| } |
| } |
| // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2) |
| if (N1C && N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse() && |
| isa<ConstantSDNode>(N0.getOperand(1))) { |
| return DAG.getNode(ISD::ADD, VT, |
| DAG.getNode(ISD::MUL, VT, N0.getOperand(0), N1), |
| DAG.getNode(ISD::MUL, VT, N0.getOperand(1), N1)); |
| } |
| |
| // reassociate mul |
| SDOperand RMUL = ReassociateOps(ISD::MUL, N0, N1); |
| if (RMUL.Val != 0) |
| return RMUL; |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitSDIV(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold vector ops |
| if (MVT::isVector(VT)) { |
| SDOperand FoldedVOp = SimplifyVBinOp(N); |
| if (FoldedVOp.Val) return FoldedVOp; |
| } |
| |
| // fold (sdiv c1, c2) -> c1/c2 |
| if (N0C && N1C && !N1C->isNullValue()) |
| return DAG.getNode(ISD::SDIV, VT, N0, N1); |
| // fold (sdiv X, 1) -> X |
| if (N1C && N1C->getSignExtended() == 1LL) |
| return N0; |
| // fold (sdiv X, -1) -> 0-X |
| if (N1C && N1C->isAllOnesValue()) |
| return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0); |
| // If we know the sign bits of both operands are zero, strength reduce to a |
| // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2 |
| if (!MVT::isVector(VT)) { |
| uint64_t SignBit = MVT::getIntVTSignBit(VT); |
| if (DAG.MaskedValueIsZero(N1, SignBit) && |
| DAG.MaskedValueIsZero(N0, SignBit)) |
| return DAG.getNode(ISD::UDIV, N1.getValueType(), N0, N1); |
| } |
| // fold (sdiv X, pow2) -> simple ops after legalize |
| if (N1C && N1C->getValue() && !TLI.isIntDivCheap() && |
| (isPowerOf2_64(N1C->getSignExtended()) || |
| isPowerOf2_64(-N1C->getSignExtended()))) { |
| // If dividing by powers of two is cheap, then don't perform the following |
| // fold. |
| if (TLI.isPow2DivCheap()) |
| return SDOperand(); |
| int64_t pow2 = N1C->getSignExtended(); |
| int64_t abs2 = pow2 > 0 ? pow2 : -pow2; |
| unsigned lg2 = Log2_64(abs2); |
| // Splat the sign bit into the register |
| SDOperand SGN = DAG.getNode(ISD::SRA, VT, N0, |
| DAG.getConstant(MVT::getSizeInBits(VT)-1, |
| TLI.getShiftAmountTy())); |
| AddToWorkList(SGN.Val); |
| // Add (N0 < 0) ? abs2 - 1 : 0; |
| SDOperand SRL = DAG.getNode(ISD::SRL, VT, SGN, |
| DAG.getConstant(MVT::getSizeInBits(VT)-lg2, |
| TLI.getShiftAmountTy())); |
| SDOperand ADD = DAG.getNode(ISD::ADD, VT, N0, SRL); |
| AddToWorkList(SRL.Val); |
| AddToWorkList(ADD.Val); // Divide by pow2 |
| SDOperand SRA = DAG.getNode(ISD::SRA, VT, ADD, |
| DAG.getConstant(lg2, TLI.getShiftAmountTy())); |
| // If we're dividing by a positive value, we're done. Otherwise, we must |
| // negate the result. |
| if (pow2 > 0) |
| return SRA; |
| AddToWorkList(SRA.Val); |
| return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), SRA); |
| } |
| // if integer divide is expensive and we satisfy the requirements, emit an |
| // alternate sequence. |
| if (N1C && (N1C->getSignExtended() < -1 || N1C->getSignExtended() > 1) && |
| !TLI.isIntDivCheap()) { |
| SDOperand Op = BuildSDIV(N); |
| if (Op.Val) return Op; |
| } |
| |
| // undef / X -> 0 |
| if (N0.getOpcode() == ISD::UNDEF) |
| return DAG.getConstant(0, VT); |
| // X / undef -> undef |
| if (N1.getOpcode() == ISD::UNDEF) |
| return N1; |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitUDIV(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold vector ops |
| if (MVT::isVector(VT)) { |
| SDOperand FoldedVOp = SimplifyVBinOp(N); |
| if (FoldedVOp.Val) return FoldedVOp; |
| } |
| |
| // fold (udiv c1, c2) -> c1/c2 |
| if (N0C && N1C && !N1C->isNullValue()) |
| return DAG.getNode(ISD::UDIV, VT, N0, N1); |
| // fold (udiv x, (1 << c)) -> x >>u c |
| if (N1C && isPowerOf2_64(N1C->getValue())) |
| return DAG.getNode(ISD::SRL, VT, N0, |
| DAG.getConstant(Log2_64(N1C->getValue()), |
| TLI.getShiftAmountTy())); |
| // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 |
| if (N1.getOpcode() == ISD::SHL) { |
| if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) { |
| if (isPowerOf2_64(SHC->getValue())) { |
| MVT::ValueType ADDVT = N1.getOperand(1).getValueType(); |
| SDOperand Add = DAG.getNode(ISD::ADD, ADDVT, N1.getOperand(1), |
| DAG.getConstant(Log2_64(SHC->getValue()), |
| ADDVT)); |
| AddToWorkList(Add.Val); |
| return DAG.getNode(ISD::SRL, VT, N0, Add); |
| } |
| } |
| } |
| // fold (udiv x, c) -> alternate |
| if (N1C && N1C->getValue() && !TLI.isIntDivCheap()) { |
| SDOperand Op = BuildUDIV(N); |
| if (Op.Val) return Op; |
| } |
| |
| // undef / X -> 0 |
| if (N0.getOpcode() == ISD::UNDEF) |
| return DAG.getConstant(0, VT); |
| // X / undef -> undef |
| if (N1.getOpcode() == ISD::UNDEF) |
| return N1; |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitSREM(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (srem c1, c2) -> c1%c2 |
| if (N0C && N1C && !N1C->isNullValue()) |
| return DAG.getNode(ISD::SREM, VT, N0, N1); |
| // If we know the sign bits of both operands are zero, strength reduce to a |
| // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15 |
| if (!MVT::isVector(VT)) { |
| uint64_t SignBit = MVT::getIntVTSignBit(VT); |
| if (DAG.MaskedValueIsZero(N1, SignBit) && |
| DAG.MaskedValueIsZero(N0, SignBit)) |
| return DAG.getNode(ISD::UREM, VT, N0, N1); |
| } |
| |
| // If X/C can be simplified by the division-by-constant logic, lower |
| // X%C to the equivalent of X-X/C*C. |
| if (N1C && !N1C->isNullValue()) { |
| SDOperand Div = DAG.getNode(ISD::SDIV, VT, N0, N1); |
| AddToWorkList(Div.Val); |
| SDOperand OptimizedDiv = combine(Div.Val); |
| if (OptimizedDiv.Val && OptimizedDiv.Val != Div.Val) { |
| SDOperand Mul = DAG.getNode(ISD::MUL, VT, OptimizedDiv, N1); |
| SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul); |
| AddToWorkList(Mul.Val); |
| return Sub; |
| } |
| } |
| |
| // undef % X -> 0 |
| if (N0.getOpcode() == ISD::UNDEF) |
| return DAG.getConstant(0, VT); |
| // X % undef -> undef |
| if (N1.getOpcode() == ISD::UNDEF) |
| return N1; |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitUREM(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (urem c1, c2) -> c1%c2 |
| if (N0C && N1C && !N1C->isNullValue()) |
| return DAG.getNode(ISD::UREM, VT, N0, N1); |
| // fold (urem x, pow2) -> (and x, pow2-1) |
| if (N1C && !N1C->isNullValue() && isPowerOf2_64(N1C->getValue())) |
| return DAG.getNode(ISD::AND, VT, N0, DAG.getConstant(N1C->getValue()-1,VT)); |
| // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1)) |
| if (N1.getOpcode() == ISD::SHL) { |
| if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) { |
| if (isPowerOf2_64(SHC->getValue())) { |
| SDOperand Add = DAG.getNode(ISD::ADD, VT, N1,DAG.getConstant(~0ULL,VT)); |
| AddToWorkList(Add.Val); |
| return DAG.getNode(ISD::AND, VT, N0, Add); |
| } |
| } |
| } |
| |
| // If X/C can be simplified by the division-by-constant logic, lower |
| // X%C to the equivalent of X-X/C*C. |
| if (N1C && !N1C->isNullValue()) { |
| SDOperand Div = DAG.getNode(ISD::UDIV, VT, N0, N1); |
| SDOperand OptimizedDiv = combine(Div.Val); |
| if (OptimizedDiv.Val && OptimizedDiv.Val != Div.Val) { |
| SDOperand Mul = DAG.getNode(ISD::MUL, VT, OptimizedDiv, N1); |
| SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul); |
| AddToWorkList(Mul.Val); |
| return Sub; |
| } |
| } |
| |
| // undef % X -> 0 |
| if (N0.getOpcode() == ISD::UNDEF) |
| return DAG.getConstant(0, VT); |
| // X % undef -> undef |
| if (N1.getOpcode() == ISD::UNDEF) |
| return N1; |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitMULHS(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (mulhs x, 0) -> 0 |
| if (N1C && N1C->isNullValue()) |
| return N1; |
| // fold (mulhs x, 1) -> (sra x, size(x)-1) |
| if (N1C && N1C->getValue() == 1) |
| return DAG.getNode(ISD::SRA, N0.getValueType(), N0, |
| DAG.getConstant(MVT::getSizeInBits(N0.getValueType())-1, |
| TLI.getShiftAmountTy())); |
| // fold (mulhs x, undef) -> 0 |
| if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) |
| return DAG.getConstant(0, VT); |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitMULHU(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (mulhu x, 0) -> 0 |
| if (N1C && N1C->isNullValue()) |
| return N1; |
| // fold (mulhu x, 1) -> 0 |
| if (N1C && N1C->getValue() == 1) |
| return DAG.getConstant(0, N0.getValueType()); |
| // fold (mulhu x, undef) -> 0 |
| if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) |
| return DAG.getConstant(0, VT); |
| |
| return SDOperand(); |
| } |
| |
| /// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that |
| /// compute two values. LoOp and HiOp give the opcodes for the two computations |
| /// that are being performed. Return true if a simplification was made. |
| /// |
| SDOperand DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, |
| unsigned HiOp) { |
| // If the high half is not needed, just compute the low half. |
| bool HiExists = N->hasAnyUseOfValue(1); |
| if (!HiExists && |
| (!AfterLegalize || |
| TLI.isOperationLegal(LoOp, N->getValueType(0)))) { |
| SDOperand Res = DAG.getNode(LoOp, N->getValueType(0), N->op_begin(), |
| N->getNumOperands()); |
| return CombineTo(N, Res, Res); |
| } |
| |
| // If the low half is not needed, just compute the high half. |
| bool LoExists = N->hasAnyUseOfValue(0); |
| if (!LoExists && |
| (!AfterLegalize || |
| TLI.isOperationLegal(HiOp, N->getValueType(1)))) { |
| SDOperand Res = DAG.getNode(HiOp, N->getValueType(1), N->op_begin(), |
| N->getNumOperands()); |
| return CombineTo(N, Res, Res); |
| } |
| |
| // If both halves are used, return as it is. |
| if (LoExists && HiExists) |
| return SDOperand(); |
| |
| // If the two computed results can be simplified separately, separate them. |
| if (LoExists) { |
| SDOperand Lo = DAG.getNode(LoOp, N->getValueType(0), |
| N->op_begin(), N->getNumOperands()); |
| AddToWorkList(Lo.Val); |
| SDOperand LoOpt = combine(Lo.Val); |
| if (LoOpt.Val && LoOpt.Val != Lo.Val && |
| TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType())) |
| return CombineTo(N, LoOpt, LoOpt); |
| } |
| |
| if (HiExists) { |
| SDOperand Hi = DAG.getNode(HiOp, N->getValueType(1), |
| N->op_begin(), N->getNumOperands()); |
| AddToWorkList(Hi.Val); |
| SDOperand HiOpt = combine(Hi.Val); |
| if (HiOpt.Val && HiOpt != Hi && |
| TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())) |
| return CombineTo(N, HiOpt, HiOpt); |
| } |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitSMUL_LOHI(SDNode *N) { |
| SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS); |
| if (Res.Val) return Res; |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitUMUL_LOHI(SDNode *N) { |
| SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU); |
| if (Res.Val) return Res; |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitSDIVREM(SDNode *N) { |
| SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM); |
| if (Res.Val) return Res; |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitUDIVREM(SDNode *N) { |
| SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM); |
| if (Res.Val) return Res; |
| |
| return SDOperand(); |
| } |
| |
| /// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with |
| /// two operands of the same opcode, try to simplify it. |
| SDOperand DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) { |
| SDOperand N0 = N->getOperand(0), N1 = N->getOperand(1); |
| MVT::ValueType VT = N0.getValueType(); |
| assert(N0.getOpcode() == N1.getOpcode() && "Bad input!"); |
| |
| // For each of OP in AND/OR/XOR: |
| // fold (OP (zext x), (zext y)) -> (zext (OP x, y)) |
| // fold (OP (sext x), (sext y)) -> (sext (OP x, y)) |
| // fold (OP (aext x), (aext y)) -> (aext (OP x, y)) |
| // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) |
| if ((N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND|| |
| N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::TRUNCATE) && |
| N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) { |
| SDOperand ORNode = DAG.getNode(N->getOpcode(), |
| N0.getOperand(0).getValueType(), |
| N0.getOperand(0), N1.getOperand(0)); |
| AddToWorkList(ORNode.Val); |
| return DAG.getNode(N0.getOpcode(), VT, ORNode); |
| } |
| |
| // For each of OP in SHL/SRL/SRA/AND... |
| // fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z) |
| // fold (or (OP x, z), (OP y, z)) -> (OP (or x, y), z) |
| // fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z) |
| if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL || |
| N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) && |
| N0.getOperand(1) == N1.getOperand(1)) { |
| SDOperand ORNode = DAG.getNode(N->getOpcode(), |
| N0.getOperand(0).getValueType(), |
| N0.getOperand(0), N1.getOperand(0)); |
| AddToWorkList(ORNode.Val); |
| return DAG.getNode(N0.getOpcode(), VT, ORNode, N0.getOperand(1)); |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitAND(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| SDOperand LL, LR, RL, RR, CC0, CC1; |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| MVT::ValueType VT = N1.getValueType(); |
| |
| // fold vector ops |
| if (MVT::isVector(VT)) { |
| SDOperand FoldedVOp = SimplifyVBinOp(N); |
| if (FoldedVOp.Val) return FoldedVOp; |
| } |
| |
| // fold (and x, undef) -> 0 |
| if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) |
| return DAG.getConstant(0, VT); |
| // fold (and c1, c2) -> c1&c2 |
| if (N0C && N1C) |
| return DAG.getNode(ISD::AND, VT, N0, N1); |
| // canonicalize constant to RHS |
| if (N0C && !N1C) |
| return DAG.getNode(ISD::AND, VT, N1, N0); |
| // fold (and x, -1) -> x |
| if (N1C && N1C->isAllOnesValue()) |
| return N0; |
| // if (and x, c) is known to be zero, return 0 |
| if (N1C && DAG.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT))) |
| return DAG.getConstant(0, VT); |
| // reassociate and |
| SDOperand RAND = ReassociateOps(ISD::AND, N0, N1); |
| if (RAND.Val != 0) |
| return RAND; |
| // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF |
| if (N1C && N0.getOpcode() == ISD::OR) |
| if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) |
| if ((ORI->getValue() & N1C->getValue()) == N1C->getValue()) |
| return N1; |
| // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. |
| if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { |
| unsigned InMask = MVT::getIntVTBitMask(N0.getOperand(0).getValueType()); |
| if (DAG.MaskedValueIsZero(N0.getOperand(0), |
| ~N1C->getValue() & InMask)) { |
| SDOperand Zext = DAG.getNode(ISD::ZERO_EXTEND, N0.getValueType(), |
| N0.getOperand(0)); |
| |
| // Replace uses of the AND with uses of the Zero extend node. |
| CombineTo(N, Zext); |
| |
| // We actually want to replace all uses of the any_extend with the |
| // zero_extend, to avoid duplicating things. This will later cause this |
| // AND to be folded. |
| CombineTo(N0.Val, Zext); |
| return SDOperand(N, 0); // Return N so it doesn't get rechecked! |
| } |
| } |
| // fold (and (setcc x), (setcc y)) -> (setcc (and x, y)) |
| if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ |
| ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get(); |
| ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get(); |
| |
| if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 && |
| MVT::isInteger(LL.getValueType())) { |
| // fold (X == 0) & (Y == 0) -> (X|Y == 0) |
| if (cast<ConstantSDNode>(LR)->getValue() == 0 && Op1 == ISD::SETEQ) { |
| SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL); |
| AddToWorkList(ORNode.Val); |
| return DAG.getSetCC(VT, ORNode, LR, Op1); |
| } |
| // fold (X == -1) & (Y == -1) -> (X&Y == -1) |
| if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) { |
| SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL); |
| AddToWorkList(ANDNode.Val); |
| return DAG.getSetCC(VT, ANDNode, LR, Op1); |
| } |
| // fold (X > -1) & (Y > -1) -> (X|Y > -1) |
| if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) { |
| SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL); |
| AddToWorkList(ORNode.Val); |
| return DAG.getSetCC(VT, ORNode, LR, Op1); |
| } |
| } |
| // canonicalize equivalent to ll == rl |
| if (LL == RR && LR == RL) { |
| Op1 = ISD::getSetCCSwappedOperands(Op1); |
| std::swap(RL, RR); |
| } |
| if (LL == RL && LR == RR) { |
| bool isInteger = MVT::isInteger(LL.getValueType()); |
| ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger); |
| if (Result != ISD::SETCC_INVALID) |
| return DAG.getSetCC(N0.getValueType(), LL, LR, Result); |
| } |
| } |
| |
| // Simplify: and (op x...), (op y...) -> (op (and x, y)) |
| if (N0.getOpcode() == N1.getOpcode()) { |
| SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N); |
| if (Tmp.Val) return Tmp; |
| } |
| |
| // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) |
| // fold (and (sra)) -> (and (srl)) when possible. |
| if (!MVT::isVector(VT) && |
| SimplifyDemandedBits(SDOperand(N, 0))) |
| return SDOperand(N, 0); |
| // fold (zext_inreg (extload x)) -> (zextload x) |
| if (ISD::isEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val)) { |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| MVT::ValueType EVT = LN0->getMemoryVT(); |
| // If we zero all the possible extended bits, then we can turn this into |
| // a zextload if we are running before legalize or the operation is legal. |
| if (DAG.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) && |
| (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) { |
| SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(), |
| LN0->getBasePtr(), LN0->getSrcValue(), |
| LN0->getSrcValueOffset(), EVT, |
| LN0->isVolatile(), |
| LN0->getAlignment()); |
| AddToWorkList(N); |
| CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1)); |
| return SDOperand(N, 0); // Return N so it doesn't get rechecked! |
| } |
| } |
| // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use |
| if (ISD::isSEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) && |
| N0.hasOneUse()) { |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| MVT::ValueType EVT = LN0->getMemoryVT(); |
| // If we zero all the possible extended bits, then we can turn this into |
| // a zextload if we are running before legalize or the operation is legal. |
| if (DAG.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) && |
| (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) { |
| SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(), |
| LN0->getBasePtr(), LN0->getSrcValue(), |
| LN0->getSrcValueOffset(), EVT, |
| LN0->isVolatile(), |
| LN0->getAlignment()); |
| AddToWorkList(N); |
| CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1)); |
| return SDOperand(N, 0); // Return N so it doesn't get rechecked! |
| } |
| } |
| |
| // fold (and (load x), 255) -> (zextload x, i8) |
| // fold (and (extload x, i16), 255) -> (zextload x, i8) |
| if (N1C && N0.getOpcode() == ISD::LOAD) { |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| if (LN0->getExtensionType() != ISD::SEXTLOAD && |
| LN0->isUnindexed() && N0.hasOneUse()) { |
| MVT::ValueType EVT, LoadedVT; |
| if (N1C->getValue() == 255) |
| EVT = MVT::i8; |
| else if (N1C->getValue() == 65535) |
| EVT = MVT::i16; |
| else if (N1C->getValue() == ~0U) |
| EVT = MVT::i32; |
| else |
| EVT = MVT::Other; |
| |
| LoadedVT = LN0->getMemoryVT(); |
| if (EVT != MVT::Other && LoadedVT > EVT && |
| (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) { |
| MVT::ValueType PtrType = N0.getOperand(1).getValueType(); |
| // For big endian targets, we need to add an offset to the pointer to |
| // load the correct bytes. For little endian systems, we merely need to |
| // read fewer bytes from the same pointer. |
| unsigned LVTStoreBytes = MVT::getStoreSizeInBits(LoadedVT)/8; |
| unsigned EVTStoreBytes = MVT::getStoreSizeInBits(EVT)/8; |
| unsigned PtrOff = LVTStoreBytes - EVTStoreBytes; |
| unsigned Alignment = LN0->getAlignment(); |
| SDOperand NewPtr = LN0->getBasePtr(); |
| if (!TLI.isLittleEndian()) { |
| NewPtr = DAG.getNode(ISD::ADD, PtrType, NewPtr, |
| DAG.getConstant(PtrOff, PtrType)); |
| Alignment = MinAlign(Alignment, PtrOff); |
| } |
| AddToWorkList(NewPtr.Val); |
| SDOperand Load = |
| DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(), NewPtr, |
| LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT, |
| LN0->isVolatile(), Alignment); |
| AddToWorkList(N); |
| CombineTo(N0.Val, Load, Load.getValue(1)); |
| return SDOperand(N, 0); // Return N so it doesn't get rechecked! |
| } |
| } |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitOR(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| SDOperand LL, LR, RL, RR, CC0, CC1; |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| MVT::ValueType VT = N1.getValueType(); |
| unsigned OpSizeInBits = MVT::getSizeInBits(VT); |
| |
| // fold vector ops |
| if (MVT::isVector(VT)) { |
| SDOperand FoldedVOp = SimplifyVBinOp(N); |
| if (FoldedVOp.Val) return FoldedVOp; |
| } |
| |
| // fold (or x, undef) -> -1 |
| if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) |
| return DAG.getConstant(~0ULL, VT); |
| // fold (or c1, c2) -> c1|c2 |
| if (N0C && N1C) |
| return DAG.getNode(ISD::OR, VT, N0, N1); |
| // canonicalize constant to RHS |
| if (N0C && !N1C) |
| return DAG.getNode(ISD::OR, VT, N1, N0); |
| // fold (or x, 0) -> x |
| if (N1C && N1C->isNullValue()) |
| return N0; |
| // fold (or x, -1) -> -1 |
| if (N1C && N1C->isAllOnesValue()) |
| return N1; |
| // fold (or x, c) -> c iff (x & ~c) == 0 |
| if (N1C && |
| DAG.MaskedValueIsZero(N0,~N1C->getValue() & (~0ULL>>(64-OpSizeInBits)))) |
| return N1; |
| // reassociate or |
| SDOperand ROR = ReassociateOps(ISD::OR, N0, N1); |
| if (ROR.Val != 0) |
| return ROR; |
| // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2) |
| if (N1C && N0.getOpcode() == ISD::AND && N0.Val->hasOneUse() && |
| isa<ConstantSDNode>(N0.getOperand(1))) { |
| ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1)); |
| return DAG.getNode(ISD::AND, VT, DAG.getNode(ISD::OR, VT, N0.getOperand(0), |
| N1), |
| DAG.getConstant(N1C->getValue() | C1->getValue(), VT)); |
| } |
| // fold (or (setcc x), (setcc y)) -> (setcc (or x, y)) |
| if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ |
| ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get(); |
| ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get(); |
| |
| if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 && |
| MVT::isInteger(LL.getValueType())) { |
| // fold (X != 0) | (Y != 0) -> (X|Y != 0) |
| // fold (X < 0) | (Y < 0) -> (X|Y < 0) |
| if (cast<ConstantSDNode>(LR)->getValue() == 0 && |
| (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) { |
| SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL); |
| AddToWorkList(ORNode.Val); |
| return DAG.getSetCC(VT, ORNode, LR, Op1); |
| } |
| // fold (X != -1) | (Y != -1) -> (X&Y != -1) |
| // fold (X > -1) | (Y > -1) -> (X&Y > -1) |
| if (cast<ConstantSDNode>(LR)->isAllOnesValue() && |
| (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) { |
| SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL); |
| AddToWorkList(ANDNode.Val); |
| return DAG.getSetCC(VT, ANDNode, LR, Op1); |
| } |
| } |
| // canonicalize equivalent to ll == rl |
| if (LL == RR && LR == RL) { |
| Op1 = ISD::getSetCCSwappedOperands(Op1); |
| std::swap(RL, RR); |
| } |
| if (LL == RL && LR == RR) { |
| bool isInteger = MVT::isInteger(LL.getValueType()); |
| ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger); |
| if (Result != ISD::SETCC_INVALID) |
| return DAG.getSetCC(N0.getValueType(), LL, LR, Result); |
| } |
| } |
| |
| // Simplify: or (op x...), (op y...) -> (op (or x, y)) |
| if (N0.getOpcode() == N1.getOpcode()) { |
| SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N); |
| if (Tmp.Val) return Tmp; |
| } |
| |
| // (X & C1) | (Y & C2) -> (X|Y) & C3 if possible. |
| if (N0.getOpcode() == ISD::AND && |
| N1.getOpcode() == ISD::AND && |
| N0.getOperand(1).getOpcode() == ISD::Constant && |
| N1.getOperand(1).getOpcode() == ISD::Constant && |
| // Don't increase # computations. |
| (N0.Val->hasOneUse() || N1.Val->hasOneUse())) { |
| // We can only do this xform if we know that bits from X that are set in C2 |
| // but not in C1 are already zero. Likewise for Y. |
| uint64_t LHSMask = cast<ConstantSDNode>(N0.getOperand(1))->getValue(); |
| uint64_t RHSMask = cast<ConstantSDNode>(N1.getOperand(1))->getValue(); |
| |
| if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) && |
| DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) { |
| SDOperand X =DAG.getNode(ISD::OR, VT, N0.getOperand(0), N1.getOperand(0)); |
| return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(LHSMask|RHSMask, VT)); |
| } |
| } |
| |
| |
| // See if this is some rotate idiom. |
| if (SDNode *Rot = MatchRotate(N0, N1)) |
| return SDOperand(Rot, 0); |
| |
| return SDOperand(); |
| } |
| |
| |
| /// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present. |
| static bool MatchRotateHalf(SDOperand Op, SDOperand &Shift, SDOperand &Mask) { |
| if (Op.getOpcode() == ISD::AND) { |
| if (isa<ConstantSDNode>(Op.getOperand(1))) { |
| Mask = Op.getOperand(1); |
| Op = Op.getOperand(0); |
| } else { |
| return false; |
| } |
| } |
| |
| if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) { |
| Shift = Op; |
| return true; |
| } |
| return false; |
| } |
| |
| |
| // MatchRotate - Handle an 'or' of two operands. If this is one of the many |
| // idioms for rotate, and if the target supports rotation instructions, generate |
| // a rot[lr]. |
| SDNode *DAGCombiner::MatchRotate(SDOperand LHS, SDOperand RHS) { |
| // Must be a legal type. Expanded an promoted things won't work with rotates. |
| MVT::ValueType VT = LHS.getValueType(); |
| if (!TLI.isTypeLegal(VT)) return 0; |
| |
| // The target must have at least one rotate flavor. |
| bool HasROTL = TLI.isOperationLegal(ISD::ROTL, VT); |
| bool HasROTR = TLI.isOperationLegal(ISD::ROTR, VT); |
| if (!HasROTL && !HasROTR) return 0; |
| |
| // Match "(X shl/srl V1) & V2" where V2 may not be present. |
| SDOperand LHSShift; // The shift. |
| SDOperand LHSMask; // AND value if any. |
| if (!MatchRotateHalf(LHS, LHSShift, LHSMask)) |
| return 0; // Not part of a rotate. |
| |
| SDOperand RHSShift; // The shift. |
| SDOperand RHSMask; // AND value if any. |
| if (!MatchRotateHalf(RHS, RHSShift, RHSMask)) |
| return 0; // Not part of a rotate. |
| |
| if (LHSShift.getOperand(0) != RHSShift.getOperand(0)) |
| return 0; // Not shifting the same value. |
| |
| if (LHSShift.getOpcode() == RHSShift.getOpcode()) |
| return 0; // Shifts must disagree. |
| |
| // Canonicalize shl to left side in a shl/srl pair. |
| if (RHSShift.getOpcode() == ISD::SHL) { |
| std::swap(LHS, RHS); |
| std::swap(LHSShift, RHSShift); |
| std::swap(LHSMask , RHSMask ); |
| } |
| |
| unsigned OpSizeInBits = MVT::getSizeInBits(VT); |
| SDOperand LHSShiftArg = LHSShift.getOperand(0); |
| SDOperand LHSShiftAmt = LHSShift.getOperand(1); |
| SDOperand RHSShiftAmt = RHSShift.getOperand(1); |
| |
| // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1) |
| // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2) |
| if (LHSShiftAmt.getOpcode() == ISD::Constant && |
| RHSShiftAmt.getOpcode() == ISD::Constant) { |
| uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getValue(); |
| uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getValue(); |
| if ((LShVal + RShVal) != OpSizeInBits) |
| return 0; |
| |
| SDOperand Rot; |
| if (HasROTL) |
| Rot = DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt); |
| else |
| Rot = DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt); |
| |
| // If there is an AND of either shifted operand, apply it to the result. |
| if (LHSMask.Val || RHSMask.Val) { |
| uint64_t Mask = MVT::getIntVTBitMask(VT); |
| |
| if (LHSMask.Val) { |
| uint64_t RHSBits = (1ULL << LShVal)-1; |
| Mask &= cast<ConstantSDNode>(LHSMask)->getValue() | RHSBits; |
| } |
| if (RHSMask.Val) { |
| uint64_t LHSBits = ~((1ULL << (OpSizeInBits-RShVal))-1); |
| Mask &= cast<ConstantSDNode>(RHSMask)->getValue() | LHSBits; |
| } |
| |
| Rot = DAG.getNode(ISD::AND, VT, Rot, DAG.getConstant(Mask, VT)); |
| } |
| |
| return Rot.Val; |
| } |
| |
| // If there is a mask here, and we have a variable shift, we can't be sure |
| // that we're masking out the right stuff. |
| if (LHSMask.Val || RHSMask.Val) |
| return 0; |
| |
| // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y) |
| // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y)) |
| if (RHSShiftAmt.getOpcode() == ISD::SUB && |
| LHSShiftAmt == RHSShiftAmt.getOperand(1)) { |
| if (ConstantSDNode *SUBC = |
| dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) { |
| if (SUBC->getValue() == OpSizeInBits) |
| if (HasROTL) |
| return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val; |
| else |
| return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val; |
| } |
| } |
| |
| // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y) |
| // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y)) |
| if (LHSShiftAmt.getOpcode() == ISD::SUB && |
| RHSShiftAmt == LHSShiftAmt.getOperand(1)) { |
| if (ConstantSDNode *SUBC = |
| dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0))) { |
| if (SUBC->getValue() == OpSizeInBits) |
| if (HasROTL) |
| return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val; |
| else |
| return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val; |
| } |
| } |
| |
| // Look for sign/zext/any-extended cases: |
| if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND |
| || LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND |
| || LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND) && |
| (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND |
| || RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND |
| || RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND)) { |
| SDOperand LExtOp0 = LHSShiftAmt.getOperand(0); |
| SDOperand RExtOp0 = RHSShiftAmt.getOperand(0); |
| if (RExtOp0.getOpcode() == ISD::SUB && |
| RExtOp0.getOperand(1) == LExtOp0) { |
| // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) -> |
| // (rotr x, y) |
| // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) -> |
| // (rotl x, (sub 32, y)) |
| if (ConstantSDNode *SUBC = cast<ConstantSDNode>(RExtOp0.getOperand(0))) { |
| if (SUBC->getValue() == OpSizeInBits) { |
| if (HasROTL) |
| return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val; |
| else |
| return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val; |
| } |
| } |
| } else if (LExtOp0.getOpcode() == ISD::SUB && |
| RExtOp0 == LExtOp0.getOperand(1)) { |
| // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) -> |
| // (rotl x, y) |
| // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) -> |
| // (rotr x, (sub 32, y)) |
| if (ConstantSDNode *SUBC = cast<ConstantSDNode>(LExtOp0.getOperand(0))) { |
| if (SUBC->getValue() == OpSizeInBits) { |
| if (HasROTL) |
| return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, RHSShiftAmt).Val; |
| else |
| return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val; |
| } |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| |
| SDOperand DAGCombiner::visitXOR(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| SDOperand LHS, RHS, CC; |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| MVT::ValueType VT = N0.getValueType(); |
| |
| // fold vector ops |
| if (MVT::isVector(VT)) { |
| SDOperand FoldedVOp = SimplifyVBinOp(N); |
| if (FoldedVOp.Val) return FoldedVOp; |
| } |
| |
| // fold (xor x, undef) -> undef |
| if (N0.getOpcode() == ISD::UNDEF) |
| return N0; |
| if (N1.getOpcode() == ISD::UNDEF) |
| return N1; |
| // fold (xor c1, c2) -> c1^c2 |
| if (N0C && N1C) |
| return DAG.getNode(ISD::XOR, VT, N0, N1); |
| // canonicalize constant to RHS |
| if (N0C && !N1C) |
| return DAG.getNode(ISD::XOR, VT, N1, N0); |
| // fold (xor x, 0) -> x |
| if (N1C && N1C->isNullValue()) |
| return N0; |
| // reassociate xor |
| SDOperand RXOR = ReassociateOps(ISD::XOR, N0, N1); |
| if (RXOR.Val != 0) |
| return RXOR; |
| // fold !(x cc y) -> (x !cc y) |
| if (N1C && N1C->getValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) { |
| bool isInt = MVT::isInteger(LHS.getValueType()); |
| ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), |
| isInt); |
| if (N0.getOpcode() == ISD::SETCC) |
| return DAG.getSetCC(VT, LHS, RHS, NotCC); |
| if (N0.getOpcode() == ISD::SELECT_CC) |
| return DAG.getSelectCC(LHS, RHS, N0.getOperand(2),N0.getOperand(3),NotCC); |
| assert(0 && "Unhandled SetCC Equivalent!"); |
| abort(); |
| } |
| // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y))) |
| if (N1C && N1C->getValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND && |
| N0.Val->hasOneUse() && isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){ |
| SDOperand V = N0.getOperand(0); |
| V = DAG.getNode(ISD::XOR, V.getValueType(), V, |
| DAG.getConstant(1, V.getValueType())); |
| AddToWorkList(V.Val); |
| return DAG.getNode(ISD::ZERO_EXTEND, VT, V); |
| } |
| |
| // fold !(x or y) -> (!x and !y) iff x or y are setcc |
| if (N1C && N1C->getValue() == 1 && VT == MVT::i1 && |
| (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { |
| SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1); |
| if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) { |
| unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; |
| LHS = DAG.getNode(ISD::XOR, VT, LHS, N1); // RHS = ~LHS |
| RHS = DAG.getNode(ISD::XOR, VT, RHS, N1); // RHS = ~RHS |
| AddToWorkList(LHS.Val); AddToWorkList(RHS.Val); |
| return DAG.getNode(NewOpcode, VT, LHS, RHS); |
| } |
| } |
| // fold !(x or y) -> (!x and !y) iff x or y are constants |
| if (N1C && N1C->isAllOnesValue() && |
| (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { |
| SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1); |
| if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) { |
| unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; |
| LHS = DAG.getNode(ISD::XOR, VT, LHS, N1); // RHS = ~LHS |
| RHS = DAG.getNode(ISD::XOR, VT, RHS, N1); // RHS = ~RHS |
| AddToWorkList(LHS.Val); AddToWorkList(RHS.Val); |
| return DAG.getNode(NewOpcode, VT, LHS, RHS); |
| } |
| } |
| // fold (xor (xor x, c1), c2) -> (xor x, c1^c2) |
| if (N1C && N0.getOpcode() == ISD::XOR) { |
| ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0)); |
| ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); |
| if (N00C) |
| return DAG.getNode(ISD::XOR, VT, N0.getOperand(1), |
| DAG.getConstant(N1C->getValue()^N00C->getValue(), VT)); |
| if (N01C) |
| return DAG.getNode(ISD::XOR, VT, N0.getOperand(0), |
| DAG.getConstant(N1C->getValue()^N01C->getValue(), VT)); |
| } |
| // fold (xor x, x) -> 0 |
| if (N0 == N1) { |
| if (!MVT::isVector(VT)) { |
| return DAG.getConstant(0, VT); |
| } else if (!AfterLegalize || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) { |
| // Produce a vector of zeros. |
| SDOperand El = DAG.getConstant(0, MVT::getVectorElementType(VT)); |
| std::vector<SDOperand> Ops(MVT::getVectorNumElements(VT), El); |
| return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); |
| } |
| } |
| |
| // Simplify: xor (op x...), (op y...) -> (op (xor x, y)) |
| if (N0.getOpcode() == N1.getOpcode()) { |
| SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N); |
| if (Tmp.Val) return Tmp; |
| } |
| |
| // Simplify the expression using non-local knowledge. |
| if (!MVT::isVector(VT) && |
| SimplifyDemandedBits(SDOperand(N, 0))) |
| return SDOperand(N, 0); |
| |
| return SDOperand(); |
| } |
| |
| /// visitShiftByConstant - Handle transforms common to the three shifts, when |
| /// the shift amount is a constant. |
| SDOperand DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) { |
| SDNode *LHS = N->getOperand(0).Val; |
| if (!LHS->hasOneUse()) return SDOperand(); |
| |
| // We want to pull some binops through shifts, so that we have (and (shift)) |
| // instead of (shift (and)), likewise for add, or, xor, etc. This sort of |
| // thing happens with address calculations, so it's important to canonicalize |
| // it. |
| bool HighBitSet = false; // Can we transform this if the high bit is set? |
| |
| switch (LHS->getOpcode()) { |
| default: return SDOperand(); |
| case ISD::OR: |
| case ISD::XOR: |
| HighBitSet = false; // We can only transform sra if the high bit is clear. |
| break; |
| case ISD::AND: |
| HighBitSet = true; // We can only transform sra if the high bit is set. |
| break; |
| case ISD::ADD: |
| if (N->getOpcode() != ISD::SHL) |
| return SDOperand(); // only shl(add) not sr[al](add). |
| HighBitSet = false; // We can only transform sra if the high bit is clear. |
| break; |
| } |
| |
| // We require the RHS of the binop to be a constant as well. |
| ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1)); |
| if (!BinOpCst) return SDOperand(); |
| |
| |
| // FIXME: disable this for unless the input to the binop is a shift by a |
| // constant. If it is not a shift, it pessimizes some common cases like: |
| // |
| //void foo(int *X, int i) { X[i & 1235] = 1; } |
| //int bar(int *X, int i) { return X[i & 255]; } |
| SDNode *BinOpLHSVal = LHS->getOperand(0).Val; |
| if ((BinOpLHSVal->getOpcode() != ISD::SHL && |
| BinOpLHSVal->getOpcode() != ISD::SRA && |
| BinOpLHSVal->getOpcode() != ISD::SRL) || |
| !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1))) |
| return SDOperand(); |
| |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // If this is a signed shift right, and the high bit is modified |
| // by the logical operation, do not perform the transformation. |
| // The highBitSet boolean indicates the value of the high bit of |
| // the constant which would cause it to be modified for this |
| // operation. |
| if (N->getOpcode() == ISD::SRA) { |
| uint64_t BinOpRHSSign = BinOpCst->getValue() >> MVT::getSizeInBits(VT)-1; |
| if ((bool)BinOpRHSSign != HighBitSet) |
| return SDOperand(); |
| } |
| |
| // Fold the constants, shifting the binop RHS by the shift amount. |
| SDOperand NewRHS = DAG.getNode(N->getOpcode(), N->getValueType(0), |
| LHS->getOperand(1), N->getOperand(1)); |
| |
| // Create the new shift. |
| SDOperand NewShift = DAG.getNode(N->getOpcode(), VT, LHS->getOperand(0), |
| N->getOperand(1)); |
| |
| // Create the new binop. |
| return DAG.getNode(LHS->getOpcode(), VT, NewShift, NewRHS); |
| } |
| |
| |
| SDOperand DAGCombiner::visitSHL(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| MVT::ValueType VT = N0.getValueType(); |
| unsigned OpSizeInBits = MVT::getSizeInBits(VT); |
| |
| // fold (shl c1, c2) -> c1<<c2 |
| if (N0C && N1C) |
| return DAG.getNode(ISD::SHL, VT, N0, N1); |
| // fold (shl 0, x) -> 0 |
| if (N0C && N0C->isNullValue()) |
| return N0; |
| // fold (shl x, c >= size(x)) -> undef |
| if (N1C && N1C->getValue() >= OpSizeInBits) |
| return DAG.getNode(ISD::UNDEF, VT); |
| // fold (shl x, 0) -> x |
| if (N1C && N1C->isNullValue()) |
| return N0; |
| // if (shl x, c) is known to be zero, return 0 |
| if (DAG.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT))) |
| return DAG.getConstant(0, VT); |
| if (N1C && SimplifyDemandedBits(SDOperand(N, 0))) |
| return SDOperand(N, 0); |
| // fold (shl (shl x, c1), c2) -> 0 or (shl x, c1+c2) |
| if (N1C && N0.getOpcode() == ISD::SHL && |
| N0.getOperand(1).getOpcode() == ISD::Constant) { |
| uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue(); |
| uint64_t c2 = N1C->getValue(); |
| if (c1 + c2 > OpSizeInBits) |
| return DAG.getConstant(0, VT); |
| return DAG.getNode(ISD::SHL, VT, N0.getOperand(0), |
| DAG.getConstant(c1 + c2, N1.getValueType())); |
| } |
| // fold (shl (srl x, c1), c2) -> (shl (and x, -1 << c1), c2-c1) or |
| // (srl (and x, -1 << c1), c1-c2) |
| if (N1C && N0.getOpcode() == ISD::SRL && |
| N0.getOperand(1).getOpcode() == ISD::Constant) { |
| uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue(); |
| uint64_t c2 = N1C->getValue(); |
| SDOperand Mask = DAG.getNode(ISD::AND, VT, N0.getOperand(0), |
| DAG.getConstant(~0ULL << c1, VT)); |
| if (c2 > c1) |
| return DAG.getNode(ISD::SHL, VT, Mask, |
| DAG.getConstant(c2-c1, N1.getValueType())); |
| else |
| return DAG.getNode(ISD::SRL, VT, Mask, |
| DAG.getConstant(c1-c2, N1.getValueType())); |
| } |
| // fold (shl (sra x, c1), c1) -> (and x, -1 << c1) |
| if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) |
| return DAG.getNode(ISD::AND, VT, N0.getOperand(0), |
| DAG.getConstant(~0ULL << N1C->getValue(), VT)); |
| |
| return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitSRA(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| MVT::ValueType VT = N0.getValueType(); |
| |
| // fold (sra c1, c2) -> c1>>c2 |
| if (N0C && N1C) |
| return DAG.getNode(ISD::SRA, VT, N0, N1); |
| // fold (sra 0, x) -> 0 |
| if (N0C && N0C->isNullValue()) |
| return N0; |
| // fold (sra -1, x) -> -1 |
| if (N0C && N0C->isAllOnesValue()) |
| return N0; |
| // fold (sra x, c >= size(x)) -> undef |
| if (N1C && N1C->getValue() >= MVT::getSizeInBits(VT)) |
| return DAG.getNode(ISD::UNDEF, VT); |
| // fold (sra x, 0) -> x |
| if (N1C && N1C->isNullValue()) |
| return N0; |
| // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports |
| // sext_inreg. |
| if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) { |
| unsigned LowBits = MVT::getSizeInBits(VT) - (unsigned)N1C->getValue(); |
| MVT::ValueType EVT; |
| switch (LowBits) { |
| default: EVT = MVT::Other; break; |
| case 1: EVT = MVT::i1; break; |
| case 8: EVT = MVT::i8; break; |
| case 16: EVT = MVT::i16; break; |
| case 32: EVT = MVT::i32; break; |
| } |
| if (EVT > MVT::Other && TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, EVT)) |
| return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0), |
| DAG.getValueType(EVT)); |
| } |
| |
| // fold (sra (sra x, c1), c2) -> (sra x, c1+c2) |
| if (N1C && N0.getOpcode() == ISD::SRA) { |
| if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { |
| unsigned Sum = N1C->getValue() + C1->getValue(); |
| if (Sum >= MVT::getSizeInBits(VT)) Sum = MVT::getSizeInBits(VT)-1; |
| return DAG.getNode(ISD::SRA, VT, N0.getOperand(0), |
| DAG.getConstant(Sum, N1C->getValueType(0))); |
| } |
| } |
| |
| // Simplify, based on bits shifted out of the LHS. |
| if (N1C && SimplifyDemandedBits(SDOperand(N, 0))) |
| return SDOperand(N, 0); |
| |
| |
| // If the sign bit is known to be zero, switch this to a SRL. |
| if (DAG.MaskedValueIsZero(N0, MVT::getIntVTSignBit(VT))) |
| return DAG.getNode(ISD::SRL, VT, N0, N1); |
| |
| return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitSRL(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| MVT::ValueType VT = N0.getValueType(); |
| unsigned OpSizeInBits = MVT::getSizeInBits(VT); |
| |
| // fold (srl c1, c2) -> c1 >>u c2 |
| if (N0C && N1C) |
| return DAG.getNode(ISD::SRL, VT, N0, N1); |
| // fold (srl 0, x) -> 0 |
| if (N0C && N0C->isNullValue()) |
| return N0; |
| // fold (srl x, c >= size(x)) -> undef |
| if (N1C && N1C->getValue() >= OpSizeInBits) |
| return DAG.getNode(ISD::UNDEF, VT); |
| // fold (srl x, 0) -> x |
| if (N1C && N1C->isNullValue()) |
| return N0; |
| // if (srl x, c) is known to be zero, return 0 |
| if (N1C && DAG.MaskedValueIsZero(SDOperand(N, 0), ~0ULL >> (64-OpSizeInBits))) |
| return DAG.getConstant(0, VT); |
| |
| // fold (srl (srl x, c1), c2) -> 0 or (srl x, c1+c2) |
| if (N1C && N0.getOpcode() == ISD::SRL && |
| N0.getOperand(1).getOpcode() == ISD::Constant) { |
| uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue(); |
| uint64_t c2 = N1C->getValue(); |
| if (c1 + c2 > OpSizeInBits) |
| return DAG.getConstant(0, VT); |
| return DAG.getNode(ISD::SRL, VT, N0.getOperand(0), |
| DAG.getConstant(c1 + c2, N1.getValueType())); |
| } |
| |
| // fold (srl (anyextend x), c) -> (anyextend (srl x, c)) |
| if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { |
| // Shifting in all undef bits? |
| MVT::ValueType SmallVT = N0.getOperand(0).getValueType(); |
| if (N1C->getValue() >= MVT::getSizeInBits(SmallVT)) |
| return DAG.getNode(ISD::UNDEF, VT); |
| |
| SDOperand SmallShift = DAG.getNode(ISD::SRL, SmallVT, N0.getOperand(0), N1); |
| AddToWorkList(SmallShift.Val); |
| return DAG.getNode(ISD::ANY_EXTEND, VT, SmallShift); |
| } |
| |
| // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign |
| // bit, which is unmodified by sra. |
| if (N1C && N1C->getValue()+1 == MVT::getSizeInBits(VT)) { |
| if (N0.getOpcode() == ISD::SRA) |
| return DAG.getNode(ISD::SRL, VT, N0.getOperand(0), N1); |
| } |
| |
| // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit). |
| if (N1C && N0.getOpcode() == ISD::CTLZ && |
| N1C->getValue() == Log2_32(MVT::getSizeInBits(VT))) { |
| uint64_t KnownZero, KnownOne, Mask = MVT::getIntVTBitMask(VT); |
| DAG.ComputeMaskedBits(N0.getOperand(0), Mask, KnownZero, KnownOne); |
| |
| // If any of the input bits are KnownOne, then the input couldn't be all |
| // zeros, thus the result of the srl will always be zero. |
| if (KnownOne) return DAG.getConstant(0, VT); |
| |
| // If all of the bits input the to ctlz node are known to be zero, then |
| // the result of the ctlz is "32" and the result of the shift is one. |
| uint64_t UnknownBits = ~KnownZero & Mask; |
| if (UnknownBits == 0) return DAG.getConstant(1, VT); |
| |
| // Otherwise, check to see if there is exactly one bit input to the ctlz. |
| if ((UnknownBits & (UnknownBits-1)) == 0) { |
| // Okay, we know that only that the single bit specified by UnknownBits |
| // could be set on input to the CTLZ node. If this bit is set, the SRL |
| // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair |
| // to an SRL,XOR pair, which is likely to simplify more. |
| unsigned ShAmt = CountTrailingZeros_64(UnknownBits); |
| SDOperand Op = N0.getOperand(0); |
| if (ShAmt) { |
| Op = DAG.getNode(ISD::SRL, VT, Op, |
| DAG.getConstant(ShAmt, TLI.getShiftAmountTy())); |
| AddToWorkList(Op.Val); |
| } |
| return DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(1, VT)); |
| } |
| } |
| |
| // fold operands of srl based on knowledge that the low bits are not |
| // demanded. |
| if (N1C && SimplifyDemandedBits(SDOperand(N, 0))) |
| return SDOperand(N, 0); |
| |
| return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitCTLZ(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (ctlz c1) -> c2 |
| if (isa<ConstantSDNode>(N0)) |
| return DAG.getNode(ISD::CTLZ, VT, N0); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitCTTZ(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (cttz c1) -> c2 |
| if (isa<ConstantSDNode>(N0)) |
| return DAG.getNode(ISD::CTTZ, VT, N0); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitCTPOP(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (ctpop c1) -> c2 |
| if (isa<ConstantSDNode>(N0)) |
| return DAG.getNode(ISD::CTPOP, VT, N0); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitSELECT(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| SDOperand N2 = N->getOperand(2); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); |
| MVT::ValueType VT = N->getValueType(0); |
| MVT::ValueType VT0 = N0.getValueType(); |
| |
| // fold select C, X, X -> X |
| if (N1 == N2) |
| return N1; |
| // fold select true, X, Y -> X |
| if (N0C && !N0C->isNullValue()) |
| return N1; |
| // fold select false, X, Y -> Y |
| if (N0C && N0C->isNullValue()) |
| return N2; |
| // fold select C, 1, X -> C | X |
| if (MVT::i1 == VT && N1C && N1C->getValue() == 1) |
| return DAG.getNode(ISD::OR, VT, N0, N2); |
| // fold select C, 0, 1 -> ~C |
| if (MVT::isInteger(VT) && MVT::isInteger(VT0) && |
| N1C && N2C && N1C->isNullValue() && N2C->getValue() == 1) { |
| SDOperand XORNode = DAG.getNode(ISD::XOR, VT0, N0, DAG.getConstant(1, VT0)); |
| if (VT == VT0) |
| return XORNode; |
| AddToWorkList(XORNode.Val); |
| if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(VT0)) |
| return DAG.getNode(ISD::ZERO_EXTEND, VT, XORNode); |
| return DAG.getNode(ISD::TRUNCATE, VT, XORNode); |
| } |
| // fold select C, 0, X -> ~C & X |
| if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) { |
| SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT)); |
| AddToWorkList(XORNode.Val); |
| return DAG.getNode(ISD::AND, VT, XORNode, N2); |
| } |
| // fold select C, X, 1 -> ~C | X |
| if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getValue() == 1) { |
| SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT)); |
| AddToWorkList(XORNode.Val); |
| return DAG.getNode(ISD::OR, VT, XORNode, N1); |
| } |
| // fold select C, X, 0 -> C & X |
| // FIXME: this should check for C type == X type, not i1? |
| if (MVT::i1 == VT && N2C && N2C->isNullValue()) |
| return DAG.getNode(ISD::AND, VT, N0, N1); |
| // fold X ? X : Y --> X ? 1 : Y --> X | Y |
| if (MVT::i1 == VT && N0 == N1) |
| return DAG.getNode(ISD::OR, VT, N0, N2); |
| // fold X ? Y : X --> X ? Y : 0 --> X & Y |
| if (MVT::i1 == VT && N0 == N2) |
| return DAG.getNode(ISD::AND, VT, N0, N1); |
| |
| // If we can fold this based on the true/false value, do so. |
| if (SimplifySelectOps(N, N1, N2)) |
| return SDOperand(N, 0); // Don't revisit N. |
| |
| // fold selects based on a setcc into other things, such as min/max/abs |
| if (N0.getOpcode() == ISD::SETCC) |
| // FIXME: |
| // Check against MVT::Other for SELECT_CC, which is a workaround for targets |
| // having to say they don't support SELECT_CC on every type the DAG knows |
| // about, since there is no way to mark an opcode illegal at all value types |
| if (TLI.isOperationLegal(ISD::SELECT_CC, MVT::Other)) |
| return DAG.getNode(ISD::SELECT_CC, VT, N0.getOperand(0), N0.getOperand(1), |
| N1, N2, N0.getOperand(2)); |
| else |
| return SimplifySelect(N0, N1, N2); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitSELECT_CC(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| SDOperand N2 = N->getOperand(2); |
| SDOperand N3 = N->getOperand(3); |
| SDOperand N4 = N->getOperand(4); |
| ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get(); |
| |
| // fold select_cc lhs, rhs, x, x, cc -> x |
| if (N2 == N3) |
| return N2; |
| |
| // Determine if the condition we're dealing with is constant |
| SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false); |
| if (SCC.Val) AddToWorkList(SCC.Val); |
| |
| if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val)) { |
| if (SCCC->getValue()) |
| return N2; // cond always true -> true val |
| else |
| return N3; // cond always false -> false val |
| } |
| |
| // Fold to a simpler select_cc |
| if (SCC.Val && SCC.getOpcode() == ISD::SETCC) |
| return DAG.getNode(ISD::SELECT_CC, N2.getValueType(), |
| SCC.getOperand(0), SCC.getOperand(1), N2, N3, |
| SCC.getOperand(2)); |
| |
| // If we can fold this based on the true/false value, do so. |
| if (SimplifySelectOps(N, N2, N3)) |
| return SDOperand(N, 0); // Don't revisit N. |
| |
| // fold select_cc into other things, such as min/max/abs |
| return SimplifySelectCC(N0, N1, N2, N3, CC); |
| } |
| |
| SDOperand DAGCombiner::visitSETCC(SDNode *N) { |
| return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1), |
| cast<CondCodeSDNode>(N->getOperand(2))->get()); |
| } |
| |
| // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this: |
| // "fold ({s|z}ext (load x)) -> ({s|z}ext (truncate ({s|z}extload x)))" |
| // transformation. Returns true if extension are possible and the above |
| // mentioned transformation is profitable. |
| static bool ExtendUsesToFormExtLoad(SDNode *N, SDOperand N0, |
| unsigned ExtOpc, |
| SmallVector<SDNode*, 4> &ExtendNodes, |
| TargetLowering &TLI) { |
| bool HasCopyToRegUses = false; |
| bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType()); |
| for (SDNode::use_iterator UI = N0.Val->use_begin(), UE = N0.Val->use_end(); |
| UI != UE; ++UI) { |
| SDNode *User = *UI; |
| if (User == N) |
| continue; |
| // FIXME: Only extend SETCC N, N and SETCC N, c for now. |
| if (User->getOpcode() == ISD::SETCC) { |
| ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get(); |
| if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC)) |
| // Sign bits will be lost after a zext. |
| return false; |
| bool Add = false; |
| for (unsigned i = 0; i != 2; ++i) { |
| SDOperand UseOp = User->getOperand(i); |
| if (UseOp == N0) |
| continue; |
| if (!isa<ConstantSDNode>(UseOp)) |
| return false; |
| Add = true; |
| } |
| if (Add) |
| ExtendNodes.push_back(User); |
| } else { |
| for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { |
| SDOperand UseOp = User->getOperand(i); |
| if (UseOp == N0) { |
| // If truncate from extended type to original load type is free |
| // on this target, then it's ok to extend a CopyToReg. |
| if (isTruncFree && User->getOpcode() == ISD::CopyToReg) |
| HasCopyToRegUses = true; |
| else |
| return false; |
| } |
| } |
| } |
| } |
| |
| if (HasCopyToRegUses) { |
| bool BothLiveOut = false; |
| for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); |
| UI != UE; ++UI) { |
| SDNode *User = *UI; |
| for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { |
| SDOperand UseOp = User->getOperand(i); |
| if (UseOp.Val == N && UseOp.ResNo == 0) { |
| BothLiveOut = true; |
| break; |
| } |
| } |
| } |
| if (BothLiveOut) |
| // Both unextended and extended values are live out. There had better be |
| // good a reason for the transformation. |
| return ExtendNodes.size(); |
| } |
| return true; |
| } |
| |
| SDOperand DAGCombiner::visitSIGN_EXTEND(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (sext c1) -> c1 |
| if (isa<ConstantSDNode>(N0)) |
| return DAG.getNode(ISD::SIGN_EXTEND, VT, N0); |
| |
| // fold (sext (sext x)) -> (sext x) |
| // fold (sext (aext x)) -> (sext x) |
| if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) |
| return DAG.getNode(ISD::SIGN_EXTEND, VT, N0.getOperand(0)); |
| |
| // fold (sext (truncate (load x))) -> (sext (smaller load x)) |
| // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n))) |
| if (N0.getOpcode() == ISD::TRUNCATE) { |
| SDOperand NarrowLoad = ReduceLoadWidth(N0.Val); |
| if (NarrowLoad.Val) { |
| if (NarrowLoad.Val != N0.Val) |
| CombineTo(N0.Val, NarrowLoad); |
| return DAG.getNode(ISD::SIGN_EXTEND, VT, NarrowLoad); |
| } |
| } |
| |
| // See if the value being truncated is already sign extended. If so, just |
| // eliminate the trunc/sext pair. |
| if (N0.getOpcode() == ISD::TRUNCATE) { |
| SDOperand Op = N0.getOperand(0); |
| unsigned OpBits = MVT::getSizeInBits(Op.getValueType()); |
| unsigned MidBits = MVT::getSizeInBits(N0.getValueType()); |
| unsigned DestBits = MVT::getSizeInBits(VT); |
| unsigned NumSignBits = DAG.ComputeNumSignBits(Op); |
| |
| if (OpBits == DestBits) { |
| // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign |
| // bits, it is already ready. |
| if (NumSignBits > DestBits-MidBits) |
| return Op; |
| } else if (OpBits < DestBits) { |
| // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign |
| // bits, just sext from i32. |
| if (NumSignBits > OpBits-MidBits) |
| return DAG.getNode(ISD::SIGN_EXTEND, VT, Op); |
| } else { |
| // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign |
| // bits, just truncate to i32. |
| if (NumSignBits > OpBits-MidBits) |
| return DAG.getNode(ISD::TRUNCATE, VT, Op); |
| } |
| |
| // fold (sext (truncate x)) -> (sextinreg x). |
| if (!AfterLegalize || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, |
| N0.getValueType())) { |
| if (Op.getValueType() < VT) |
| Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op); |
| else if (Op.getValueType() > VT) |
| Op = DAG.getNode(ISD::TRUNCATE, VT, Op); |
| return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, Op, |
| DAG.getValueType(N0.getValueType())); |
| } |
| } |
| |
| // fold (sext (load x)) -> (sext (truncate (sextload x))) |
| if (ISD::isNON_EXTLoad(N0.Val) && |
| (!AfterLegalize||TLI.isLoadXLegal(ISD::SEXTLOAD, N0.getValueType()))){ |
| bool DoXform = true; |
| SmallVector<SDNode*, 4> SetCCs; |
| if (!N0.hasOneUse()) |
| DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI); |
| if (DoXform) { |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(), |
| LN0->getBasePtr(), LN0->getSrcValue(), |
| LN0->getSrcValueOffset(), |
| N0.getValueType(), |
| LN0->isVolatile(), |
| LN0->getAlignment()); |
| CombineTo(N, ExtLoad); |
| SDOperand Trunc = DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad); |
| CombineTo(N0.Val, Trunc, ExtLoad.getValue(1)); |
| // Extend SetCC uses if necessary. |
| for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) { |
| SDNode *SetCC = SetCCs[i]; |
| SmallVector<SDOperand, 4> Ops; |
| for (unsigned j = 0; j != 2; ++j) { |
| SDOperand SOp = SetCC->getOperand(j); |
| if (SOp == Trunc) |
| Ops.push_back(ExtLoad); |
| else |
| Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, VT, SOp)); |
| } |
| Ops.push_back(SetCC->getOperand(2)); |
| CombineTo(SetCC, DAG.getNode(ISD::SETCC, SetCC->getValueType(0), |
| &Ops[0], Ops.size())); |
| } |
| return SDOperand(N, 0); // Return N so it doesn't get rechecked! |
| } |
| } |
| |
| // fold (sext (sextload x)) -> (sext (truncate (sextload x))) |
| // fold (sext ( extload x)) -> (sext (truncate (sextload x))) |
| if ((ISD::isSEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) && |
| ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) { |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| MVT::ValueType EVT = LN0->getMemoryVT(); |
| if (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT)) { |
| SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(), |
| LN0->getBasePtr(), LN0->getSrcValue(), |
| LN0->getSrcValueOffset(), EVT, |
| LN0->isVolatile(), |
| LN0->getAlignment()); |
| CombineTo(N, ExtLoad); |
| CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad), |
| ExtLoad.getValue(1)); |
| return SDOperand(N, 0); // Return N so it doesn't get rechecked! |
| } |
| } |
| |
| // sext(setcc x,y,cc) -> select_cc x, y, -1, 0, cc |
| if (N0.getOpcode() == ISD::SETCC) { |
| SDOperand SCC = |
| SimplifySelectCC(N0.getOperand(0), N0.getOperand(1), |
| DAG.getConstant(~0ULL, VT), DAG.getConstant(0, VT), |
| cast<CondCodeSDNode>(N0.getOperand(2))->get(), true); |
| if (SCC.Val) return SCC; |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitZERO_EXTEND(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (zext c1) -> c1 |
| if (isa<ConstantSDNode>(N0)) |
| return DAG.getNode(ISD::ZERO_EXTEND, VT, N0); |
| // fold (zext (zext x)) -> (zext x) |
| // fold (zext (aext x)) -> (zext x) |
| if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) |
| return DAG.getNode(ISD::ZERO_EXTEND, VT, N0.getOperand(0)); |
| |
| // fold (zext (truncate (load x))) -> (zext (smaller load x)) |
| // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n))) |
| if (N0.getOpcode() == ISD::TRUNCATE) { |
| SDOperand NarrowLoad = ReduceLoadWidth(N0.Val); |
| if (NarrowLoad.Val) { |
| if (NarrowLoad.Val != N0.Val) |
| CombineTo(N0.Val, NarrowLoad); |
| return DAG.getNode(ISD::ZERO_EXTEND, VT, NarrowLoad); |
| } |
| } |
| |
| // fold (zext (truncate x)) -> (and x, mask) |
| if (N0.getOpcode() == ISD::TRUNCATE && |
| (!AfterLegalize || TLI.isOperationLegal(ISD::AND, VT))) { |
| SDOperand Op = N0.getOperand(0); |
| if (Op.getValueType() < VT) { |
| Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op); |
| } else if (Op.getValueType() > VT) { |
| Op = DAG.getNode(ISD::TRUNCATE, VT, Op); |
| } |
| return DAG.getZeroExtendInReg(Op, N0.getValueType()); |
| } |
| |
| // fold (zext (and (trunc x), cst)) -> (and x, cst). |
| if (N0.getOpcode() == ISD::AND && |
| N0.getOperand(0).getOpcode() == ISD::TRUNCATE && |
| N0.getOperand(1).getOpcode() == ISD::Constant) { |
| SDOperand X = N0.getOperand(0).getOperand(0); |
| if (X.getValueType() < VT) { |
| X = DAG.getNode(ISD::ANY_EXTEND, VT, X); |
| } else if (X.getValueType() > VT) { |
| X = DAG.getNode(ISD::TRUNCATE, VT, X); |
| } |
| uint64_t Mask = cast<ConstantSDNode>(N0.getOperand(1))->getValue(); |
| return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT)); |
| } |
| |
| // fold (zext (load x)) -> (zext (truncate (zextload x))) |
| if (ISD::isNON_EXTLoad(N0.Val) && |
| (!AfterLegalize||TLI.isLoadXLegal(ISD::ZEXTLOAD, N0.getValueType()))) { |
| bool DoXform = true; |
| SmallVector<SDNode*, 4> SetCCs; |
| if (!N0.hasOneUse()) |
| DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI); |
| if (DoXform) { |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(), |
| LN0->getBasePtr(), LN0->getSrcValue(), |
| LN0->getSrcValueOffset(), |
| N0.getValueType(), |
| LN0->isVolatile(), |
| LN0->getAlignment()); |
| CombineTo(N, ExtLoad); |
| SDOperand Trunc = DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad); |
| CombineTo(N0.Val, Trunc, ExtLoad.getValue(1)); |
| // Extend SetCC uses if necessary. |
| for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) { |
| SDNode *SetCC = SetCCs[i]; |
| SmallVector<SDOperand, 4> Ops; |
| for (unsigned j = 0; j != 2; ++j) { |
| SDOperand SOp = SetCC->getOperand(j); |
| if (SOp == Trunc) |
| Ops.push_back(ExtLoad); |
| else |
| Ops.push_back(DAG.getNode(ISD::ZERO_EXTEND, VT, SOp)); |
| } |
| Ops.push_back(SetCC->getOperand(2)); |
| CombineTo(SetCC, DAG.getNode(ISD::SETCC, SetCC->getValueType(0), |
| &Ops[0], Ops.size())); |
| } |
| return SDOperand(N, 0); // Return N so it doesn't get rechecked! |
| } |
| } |
| |
| // fold (zext (zextload x)) -> (zext (truncate (zextload x))) |
| // fold (zext ( extload x)) -> (zext (truncate (zextload x))) |
| if ((ISD::isZEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) && |
| ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) { |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| MVT::ValueType EVT = LN0->getMemoryVT(); |
| SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(), |
| LN0->getBasePtr(), LN0->getSrcValue(), |
| LN0->getSrcValueOffset(), EVT, |
| LN0->isVolatile(), |
| LN0->getAlignment()); |
| CombineTo(N, ExtLoad); |
| CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad), |
| ExtLoad.getValue(1)); |
| return SDOperand(N, 0); // Return N so it doesn't get rechecked! |
| } |
| |
| // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc |
| if (N0.getOpcode() == ISD::SETCC) { |
| SDOperand SCC = |
| SimplifySelectCC(N0.getOperand(0), N0.getOperand(1), |
| DAG.getConstant(1, VT), DAG.getConstant(0, VT), |
| cast<CondCodeSDNode>(N0.getOperand(2))->get(), true); |
| if (SCC.Val) return SCC; |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitANY_EXTEND(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (aext c1) -> c1 |
| if (isa<ConstantSDNode>(N0)) |
| return DAG.getNode(ISD::ANY_EXTEND, VT, N0); |
| // fold (aext (aext x)) -> (aext x) |
| // fold (aext (zext x)) -> (zext x) |
| // fold (aext (sext x)) -> (sext x) |
| if (N0.getOpcode() == ISD::ANY_EXTEND || |
| N0.getOpcode() == ISD::ZERO_EXTEND || |
| N0.getOpcode() == ISD::SIGN_EXTEND) |
| return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0)); |
| |
| // fold (aext (truncate (load x))) -> (aext (smaller load x)) |
| // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n))) |
| if (N0.getOpcode() == ISD::TRUNCATE) { |
| SDOperand NarrowLoad = ReduceLoadWidth(N0.Val); |
| if (NarrowLoad.Val) { |
| if (NarrowLoad.Val != N0.Val) |
| CombineTo(N0.Val, NarrowLoad); |
| return DAG.getNode(ISD::ANY_EXTEND, VT, NarrowLoad); |
| } |
| } |
| |
| // fold (aext (truncate x)) |
| if (N0.getOpcode() == ISD::TRUNCATE) { |
| SDOperand TruncOp = N0.getOperand(0); |
| if (TruncOp.getValueType() == VT) |
| return TruncOp; // x iff x size == zext size. |
| if (TruncOp.getValueType() > VT) |
| return DAG.getNode(ISD::TRUNCATE, VT, TruncOp); |
| return DAG.getNode(ISD::ANY_EXTEND, VT, TruncOp); |
| } |
| |
| // fold (aext (and (trunc x), cst)) -> (and x, cst). |
| if (N0.getOpcode() == ISD::AND && |
| N0.getOperand(0).getOpcode() == ISD::TRUNCATE && |
| N0.getOperand(1).getOpcode() == ISD::Constant) { |
| SDOperand X = N0.getOperand(0).getOperand(0); |
| if (X.getValueType() < VT) { |
| X = DAG.getNode(ISD::ANY_EXTEND, VT, X); |
| } else if (X.getValueType() > VT) { |
| X = DAG.getNode(ISD::TRUNCATE, VT, X); |
| } |
| uint64_t Mask = cast<ConstantSDNode>(N0.getOperand(1))->getValue(); |
| return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT)); |
| } |
| |
| // fold (aext (load x)) -> (aext (truncate (extload x))) |
| if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() && |
| (!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) { |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(), |
| LN0->getBasePtr(), LN0->getSrcValue(), |
| LN0->getSrcValueOffset(), |
| N0.getValueType(), |
| LN0->isVolatile(), |
| LN0->getAlignment()); |
| CombineTo(N, ExtLoad); |
| CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad), |
| ExtLoad.getValue(1)); |
| return SDOperand(N, 0); // Return N so it doesn't get rechecked! |
| } |
| |
| // fold (aext (zextload x)) -> (aext (truncate (zextload x))) |
| // fold (aext (sextload x)) -> (aext (truncate (sextload x))) |
| // fold (aext ( extload x)) -> (aext (truncate (extload x))) |
| if (N0.getOpcode() == ISD::LOAD && |
| !ISD::isNON_EXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) && |
| N0.hasOneUse()) { |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| MVT::ValueType EVT = LN0->getMemoryVT(); |
| SDOperand ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), VT, |
| LN0->getChain(), LN0->getBasePtr(), |
| LN0->getSrcValue(), |
| LN0->getSrcValueOffset(), EVT, |
| LN0->isVolatile(), |
| LN0->getAlignment()); |
| CombineTo(N, ExtLoad); |
| CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad), |
| ExtLoad.getValue(1)); |
| return SDOperand(N, 0); // Return N so it doesn't get rechecked! |
| } |
| |
| // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc |
| if (N0.getOpcode() == ISD::SETCC) { |
| SDOperand SCC = |
| SimplifySelectCC(N0.getOperand(0), N0.getOperand(1), |
| DAG.getConstant(1, VT), DAG.getConstant(0, VT), |
| cast<CondCodeSDNode>(N0.getOperand(2))->get(), true); |
| if (SCC.Val) |
| return SCC; |
| } |
| |
| return SDOperand(); |
| } |
| |
| /// GetDemandedBits - See if the specified operand can be simplified with the |
| /// knowledge that only the bits specified by Mask are used. If so, return the |
| /// simpler operand, otherwise return a null SDOperand. |
| SDOperand DAGCombiner::GetDemandedBits(SDOperand V, uint64_t Mask) { |
| switch (V.getOpcode()) { |
| default: break; |
| case ISD::OR: |
| case ISD::XOR: |
| // If the LHS or RHS don't contribute bits to the or, drop them. |
| if (DAG.MaskedValueIsZero(V.getOperand(0), Mask)) |
| return V.getOperand(1); |
| if (DAG.MaskedValueIsZero(V.getOperand(1), Mask)) |
| return V.getOperand(0); |
| break; |
| case ISD::SRL: |
| // Only look at single-use SRLs. |
| if (!V.Val->hasOneUse()) |
| break; |
| if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { |
| // See if we can recursively simplify the LHS. |
| unsigned Amt = RHSC->getValue(); |
| Mask = (Mask << Amt) & MVT::getIntVTBitMask(V.getValueType()); |
| SDOperand SimplifyLHS = GetDemandedBits(V.getOperand(0), Mask); |
| if (SimplifyLHS.Val) { |
| return DAG.getNode(ISD::SRL, V.getValueType(), |
| SimplifyLHS, V.getOperand(1)); |
| } |
| } |
| } |
| return SDOperand(); |
| } |
| |
| /// ReduceLoadWidth - If the result of a wider load is shifted to right of N |
| /// bits and then truncated to a narrower type and where N is a multiple |
| /// of number of bits of the narrower type, transform it to a narrower load |
| /// from address + N / num of bits of new type. If the result is to be |
| /// extended, also fold the extension to form a extending load. |
| SDOperand DAGCombiner::ReduceLoadWidth(SDNode *N) { |
| unsigned Opc = N->getOpcode(); |
| ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; |
| SDOperand N0 = N->getOperand(0); |
| MVT::ValueType VT = N->getValueType(0); |
| MVT::ValueType EVT = N->getValueType(0); |
| |
| // Special case: SIGN_EXTEND_INREG is basically truncating to EVT then |
| // extended to VT. |
| if (Opc == ISD::SIGN_EXTEND_INREG) { |
| ExtType = ISD::SEXTLOAD; |
| EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); |
| if (AfterLegalize && !TLI.isLoadXLegal(ISD::SEXTLOAD, EVT)) |
| return SDOperand(); |
| } |
| |
| unsigned EVTBits = MVT::getSizeInBits(EVT); |
| unsigned ShAmt = 0; |
| bool CombineSRL = false; |
| if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { |
| if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { |
| ShAmt = N01->getValue(); |
| // Is the shift amount a multiple of size of VT? |
| if ((ShAmt & (EVTBits-1)) == 0) { |
| N0 = N0.getOperand(0); |
| if (MVT::getSizeInBits(N0.getValueType()) <= EVTBits) |
| return SDOperand(); |
| CombineSRL = true; |
| } |
| } |
| } |
| |
| if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() && |
| // Do not allow folding to i1 here. i1 is implicitly stored in memory in |
| // zero extended form: by shrinking the load, we lose track of the fact |
| // that it is already zero extended. |
| // FIXME: This should be reevaluated. |
| VT != MVT::i1) { |
| assert(MVT::getSizeInBits(N0.getValueType()) > EVTBits && |
| "Cannot truncate to larger type!"); |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| MVT::ValueType PtrType = N0.getOperand(1).getValueType(); |
| // For big endian targets, we need to adjust the offset to the pointer to |
| // load the correct bytes. |
| if (!TLI.isLittleEndian()) { |
| unsigned LVTStoreBits = MVT::getStoreSizeInBits(N0.getValueType()); |
| unsigned EVTStoreBits = MVT::getStoreSizeInBits(EVT); |
| ShAmt = LVTStoreBits - EVTStoreBits - ShAmt; |
| } |
| uint64_t PtrOff = ShAmt / 8; |
| unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff); |
| SDOperand NewPtr = DAG.getNode(ISD::ADD, PtrType, LN0->getBasePtr(), |
| DAG.getConstant(PtrOff, PtrType)); |
| AddToWorkList(NewPtr.Val); |
| SDOperand Load = (ExtType == ISD::NON_EXTLOAD) |
| ? DAG.getLoad(VT, LN0->getChain(), NewPtr, |
| LN0->getSrcValue(), LN0->getSrcValueOffset(), |
| LN0->isVolatile(), NewAlign) |
| : DAG.getExtLoad(ExtType, VT, LN0->getChain(), NewPtr, |
| LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT, |
| LN0->isVolatile(), NewAlign); |
| AddToWorkList(N); |
| if (CombineSRL) { |
| DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); |
| CombineTo(N->getOperand(0).Val, Load); |
| } else |
| CombineTo(N0.Val, Load, Load.getValue(1)); |
| if (ShAmt) { |
| if (Opc == ISD::SIGN_EXTEND_INREG) |
| return DAG.getNode(Opc, VT, Load, N->getOperand(1)); |
| else |
| return DAG.getNode(Opc, VT, Load); |
| } |
| return SDOperand(N, 0); // Return N so it doesn't get rechecked! |
| } |
| |
| return SDOperand(); |
| } |
| |
| |
| SDOperand DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| MVT::ValueType VT = N->getValueType(0); |
| MVT::ValueType EVT = cast<VTSDNode>(N1)->getVT(); |
| unsigned EVTBits = MVT::getSizeInBits(EVT); |
| |
| // fold (sext_in_reg c1) -> c1 |
| if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF) |
| return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0, N1); |
| |
| // If the input is already sign extended, just drop the extension. |
| if (DAG.ComputeNumSignBits(N0) >= MVT::getSizeInBits(VT)-EVTBits+1) |
| return N0; |
| |
| // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 |
| if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && |
| EVT < cast<VTSDNode>(N0.getOperand(1))->getVT()) { |
| return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0), N1); |
| } |
| |
| // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero. |
| if (DAG.MaskedValueIsZero(N0, 1ULL << (EVTBits-1))) |
| return DAG.getZeroExtendInReg(N0, EVT); |
| |
| // fold operands of sext_in_reg based on knowledge that the top bits are not |
| // demanded. |
| if (SimplifyDemandedBits(SDOperand(N, 0))) |
| return SDOperand(N, 0); |
| |
| // fold (sext_in_reg (load x)) -> (smaller sextload x) |
| // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits)) |
| SDOperand NarrowLoad = ReduceLoadWidth(N); |
| if (NarrowLoad.Val) |
| return NarrowLoad; |
| |
| // fold (sext_in_reg (srl X, 24), i8) -> sra X, 24 |
| // fold (sext_in_reg (srl X, 23), i8) -> sra X, 23 iff possible. |
| // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above. |
| if (N0.getOpcode() == ISD::SRL) { |
| if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1))) |
| if (ShAmt->getValue()+EVTBits <= MVT::getSizeInBits(VT)) { |
| // We can turn this into an SRA iff the input to the SRL is already sign |
| // extended enough. |
| unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0)); |
| if (MVT::getSizeInBits(VT)-(ShAmt->getValue()+EVTBits) < InSignBits) |
| return DAG.getNode(ISD::SRA, VT, N0.getOperand(0), N0.getOperand(1)); |
| } |
| } |
| |
| // fold (sext_inreg (extload x)) -> (sextload x) |
| if (ISD::isEXTLoad(N0.Val) && |
| ISD::isUNINDEXEDLoad(N0.Val) && |
| EVT == cast<LoadSDNode>(N0)->getMemoryVT() && |
| (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) { |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(), |
| LN0->getBasePtr(), LN0->getSrcValue(), |
| LN0->getSrcValueOffset(), EVT, |
| LN0->isVolatile(), |
| LN0->getAlignment()); |
| CombineTo(N, ExtLoad); |
| CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1)); |
| return SDOperand(N, 0); // Return N so it doesn't get rechecked! |
| } |
| // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use |
| if (ISD::isZEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) && |
| N0.hasOneUse() && |
| EVT == cast<LoadSDNode>(N0)->getMemoryVT() && |
| (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) { |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(), |
| LN0->getBasePtr(), LN0->getSrcValue(), |
| LN0->getSrcValueOffset(), EVT, |
| LN0->isVolatile(), |
| LN0->getAlignment()); |
| CombineTo(N, ExtLoad); |
| CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1)); |
| return SDOperand(N, 0); // Return N so it doesn't get rechecked! |
| } |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitTRUNCATE(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // noop truncate |
| if (N0.getValueType() == N->getValueType(0)) |
| return N0; |
| // fold (truncate c1) -> c1 |
| if (isa<ConstantSDNode>(N0)) |
| return DAG.getNode(ISD::TRUNCATE, VT, N0); |
| // fold (truncate (truncate x)) -> (truncate x) |
| if (N0.getOpcode() == ISD::TRUNCATE) |
| return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0)); |
| // fold (truncate (ext x)) -> (ext x) or (truncate x) or x |
| if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND|| |
| N0.getOpcode() == ISD::ANY_EXTEND) { |
| if (N0.getOperand(0).getValueType() < VT) |
| // if the source is smaller than the dest, we still need an extend |
| return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0)); |
| else if (N0.getOperand(0).getValueType() > VT) |
| // if the source is larger than the dest, than we just need the truncate |
| return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0)); |
| else |
| // if the source and dest are the same type, we can drop both the extend |
| // and the truncate |
| return N0.getOperand(0); |
| } |
| |
| // See if we can simplify the input to this truncate through knowledge that |
| // only the low bits are being used. For example "trunc (or (shl x, 8), y)" |
| // -> trunc y |
| SDOperand Shorter = GetDemandedBits(N0, MVT::getIntVTBitMask(VT)); |
| if (Shorter.Val) |
| return DAG.getNode(ISD::TRUNCATE, VT, Shorter); |
| |
| // fold (truncate (load x)) -> (smaller load x) |
| // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits)) |
| return ReduceLoadWidth(N); |
| } |
| |
| SDOperand DAGCombiner::visitBIT_CONVERT(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // If the input is a BUILD_VECTOR with all constant elements, fold this now. |
| // Only do this before legalize, since afterward the target may be depending |
| // on the bitconvert. |
| // First check to see if this is all constant. |
| if (!AfterLegalize && |
| N0.getOpcode() == ISD::BUILD_VECTOR && N0.Val->hasOneUse() && |
| MVT::isVector(VT)) { |
| bool isSimple = true; |
| for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) |
| if (N0.getOperand(i).getOpcode() != ISD::UNDEF && |
| N0.getOperand(i).getOpcode() != ISD::Constant && |
| N0.getOperand(i).getOpcode() != ISD::ConstantFP) { |
| isSimple = false; |
| break; |
| } |
| |
| MVT::ValueType DestEltVT = MVT::getVectorElementType(N->getValueType(0)); |
| assert(!MVT::isVector(DestEltVT) && |
| "Element type of vector ValueType must not be vector!"); |
| if (isSimple) { |
| return ConstantFoldBIT_CONVERTofBUILD_VECTOR(N0.Val, DestEltVT); |
| } |
| } |
| |
| // If the input is a constant, let getNode() fold it. |
| if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) { |
| SDOperand Res = DAG.getNode(ISD::BIT_CONVERT, VT, N0); |
| if (Res.Val != N) return Res; |
| } |
| |
| if (N0.getOpcode() == ISD::BIT_CONVERT) // conv(conv(x,t1),t2) -> conv(x,t2) |
| return DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0)); |
| |
| // fold (conv (load x)) -> (load (conv*)x) |
| // If the resultant load doesn't need a higher alignment than the original! |
| if (ISD::isNormalLoad(N0.Val) && N0.hasOneUse() && |
| TLI.isOperationLegal(ISD::LOAD, VT)) { |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| unsigned Align = TLI.getTargetMachine().getTargetData()-> |
| getABITypeAlignment(MVT::getTypeForValueType(VT)); |
| unsigned OrigAlign = LN0->getAlignment(); |
| if (Align <= OrigAlign) { |
| SDOperand Load = DAG.getLoad(VT, LN0->getChain(), LN0->getBasePtr(), |
| LN0->getSrcValue(), LN0->getSrcValueOffset(), |
| LN0->isVolatile(), Align); |
| AddToWorkList(N); |
| CombineTo(N0.Val, DAG.getNode(ISD::BIT_CONVERT, N0.getValueType(), Load), |
| Load.getValue(1)); |
| return Load; |
| } |
| } |
| |
| // Fold bitconvert(fneg(x)) -> xor(bitconvert(x), signbit) |
| // Fold bitconvert(fabs(x)) -> and(bitconvert(x), ~signbit) |
| // This often reduces constant pool loads. |
| if ((N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FABS) && |
| N0.Val->hasOneUse() && MVT::isInteger(VT) && !MVT::isVector(VT)) { |
| SDOperand NewConv = DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0)); |
| AddToWorkList(NewConv.Val); |
| |
| uint64_t SignBit = MVT::getIntVTSignBit(VT); |
| if (N0.getOpcode() == ISD::FNEG) |
| return DAG.getNode(ISD::XOR, VT, NewConv, DAG.getConstant(SignBit, VT)); |
| assert(N0.getOpcode() == ISD::FABS); |
| return DAG.getNode(ISD::AND, VT, NewConv, DAG.getConstant(~SignBit, VT)); |
| } |
| |
| // Fold bitconvert(fcopysign(cst, x)) -> bitconvert(x)&sign | cst&~sign' |
| // Note that we don't handle copysign(x,cst) because this can always be folded |
| // to an fneg or fabs. |
| if (N0.getOpcode() == ISD::FCOPYSIGN && N0.Val->hasOneUse() && |
| isa<ConstantFPSDNode>(N0.getOperand(0)) && |
| MVT::isInteger(VT) && !MVT::isVector(VT)) { |
| unsigned OrigXWidth = MVT::getSizeInBits(N0.getOperand(1).getValueType()); |
| SDOperand X = DAG.getNode(ISD::BIT_CONVERT, MVT::getIntegerType(OrigXWidth), |
| N0.getOperand(1)); |
| AddToWorkList(X.Val); |
| |
| // If X has a different width than the result/lhs, sext it or truncate it. |
| unsigned VTWidth = MVT::getSizeInBits(VT); |
| if (OrigXWidth < VTWidth) { |
| X = DAG.getNode(ISD::SIGN_EXTEND, VT, X); |
| AddToWorkList(X.Val); |
| } else if (OrigXWidth > VTWidth) { |
| // To get the sign bit in the right place, we have to shift it right |
| // before truncating. |
| X = DAG.getNode(ISD::SRL, X.getValueType(), X, |
| DAG.getConstant(OrigXWidth-VTWidth, X.getValueType())); |
| AddToWorkList(X.Val); |
| X = DAG.getNode(ISD::TRUNCATE, VT, X); |
| AddToWorkList(X.Val); |
| } |
| |
| uint64_t SignBit = MVT::getIntVTSignBit(VT); |
| X = DAG.getNode(ISD::AND, VT, X, DAG.getConstant(SignBit, VT)); |
| AddToWorkList(X.Val); |
| |
| SDOperand Cst = DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0)); |
| Cst = DAG.getNode(ISD::AND, VT, Cst, DAG.getConstant(~SignBit, VT)); |
| AddToWorkList(Cst.Val); |
| |
| return DAG.getNode(ISD::OR, VT, X, Cst); |
| } |
| |
| return SDOperand(); |
| } |
| |
| /// ConstantFoldBIT_CONVERTofBUILD_VECTOR - We know that BV is a build_vector |
| /// node with Constant, ConstantFP or Undef operands. DstEltVT indicates the |
| /// destination element value type. |
| SDOperand DAGCombiner:: |
| ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *BV, MVT::ValueType DstEltVT) { |
| MVT::ValueType SrcEltVT = BV->getOperand(0).getValueType(); |
| |
| // If this is already the right type, we're done. |
| if (SrcEltVT == DstEltVT) return SDOperand(BV, 0); |
| |
| unsigned SrcBitSize = MVT::getSizeInBits(SrcEltVT); |
| unsigned DstBitSize = MVT::getSizeInBits(DstEltVT); |
| |
| // If this is a conversion of N elements of one type to N elements of another |
| // type, convert each element. This handles FP<->INT cases. |
| if (SrcBitSize == DstBitSize) { |
| SmallVector<SDOperand, 8> Ops; |
| for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { |
| Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, DstEltVT, BV->getOperand(i))); |
| AddToWorkList(Ops.back().Val); |
| } |
| MVT::ValueType VT = |
| MVT::getVectorType(DstEltVT, |
| MVT::getVectorNumElements(BV->getValueType(0))); |
| return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); |
| } |
| |
| // Otherwise, we're growing or shrinking the elements. To avoid having to |
| // handle annoying details of growing/shrinking FP values, we convert them to |
| // int first. |
| if (MVT::isFloatingPoint(SrcEltVT)) { |
| // Convert the input float vector to a int vector where the elements are the |
| // same sizes. |
| assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!"); |
| MVT::ValueType IntVT = SrcEltVT == MVT::f32 ? MVT::i32 : MVT::i64; |
| BV = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, IntVT).Val; |
| SrcEltVT = IntVT; |
| } |
| |
| // Now we know the input is an integer vector. If the output is a FP type, |
| // convert to integer first, then to FP of the right size. |
| if (MVT::isFloatingPoint(DstEltVT)) { |
| assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!"); |
| MVT::ValueType TmpVT = DstEltVT == MVT::f32 ? MVT::i32 : MVT::i64; |
| SDNode *Tmp = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, TmpVT).Val; |
| |
| // Next, convert to FP elements of the same size. |
| return ConstantFoldBIT_CONVERTofBUILD_VECTOR(Tmp, DstEltVT); |
| } |
| |
| // Okay, we know the src/dst types are both integers of differing types. |
| // Handling growing first. |
| assert(MVT::isInteger(SrcEltVT) && MVT::isInteger(DstEltVT)); |
| if (SrcBitSize < DstBitSize) { |
| unsigned NumInputsPerOutput = DstBitSize/SrcBitSize; |
| |
| SmallVector<SDOperand, 8> Ops; |
| for (unsigned i = 0, e = BV->getNumOperands(); i != e; |
| i += NumInputsPerOutput) { |
| bool isLE = TLI.isLittleEndian(); |
| uint64_t NewBits = 0; |
| bool EltIsUndef = true; |
| for (unsigned j = 0; j != NumInputsPerOutput; ++j) { |
| // Shift the previously computed bits over. |
| NewBits <<= SrcBitSize; |
| SDOperand Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j)); |
| if (Op.getOpcode() == ISD::UNDEF) continue; |
| EltIsUndef = false; |
| |
| NewBits |= cast<ConstantSDNode>(Op)->getValue(); |
| } |
| |
| if (EltIsUndef) |
| Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT)); |
| else |
| Ops.push_back(DAG.getConstant(NewBits, DstEltVT)); |
| } |
| |
| MVT::ValueType VT = MVT::getVectorType(DstEltVT, |
| Ops.size()); |
| return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); |
| } |
| |
| // Finally, this must be the case where we are shrinking elements: each input |
| // turns into multiple outputs. |
| unsigned NumOutputsPerInput = SrcBitSize/DstBitSize; |
| SmallVector<SDOperand, 8> Ops; |
| for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { |
| if (BV->getOperand(i).getOpcode() == ISD::UNDEF) { |
| for (unsigned j = 0; j != NumOutputsPerInput; ++j) |
| Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT)); |
| continue; |
| } |
| uint64_t OpVal = cast<ConstantSDNode>(BV->getOperand(i))->getValue(); |
| |
| for (unsigned j = 0; j != NumOutputsPerInput; ++j) { |
| unsigned ThisVal = OpVal & ((1ULL << DstBitSize)-1); |
| OpVal >>= DstBitSize; |
| Ops.push_back(DAG.getConstant(ThisVal, DstEltVT)); |
| } |
| |
| // For big endian targets, swap the order of the pieces of each element. |
| if (!TLI.isLittleEndian()) |
| std::reverse(Ops.end()-NumOutputsPerInput, Ops.end()); |
| } |
| MVT::ValueType VT = MVT::getVectorType(DstEltVT, Ops.size()); |
| return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); |
| } |
| |
| |
| |
| SDOperand DAGCombiner::visitFADD(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold vector ops |
| if (MVT::isVector(VT)) { |
| SDOperand FoldedVOp = SimplifyVBinOp(N); |
| if (FoldedVOp.Val) return FoldedVOp; |
| } |
| |
| // fold (fadd c1, c2) -> c1+c2 |
| if (N0CFP && N1CFP && VT != MVT::ppcf128) |
| return DAG.getNode(ISD::FADD, VT, N0, N1); |
| // canonicalize constant to RHS |
| if (N0CFP && !N1CFP) |
| return DAG.getNode(ISD::FADD, VT, N1, N0); |
| // fold (A + (-B)) -> A-B |
| if (isNegatibleForFree(N1) == 2) |
| return DAG.getNode(ISD::FSUB, VT, N0, GetNegatedExpression(N1, DAG)); |
| // fold ((-A) + B) -> B-A |
| if (isNegatibleForFree(N0) == 2) |
| return DAG.getNode(ISD::FSUB, VT, N1, GetNegatedExpression(N0, DAG)); |
| |
| // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2)) |
| if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FADD && |
| N0.Val->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1))) |
| return DAG.getNode(ISD::FADD, VT, N0.getOperand(0), |
| DAG.getNode(ISD::FADD, VT, N0.getOperand(1), N1)); |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitFSUB(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold vector ops |
| if (MVT::isVector(VT)) { |
| SDOperand FoldedVOp = SimplifyVBinOp(N); |
| if (FoldedVOp.Val) return FoldedVOp; |
| } |
| |
| // fold (fsub c1, c2) -> c1-c2 |
| if (N0CFP && N1CFP && VT != MVT::ppcf128) |
| return DAG.getNode(ISD::FSUB, VT, N0, N1); |
| // fold (0-B) -> -B |
| if (UnsafeFPMath && N0CFP && N0CFP->getValueAPF().isZero()) { |
| if (isNegatibleForFree(N1)) |
| return GetNegatedExpression(N1, DAG); |
| return DAG.getNode(ISD::FNEG, VT, N1); |
| } |
| // fold (A-(-B)) -> A+B |
| if (isNegatibleForFree(N1)) |
| return DAG.getNode(ISD::FADD, VT, N0, GetNegatedExpression(N1, DAG)); |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitFMUL(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold vector ops |
| if (MVT::isVector(VT)) { |
| SDOperand FoldedVOp = SimplifyVBinOp(N); |
| if (FoldedVOp.Val) return FoldedVOp; |
| } |
| |
| // fold (fmul c1, c2) -> c1*c2 |
| if (N0CFP && N1CFP && VT != MVT::ppcf128) |
| return DAG.getNode(ISD::FMUL, VT, N0, N1); |
| // canonicalize constant to RHS |
| if (N0CFP && !N1CFP) |
| return DAG.getNode(ISD::FMUL, VT, N1, N0); |
| // fold (fmul X, 2.0) -> (fadd X, X) |
| if (N1CFP && N1CFP->isExactlyValue(+2.0)) |
| return DAG.getNode(ISD::FADD, VT, N0, N0); |
| // fold (fmul X, -1.0) -> (fneg X) |
| if (N1CFP && N1CFP->isExactlyValue(-1.0)) |
| return DAG.getNode(ISD::FNEG, VT, N0); |
| |
| // -X * -Y -> X*Y |
| if (char LHSNeg = isNegatibleForFree(N0)) { |
| if (char RHSNeg = isNegatibleForFree(N1)) { |
| // Both can be negated for free, check to see if at least one is cheaper |
| // negated. |
| if (LHSNeg == 2 || RHSNeg == 2) |
| return DAG.getNode(ISD::FMUL, VT, GetNegatedExpression(N0, DAG), |
| GetNegatedExpression(N1, DAG)); |
| } |
| } |
| |
| // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2)) |
| if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FMUL && |
| N0.Val->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1))) |
| return DAG.getNode(ISD::FMUL, VT, N0.getOperand(0), |
| DAG.getNode(ISD::FMUL, VT, N0.getOperand(1), N1)); |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitFDIV(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold vector ops |
| if (MVT::isVector(VT)) { |
| SDOperand FoldedVOp = SimplifyVBinOp(N); |
| if (FoldedVOp.Val) return FoldedVOp; |
| } |
| |
| // fold (fdiv c1, c2) -> c1/c2 |
| if (N0CFP && N1CFP && VT != MVT::ppcf128) |
| return DAG.getNode(ISD::FDIV, VT, N0, N1); |
| |
| |
| // -X / -Y -> X*Y |
| if (char LHSNeg = isNegatibleForFree(N0)) { |
| if (char RHSNeg = isNegatibleForFree(N1)) { |
| // Both can be negated for free, check to see if at least one is cheaper |
| // negated. |
| if (LHSNeg == 2 || RHSNeg == 2) |
| return DAG.getNode(ISD::FDIV, VT, GetNegatedExpression(N0, DAG), |
| GetNegatedExpression(N1, DAG)); |
| } |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitFREM(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (frem c1, c2) -> fmod(c1,c2) |
| if (N0CFP && N1CFP && VT != MVT::ppcf128) |
| return DAG.getNode(ISD::FREM, VT, N0, N1); |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitFCOPYSIGN(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| if (N0CFP && N1CFP && VT != MVT::ppcf128) // Constant fold |
| return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1); |
| |
| if (N1CFP) { |
| const APFloat& V = N1CFP->getValueAPF(); |
| // copysign(x, c1) -> fabs(x) iff ispos(c1) |
| // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1) |
| if (!V.isNegative()) |
| return DAG.getNode(ISD::FABS, VT, N0); |
| else |
| return DAG.getNode(ISD::FNEG, VT, DAG.getNode(ISD::FABS, VT, N0)); |
| } |
| |
| // copysign(fabs(x), y) -> copysign(x, y) |
| // copysign(fneg(x), y) -> copysign(x, y) |
| // copysign(copysign(x,z), y) -> copysign(x, y) |
| if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG || |
| N0.getOpcode() == ISD::FCOPYSIGN) |
| return DAG.getNode(ISD::FCOPYSIGN, VT, N0.getOperand(0), N1); |
| |
| // copysign(x, abs(y)) -> abs(x) |
| if (N1.getOpcode() == ISD::FABS) |
| return DAG.getNode(ISD::FABS, VT, N0); |
| |
| // copysign(x, copysign(y,z)) -> copysign(x, z) |
| if (N1.getOpcode() == ISD::FCOPYSIGN) |
| return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(1)); |
| |
| // copysign(x, fp_extend(y)) -> copysign(x, y) |
| // copysign(x, fp_round(y)) -> copysign(x, y) |
| if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND) |
| return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(0)); |
| |
| return SDOperand(); |
| } |
| |
| |
| |
| SDOperand DAGCombiner::visitSINT_TO_FP(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (sint_to_fp c1) -> c1fp |
| if (N0C && N0.getValueType() != MVT::ppcf128) |
| return DAG.getNode(ISD::SINT_TO_FP, VT, N0); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitUINT_TO_FP(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (uint_to_fp c1) -> c1fp |
| if (N0C && N0.getValueType() != MVT::ppcf128) |
| return DAG.getNode(ISD::UINT_TO_FP, VT, N0); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitFP_TO_SINT(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (fp_to_sint c1fp) -> c1 |
| if (N0CFP) |
| return DAG.getNode(ISD::FP_TO_SINT, VT, N0); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitFP_TO_UINT(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (fp_to_uint c1fp) -> c1 |
| if (N0CFP && VT != MVT::ppcf128) |
| return DAG.getNode(ISD::FP_TO_UINT, VT, N0); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitFP_ROUND(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (fp_round c1fp) -> c1fp |
| if (N0CFP && N0.getValueType() != MVT::ppcf128) |
| return DAG.getNode(ISD::FP_ROUND, VT, N0, N1); |
| |
| // fold (fp_round (fp_extend x)) -> x |
| if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType()) |
| return N0.getOperand(0); |
| |
| // fold (fp_round (fp_round x)) -> (fp_round x) |
| if (N0.getOpcode() == ISD::FP_ROUND) { |
| // This is a value preserving truncation if both round's are. |
| bool IsTrunc = N->getConstantOperandVal(1) == 1 && |
| N0.Val->getConstantOperandVal(1) == 1; |
| return DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0), |
| DAG.getIntPtrConstant(IsTrunc)); |
| } |
| |
| // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y) |
| if (N0.getOpcode() == ISD::FCOPYSIGN && N0.Val->hasOneUse()) { |
| SDOperand Tmp = DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0), N1); |
| AddToWorkList(Tmp.Val); |
| return DAG.getNode(ISD::FCOPYSIGN, VT, Tmp, N0.getOperand(1)); |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitFP_ROUND_INREG(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| MVT::ValueType VT = N->getValueType(0); |
| MVT::ValueType EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| |
| // fold (fp_round_inreg c1fp) -> c1fp |
| if (N0CFP) { |
| SDOperand Round = DAG.getConstantFP(N0CFP->getValueAPF(), EVT); |
| return DAG.getNode(ISD::FP_EXTEND, VT, Round); |
| } |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitFP_EXTEND(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded. |
| if (N->hasOneUse() && (*N->use_begin())->getOpcode() == ISD::FP_ROUND) |
| return SDOperand(); |
| |
| // fold (fp_extend c1fp) -> c1fp |
| if (N0CFP && VT != MVT::ppcf128) |
| return DAG.getNode(ISD::FP_EXTEND, VT, N0); |
| |
| // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the |
| // value of X. |
| if (N0.getOpcode() == ISD::FP_ROUND && N0.Val->getConstantOperandVal(1) == 1){ |
| SDOperand In = N0.getOperand(0); |
| if (In.getValueType() == VT) return In; |
| if (VT < In.getValueType()) |
| return DAG.getNode(ISD::FP_ROUND, VT, In, N0.getOperand(1)); |
| return DAG.getNode(ISD::FP_EXTEND, VT, In); |
| } |
| |
| // fold (fpext (load x)) -> (fpext (fptrunc (extload x))) |
| if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() && |
| (!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) { |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(), |
| LN0->getBasePtr(), LN0->getSrcValue(), |
| LN0->getSrcValueOffset(), |
| N0.getValueType(), |
| LN0->isVolatile(), |
| LN0->getAlignment()); |
| CombineTo(N, ExtLoad); |
| CombineTo(N0.Val, DAG.getNode(ISD::FP_ROUND, N0.getValueType(), ExtLoad, |
| DAG.getIntPtrConstant(1)), |
| ExtLoad.getValue(1)); |
| return SDOperand(N, 0); // Return N so it doesn't get rechecked! |
| } |
| |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitFNEG(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| |
| if (isNegatibleForFree(N0)) |
| return GetNegatedExpression(N0, DAG); |
| |
| // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading |
| // constant pool values. |
| if (N0.getOpcode() == ISD::BIT_CONVERT && N0.Val->hasOneUse() && |
| MVT::isInteger(N0.getOperand(0).getValueType()) && |
| !MVT::isVector(N0.getOperand(0).getValueType())) { |
| SDOperand Int = N0.getOperand(0); |
| MVT::ValueType IntVT = Int.getValueType(); |
| if (MVT::isInteger(IntVT) && !MVT::isVector(IntVT)) { |
| Int = DAG.getNode(ISD::XOR, IntVT, Int, |
| DAG.getConstant(MVT::getIntVTSignBit(IntVT), IntVT)); |
| AddToWorkList(Int.Val); |
| return DAG.getNode(ISD::BIT_CONVERT, N->getValueType(0), Int); |
| } |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitFABS(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (fabs c1) -> fabs(c1) |
| if (N0CFP && VT != MVT::ppcf128) |
| return DAG.getNode(ISD::FABS, VT, N0); |
| // fold (fabs (fabs x)) -> (fabs x) |
| if (N0.getOpcode() == ISD::FABS) |
| return N->getOperand(0); |
| // fold (fabs (fneg x)) -> (fabs x) |
| // fold (fabs (fcopysign x, y)) -> (fabs x) |
| if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) |
| return DAG.getNode(ISD::FABS, VT, N0.getOperand(0)); |
| |
| // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading |
| // constant pool values. |
| if (N0.getOpcode() == ISD::BIT_CONVERT && N0.Val->hasOneUse() && |
| MVT::isInteger(N0.getOperand(0).getValueType()) && |
| !MVT::isVector(N0.getOperand(0).getValueType())) { |
| SDOperand Int = N0.getOperand(0); |
| MVT::ValueType IntVT = Int.getValueType(); |
| if (MVT::isInteger(IntVT) && !MVT::isVector(IntVT)) { |
| Int = DAG.getNode(ISD::AND, IntVT, Int, |
| DAG.getConstant(~MVT::getIntVTSignBit(IntVT), IntVT)); |
| AddToWorkList(Int.Val); |
| return DAG.getNode(ISD::BIT_CONVERT, N->getValueType(0), Int); |
| } |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitBRCOND(SDNode *N) { |
| SDOperand Chain = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| SDOperand N2 = N->getOperand(2); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| |
| // never taken branch, fold to chain |
| if (N1C && N1C->isNullValue()) |
| return Chain; |
| // unconditional branch |
| if (N1C && N1C->getValue() == 1) |
| return DAG.getNode(ISD::BR, MVT::Other, Chain, N2); |
| // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal |
| // on the target. |
| if (N1.getOpcode() == ISD::SETCC && |
| TLI.isOperationLegal(ISD::BR_CC, MVT::Other)) { |
| return DAG.getNode(ISD::BR_CC, MVT::Other, Chain, N1.getOperand(2), |
| N1.getOperand(0), N1.getOperand(1), N2); |
| } |
| return SDOperand(); |
| } |
| |
| // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB. |
| // |
| SDOperand DAGCombiner::visitBR_CC(SDNode *N) { |
| CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1)); |
| SDOperand CondLHS = N->getOperand(2), CondRHS = N->getOperand(3); |
| |
| // Use SimplifySetCC to simplify SETCC's. |
| SDOperand Simp = SimplifySetCC(MVT::i1, CondLHS, CondRHS, CC->get(), false); |
| if (Simp.Val) AddToWorkList(Simp.Val); |
| |
| ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(Simp.Val); |
| |
| // fold br_cc true, dest -> br dest (unconditional branch) |
| if (SCCC && SCCC->getValue()) |
| return DAG.getNode(ISD::BR, MVT::Other, N->getOperand(0), |
| N->getOperand(4)); |
| // fold br_cc false, dest -> unconditional fall through |
| if (SCCC && SCCC->isNullValue()) |
| return N->getOperand(0); |
| |
| // fold to a simpler setcc |
| if (Simp.Val && Simp.getOpcode() == ISD::SETCC) |
| return DAG.getNode(ISD::BR_CC, MVT::Other, N->getOperand(0), |
| Simp.getOperand(2), Simp.getOperand(0), |
| Simp.getOperand(1), N->getOperand(4)); |
| return SDOperand(); |
| } |
| |
| |
| /// CombineToPreIndexedLoadStore - Try turning a load / store and a |
| /// pre-indexed load / store when the base pointer is a add or subtract |
| /// and it has other uses besides the load / store. After the |
| /// transformation, the new indexed load / store has effectively folded |
| /// the add / subtract in and all of its other uses are redirected to the |
| /// new load / store. |
| bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) { |
| if (!AfterLegalize) |
| return false; |
| |
| bool isLoad = true; |
| SDOperand Ptr; |
| MVT::ValueType VT; |
| if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { |
| if (LD->isIndexed()) |
| return false; |
| VT = LD->getMemoryVT(); |
| if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) && |
| !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT)) |
| return false; |
| Ptr = LD->getBasePtr(); |
| } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { |
| if (ST->isIndexed()) |
| return false; |
| VT = ST->getMemoryVT(); |
| if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) && |
| !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT)) |
| return false; |
| Ptr = ST->getBasePtr(); |
| isLoad = false; |
| } else |
| return false; |
| |
| // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail |
| // out. There is no reason to make this a preinc/predec. |
| if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) || |
| Ptr.Val->hasOneUse()) |
| return false; |
| |
| // Ask the target to do addressing mode selection. |
| SDOperand BasePtr; |
| SDOperand Offset; |
| ISD::MemIndexedMode AM = ISD::UNINDEXED; |
| if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG)) |
| return false; |
| // Don't create a indexed load / store with zero offset. |
| if (isa<ConstantSDNode>(Offset) && |
| cast<ConstantSDNode>(Offset)->getValue() == 0) |
| return false; |
| |
| // Try turning it into a pre-indexed load / store except when: |
| // 1) The new base ptr is a frame index. |
| // 2) If N is a store and the new base ptr is either the same as or is a |
| // predecessor of the value being stored. |
| // 3) Another use of old base ptr is a predecessor of N. If ptr is folded |
| // that would create a cycle. |
| // 4) All uses are load / store ops that use it as old base ptr. |
| |
| // Check #1. Preinc'ing a frame index would require copying the stack pointer |
| // (plus the implicit offset) to a register to preinc anyway. |
| if (isa<FrameIndexSDNode>(BasePtr)) |
| return false; |
| |
| // Check #2. |
| if (!isLoad) { |
| SDOperand Val = cast<StoreSDNode>(N)->getValue(); |
| if (Val == BasePtr || BasePtr.Val->isPredecessor(Val.Val)) |
| return false; |
| } |
| |
| // Now check for #3 and #4. |
| bool RealUse = false; |
| for (SDNode::use_iterator I = Ptr.Val->use_begin(), |
| E = Ptr.Val->use_end(); I != E; ++I) { |
| SDNode *Use = *I; |
| if (Use == N) |
| continue; |
| if (Use->isPredecessor(N)) |
| return false; |
| |
| if (!((Use->getOpcode() == ISD::LOAD && |
| cast<LoadSDNode>(Use)->getBasePtr() == Ptr) || |
| (Use->getOpcode() == ISD::STORE) && |
| cast<StoreSDNode>(Use)->getBasePtr() == Ptr)) |
| RealUse = true; |
| } |
| if (!RealUse) |
| return false; |
| |
| SDOperand Result; |
| if (isLoad) |
| Result = DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM); |
| else |
| Result = DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM); |
| ++PreIndexedNodes; |
| ++NodesCombined; |
| DOUT << "\nReplacing.4 "; DEBUG(N->dump(&DAG)); |
| DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG)); |
| DOUT << '\n'; |
| std::vector<SDNode*> NowDead; |
| if (isLoad) { |
| DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0), |
| &NowDead); |
| DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2), |
| &NowDead); |
| } else { |
| DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1), |
| &NowDead); |
| } |
| |
| // Nodes can end up on the worklist more than once. Make sure we do |
| // not process a node that has been replaced. |
| for (unsigned i = 0, e = NowDead.size(); i != e; ++i) |
| removeFromWorkList(NowDead[i]); |
| // Finally, since the node is now dead, remove it from the graph. |
| DAG.DeleteNode(N); |
| |
| // Replace the uses of Ptr with uses of the updated base value. |
| DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0), |
| &NowDead); |
| removeFromWorkList(Ptr.Val); |
| for (unsigned i = 0, e = NowDead.size(); i != e; ++i) |
| removeFromWorkList(NowDead[i]); |
| DAG.DeleteNode(Ptr.Val); |
| |
| return true; |
| } |
| |
| /// CombineToPostIndexedLoadStore - Try combine a load / store with a |
| /// add / sub of the base pointer node into a post-indexed load / store. |
| /// The transformation folded the add / subtract into the new indexed |
| /// load / store effectively and all of its uses are redirected to the |
| /// new load / store. |
| bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) { |
| if (!AfterLegalize) |
| return false; |
| |
| bool isLoad = true; |
| SDOperand Ptr; |
| MVT::ValueType VT; |
| if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { |
| if (LD->isIndexed()) |
| return false; |
| VT = LD->getMemoryVT(); |
| if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) && |
| !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT)) |
| return false; |
| Ptr = LD->getBasePtr(); |
| } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { |
| if (ST->isIndexed()) |
| return false; |
| VT = ST->getMemoryVT(); |
| if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) && |
| !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT)) |
| return false; |
| Ptr = ST->getBasePtr(); |
| isLoad = false; |
| } else |
| return false; |
| |
| if (Ptr.Val->hasOneUse()) |
| return false; |
| |
| for (SDNode::use_iterator I = Ptr.Val->use_begin(), |
| E = Ptr.Val->use_end(); I != E; ++I) { |
| SDNode *Op = *I; |
| if (Op == N || |
| (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)) |
| continue; |
| |
| SDOperand BasePtr; |
| SDOperand Offset; |
| ISD::MemIndexedMode AM = ISD::UNINDEXED; |
| if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) { |
| if (Ptr == Offset) |
| std::swap(BasePtr, Offset); |
| if (Ptr != BasePtr) |
| continue; |
| // Don't create a indexed load / store with zero offset. |
| if (isa<ConstantSDNode>(Offset) && |
| cast<ConstantSDNode>(Offset)->getValue() == 0) |
| continue; |
| |
| // Try turning it into a post-indexed load / store except when |
| // 1) All uses are load / store ops that use it as base ptr. |
| // 2) Op must be independent of N, i.e. Op is neither a predecessor |
| // nor a successor of N. Otherwise, if Op is folded that would |
| // create a cycle. |
| |
| // Check for #1. |
| bool TryNext = false; |
| for (SDNode::use_iterator II = BasePtr.Val->use_begin(), |
| EE = BasePtr.Val->use_end(); II != EE; ++II) { |
| SDNode *Use = *II; |
| if (Use == Ptr.Val) |
| continue; |
| |
| // If all the uses are load / store addresses, then don't do the |
| // transformation. |
| if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){ |
| bool RealUse = false; |
| for (SDNode::use_iterator III = Use->use_begin(), |
| EEE = Use->use_end(); III != EEE; ++III) { |
| SDNode *UseUse = *III; |
| if (!((UseUse->getOpcode() == ISD::LOAD && |
| cast<LoadSDNode>(UseUse)->getBasePtr().Val == Use) || |
| (UseUse->getOpcode() == ISD::STORE) && |
| cast<StoreSDNode>(UseUse)->getBasePtr().Val == Use)) |
| RealUse = true; |
| } |
| |
| if (!RealUse) { |
| TryNext = true; |
| break; |
| } |
| } |
| } |
| if (TryNext) |
| continue; |
| |
| // Check for #2 |
| if (!Op->isPredecessor(N) && !N->isPredecessor(Op)) { |
| SDOperand Result = isLoad |
| ? DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM) |
| : DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM); |
| ++PostIndexedNodes; |
| ++NodesCombined; |
| DOUT << "\nReplacing.5 "; DEBUG(N->dump(&DAG)); |
| DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG)); |
| DOUT << '\n'; |
| std::vector<SDNode*> NowDead; |
| if (isLoad) { |
| DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0), |
| &NowDead); |
| DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2), |
| &NowDead); |
| } else { |
| DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1), |
| &NowDead); |
| } |
| |
| // Nodes can end up on the worklist more than once. Make sure we do |
| // not process a node that has been replaced. |
| for (unsigned i = 0, e = NowDead.size(); i != e; ++i) |
| removeFromWorkList(NowDead[i]); |
| // Finally, since the node is now dead, remove it from the graph. |
| DAG.DeleteNode(N); |
| |
| // Replace the uses of Use with uses of the updated base value. |
| DAG.ReplaceAllUsesOfValueWith(SDOperand(Op, 0), |
| Result.getValue(isLoad ? 1 : 0), |
| &NowDead); |
| removeFromWorkList(Op); |
| for (unsigned i = 0, e = NowDead.size(); i != e; ++i) |
| removeFromWorkList(NowDead[i]); |
| DAG.DeleteNode(Op); |
| |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| /// InferAlignment - If we can infer some alignment information from this |
| /// pointer, return it. |
| static unsigned InferAlignment(SDOperand Ptr, SelectionDAG &DAG) { |
| // If this is a direct reference to a stack slot, use information about the |
| // stack slot's alignment. |
| int FrameIdx = 1 << 31; |
| int64_t FrameOffset = 0; |
| if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { |
| FrameIdx = FI->getIndex(); |
| } else if (Ptr.getOpcode() == ISD::ADD && |
| isa<ConstantSDNode>(Ptr.getOperand(1)) && |
| isa<FrameIndexSDNode>(Ptr.getOperand(0))) { |
| FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); |
| FrameOffset = Ptr.getConstantOperandVal(1); |
| } |
| |
| if (FrameIdx != (1 << 31)) { |
| // FIXME: Handle FI+CST. |
| const MachineFrameInfo &MFI = *DAG.getMachineFunction().getFrameInfo(); |
| if (MFI.isFixedObjectIndex(FrameIdx)) { |
| int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx); |
| |
| // The alignment of the frame index can be determined from its offset from |
| // the incoming frame position. If the frame object is at offset 32 and |
| // the stack is guaranteed to be 16-byte aligned, then we know that the |
| // object is 16-byte aligned. |
| unsigned StackAlign = DAG.getTarget().getFrameInfo()->getStackAlignment(); |
| unsigned Align = MinAlign(ObjectOffset, StackAlign); |
| |
| // Finally, the frame object itself may have a known alignment. Factor |
| // the alignment + offset into a new alignment. For example, if we know |
| // the FI is 8 byte aligned, but the pointer is 4 off, we really have a |
| // 4-byte alignment of the resultant pointer. Likewise align 4 + 4-byte |
| // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc. |
| unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx), |
| FrameOffset); |
| return std::max(Align, FIInfoAlign); |
| } |
| } |
| |
| return 0; |
| } |
| |
| SDOperand DAGCombiner::visitLOAD(SDNode *N) { |
| LoadSDNode *LD = cast<LoadSDNode>(N); |
| SDOperand Chain = LD->getChain(); |
| SDOperand Ptr = LD->getBasePtr(); |
| |
| // Try to infer better alignment information than the load already has. |
| if (LD->isUnindexed()) { |
| if (unsigned Align = InferAlignment(Ptr, DAG)) { |
| if (Align > LD->getAlignment()) |
| return DAG.getExtLoad(LD->getExtensionType(), LD->getValueType(0), |
| Chain, Ptr, LD->getSrcValue(), |
| LD->getSrcValueOffset(), LD->getMemoryVT(), |
| LD->isVolatile(), Align); |
| } |
| } |
| |
| |
| // If load is not volatile and there are no uses of the loaded value (and |
| // the updated indexed value in case of indexed loads), change uses of the |
| // chain value into uses of the chain input (i.e. delete the dead load). |
| if (!LD->isVolatile()) { |
| if (N->getValueType(1) == MVT::Other) { |
| // Unindexed loads. |
| if (N->hasNUsesOfValue(0, 0)) { |
| // It's not safe to use the two value CombineTo variant here. e.g. |
| // v1, chain2 = load chain1, loc |
| // v2, chain3 = load chain2, loc |
| // v3 = add v2, c |
| // Now we replace use of chain2 with chain1. This makes the second load |
| // isomorphic to the one we are deleting, and thus makes this load live. |
| std::vector<SDNode*> NowDead; |
| DOUT << "\nReplacing.6 "; DEBUG(N->dump(&DAG)); |
| DOUT << "\nWith chain: "; DEBUG(Chain.Val->dump(&DAG)); |
| DOUT << "\n"; |
| DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Chain, &NowDead); |
| for (unsigned i = 0, e = NowDead.size(); i != e; ++i) |
| removeFromWorkList(NowDead[i]); |
| if (N->use_empty()) { |
| removeFromWorkList(N); |
| DAG.DeleteNode(N); |
| } |
| return SDOperand(N, 0); // Return N so it doesn't get rechecked! |
| } |
| } else { |
| // Indexed loads. |
| assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?"); |
| if (N->hasNUsesOfValue(0, 0) && N->hasNUsesOfValue(0, 1)) { |
| std::vector<SDNode*> NowDead; |
| SDOperand Undef = DAG.getNode(ISD::UNDEF, N->getValueType(0)); |
| DOUT << "\nReplacing.6 "; DEBUG(N->dump(&DAG)); |
| DOUT << "\nWith: "; DEBUG(Undef.Val->dump(&DAG)); |
| DOUT << " and 2 other values\n"; |
| DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Undef, &NowDead); |
| DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), |
| DAG.getNode(ISD::UNDEF, N->getValueType(1)), |
| &NowDead); |
| DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 2), Chain, &NowDead); |
| removeFromWorkList(N); |
| for (unsigned i = 0, e = NowDead.size(); i != e; ++i) |
| removeFromWorkList(NowDead[i]); |
| DAG.DeleteNode(N); |
| return SDOperand(N, 0); // Return N so it doesn't get rechecked! |
| } |
| } |
| } |
| |
| // If this load is directly stored, replace the load value with the stored |
| // value. |
| // TODO: Handle store large -> read small portion. |
| // TODO: Handle TRUNCSTORE/LOADEXT |
| if (LD->getExtensionType() == ISD::NON_EXTLOAD) { |
| if (ISD::isNON_TRUNCStore(Chain.Val)) { |
| StoreSDNode *PrevST = cast<StoreSDNode>(Chain); |
| if (PrevST->getBasePtr() == Ptr && |
| PrevST->getValue().getValueType() == N->getValueType(0)) |
| return CombineTo(N, Chain.getOperand(1), Chain); |
| } |
| } |
| |
| if (CombinerAA) { |
| // Walk up chain skipping non-aliasing memory nodes. |
| SDOperand BetterChain = FindBetterChain(N, Chain); |
| |
| // If there is a better chain. |
| if (Chain != BetterChain) { |
| SDOperand ReplLoad; |
| |
| // Replace the chain to void dependency. |
| if (LD->getExtensionType() == ISD::NON_EXTLOAD) { |
| ReplLoad = DAG.getLoad(N->getValueType(0), BetterChain, Ptr, |
| LD->getSrcValue(), LD->getSrcValueOffset(), |
| LD->isVolatile(), LD->getAlignment()); |
| } else { |
| ReplLoad = DAG.getExtLoad(LD->getExtensionType(), |
| LD->getValueType(0), |
| BetterChain, Ptr, LD->getSrcValue(), |
| LD->getSrcValueOffset(), |
| LD->getMemoryVT(), |
| LD->isVolatile(), |
| LD->getAlignment()); |
| } |
| |
| // Create token factor to keep old chain connected. |
| SDOperand Token = DAG.getNode(ISD::TokenFactor, MVT::Other, |
| Chain, ReplLoad.getValue(1)); |
| |
| // Replace uses with load result and token factor. Don't add users |
| // to work list. |
| return CombineTo(N, ReplLoad.getValue(0), Token, false); |
| } |
| } |
| |
| // Try transforming N to an indexed load. |
| if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) |
| return SDOperand(N, 0); |
| |
| return SDOperand(); |
| } |
| |
| |
| SDOperand DAGCombiner::visitSTORE(SDNode *N) { |
| StoreSDNode *ST = cast<StoreSDNode>(N); |
| SDOperand Chain = ST->getChain(); |
| SDOperand Value = ST->getValue(); |
| SDOperand Ptr = ST->getBasePtr(); |
| |
| // Try to infer better alignment information than the store already has. |
| if (ST->isUnindexed()) { |
| if (unsigned Align = InferAlignment(Ptr, DAG)) { |
| if (Align > ST->getAlignment()) |
| return DAG.getTruncStore(Chain, Value, Ptr, ST->getSrcValue(), |
| ST->getSrcValueOffset(), ST->getMemoryVT(), |
| ST->isVolatile(), Align); |
| } |
| } |
| |
| // If this is a store of a bit convert, store the input value if the |
| // resultant store does not need a higher alignment than the original. |
| if (Value.getOpcode() == ISD::BIT_CONVERT && !ST->isTruncatingStore() && |
| ST->isUnindexed()) { |
| unsigned Align = ST->getAlignment(); |
| MVT::ValueType SVT = Value.getOperand(0).getValueType(); |
| unsigned OrigAlign = TLI.getTargetMachine().getTargetData()-> |
| getABITypeAlignment(MVT::getTypeForValueType(SVT)); |
| if (Align <= OrigAlign && TLI.isOperationLegal(ISD::STORE, SVT)) |
| return DAG.getStore(Chain, Value.getOperand(0), Ptr, ST->getSrcValue(), |
| ST->getSrcValueOffset(), ST->isVolatile(), Align); |
| } |
| |
| // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' |
| if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) { |
| if (Value.getOpcode() != ISD::TargetConstantFP) { |
| SDOperand Tmp; |
| switch (CFP->getValueType(0)) { |
| default: assert(0 && "Unknown FP type"); |
| case MVT::f80: // We don't do this for these yet. |
| case MVT::f128: |
| case MVT::ppcf128: |
| break; |
| case MVT::f32: |
| if (!AfterLegalize || TLI.isTypeLegal(MVT::i32)) { |
| Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF(). |
| convertToAPInt().getZExtValue(), MVT::i32); |
| return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(), |
| ST->getSrcValueOffset(), ST->isVolatile(), |
| ST->getAlignment()); |
| } |
| break; |
| case MVT::f64: |
| if (!AfterLegalize || TLI.isTypeLegal(MVT::i64)) { |
| Tmp = DAG.getConstant(CFP->getValueAPF().convertToAPInt(). |
| getZExtValue(), MVT::i64); |
| return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(), |
| ST->getSrcValueOffset(), ST->isVolatile(), |
| ST->getAlignment()); |
| } else if (TLI.isTypeLegal(MVT::i32)) { |
| // Many FP stores are not made apparent until after legalize, e.g. for |
| // argument passing. Since this is so common, custom legalize the |
| // 64-bit integer store into two 32-bit stores. |
| uint64_t Val = CFP->getValueAPF().convertToAPInt().getZExtValue(); |
| SDOperand Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32); |
| SDOperand Hi = DAG.getConstant(Val >> 32, MVT::i32); |
| if (!TLI.isLittleEndian()) std::swap(Lo, Hi); |
| |
| int SVOffset = ST->getSrcValueOffset(); |
| unsigned Alignment = ST->getAlignment(); |
| bool isVolatile = ST->isVolatile(); |
| |
| SDOperand St0 = DAG.getStore(Chain, Lo, Ptr, ST->getSrcValue(), |
| ST->getSrcValueOffset(), |
| isVolatile, ST->getAlignment()); |
| Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, |
| DAG.getConstant(4, Ptr.getValueType())); |
| SVOffset += 4; |
| Alignment = MinAlign(Alignment, 4U); |
| SDOperand St1 = DAG.getStore(Chain, Hi, Ptr, ST->getSrcValue(), |
| SVOffset, isVolatile, Alignment); |
| return DAG.getNode(ISD::TokenFactor, MVT::Other, St0, St1); |
| } |
| break; |
| } |
| } |
| } |
| |
| if (CombinerAA) { |
| // Walk up chain skipping non-aliasing memory nodes. |
| SDOperand BetterChain = FindBetterChain(N, Chain); |
| |
| // If there is a better chain. |
| if (Chain != BetterChain) { |
| // Replace the chain to avoid dependency. |
| SDOperand ReplStore; |
| if (ST->isTruncatingStore()) { |
| ReplStore = DAG.getTruncStore(BetterChain, Value, Ptr, |
| ST->getSrcValue(),ST->getSrcValueOffset(), |
| ST->getMemoryVT(), |
| ST->isVolatile(), ST->getAlignment()); |
| } else { |
| ReplStore = DAG.getStore(BetterChain, Value, Ptr, |
| ST->getSrcValue(), ST->getSrcValueOffset(), |
| ST->isVolatile(), ST->getAlignment()); |
| } |
| |
| // Create token to keep both nodes around. |
| SDOperand Token = |
| DAG.getNode(ISD::TokenFactor, MVT::Other, Chain, ReplStore); |
| |
| // Don't add users to work list. |
| return CombineTo(N, Token, false); |
| } |
| } |
| |
| // Try transforming N to an indexed store. |
| if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) |
| return SDOperand(N, 0); |
| |
| // FIXME: is there such a thing as a truncating indexed store? |
| if (ST->isTruncatingStore() && ST->isUnindexed() && |
| MVT::isInteger(Value.getValueType())) { |
| // See if we can simplify the input to this truncstore with knowledge that |
| // only the low bits are being used. For example: |
| // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8" |
| SDOperand Shorter = |
| GetDemandedBits(Value, MVT::getIntVTBitMask(ST->getMemoryVT())); |
| AddToWorkList(Value.Val); |
| if (Shorter.Val) |
| return DAG.getTruncStore(Chain, Shorter, Ptr, ST->getSrcValue(), |
| ST->getSrcValueOffset(), ST->getMemoryVT(), |
| ST->isVolatile(), ST->getAlignment()); |
| |
| // Otherwise, see if we can simplify the operation with |
| // SimplifyDemandedBits, which only works if the value has a single use. |
| if (SimplifyDemandedBits(Value, MVT::getIntVTBitMask(ST->getMemoryVT()))) |
| return SDOperand(N, 0); |
| } |
| |
| // If this is a load followed by a store to the same location, then the store |
| // is dead/noop. |
| if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) { |
| if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() && |
| ST->isUnindexed() && !ST->isVolatile() && |
| // There can't be any side effects between the load and store, such as |
| // a call or store. |
| Chain.reachesChainWithoutSideEffects(SDOperand(Ld, 1))) { |
| // The store is dead, remove it. |
| return Chain; |
| } |
| } |
| |
| // If this is an FP_ROUND or TRUNC followed by a store, fold this into a |
| // truncating store. We can do this even if this is already a truncstore. |
| if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE) |
| && TLI.isTypeLegal(Value.getOperand(0).getValueType()) && |
| Value.Val->hasOneUse() && ST->isUnindexed() && |
| TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(), |
| ST->getMemoryVT())) { |
| return DAG.getTruncStore(Chain, Value.getOperand(0), Ptr, ST->getSrcValue(), |
| ST->getSrcValueOffset(), ST->getMemoryVT(), |
| ST->isVolatile(), ST->getAlignment()); |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) { |
| SDOperand InVec = N->getOperand(0); |
| SDOperand InVal = N->getOperand(1); |
| SDOperand EltNo = N->getOperand(2); |
| |
| // If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new |
| // vector with the inserted element. |
| if (InVec.getOpcode() == ISD::BUILD_VECTOR && isa<ConstantSDNode>(EltNo)) { |
| unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue(); |
| SmallVector<SDOperand, 8> Ops(InVec.Val->op_begin(), InVec.Val->op_end()); |
| if (Elt < Ops.size()) |
| Ops[Elt] = InVal; |
| return DAG.getNode(ISD::BUILD_VECTOR, InVec.getValueType(), |
| &Ops[0], Ops.size()); |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) { |
| SDOperand InVec = N->getOperand(0); |
| SDOperand EltNo = N->getOperand(1); |
| |
| // (vextract (v4f32 s2v (f32 load $addr)), 0) -> (f32 load $addr) |
| // (vextract (v4i32 bc (v4f32 s2v (f32 load $addr))), 0) -> (i32 load $addr) |
| if (isa<ConstantSDNode>(EltNo)) { |
| unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue(); |
| bool NewLoad = false; |
| if (Elt == 0) { |
| MVT::ValueType VT = InVec.getValueType(); |
| MVT::ValueType EVT = MVT::getVectorElementType(VT); |
| MVT::ValueType LVT = EVT; |
| unsigned NumElts = MVT::getVectorNumElements(VT); |
| if (InVec.getOpcode() == ISD::BIT_CONVERT) { |
| MVT::ValueType BCVT = InVec.getOperand(0).getValueType(); |
| if (!MVT::isVector(BCVT) || |
| NumElts != MVT::getVectorNumElements(BCVT)) |
| return SDOperand(); |
| InVec = InVec.getOperand(0); |
| EVT = MVT::getVectorElementType(BCVT); |
| NewLoad = true; |
| } |
| if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR && |
| InVec.getOperand(0).getValueType() == EVT && |
| ISD::isNormalLoad(InVec.getOperand(0).Val) && |
| InVec.getOperand(0).hasOneUse()) { |
| LoadSDNode *LN0 = cast<LoadSDNode>(InVec.getOperand(0)); |
| unsigned Align = LN0->getAlignment(); |
| if (NewLoad) { |
| // Check the resultant load doesn't need a higher alignment than the |
| // original load. |
| unsigned NewAlign = TLI.getTargetMachine().getTargetData()-> |
| getABITypeAlignment(MVT::getTypeForValueType(LVT)); |
| if (!TLI.isOperationLegal(ISD::LOAD, LVT) || NewAlign > Align) |
| return SDOperand(); |
| Align = NewAlign; |
| } |
| |
| return DAG.getLoad(LVT, LN0->getChain(), LN0->getBasePtr(), |
| LN0->getSrcValue(), LN0->getSrcValueOffset(), |
| LN0->isVolatile(), Align); |
| } |
| } |
| } |
| return SDOperand(); |
| } |
| |
| |
| SDOperand DAGCombiner::visitBUILD_VECTOR(SDNode *N) { |
| unsigned NumInScalars = N->getNumOperands(); |
| MVT::ValueType VT = N->getValueType(0); |
| unsigned NumElts = MVT::getVectorNumElements(VT); |
| MVT::ValueType EltType = MVT::getVectorElementType(VT); |
| |
| // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT |
| // operations. If so, and if the EXTRACT_VECTOR_ELT vector inputs come from |
| // at most two distinct vectors, turn this into a shuffle node. |
| SDOperand VecIn1, VecIn2; |
| for (unsigned i = 0; i != NumInScalars; ++i) { |
| // Ignore undef inputs. |
| if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; |
| |
| // If this input is something other than a EXTRACT_VECTOR_ELT with a |
| // constant index, bail out. |
| if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT || |
| !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) { |
| VecIn1 = VecIn2 = SDOperand(0, 0); |
| break; |
| } |
| |
| // If the input vector type disagrees with the result of the build_vector, |
| // we can't make a shuffle. |
| SDOperand ExtractedFromVec = N->getOperand(i).getOperand(0); |
| if (ExtractedFromVec.getValueType() != VT) { |
| VecIn1 = VecIn2 = SDOperand(0, 0); |
| break; |
| } |
| |
| // Otherwise, remember this. We allow up to two distinct input vectors. |
| if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2) |
| continue; |
| |
| if (VecIn1.Val == 0) { |
| VecIn1 = ExtractedFromVec; |
| } else if (VecIn2.Val == 0) { |
| VecIn2 = ExtractedFromVec; |
| } else { |
| // Too many inputs. |
| VecIn1 = VecIn2 = SDOperand(0, 0); |
| break; |
| } |
| } |
| |
| // If everything is good, we can make a shuffle operation. |
| if (VecIn1.Val) { |
| SmallVector<SDOperand, 8> BuildVecIndices; |
| for (unsigned i = 0; i != NumInScalars; ++i) { |
| if (N->getOperand(i).getOpcode() == ISD::UNDEF) { |
| BuildVecIndices.push_back(DAG.getNode(ISD::UNDEF, TLI.getPointerTy())); |
| continue; |
| } |
| |
| SDOperand Extract = N->getOperand(i); |
| |
| // If extracting from the first vector, just use the index directly. |
| if (Extract.getOperand(0) == VecIn1) { |
| BuildVecIndices.push_back(Extract.getOperand(1)); |
| continue; |
| } |
| |
| // Otherwise, use InIdx + VecSize |
| unsigned Idx = cast<ConstantSDNode>(Extract.getOperand(1))->getValue(); |
| BuildVecIndices.push_back(DAG.getIntPtrConstant(Idx+NumInScalars)); |
| } |
| |
| // Add count and size info. |
| MVT::ValueType BuildVecVT = MVT::getVectorType(TLI.getPointerTy(), NumElts); |
| |
| // Return the new VECTOR_SHUFFLE node. |
| SDOperand Ops[5]; |
| Ops[0] = VecIn1; |
| if (VecIn2.Val) { |
| Ops[1] = VecIn2; |
| } else { |
| // Use an undef build_vector as input for the second operand. |
| std::vector<SDOperand> UnOps(NumInScalars, |
| DAG.getNode(ISD::UNDEF, |
| EltType)); |
| Ops[1] = DAG.getNode(ISD::BUILD_VECTOR, VT, |
| &UnOps[0], UnOps.size()); |
| AddToWorkList(Ops[1].Val); |
| } |
| Ops[2] = DAG.getNode(ISD::BUILD_VECTOR, BuildVecVT, |
| &BuildVecIndices[0], BuildVecIndices.size()); |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Ops, 3); |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitCONCAT_VECTORS(SDNode *N) { |
| // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of |
| // EXTRACT_SUBVECTOR operations. If so, and if the EXTRACT_SUBVECTOR vector |
| // inputs come from at most two distinct vectors, turn this into a shuffle |
| // node. |
| |
| // If we only have one input vector, we don't need to do any concatenation. |
| if (N->getNumOperands() == 1) { |
| return N->getOperand(0); |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { |
| SDOperand ShufMask = N->getOperand(2); |
| unsigned NumElts = ShufMask.getNumOperands(); |
| |
| // If the shuffle mask is an identity operation on the LHS, return the LHS. |
| bool isIdentity = true; |
| for (unsigned i = 0; i != NumElts; ++i) { |
| if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF && |
| cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i) { |
| isIdentity = false; |
| break; |
| } |
| } |
| if (isIdentity) return N->getOperand(0); |
| |
| // If the shuffle mask is an identity operation on the RHS, return the RHS. |
| isIdentity = true; |
| for (unsigned i = 0; i != NumElts; ++i) { |
| if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF && |
| cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i+NumElts) { |
| isIdentity = false; |
| break; |
| } |
| } |
| if (isIdentity) return N->getOperand(1); |
| |
| // Check if the shuffle is a unary shuffle, i.e. one of the vectors is not |
| // needed at all. |
| bool isUnary = true; |
| bool isSplat = true; |
| int VecNum = -1; |
| unsigned BaseIdx = 0; |
| for (unsigned i = 0; i != NumElts; ++i) |
| if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF) { |
| unsigned Idx = cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue(); |
| int V = (Idx < NumElts) ? 0 : 1; |
| if (VecNum == -1) { |
| VecNum = V; |
| BaseIdx = Idx; |
| } else { |
| if (BaseIdx != Idx) |
| isSplat = false; |
| if (VecNum != V) { |
| isUnary = false; |
| break; |
| } |
| } |
| } |
| |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| // Normalize unary shuffle so the RHS is undef. |
| if (isUnary && VecNum == 1) |
| std::swap(N0, N1); |
| |
| // If it is a splat, check if the argument vector is a build_vector with |
| // all scalar elements the same. |
| if (isSplat) { |
| SDNode *V = N0.Val; |
| |
| // If this is a bit convert that changes the element type of the vector but |
| // not the number of vector elements, look through it. Be careful not to |
| // look though conversions that change things like v4f32 to v2f64. |
| if (V->getOpcode() == ISD::BIT_CONVERT) { |
| SDOperand ConvInput = V->getOperand(0); |
| if (MVT::getVectorNumElements(ConvInput.getValueType()) == NumElts) |
| V = ConvInput.Val; |
| } |
| |
| if (V->getOpcode() == ISD::BUILD_VECTOR) { |
| unsigned NumElems = V->getNumOperands(); |
| if (NumElems > BaseIdx) { |
| SDOperand Base; |
| bool AllSame = true; |
| for (unsigned i = 0; i != NumElems; ++i) { |
| if (V->getOperand(i).getOpcode() != ISD::UNDEF) { |
| Base = V->getOperand(i); |
| break; |
| } |
| } |
| // Splat of <u, u, u, u>, return <u, u, u, u> |
| if (!Base.Val) |
| return N0; |
| for (unsigned i = 0; i != NumElems; ++i) { |
| if (V->getOperand(i) != Base) { |
| AllSame = false; |
| break; |
| } |
| } |
| // Splat of <x, x, x, x>, return <x, x, x, x> |
| if (AllSame) |
| return N0; |
| } |
| } |
| } |
| |
| // If it is a unary or the LHS and the RHS are the same node, turn the RHS |
| // into an undef. |
| if (isUnary || N0 == N1) { |
| // Check the SHUFFLE mask, mapping any inputs from the 2nd operand into the |
| // first operand. |
| SmallVector<SDOperand, 8> MappedOps; |
| for (unsigned i = 0; i != NumElts; ++i) { |
| if (ShufMask.getOperand(i).getOpcode() == ISD::UNDEF || |
| cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() < NumElts) { |
| MappedOps.push_back(ShufMask.getOperand(i)); |
| } else { |
| unsigned NewIdx = |
| cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() - NumElts; |
| MappedOps.push_back(DAG.getConstant(NewIdx, MVT::i32)); |
| } |
| } |
| ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMask.getValueType(), |
| &MappedOps[0], MappedOps.size()); |
| AddToWorkList(ShufMask.Val); |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, N->getValueType(0), |
| N0, |
| DAG.getNode(ISD::UNDEF, N->getValueType(0)), |
| ShufMask); |
| } |
| |
| return SDOperand(); |
| } |
| |
| /// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform |
| /// an AND to a vector_shuffle with the destination vector and a zero vector. |
| /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==> |
| /// vector_shuffle V, Zero, <0, 4, 2, 4> |
| SDOperand DAGCombiner::XformToShuffleWithZero(SDNode *N) { |
| SDOperand LHS = N->getOperand(0); |
| SDOperand RHS = N->getOperand(1); |
| if (N->getOpcode() == ISD::AND) { |
| if (RHS.getOpcode() == ISD::BIT_CONVERT) |
| RHS = RHS.getOperand(0); |
| if (RHS.getOpcode() == ISD::BUILD_VECTOR) { |
| std::vector<SDOperand> IdxOps; |
| unsigned NumOps = RHS.getNumOperands(); |
| unsigned NumElts = NumOps; |
| MVT::ValueType EVT = MVT::getVectorElementType(RHS.getValueType()); |
| for (unsigned i = 0; i != NumElts; ++i) { |
| SDOperand Elt = RHS.getOperand(i); |
| if (!isa<ConstantSDNode>(Elt)) |
| return SDOperand(); |
| else if (cast<ConstantSDNode>(Elt)->isAllOnesValue()) |
| IdxOps.push_back(DAG.getConstant(i, EVT)); |
| else if (cast<ConstantSDNode>(Elt)->isNullValue()) |
| IdxOps.push_back(DAG.getConstant(NumElts, EVT)); |
| else |
| return SDOperand(); |
| } |
| |
| // Let's see if the target supports this vector_shuffle. |
| if (!TLI.isVectorClearMaskLegal(IdxOps, EVT, DAG)) |
| return SDOperand(); |
| |
| // Return the new VECTOR_SHUFFLE node. |
| MVT::ValueType VT = MVT::getVectorType(EVT, NumElts); |
| std::vector<SDOperand> Ops; |
| LHS = DAG.getNode(ISD::BIT_CONVERT, VT, LHS); |
| Ops.push_back(LHS); |
| AddToWorkList(LHS.Val); |
| std::vector<SDOperand> ZeroOps(NumElts, DAG.getConstant(0, EVT)); |
| Ops.push_back(DAG.getNode(ISD::BUILD_VECTOR, VT, |
| &ZeroOps[0], ZeroOps.size())); |
| Ops.push_back(DAG.getNode(ISD::BUILD_VECTOR, VT, |
| &IdxOps[0], IdxOps.size())); |
| SDOperand Result = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, |
| &Ops[0], Ops.size()); |
| if (VT != LHS.getValueType()) { |
| Result = DAG.getNode(ISD::BIT_CONVERT, LHS.getValueType(), Result); |
| } |
| return Result; |
| } |
| } |
| return SDOperand(); |
| } |
| |
| /// SimplifyVBinOp - Visit a binary vector operation, like ADD. |
| SDOperand DAGCombiner::SimplifyVBinOp(SDNode *N) { |
| // After legalize, the target may be depending on adds and other |
| // binary ops to provide legal ways to construct constants or other |
| // things. Simplifying them may result in a loss of legality. |
| if (AfterLegalize) return SDOperand(); |
| |
| MVT::ValueType VT = N->getValueType(0); |
| assert(MVT::isVector(VT) && "SimplifyVBinOp only works on vectors!"); |
| |
| MVT::ValueType EltType = MVT::getVectorElementType(VT); |
| SDOperand LHS = N->getOperand(0); |
| SDOperand RHS = N->getOperand(1); |
| SDOperand Shuffle = XformToShuffleWithZero(N); |
| if (Shuffle.Val) return Shuffle; |
| |
| // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold |
| // this operation. |
| if (LHS.getOpcode() == ISD::BUILD_VECTOR && |
| RHS.getOpcode() == ISD::BUILD_VECTOR) { |
| SmallVector<SDOperand, 8> Ops; |
| for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { |
| SDOperand LHSOp = LHS.getOperand(i); |
| SDOperand RHSOp = RHS.getOperand(i); |
| // If these two elements can't be folded, bail out. |
| if ((LHSOp.getOpcode() != ISD::UNDEF && |
| LHSOp.getOpcode() != ISD::Constant && |
| LHSOp.getOpcode() != ISD::ConstantFP) || |
| (RHSOp.getOpcode() != ISD::UNDEF && |
| RHSOp.getOpcode() != ISD::Constant && |
| RHSOp.getOpcode() != ISD::ConstantFP)) |
| break; |
| // Can't fold divide by zero. |
| if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV || |
| N->getOpcode() == ISD::FDIV) { |
| if ((RHSOp.getOpcode() == ISD::Constant && |
| cast<ConstantSDNode>(RHSOp.Val)->isNullValue()) || |
| (RHSOp.getOpcode() == ISD::ConstantFP && |
| cast<ConstantFPSDNode>(RHSOp.Val)->getValueAPF().isZero())) |
| break; |
| } |
| Ops.push_back(DAG.getNode(N->getOpcode(), EltType, LHSOp, RHSOp)); |
| AddToWorkList(Ops.back().Val); |
| assert((Ops.back().getOpcode() == ISD::UNDEF || |
| Ops.back().getOpcode() == ISD::Constant || |
| Ops.back().getOpcode() == ISD::ConstantFP) && |
| "Scalar binop didn't fold!"); |
| } |
| |
| if (Ops.size() == LHS.getNumOperands()) { |
| MVT::ValueType VT = LHS.getValueType(); |
| return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); |
| } |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2){ |
| assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!"); |
| |
| SDOperand SCC = SimplifySelectCC(N0.getOperand(0), N0.getOperand(1), N1, N2, |
| cast<CondCodeSDNode>(N0.getOperand(2))->get()); |
| // If we got a simplified select_cc node back from SimplifySelectCC, then |
| // break it down into a new SETCC node, and a new SELECT node, and then return |
| // the SELECT node, since we were called with a SELECT node. |
| if (SCC.Val) { |
| // Check to see if we got a select_cc back (to turn into setcc/select). |
| // Otherwise, just return whatever node we got back, like fabs. |
| if (SCC.getOpcode() == ISD::SELECT_CC) { |
| SDOperand SETCC = DAG.getNode(ISD::SETCC, N0.getValueType(), |
| SCC.getOperand(0), SCC.getOperand(1), |
| SCC.getOperand(4)); |
| AddToWorkList(SETCC.Val); |
| return DAG.getNode(ISD::SELECT, SCC.getValueType(), SCC.getOperand(2), |
| SCC.getOperand(3), SETCC); |
| } |
| return SCC; |
| } |
| return SDOperand(); |
| } |
| |
| /// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS |
| /// are the two values being selected between, see if we can simplify the |
| /// select. Callers of this should assume that TheSelect is deleted if this |
| /// returns true. As such, they should return the appropriate thing (e.g. the |
| /// node) back to the top-level of the DAG combiner loop to avoid it being |
| /// looked at. |
| /// |
| bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDOperand LHS, |
| SDOperand RHS) { |
| |
| // If this is a select from two identical things, try to pull the operation |
| // through the select. |
| if (LHS.getOpcode() == RHS.getOpcode() && LHS.hasOneUse() && RHS.hasOneUse()){ |
| // If this is a load and the token chain is identical, replace the select |
| // of two loads with a load through a select of the address to load from. |
| // This triggers in things like "select bool X, 10.0, 123.0" after the FP |
| // constants have been dropped into the constant pool. |
| if (LHS.getOpcode() == ISD::LOAD && |
| // Token chains must be identical. |
| LHS.getOperand(0) == RHS.getOperand(0)) { |
| LoadSDNode *LLD = cast<LoadSDNode>(LHS); |
| LoadSDNode *RLD = cast<LoadSDNode>(RHS); |
| |
| // If this is an EXTLOAD, the VT's must match. |
| if (LLD->getMemoryVT() == RLD->getMemoryVT()) { |
| // FIXME: this conflates two src values, discarding one. This is not |
| // the right thing to do, but nothing uses srcvalues now. When they do, |
| // turn SrcValue into a list of locations. |
| SDOperand Addr; |
| if (TheSelect->getOpcode() == ISD::SELECT) { |
| // Check that the condition doesn't reach either load. If so, folding |
| // this will induce a cycle into the DAG. |
| if (!LLD->isPredecessor(TheSelect->getOperand(0).Val) && |
| !RLD->isPredecessor(TheSelect->getOperand(0).Val)) { |
| Addr = DAG.getNode(ISD::SELECT, LLD->getBasePtr().getValueType(), |
| TheSelect->getOperand(0), LLD->getBasePtr(), |
| RLD->getBasePtr()); |
| } |
| } else { |
| // Check that the condition doesn't reach either load. If so, folding |
| // this will induce a cycle into the DAG. |
| if (!LLD->isPredecessor(TheSelect->getOperand(0).Val) && |
| !RLD->isPredecessor(TheSelect->getOperand(0).Val) && |
| !LLD->isPredecessor(TheSelect->getOperand(1).Val) && |
| !RLD->isPredecessor(TheSelect->getOperand(1).Val)) { |
| Addr = DAG.getNode(ISD::SELECT_CC, LLD->getBasePtr().getValueType(), |
| TheSelect->getOperand(0), |
| TheSelect->getOperand(1), |
| LLD->getBasePtr(), RLD->getBasePtr(), |
| TheSelect->getOperand(4)); |
| } |
| } |
| |
| if (Addr.Val) { |
| SDOperand Load; |
| if (LLD->getExtensionType() == ISD::NON_EXTLOAD) |
| Load = DAG.getLoad(TheSelect->getValueType(0), LLD->getChain(), |
| Addr,LLD->getSrcValue(), |
| LLD->getSrcValueOffset(), |
| LLD->isVolatile(), |
| LLD->getAlignment()); |
| else { |
| Load = DAG.getExtLoad(LLD->getExtensionType(), |
| TheSelect->getValueType(0), |
| LLD->getChain(), Addr, LLD->getSrcValue(), |
| LLD->getSrcValueOffset(), |
| LLD->getMemoryVT(), |
| LLD->isVolatile(), |
| LLD->getAlignment()); |
| } |
| // Users of the select now use the result of the load. |
| CombineTo(TheSelect, Load); |
| |
| // Users of the old loads now use the new load's chain. We know the |
| // old-load value is dead now. |
| CombineTo(LHS.Val, Load.getValue(0), Load.getValue(1)); |
| CombineTo(RHS.Val, Load.getValue(0), Load.getValue(1)); |
| return true; |
| } |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| SDOperand DAGCombiner::SimplifySelectCC(SDOperand N0, SDOperand N1, |
| SDOperand N2, SDOperand N3, |
| ISD::CondCode CC, bool NotExtCompare) { |
| |
| MVT::ValueType VT = N2.getValueType(); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val); |
| ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val); |
| ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val); |
| |
| // Determine if the condition we're dealing with is constant |
| SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false); |
| if (SCC.Val) AddToWorkList(SCC.Val); |
| ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val); |
| |
| // fold select_cc true, x, y -> x |
| if (SCCC && SCCC->getValue()) |
| return N2; |
| // fold select_cc false, x, y -> y |
| if (SCCC && SCCC->getValue() == 0) |
| return N3; |
| |
| // Check to see if we can simplify the select into an fabs node |
| if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) { |
| // Allow either -0.0 or 0.0 |
| if (CFP->getValueAPF().isZero()) { |
| // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs |
| if ((CC == ISD::SETGE || CC == ISD::SETGT) && |
| N0 == N2 && N3.getOpcode() == ISD::FNEG && |
| N2 == N3.getOperand(0)) |
| return DAG.getNode(ISD::FABS, VT, N0); |
| |
| // select (setl[te] X, +/-0.0), fneg(X), X -> fabs |
| if ((CC == ISD::SETLT || CC == ISD::SETLE) && |
| N0 == N3 && N2.getOpcode() == ISD::FNEG && |
| N2.getOperand(0) == N3) |
| return DAG.getNode(ISD::FABS, VT, N3); |
| } |
| } |
| |
| // Check to see if we can perform the "gzip trick", transforming |
| // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A |
| if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT && |
| MVT::isInteger(N0.getValueType()) && |
| MVT::isInteger(N2.getValueType()) && |
| (N1C->isNullValue() || // (a < 0) ? b : 0 |
| (N1C->getValue() == 1 && N0 == N2))) { // (a < 1) ? a : 0 |
| MVT::ValueType XType = N0.getValueType(); |
| MVT::ValueType AType = N2.getValueType(); |
| if (XType >= AType) { |
| // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a |
| // single-bit constant. |
| if (N2C && ((N2C->getValue() & (N2C->getValue()-1)) == 0)) { |
| unsigned ShCtV = Log2_64(N2C->getValue()); |
| ShCtV = MVT::getSizeInBits(XType)-ShCtV-1; |
| SDOperand ShCt = DAG.getConstant(ShCtV, TLI.getShiftAmountTy()); |
| SDOperand Shift = DAG.getNode(ISD::SRL, XType, N0, ShCt); |
| AddToWorkList(Shift.Val); |
| if (XType > AType) { |
| Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift); |
| AddToWorkList(Shift.Val); |
| } |
| return DAG.getNode(ISD::AND, AType, Shift, N2); |
| } |
| SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0, |
| DAG.getConstant(MVT::getSizeInBits(XType)-1, |
| TLI.getShiftAmountTy())); |
| AddToWorkList(Shift.Val); |
| if (XType > AType) { |
| Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift); |
| AddToWorkList(Shift.Val); |
| } |
| return DAG.getNode(ISD::AND, AType, Shift, N2); |
| } |
| } |
| |
| // fold select C, 16, 0 -> shl C, 4 |
| if (N2C && N3C && N3C->isNullValue() && isPowerOf2_64(N2C->getValue()) && |
| TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) { |
| |
| // If the caller doesn't want us to simplify this into a zext of a compare, |
| // don't do it. |
| if (NotExtCompare && N2C->getValue() == 1) |
| return SDOperand(); |
| |
| // Get a SetCC of the condition |
| // FIXME: Should probably make sure that setcc is legal if we ever have a |
| // target where it isn't. |
| SDOperand Temp, SCC; |
| // cast from setcc result type to select result type |
| if (AfterLegalize) { |
| SCC = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC); |
| if (N2.getValueType() < SCC.getValueType()) |
| Temp = DAG.getZeroExtendInReg(SCC, N2.getValueType()); |
| else |
| Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC); |
| } else { |
| SCC = DAG.getSetCC(MVT::i1, N0, N1, CC); |
| Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC); |
| } |
| AddToWorkList(SCC.Val); |
| AddToWorkList(Temp.Val); |
| |
| if (N2C->getValue() == 1) |
| return Temp; |
| // shl setcc result by log2 n2c |
| return DAG.getNode(ISD::SHL, N2.getValueType(), Temp, |
| DAG.getConstant(Log2_64(N2C->getValue()), |
| TLI.getShiftAmountTy())); |
| } |
| |
| // Check to see if this is the equivalent of setcc |
| // FIXME: Turn all of these into setcc if setcc if setcc is legal |
| // otherwise, go ahead with the folds. |
| if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getValue() == 1ULL)) { |
| MVT::ValueType XType = N0.getValueType(); |
| if (TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultTy())) { |
| SDOperand Res = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC); |
| if (Res.getValueType() != VT) |
| Res = DAG.getNode(ISD::ZERO_EXTEND, VT, Res); |
| return Res; |
| } |
| |
| // seteq X, 0 -> srl (ctlz X, log2(size(X))) |
| if (N1C && N1C->isNullValue() && CC == ISD::SETEQ && |
| TLI.isOperationLegal(ISD::CTLZ, XType)) { |
| SDOperand Ctlz = DAG.getNode(ISD::CTLZ, XType, N0); |
| return DAG.getNode(ISD::SRL, XType, Ctlz, |
| DAG.getConstant(Log2_32(MVT::getSizeInBits(XType)), |
| TLI.getShiftAmountTy())); |
| } |
| // setgt X, 0 -> srl (and (-X, ~X), size(X)-1) |
| if (N1C && N1C->isNullValue() && CC == ISD::SETGT) { |
| SDOperand NegN0 = DAG.getNode(ISD::SUB, XType, DAG.getConstant(0, XType), |
| N0); |
| SDOperand NotN0 = DAG.getNode(ISD::XOR, XType, N0, |
| DAG.getConstant(~0ULL, XType)); |
| return DAG.getNode(ISD::SRL, XType, |
| DAG.getNode(ISD::AND, XType, NegN0, NotN0), |
| DAG.getConstant(MVT::getSizeInBits(XType)-1, |
| TLI.getShiftAmountTy())); |
| } |
| // setgt X, -1 -> xor (srl (X, size(X)-1), 1) |
| if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) { |
| SDOperand Sign = DAG.getNode(ISD::SRL, XType, N0, |
| DAG.getConstant(MVT::getSizeInBits(XType)-1, |
| TLI.getShiftAmountTy())); |
| return DAG.getNode(ISD::XOR, XType, Sign, DAG.getConstant(1, XType)); |
| } |
| } |
| |
| // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X -> |
| // Y = sra (X, size(X)-1); xor (add (X, Y), Y) |
| if (N1C && N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) && |
| N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1) && |
| N2.getOperand(0) == N1 && MVT::isInteger(N0.getValueType())) { |
| MVT::ValueType XType = N0.getValueType(); |
| SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0, |
| DAG.getConstant(MVT::getSizeInBits(XType)-1, |
| TLI.getShiftAmountTy())); |
| SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift); |
| AddToWorkList(Shift.Val); |
| AddToWorkList(Add.Val); |
| return DAG.getNode(ISD::XOR, XType, Add, Shift); |
| } |
| // Check to see if this is an integer abs. select_cc setgt X, -1, X, -X -> |
| // Y = sra (X, size(X)-1); xor (add (X, Y), Y) |
| if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT && |
| N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) { |
| if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0))) { |
| MVT::ValueType XType = N0.getValueType(); |
| if (SubC->isNullValue() && MVT::isInteger(XType)) { |
| SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0, |
| DAG.getConstant(MVT::getSizeInBits(XType)-1, |
| TLI.getShiftAmountTy())); |
| SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift); |
| AddToWorkList(Shift.Val); |
| AddToWorkList(Add.Val); |
| return DAG.getNode(ISD::XOR, XType, Add, Shift); |
| } |
| } |
| } |
| |
| return SDOperand(); |
| } |
| |
| /// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC. |
| SDOperand DAGCombiner::SimplifySetCC(MVT::ValueType VT, SDOperand N0, |
| SDOperand N1, ISD::CondCode Cond, |
| bool foldBooleans) { |
| TargetLowering::DAGCombinerInfo |
| DagCombineInfo(DAG, !AfterLegalize, false, this); |
| return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo); |
| } |
| |
| /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant, |
| /// return a DAG expression to select that will generate the same value by |
| /// multiplying by a magic number. See: |
| /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> |
| SDOperand DAGCombiner::BuildSDIV(SDNode *N) { |
| std::vector<SDNode*> Built; |
| SDOperand S = TLI.BuildSDIV(N, DAG, &Built); |
| |
| for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end(); |
| ii != ee; ++ii) |
| AddToWorkList(*ii); |
| return S; |
| } |
| |
| /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant, |
| /// return a DAG expression to select that will generate the same value by |
| /// multiplying by a magic number. See: |
| /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> |
| SDOperand DAGCombiner::BuildUDIV(SDNode *N) { |
| std::vector<SDNode*> Built; |
| SDOperand S = TLI.BuildUDIV(N, DAG, &Built); |
| |
| for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end(); |
| ii != ee; ++ii) |
| AddToWorkList(*ii); |
| return S; |
| } |
| |
| /// FindBaseOffset - Return true if base is known not to alias with anything |
| /// but itself. Provides base object and offset as results. |
| static bool FindBaseOffset(SDOperand Ptr, SDOperand &Base, int64_t &Offset) { |
| // Assume it is a primitive operation. |
| Base = Ptr; Offset = 0; |
| |
| // If it's an adding a simple constant then integrate the offset. |
| if (Base.getOpcode() == ISD::ADD) { |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) { |
| Base = Base.getOperand(0); |
| Offset += C->getValue(); |
| } |
| } |
| |
| // If it's any of the following then it can't alias with anything but itself. |
| return isa<FrameIndexSDNode>(Base) || |
| isa<ConstantPoolSDNode>(Base) || |
| isa<GlobalAddressSDNode>(Base); |
| } |
| |
| /// isAlias - Return true if there is any possibility that the two addresses |
| /// overlap. |
| bool DAGCombiner::isAlias(SDOperand Ptr1, int64_t Size1, |
| const Value *SrcValue1, int SrcValueOffset1, |
| SDOperand Ptr2, int64_t Size2, |
| const Value *SrcValue2, int SrcValueOffset2) |
| { |
| // If they are the same then they must be aliases. |
| if (Ptr1 == Ptr2) return true; |
| |
| // Gather base node and offset information. |
| SDOperand Base1, Base2; |
| int64_t Offset1, Offset2; |
| bool KnownBase1 = FindBaseOffset(Ptr1, Base1, Offset1); |
| bool KnownBase2 = FindBaseOffset(Ptr2, Base2, Offset2); |
| |
| // If they have a same base address then... |
| if (Base1 == Base2) { |
| // Check to see if the addresses overlap. |
| return!((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1); |
| } |
| |
| // If we know both bases then they can't alias. |
| if (KnownBase1 && KnownBase2) return false; |
| |
| if (CombinerGlobalAA) { |
| // Use alias analysis information. |
| int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2); |
| int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset; |
| int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset; |
| AliasAnalysis::AliasResult AAResult = |
| AA.alias(SrcValue1, Overlap1, SrcValue2, Overlap2); |
| if (AAResult == AliasAnalysis::NoAlias) |
| return false; |
| } |
| |
| // Otherwise we have to assume they alias. |
| return true; |
| } |
| |
| /// FindAliasInfo - Extracts the relevant alias information from the memory |
| /// node. Returns true if the operand was a load. |
| bool DAGCombiner::FindAliasInfo(SDNode *N, |
| SDOperand &Ptr, int64_t &Size, |
| const Value *&SrcValue, int &SrcValueOffset) { |
| if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { |
| Ptr = LD->getBasePtr(); |
| Size = MVT::getSizeInBits(LD->getMemoryVT()) >> 3; |
| SrcValue = LD->getSrcValue(); |
| SrcValueOffset = LD->getSrcValueOffset(); |
| return true; |
| } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { |
| Ptr = ST->getBasePtr(); |
| Size = MVT::getSizeInBits(ST->getMemoryVT()) >> 3; |
| SrcValue = ST->getSrcValue(); |
| SrcValueOffset = ST->getSrcValueOffset(); |
| } else { |
| assert(0 && "FindAliasInfo expected a memory operand"); |
| } |
| |
| return false; |
| } |
| |
| /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes, |
| /// looking for aliasing nodes and adding them to the Aliases vector. |
| void DAGCombiner::GatherAllAliases(SDNode *N, SDOperand OriginalChain, |
| SmallVector<SDOperand, 8> &Aliases) { |
| SmallVector<SDOperand, 8> Chains; // List of chains to visit. |
| std::set<SDNode *> Visited; // Visited node set. |
| |
| // Get alias information for node. |
| SDOperand Ptr; |
| int64_t Size; |
| const Value *SrcValue; |
| int SrcValueOffset; |
| bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset); |
| |
| // Starting off. |
| Chains.push_back(OriginalChain); |
| |
| // Look at each chain and determine if it is an alias. If so, add it to the |
| // aliases list. If not, then continue up the chain looking for the next |
| // candidate. |
| while (!Chains.empty()) { |
| SDOperand Chain = Chains.back(); |
| Chains.pop_back(); |
| |
| // Don't bother if we've been before. |
| if (Visited.find(Chain.Val) != Visited.end()) continue; |
| Visited.insert(Chain.Val); |
| |
| switch (Chain.getOpcode()) { |
| case ISD::EntryToken: |
| // Entry token is ideal chain operand, but handled in FindBetterChain. |
| break; |
| |
| case ISD::LOAD: |
| case ISD::STORE: { |
| // Get alias information for Chain. |
| SDOperand OpPtr; |
| int64_t OpSize; |
| const Value *OpSrcValue; |
| int OpSrcValueOffset; |
| bool IsOpLoad = FindAliasInfo(Chain.Val, OpPtr, OpSize, |
| OpSrcValue, OpSrcValueOffset); |
| |
| // If chain is alias then stop here. |
| if (!(IsLoad && IsOpLoad) && |
| isAlias(Ptr, Size, SrcValue, SrcValueOffset, |
| OpPtr, OpSize, OpSrcValue, OpSrcValueOffset)) { |
| Aliases.push_back(Chain); |
| } else { |
| // Look further up the chain. |
| Chains.push_back(Chain.getOperand(0)); |
| // Clean up old chain. |
| AddToWorkList(Chain.Val); |
| } |
| break; |
| } |
| |
| case ISD::TokenFactor: |
| // We have to check each of the operands of the token factor, so we queue |
| // then up. Adding the operands to the queue (stack) in reverse order |
| // maintains the original order and increases the likelihood that getNode |
| // will find a matching token factor (CSE.) |
| for (unsigned n = Chain.getNumOperands(); n;) |
| Chains.push_back(Chain.getOperand(--n)); |
| // Eliminate the token factor if we can. |
| AddToWorkList(Chain.Val); |
| break; |
| |
| default: |
| // For all other instructions we will just have to take what we can get. |
| Aliases.push_back(Chain); |
| break; |
| } |
| } |
| } |
| |
| /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking |
| /// for a better chain (aliasing node.) |
| SDOperand DAGCombiner::FindBetterChain(SDNode *N, SDOperand OldChain) { |
| SmallVector<SDOperand, 8> Aliases; // Ops for replacing token factor. |
| |
| // Accumulate all the aliases to this node. |
| GatherAllAliases(N, OldChain, Aliases); |
| |
| if (Aliases.size() == 0) { |
| // If no operands then chain to entry token. |
| return DAG.getEntryNode(); |
| } else if (Aliases.size() == 1) { |
| // If a single operand then chain to it. We don't need to revisit it. |
| return Aliases[0]; |
| } |
| |
| // Construct a custom tailored token factor. |
| SDOperand NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, |
| &Aliases[0], Aliases.size()); |
| |
| // Make sure the old chain gets cleaned up. |
| if (NewChain != OldChain) AddToWorkList(OldChain.Val); |
| |
| return NewChain; |
| } |
| |
| // SelectionDAG::Combine - This is the entry point for the file. |
| // |
| void SelectionDAG::Combine(bool RunningAfterLegalize, AliasAnalysis &AA) { |
| if (!RunningAfterLegalize && ViewDAGCombine1) |
| viewGraph(); |
| if (RunningAfterLegalize && ViewDAGCombine2) |
| viewGraph(); |
| /// run - This is the main entry point to this class. |
| /// |
| DAGCombiner(*this, AA).Run(RunningAfterLegalize); |
| } |