| //===- BasicTargetTransformInfo.cpp - Basic target-independent TTI impl ---===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| /// \file |
| /// This file provides the implementation of a basic TargetTransformInfo pass |
| /// predicated on the target abstractions present in the target independent |
| /// code generator. It uses these (primarily TargetLowering) to model as much |
| /// of the TTI query interface as possible. It is included by most targets so |
| /// that they can specialize only a small subset of the query space. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "basictti" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include <utility> |
| |
| using namespace llvm; |
| |
| namespace { |
| |
| class BasicTTI : public ImmutablePass, public TargetTransformInfo { |
| const TargetLoweringBase *TLI; |
| |
| /// Estimate the overhead of scalarizing an instruction. Insert and Extract |
| /// are set if the result needs to be inserted and/or extracted from vectors. |
| unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const; |
| |
| public: |
| BasicTTI() : ImmutablePass(ID), TLI(0) { |
| llvm_unreachable("This pass cannot be directly constructed"); |
| } |
| |
| BasicTTI(const TargetLoweringBase *TLI) : ImmutablePass(ID), TLI(TLI) { |
| initializeBasicTTIPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| virtual void initializePass() { |
| pushTTIStack(this); |
| } |
| |
| virtual void finalizePass() { |
| popTTIStack(); |
| } |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| TargetTransformInfo::getAnalysisUsage(AU); |
| } |
| |
| /// Pass identification. |
| static char ID; |
| |
| /// Provide necessary pointer adjustments for the two base classes. |
| virtual void *getAdjustedAnalysisPointer(const void *ID) { |
| if (ID == &TargetTransformInfo::ID) |
| return (TargetTransformInfo*)this; |
| return this; |
| } |
| |
| /// \name Scalar TTI Implementations |
| /// @{ |
| |
| virtual bool isLegalAddImmediate(int64_t imm) const; |
| virtual bool isLegalICmpImmediate(int64_t imm) const; |
| virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, |
| int64_t BaseOffset, bool HasBaseReg, |
| int64_t Scale) const; |
| virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const; |
| virtual bool isTypeLegal(Type *Ty) const; |
| virtual unsigned getJumpBufAlignment() const; |
| virtual unsigned getJumpBufSize() const; |
| virtual bool shouldBuildLookupTables() const; |
| |
| /// @} |
| |
| /// \name Vector TTI Implementations |
| /// @{ |
| |
| virtual unsigned getNumberOfRegisters(bool Vector) const; |
| virtual unsigned getMaximumUnrollFactor() const; |
| virtual unsigned getRegisterBitWidth(bool Vector) const; |
| virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty) const; |
| virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp, |
| int Index, Type *SubTp) const; |
| virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst, |
| Type *Src) const; |
| virtual unsigned getCFInstrCost(unsigned Opcode) const; |
| virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, |
| Type *CondTy) const; |
| virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val, |
| unsigned Index) const; |
| virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src, |
| unsigned Alignment, |
| unsigned AddressSpace) const; |
| virtual unsigned getIntrinsicInstrCost(Intrinsic::ID, Type *RetTy, |
| ArrayRef<Type*> Tys) const; |
| virtual unsigned getNumberOfParts(Type *Tp) const; |
| virtual unsigned getAddressComputationCost(Type *Ty) const; |
| |
| /// @} |
| }; |
| |
| } |
| |
| INITIALIZE_AG_PASS(BasicTTI, TargetTransformInfo, "basictti", |
| "Target independent code generator's TTI", true, true, false) |
| char BasicTTI::ID = 0; |
| |
| ImmutablePass * |
| llvm::createBasicTargetTransformInfoPass(const TargetLoweringBase *TLI) { |
| return new BasicTTI(TLI); |
| } |
| |
| |
| bool BasicTTI::isLegalAddImmediate(int64_t imm) const { |
| return TLI->isLegalAddImmediate(imm); |
| } |
| |
| bool BasicTTI::isLegalICmpImmediate(int64_t imm) const { |
| return TLI->isLegalICmpImmediate(imm); |
| } |
| |
| bool BasicTTI::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, |
| int64_t BaseOffset, bool HasBaseReg, |
| int64_t Scale) const { |
| TargetLoweringBase::AddrMode AM; |
| AM.BaseGV = BaseGV; |
| AM.BaseOffs = BaseOffset; |
| AM.HasBaseReg = HasBaseReg; |
| AM.Scale = Scale; |
| return TLI->isLegalAddressingMode(AM, Ty); |
| } |
| |
| bool BasicTTI::isTruncateFree(Type *Ty1, Type *Ty2) const { |
| return TLI->isTruncateFree(Ty1, Ty2); |
| } |
| |
| bool BasicTTI::isTypeLegal(Type *Ty) const { |
| EVT T = TLI->getValueType(Ty); |
| return TLI->isTypeLegal(T); |
| } |
| |
| unsigned BasicTTI::getJumpBufAlignment() const { |
| return TLI->getJumpBufAlignment(); |
| } |
| |
| unsigned BasicTTI::getJumpBufSize() const { |
| return TLI->getJumpBufSize(); |
| } |
| |
| bool BasicTTI::shouldBuildLookupTables() const { |
| return TLI->supportJumpTables() && |
| (TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || |
| TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // |
| // Calls used by the vectorizers. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| unsigned BasicTTI::getScalarizationOverhead(Type *Ty, bool Insert, |
| bool Extract) const { |
| assert (Ty->isVectorTy() && "Can only scalarize vectors"); |
| unsigned Cost = 0; |
| |
| for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { |
| if (Insert) |
| Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); |
| if (Extract) |
| Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i); |
| } |
| |
| return Cost; |
| } |
| |
| unsigned BasicTTI::getNumberOfRegisters(bool Vector) const { |
| return 1; |
| } |
| |
| unsigned BasicTTI::getRegisterBitWidth(bool Vector) const { |
| return 32; |
| } |
| |
| unsigned BasicTTI::getMaximumUnrollFactor() const { |
| return 1; |
| } |
| |
| unsigned BasicTTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty) const { |
| // Check if any of the operands are vector operands. |
| int ISD = TLI->InstructionOpcodeToISD(Opcode); |
| assert(ISD && "Invalid opcode"); |
| |
| std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty); |
| |
| if (TLI->isOperationLegalOrPromote(ISD, LT.second)) { |
| // The operation is legal. Assume it costs 1. |
| // If the type is split to multiple registers, assume that thre is some |
| // overhead to this. |
| // TODO: Once we have extract/insert subvector cost we need to use them. |
| if (LT.first > 1) |
| return LT.first * 2; |
| return LT.first * 1; |
| } |
| |
| if (!TLI->isOperationExpand(ISD, LT.second)) { |
| // If the operation is custom lowered then assume |
| // thare the code is twice as expensive. |
| return LT.first * 2; |
| } |
| |
| // Else, assume that we need to scalarize this op. |
| if (Ty->isVectorTy()) { |
| unsigned Num = Ty->getVectorNumElements(); |
| unsigned Cost = TopTTI->getArithmeticInstrCost(Opcode, Ty->getScalarType()); |
| // return the cost of multiple scalar invocation plus the cost of inserting |
| // and extracting the values. |
| return getScalarizationOverhead(Ty, true, true) + Num * Cost; |
| } |
| |
| // We don't know anything about this scalar instruction. |
| return 1; |
| } |
| |
| unsigned BasicTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index, |
| Type *SubTp) const { |
| return 1; |
| } |
| |
| unsigned BasicTTI::getCastInstrCost(unsigned Opcode, Type *Dst, |
| Type *Src) const { |
| int ISD = TLI->InstructionOpcodeToISD(Opcode); |
| assert(ISD && "Invalid opcode"); |
| |
| std::pair<unsigned, MVT> SrcLT = TLI->getTypeLegalizationCost(Src); |
| std::pair<unsigned, MVT> DstLT = TLI->getTypeLegalizationCost(Dst); |
| |
| // Check for NOOP conversions. |
| if (SrcLT.first == DstLT.first && |
| SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) { |
| |
| // Bitcast between types that are legalized to the same type are free. |
| if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc) |
| return 0; |
| } |
| |
| if (Opcode == Instruction::Trunc && |
| TLI->isTruncateFree(SrcLT.second, DstLT.second)) |
| return 0; |
| |
| if (Opcode == Instruction::ZExt && |
| TLI->isZExtFree(SrcLT.second, DstLT.second)) |
| return 0; |
| |
| // If the cast is marked as legal (or promote) then assume low cost. |
| if (TLI->isOperationLegalOrPromote(ISD, DstLT.second)) |
| return 1; |
| |
| // Handle scalar conversions. |
| if (!Src->isVectorTy() && !Dst->isVectorTy()) { |
| |
| // Scalar bitcasts are usually free. |
| if (Opcode == Instruction::BitCast) |
| return 0; |
| |
| // Just check the op cost. If the operation is legal then assume it costs 1. |
| if (!TLI->isOperationExpand(ISD, DstLT.second)) |
| return 1; |
| |
| // Assume that illegal scalar instruction are expensive. |
| return 4; |
| } |
| |
| // Check vector-to-vector casts. |
| if (Dst->isVectorTy() && Src->isVectorTy()) { |
| |
| // If the cast is between same-sized registers, then the check is simple. |
| if (SrcLT.first == DstLT.first && |
| SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) { |
| |
| // Assume that Zext is done using AND. |
| if (Opcode == Instruction::ZExt) |
| return 1; |
| |
| // Assume that sext is done using SHL and SRA. |
| if (Opcode == Instruction::SExt) |
| return 2; |
| |
| // Just check the op cost. If the operation is legal then assume it costs |
| // 1 and multiply by the type-legalization overhead. |
| if (!TLI->isOperationExpand(ISD, DstLT.second)) |
| return SrcLT.first * 1; |
| } |
| |
| // If we are converting vectors and the operation is illegal, or |
| // if the vectors are legalized to different types, estimate the |
| // scalarization costs. |
| unsigned Num = Dst->getVectorNumElements(); |
| unsigned Cost = TopTTI->getCastInstrCost(Opcode, Dst->getScalarType(), |
| Src->getScalarType()); |
| |
| // Return the cost of multiple scalar invocation plus the cost of |
| // inserting and extracting the values. |
| return getScalarizationOverhead(Dst, true, true) + Num * Cost; |
| } |
| |
| // We already handled vector-to-vector and scalar-to-scalar conversions. This |
| // is where we handle bitcast between vectors and scalars. We need to assume |
| // that the conversion is scalarized in one way or another. |
| if (Opcode == Instruction::BitCast) |
| // Illegal bitcasts are done by storing and loading from a stack slot. |
| return (Src->isVectorTy()? getScalarizationOverhead(Src, false, true):0) + |
| (Dst->isVectorTy()? getScalarizationOverhead(Dst, true, false):0); |
| |
| llvm_unreachable("Unhandled cast"); |
| } |
| |
| unsigned BasicTTI::getCFInstrCost(unsigned Opcode) const { |
| // Branches are assumed to be predicted. |
| return 0; |
| } |
| |
| unsigned BasicTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, |
| Type *CondTy) const { |
| int ISD = TLI->InstructionOpcodeToISD(Opcode); |
| assert(ISD && "Invalid opcode"); |
| |
| // Selects on vectors are actually vector selects. |
| if (ISD == ISD::SELECT) { |
| assert(CondTy && "CondTy must exist"); |
| if (CondTy->isVectorTy()) |
| ISD = ISD::VSELECT; |
| } |
| |
| std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy); |
| |
| if (!TLI->isOperationExpand(ISD, LT.second)) { |
| // The operation is legal. Assume it costs 1. Multiply |
| // by the type-legalization overhead. |
| return LT.first * 1; |
| } |
| |
| // Otherwise, assume that the cast is scalarized. |
| if (ValTy->isVectorTy()) { |
| unsigned Num = ValTy->getVectorNumElements(); |
| if (CondTy) |
| CondTy = CondTy->getScalarType(); |
| unsigned Cost = TopTTI->getCmpSelInstrCost(Opcode, ValTy->getScalarType(), |
| CondTy); |
| |
| // Return the cost of multiple scalar invocation plus the cost of inserting |
| // and extracting the values. |
| return getScalarizationOverhead(ValTy, true, false) + Num * Cost; |
| } |
| |
| // Unknown scalar opcode. |
| return 1; |
| } |
| |
| unsigned BasicTTI::getVectorInstrCost(unsigned Opcode, Type *Val, |
| unsigned Index) const { |
| return 1; |
| } |
| |
| unsigned BasicTTI::getMemoryOpCost(unsigned Opcode, Type *Src, |
| unsigned Alignment, |
| unsigned AddressSpace) const { |
| assert(!Src->isVoidTy() && "Invalid type"); |
| std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src); |
| |
| // Assume that all loads of legal types cost 1. |
| return LT.first; |
| } |
| |
| unsigned BasicTTI::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy, |
| ArrayRef<Type *> Tys) const { |
| unsigned ISD = 0; |
| switch (IID) { |
| default: { |
| // Assume that we need to scalarize this intrinsic. |
| unsigned ScalarizationCost = 0; |
| unsigned ScalarCalls = 1; |
| if (RetTy->isVectorTy()) { |
| ScalarizationCost = getScalarizationOverhead(RetTy, true, false); |
| ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements()); |
| } |
| for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) { |
| if (Tys[i]->isVectorTy()) { |
| ScalarizationCost += getScalarizationOverhead(Tys[i], false, true); |
| ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements()); |
| } |
| } |
| |
| return ScalarCalls + ScalarizationCost; |
| } |
| // Look for intrinsics that can be lowered directly or turned into a scalar |
| // intrinsic call. |
| case Intrinsic::sqrt: ISD = ISD::FSQRT; break; |
| case Intrinsic::sin: ISD = ISD::FSIN; break; |
| case Intrinsic::cos: ISD = ISD::FCOS; break; |
| case Intrinsic::exp: ISD = ISD::FEXP; break; |
| case Intrinsic::exp2: ISD = ISD::FEXP2; break; |
| case Intrinsic::log: ISD = ISD::FLOG; break; |
| case Intrinsic::log10: ISD = ISD::FLOG10; break; |
| case Intrinsic::log2: ISD = ISD::FLOG2; break; |
| case Intrinsic::fabs: ISD = ISD::FABS; break; |
| case Intrinsic::floor: ISD = ISD::FFLOOR; break; |
| case Intrinsic::ceil: ISD = ISD::FCEIL; break; |
| case Intrinsic::trunc: ISD = ISD::FTRUNC; break; |
| case Intrinsic::rint: ISD = ISD::FRINT; break; |
| case Intrinsic::pow: ISD = ISD::FPOW; break; |
| case Intrinsic::fma: ISD = ISD::FMA; break; |
| case Intrinsic::fmuladd: ISD = ISD::FMA; break; // FIXME: mul + add? |
| } |
| |
| std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(RetTy); |
| |
| if (TLI->isOperationLegalOrPromote(ISD, LT.second)) { |
| // The operation is legal. Assume it costs 1. |
| // If the type is split to multiple registers, assume that thre is some |
| // overhead to this. |
| // TODO: Once we have extract/insert subvector cost we need to use them. |
| if (LT.first > 1) |
| return LT.first * 2; |
| return LT.first * 1; |
| } |
| |
| if (!TLI->isOperationExpand(ISD, LT.second)) { |
| // If the operation is custom lowered then assume |
| // thare the code is twice as expensive. |
| return LT.first * 2; |
| } |
| |
| // Else, assume that we need to scalarize this intrinsic. For math builtins |
| // this will emit a costly libcall, adding call overhead and spills. Make it |
| // very expensive. |
| if (RetTy->isVectorTy()) { |
| unsigned Num = RetTy->getVectorNumElements(); |
| unsigned Cost = TopTTI->getIntrinsicInstrCost(IID, RetTy->getScalarType(), |
| Tys); |
| return 10 * Cost * Num; |
| } |
| |
| // This is going to be turned into a library call, make it expensive. |
| return 10; |
| } |
| |
| unsigned BasicTTI::getNumberOfParts(Type *Tp) const { |
| std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp); |
| return LT.first; |
| } |
| |
| unsigned BasicTTI::getAddressComputationCost(Type *Ty) const { |
| return 0; |
| } |