| //===-------- InlineSpiller.cpp - Insert spills and restores inline -------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // The inline spiller modifies the machine function directly instead of |
| // inserting spills and restores in VirtRegMap. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "regalloc" |
| #include "Spiller.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/TinyPtrVector.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h" |
| #include "llvm/CodeGen/LiveRangeEdit.h" |
| #include "llvm/CodeGen/LiveStackAnalysis.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBundle.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/VirtRegMap.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| |
| using namespace llvm; |
| |
| STATISTIC(NumSpilledRanges, "Number of spilled live ranges"); |
| STATISTIC(NumSnippets, "Number of spilled snippets"); |
| STATISTIC(NumSpills, "Number of spills inserted"); |
| STATISTIC(NumSpillsRemoved, "Number of spills removed"); |
| STATISTIC(NumReloads, "Number of reloads inserted"); |
| STATISTIC(NumReloadsRemoved, "Number of reloads removed"); |
| STATISTIC(NumFolded, "Number of folded stack accesses"); |
| STATISTIC(NumFoldedLoads, "Number of folded loads"); |
| STATISTIC(NumRemats, "Number of rematerialized defs for spilling"); |
| STATISTIC(NumOmitReloadSpill, "Number of omitted spills of reloads"); |
| STATISTIC(NumHoists, "Number of hoisted spills"); |
| |
| static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden, |
| cl::desc("Disable inline spill hoisting")); |
| |
| namespace { |
| class InlineSpiller : public Spiller { |
| MachineFunction &MF; |
| LiveIntervals &LIS; |
| LiveStacks &LSS; |
| AliasAnalysis *AA; |
| MachineDominatorTree &MDT; |
| MachineLoopInfo &Loops; |
| VirtRegMap &VRM; |
| MachineFrameInfo &MFI; |
| MachineRegisterInfo &MRI; |
| const TargetInstrInfo &TII; |
| const TargetRegisterInfo &TRI; |
| |
| // Variables that are valid during spill(), but used by multiple methods. |
| LiveRangeEdit *Edit; |
| LiveInterval *StackInt; |
| int StackSlot; |
| unsigned Original; |
| |
| // All registers to spill to StackSlot, including the main register. |
| SmallVector<unsigned, 8> RegsToSpill; |
| |
| // All COPY instructions to/from snippets. |
| // They are ignored since both operands refer to the same stack slot. |
| SmallPtrSet<MachineInstr*, 8> SnippetCopies; |
| |
| // Values that failed to remat at some point. |
| SmallPtrSet<VNInfo*, 8> UsedValues; |
| |
| public: |
| // Information about a value that was defined by a copy from a sibling |
| // register. |
| struct SibValueInfo { |
| // True when all reaching defs were reloads: No spill is necessary. |
| bool AllDefsAreReloads; |
| |
| // True when value is defined by an original PHI not from splitting. |
| bool DefByOrigPHI; |
| |
| // True when the COPY defining this value killed its source. |
| bool KillsSource; |
| |
| // The preferred register to spill. |
| unsigned SpillReg; |
| |
| // The value of SpillReg that should be spilled. |
| VNInfo *SpillVNI; |
| |
| // The block where SpillVNI should be spilled. Currently, this must be the |
| // block containing SpillVNI->def. |
| MachineBasicBlock *SpillMBB; |
| |
| // A defining instruction that is not a sibling copy or a reload, or NULL. |
| // This can be used as a template for rematerialization. |
| MachineInstr *DefMI; |
| |
| // List of values that depend on this one. These values are actually the |
| // same, but live range splitting has placed them in different registers, |
| // or SSA update needed to insert PHI-defs to preserve SSA form. This is |
| // copies of the current value and phi-kills. Usually only phi-kills cause |
| // more than one dependent value. |
| TinyPtrVector<VNInfo*> Deps; |
| |
| SibValueInfo(unsigned Reg, VNInfo *VNI) |
| : AllDefsAreReloads(true), DefByOrigPHI(false), KillsSource(false), |
| SpillReg(Reg), SpillVNI(VNI), SpillMBB(0), DefMI(0) {} |
| |
| // Returns true when a def has been found. |
| bool hasDef() const { return DefByOrigPHI || DefMI; } |
| }; |
| |
| private: |
| // Values in RegsToSpill defined by sibling copies. |
| typedef DenseMap<VNInfo*, SibValueInfo> SibValueMap; |
| SibValueMap SibValues; |
| |
| // Dead defs generated during spilling. |
| SmallVector<MachineInstr*, 8> DeadDefs; |
| |
| ~InlineSpiller() {} |
| |
| public: |
| InlineSpiller(MachineFunctionPass &pass, |
| MachineFunction &mf, |
| VirtRegMap &vrm) |
| : MF(mf), |
| LIS(pass.getAnalysis<LiveIntervals>()), |
| LSS(pass.getAnalysis<LiveStacks>()), |
| AA(&pass.getAnalysis<AliasAnalysis>()), |
| MDT(pass.getAnalysis<MachineDominatorTree>()), |
| Loops(pass.getAnalysis<MachineLoopInfo>()), |
| VRM(vrm), |
| MFI(*mf.getFrameInfo()), |
| MRI(mf.getRegInfo()), |
| TII(*mf.getTarget().getInstrInfo()), |
| TRI(*mf.getTarget().getRegisterInfo()) {} |
| |
| void spill(LiveRangeEdit &); |
| |
| private: |
| bool isSnippet(const LiveInterval &SnipLI); |
| void collectRegsToSpill(); |
| |
| bool isRegToSpill(unsigned Reg) { |
| return std::find(RegsToSpill.begin(), |
| RegsToSpill.end(), Reg) != RegsToSpill.end(); |
| } |
| |
| bool isSibling(unsigned Reg); |
| MachineInstr *traceSiblingValue(unsigned, VNInfo*, VNInfo*); |
| void propagateSiblingValue(SibValueMap::iterator, VNInfo *VNI = 0); |
| void analyzeSiblingValues(); |
| |
| bool hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI); |
| void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI); |
| |
| void markValueUsed(LiveInterval*, VNInfo*); |
| bool reMaterializeFor(LiveInterval&, MachineBasicBlock::iterator MI); |
| void reMaterializeAll(); |
| |
| bool coalesceStackAccess(MachineInstr *MI, unsigned Reg); |
| bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> >, |
| MachineInstr *LoadMI = 0); |
| void insertReload(LiveInterval &NewLI, SlotIndex, |
| MachineBasicBlock::iterator MI); |
| void insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI, |
| SlotIndex, MachineBasicBlock::iterator MI); |
| |
| void spillAroundUses(unsigned Reg); |
| void spillAll(); |
| }; |
| } |
| |
| namespace llvm { |
| Spiller *createInlineSpiller(MachineFunctionPass &pass, |
| MachineFunction &mf, |
| VirtRegMap &vrm) { |
| return new InlineSpiller(pass, mf, vrm); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Snippets |
| //===----------------------------------------------------------------------===// |
| |
| // When spilling a virtual register, we also spill any snippets it is connected |
| // to. The snippets are small live ranges that only have a single real use, |
| // leftovers from live range splitting. Spilling them enables memory operand |
| // folding or tightens the live range around the single use. |
| // |
| // This minimizes register pressure and maximizes the store-to-load distance for |
| // spill slots which can be important in tight loops. |
| |
| /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register, |
| /// otherwise return 0. |
| static unsigned isFullCopyOf(const MachineInstr *MI, unsigned Reg) { |
| if (!MI->isFullCopy()) |
| return 0; |
| if (MI->getOperand(0).getReg() == Reg) |
| return MI->getOperand(1).getReg(); |
| if (MI->getOperand(1).getReg() == Reg) |
| return MI->getOperand(0).getReg(); |
| return 0; |
| } |
| |
| /// isSnippet - Identify if a live interval is a snippet that should be spilled. |
| /// It is assumed that SnipLI is a virtual register with the same original as |
| /// Edit->getReg(). |
| bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) { |
| unsigned Reg = Edit->getReg(); |
| |
| // A snippet is a tiny live range with only a single instruction using it |
| // besides copies to/from Reg or spills/fills. We accept: |
| // |
| // %snip = COPY %Reg / FILL fi# |
| // %snip = USE %snip |
| // %Reg = COPY %snip / SPILL %snip, fi# |
| // |
| if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI)) |
| return false; |
| |
| MachineInstr *UseMI = 0; |
| |
| // Check that all uses satisfy our criteria. |
| for (MachineRegisterInfo::reg_nodbg_iterator |
| RI = MRI.reg_nodbg_begin(SnipLI.reg); |
| MachineInstr *MI = RI.skipInstruction();) { |
| |
| // Allow copies to/from Reg. |
| if (isFullCopyOf(MI, Reg)) |
| continue; |
| |
| // Allow stack slot loads. |
| int FI; |
| if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) |
| continue; |
| |
| // Allow stack slot stores. |
| if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) |
| continue; |
| |
| // Allow a single additional instruction. |
| if (UseMI && MI != UseMI) |
| return false; |
| UseMI = MI; |
| } |
| return true; |
| } |
| |
| /// collectRegsToSpill - Collect live range snippets that only have a single |
| /// real use. |
| void InlineSpiller::collectRegsToSpill() { |
| unsigned Reg = Edit->getReg(); |
| |
| // Main register always spills. |
| RegsToSpill.assign(1, Reg); |
| SnippetCopies.clear(); |
| |
| // Snippets all have the same original, so there can't be any for an original |
| // register. |
| if (Original == Reg) |
| return; |
| |
| for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Reg); |
| MachineInstr *MI = RI.skipInstruction();) { |
| unsigned SnipReg = isFullCopyOf(MI, Reg); |
| if (!isSibling(SnipReg)) |
| continue; |
| LiveInterval &SnipLI = LIS.getInterval(SnipReg); |
| if (!isSnippet(SnipLI)) |
| continue; |
| SnippetCopies.insert(MI); |
| if (isRegToSpill(SnipReg)) |
| continue; |
| RegsToSpill.push_back(SnipReg); |
| DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n'); |
| ++NumSnippets; |
| } |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Sibling Values |
| //===----------------------------------------------------------------------===// |
| |
| // After live range splitting, some values to be spilled may be defined by |
| // copies from sibling registers. We trace the sibling copies back to the |
| // original value if it still exists. We need it for rematerialization. |
| // |
| // Even when the value can't be rematerialized, we still want to determine if |
| // the value has already been spilled, or we may want to hoist the spill from a |
| // loop. |
| |
| bool InlineSpiller::isSibling(unsigned Reg) { |
| return TargetRegisterInfo::isVirtualRegister(Reg) && |
| VRM.getOriginal(Reg) == Original; |
| } |
| |
| #ifndef NDEBUG |
| static raw_ostream &operator<<(raw_ostream &OS, |
| const InlineSpiller::SibValueInfo &SVI) { |
| OS << "spill " << PrintReg(SVI.SpillReg) << ':' |
| << SVI.SpillVNI->id << '@' << SVI.SpillVNI->def; |
| if (SVI.SpillMBB) |
| OS << " in BB#" << SVI.SpillMBB->getNumber(); |
| if (SVI.AllDefsAreReloads) |
| OS << " all-reloads"; |
| if (SVI.DefByOrigPHI) |
| OS << " orig-phi"; |
| if (SVI.KillsSource) |
| OS << " kill"; |
| OS << " deps["; |
| for (unsigned i = 0, e = SVI.Deps.size(); i != e; ++i) |
| OS << ' ' << SVI.Deps[i]->id << '@' << SVI.Deps[i]->def; |
| OS << " ]"; |
| if (SVI.DefMI) |
| OS << " def: " << *SVI.DefMI; |
| else |
| OS << '\n'; |
| return OS; |
| } |
| #endif |
| |
| /// propagateSiblingValue - Propagate the value in SVI to dependents if it is |
| /// known. Otherwise remember the dependency for later. |
| /// |
| /// @param SVI SibValues entry to propagate. |
| /// @param VNI Dependent value, or NULL to propagate to all saved dependents. |
| void InlineSpiller::propagateSiblingValue(SibValueMap::iterator SVI, |
| VNInfo *VNI) { |
| // When VNI is non-NULL, add it to SVI's deps, and only propagate to that. |
| TinyPtrVector<VNInfo*> FirstDeps; |
| if (VNI) { |
| FirstDeps.push_back(VNI); |
| SVI->second.Deps.push_back(VNI); |
| } |
| |
| // Has the value been completely determined yet? If not, defer propagation. |
| if (!SVI->second.hasDef()) |
| return; |
| |
| // Work list of values to propagate. It would be nice to use a SetVector |
| // here, but then we would be forced to use a SmallSet. |
| SmallVector<SibValueMap::iterator, 8> WorkList(1, SVI); |
| SmallPtrSet<VNInfo*, 8> WorkSet; |
| |
| do { |
| SVI = WorkList.pop_back_val(); |
| WorkSet.erase(SVI->first); |
| TinyPtrVector<VNInfo*> *Deps = VNI ? &FirstDeps : &SVI->second.Deps; |
| VNI = 0; |
| |
| SibValueInfo &SV = SVI->second; |
| if (!SV.SpillMBB) |
| SV.SpillMBB = LIS.getMBBFromIndex(SV.SpillVNI->def); |
| |
| DEBUG(dbgs() << " prop to " << Deps->size() << ": " |
| << SVI->first->id << '@' << SVI->first->def << ":\t" << SV); |
| |
| assert(SV.hasDef() && "Propagating undefined value"); |
| |
| // Should this value be propagated as a preferred spill candidate? We don't |
| // propagate values of registers that are about to spill. |
| bool PropSpill = !DisableHoisting && !isRegToSpill(SV.SpillReg); |
| unsigned SpillDepth = ~0u; |
| |
| for (TinyPtrVector<VNInfo*>::iterator DepI = Deps->begin(), |
| DepE = Deps->end(); DepI != DepE; ++DepI) { |
| SibValueMap::iterator DepSVI = SibValues.find(*DepI); |
| assert(DepSVI != SibValues.end() && "Dependent value not in SibValues"); |
| SibValueInfo &DepSV = DepSVI->second; |
| if (!DepSV.SpillMBB) |
| DepSV.SpillMBB = LIS.getMBBFromIndex(DepSV.SpillVNI->def); |
| |
| bool Changed = false; |
| |
| // Propagate defining instruction. |
| if (!DepSV.hasDef()) { |
| Changed = true; |
| DepSV.DefMI = SV.DefMI; |
| DepSV.DefByOrigPHI = SV.DefByOrigPHI; |
| } |
| |
| // Propagate AllDefsAreReloads. For PHI values, this computes an AND of |
| // all predecessors. |
| if (!SV.AllDefsAreReloads && DepSV.AllDefsAreReloads) { |
| Changed = true; |
| DepSV.AllDefsAreReloads = false; |
| } |
| |
| // Propagate best spill value. |
| if (PropSpill && SV.SpillVNI != DepSV.SpillVNI) { |
| if (SV.SpillMBB == DepSV.SpillMBB) { |
| // DepSV is in the same block. Hoist when dominated. |
| if (DepSV.KillsSource && SV.SpillVNI->def < DepSV.SpillVNI->def) { |
| // This is an alternative def earlier in the same MBB. |
| // Hoist the spill as far as possible in SpillMBB. This can ease |
| // register pressure: |
| // |
| // x = def |
| // y = use x |
| // s = copy x |
| // |
| // Hoisting the spill of s to immediately after the def removes the |
| // interference between x and y: |
| // |
| // x = def |
| // spill x |
| // y = use x<kill> |
| // |
| // This hoist only helps when the DepSV copy kills its source. |
| Changed = true; |
| DepSV.SpillReg = SV.SpillReg; |
| DepSV.SpillVNI = SV.SpillVNI; |
| DepSV.SpillMBB = SV.SpillMBB; |
| } |
| } else { |
| // DepSV is in a different block. |
| if (SpillDepth == ~0u) |
| SpillDepth = Loops.getLoopDepth(SV.SpillMBB); |
| |
| // Also hoist spills to blocks with smaller loop depth, but make sure |
| // that the new value dominates. Non-phi dependents are always |
| // dominated, phis need checking. |
| if ((Loops.getLoopDepth(DepSV.SpillMBB) > SpillDepth) && |
| (!DepSVI->first->isPHIDef() || |
| MDT.dominates(SV.SpillMBB, DepSV.SpillMBB))) { |
| Changed = true; |
| DepSV.SpillReg = SV.SpillReg; |
| DepSV.SpillVNI = SV.SpillVNI; |
| DepSV.SpillMBB = SV.SpillMBB; |
| } |
| } |
| } |
| |
| if (!Changed) |
| continue; |
| |
| // Something changed in DepSVI. Propagate to dependents. |
| if (WorkSet.insert(DepSVI->first)) |
| WorkList.push_back(DepSVI); |
| |
| DEBUG(dbgs() << " update " << DepSVI->first->id << '@' |
| << DepSVI->first->def << " to:\t" << DepSV); |
| } |
| } while (!WorkList.empty()); |
| } |
| |
| /// traceSiblingValue - Trace a value that is about to be spilled back to the |
| /// real defining instructions by looking through sibling copies. Always stay |
| /// within the range of OrigVNI so the registers are known to carry the same |
| /// value. |
| /// |
| /// Determine if the value is defined by all reloads, so spilling isn't |
| /// necessary - the value is already in the stack slot. |
| /// |
| /// Return a defining instruction that may be a candidate for rematerialization. |
| /// |
| MachineInstr *InlineSpiller::traceSiblingValue(unsigned UseReg, VNInfo *UseVNI, |
| VNInfo *OrigVNI) { |
| // Check if a cached value already exists. |
| SibValueMap::iterator SVI; |
| bool Inserted; |
| tie(SVI, Inserted) = |
| SibValues.insert(std::make_pair(UseVNI, SibValueInfo(UseReg, UseVNI))); |
| if (!Inserted) { |
| DEBUG(dbgs() << "Cached value " << PrintReg(UseReg) << ':' |
| << UseVNI->id << '@' << UseVNI->def << ' ' << SVI->second); |
| return SVI->second.DefMI; |
| } |
| |
| DEBUG(dbgs() << "Tracing value " << PrintReg(UseReg) << ':' |
| << UseVNI->id << '@' << UseVNI->def << '\n'); |
| |
| // List of (Reg, VNI) that have been inserted into SibValues, but need to be |
| // processed. |
| SmallVector<std::pair<unsigned, VNInfo*>, 8> WorkList; |
| WorkList.push_back(std::make_pair(UseReg, UseVNI)); |
| |
| do { |
| unsigned Reg; |
| VNInfo *VNI; |
| tie(Reg, VNI) = WorkList.pop_back_val(); |
| DEBUG(dbgs() << " " << PrintReg(Reg) << ':' << VNI->id << '@' << VNI->def |
| << ":\t"); |
| |
| // First check if this value has already been computed. |
| SVI = SibValues.find(VNI); |
| assert(SVI != SibValues.end() && "Missing SibValues entry"); |
| |
| // Trace through PHI-defs created by live range splitting. |
| if (VNI->isPHIDef()) { |
| // Stop at original PHIs. We don't know the value at the predecessors. |
| if (VNI->def == OrigVNI->def) { |
| DEBUG(dbgs() << "orig phi value\n"); |
| SVI->second.DefByOrigPHI = true; |
| SVI->second.AllDefsAreReloads = false; |
| propagateSiblingValue(SVI); |
| continue; |
| } |
| |
| // This is a PHI inserted by live range splitting. We could trace the |
| // live-out value from predecessor blocks, but that search can be very |
| // expensive if there are many predecessors and many more PHIs as |
| // generated by tail-dup when it sees an indirectbr. Instead, look at |
| // all the non-PHI defs that have the same value as OrigVNI. They must |
| // jointly dominate VNI->def. This is not optimal since VNI may actually |
| // be jointly dominated by a smaller subset of defs, so there is a change |
| // we will miss a AllDefsAreReloads optimization. |
| |
| // Separate all values dominated by OrigVNI into PHIs and non-PHIs. |
| SmallVector<VNInfo*, 8> PHIs, NonPHIs; |
| LiveInterval &LI = LIS.getInterval(Reg); |
| LiveInterval &OrigLI = LIS.getInterval(Original); |
| |
| for (LiveInterval::vni_iterator VI = LI.vni_begin(), VE = LI.vni_end(); |
| VI != VE; ++VI) { |
| VNInfo *VNI2 = *VI; |
| if (VNI2->isUnused()) |
| continue; |
| if (!OrigLI.containsOneValue() && |
| OrigLI.getVNInfoAt(VNI2->def) != OrigVNI) |
| continue; |
| if (VNI2->isPHIDef() && VNI2->def != OrigVNI->def) |
| PHIs.push_back(VNI2); |
| else |
| NonPHIs.push_back(VNI2); |
| } |
| DEBUG(dbgs() << "split phi value, checking " << PHIs.size() |
| << " phi-defs, and " << NonPHIs.size() |
| << " non-phi/orig defs\n"); |
| |
| // Create entries for all the PHIs. Don't add them to the worklist, we |
| // are processing all of them in one go here. |
| for (unsigned i = 0, e = PHIs.size(); i != e; ++i) |
| SibValues.insert(std::make_pair(PHIs[i], SibValueInfo(Reg, PHIs[i]))); |
| |
| // Add every PHI as a dependent of all the non-PHIs. |
| for (unsigned i = 0, e = NonPHIs.size(); i != e; ++i) { |
| VNInfo *NonPHI = NonPHIs[i]; |
| // Known value? Try an insertion. |
| tie(SVI, Inserted) = |
| SibValues.insert(std::make_pair(NonPHI, SibValueInfo(Reg, NonPHI))); |
| // Add all the PHIs as dependents of NonPHI. |
| for (unsigned pi = 0, pe = PHIs.size(); pi != pe; ++pi) |
| SVI->second.Deps.push_back(PHIs[pi]); |
| // This is the first time we see NonPHI, add it to the worklist. |
| if (Inserted) |
| WorkList.push_back(std::make_pair(Reg, NonPHI)); |
| else |
| // Propagate to all inserted PHIs, not just VNI. |
| propagateSiblingValue(SVI); |
| } |
| |
| // Next work list item. |
| continue; |
| } |
| |
| MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); |
| assert(MI && "Missing def"); |
| |
| // Trace through sibling copies. |
| if (unsigned SrcReg = isFullCopyOf(MI, Reg)) { |
| if (isSibling(SrcReg)) { |
| LiveInterval &SrcLI = LIS.getInterval(SrcReg); |
| LiveRangeQuery SrcQ(SrcLI, VNI->def); |
| assert(SrcQ.valueIn() && "Copy from non-existing value"); |
| // Check if this COPY kills its source. |
| SVI->second.KillsSource = SrcQ.isKill(); |
| VNInfo *SrcVNI = SrcQ.valueIn(); |
| DEBUG(dbgs() << "copy of " << PrintReg(SrcReg) << ':' |
| << SrcVNI->id << '@' << SrcVNI->def |
| << " kill=" << unsigned(SVI->second.KillsSource) << '\n'); |
| // Known sibling source value? Try an insertion. |
| tie(SVI, Inserted) = SibValues.insert(std::make_pair(SrcVNI, |
| SibValueInfo(SrcReg, SrcVNI))); |
| // This is the first time we see Src, add it to the worklist. |
| if (Inserted) |
| WorkList.push_back(std::make_pair(SrcReg, SrcVNI)); |
| propagateSiblingValue(SVI, VNI); |
| // Next work list item. |
| continue; |
| } |
| } |
| |
| // Track reachable reloads. |
| SVI->second.DefMI = MI; |
| SVI->second.SpillMBB = MI->getParent(); |
| int FI; |
| if (Reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) { |
| DEBUG(dbgs() << "reload\n"); |
| propagateSiblingValue(SVI); |
| // Next work list item. |
| continue; |
| } |
| |
| // Potential remat candidate. |
| DEBUG(dbgs() << "def " << *MI); |
| SVI->second.AllDefsAreReloads = false; |
| propagateSiblingValue(SVI); |
| } while (!WorkList.empty()); |
| |
| // Look up the value we were looking for. We already did this lookup at the |
| // top of the function, but SibValues may have been invalidated. |
| SVI = SibValues.find(UseVNI); |
| assert(SVI != SibValues.end() && "Didn't compute requested info"); |
| DEBUG(dbgs() << " traced to:\t" << SVI->second); |
| return SVI->second.DefMI; |
| } |
| |
| /// analyzeSiblingValues - Trace values defined by sibling copies back to |
| /// something that isn't a sibling copy. |
| /// |
| /// Keep track of values that may be rematerializable. |
| void InlineSpiller::analyzeSiblingValues() { |
| SibValues.clear(); |
| |
| // No siblings at all? |
| if (Edit->getReg() == Original) |
| return; |
| |
| LiveInterval &OrigLI = LIS.getInterval(Original); |
| for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) { |
| unsigned Reg = RegsToSpill[i]; |
| LiveInterval &LI = LIS.getInterval(Reg); |
| for (LiveInterval::const_vni_iterator VI = LI.vni_begin(), |
| VE = LI.vni_end(); VI != VE; ++VI) { |
| VNInfo *VNI = *VI; |
| if (VNI->isUnused()) |
| continue; |
| MachineInstr *DefMI = 0; |
| if (!VNI->isPHIDef()) { |
| DefMI = LIS.getInstructionFromIndex(VNI->def); |
| assert(DefMI && "No defining instruction"); |
| } |
| // Check possible sibling copies. |
| if (VNI->isPHIDef() || DefMI->isCopy()) { |
| VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def); |
| assert(OrigVNI && "Def outside original live range"); |
| if (OrigVNI->def != VNI->def) |
| DefMI = traceSiblingValue(Reg, VNI, OrigVNI); |
| } |
| if (DefMI && Edit->checkRematerializable(VNI, DefMI, AA)) { |
| DEBUG(dbgs() << "Value " << PrintReg(Reg) << ':' << VNI->id << '@' |
| << VNI->def << " may remat from " << *DefMI); |
| } |
| } |
| } |
| } |
| |
| /// hoistSpill - Given a sibling copy that defines a value to be spilled, insert |
| /// a spill at a better location. |
| bool InlineSpiller::hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI) { |
| SlotIndex Idx = LIS.getInstructionIndex(CopyMI); |
| VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot()); |
| assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy"); |
| SibValueMap::iterator I = SibValues.find(VNI); |
| if (I == SibValues.end()) |
| return false; |
| |
| const SibValueInfo &SVI = I->second; |
| |
| // Let the normal folding code deal with the boring case. |
| if (!SVI.AllDefsAreReloads && SVI.SpillVNI == VNI) |
| return false; |
| |
| // SpillReg may have been deleted by remat and DCE. |
| if (!LIS.hasInterval(SVI.SpillReg)) { |
| DEBUG(dbgs() << "Stale interval: " << PrintReg(SVI.SpillReg) << '\n'); |
| SibValues.erase(I); |
| return false; |
| } |
| |
| LiveInterval &SibLI = LIS.getInterval(SVI.SpillReg); |
| if (!SibLI.containsValue(SVI.SpillVNI)) { |
| DEBUG(dbgs() << "Stale value: " << PrintReg(SVI.SpillReg) << '\n'); |
| SibValues.erase(I); |
| return false; |
| } |
| |
| // Conservatively extend the stack slot range to the range of the original |
| // value. We may be able to do better with stack slot coloring by being more |
| // careful here. |
| assert(StackInt && "No stack slot assigned yet."); |
| LiveInterval &OrigLI = LIS.getInterval(Original); |
| VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); |
| StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0)); |
| DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": " |
| << *StackInt << '\n'); |
| |
| // Already spilled everywhere. |
| if (SVI.AllDefsAreReloads) { |
| DEBUG(dbgs() << "\tno spill needed: " << SVI); |
| ++NumOmitReloadSpill; |
| return true; |
| } |
| // We are going to spill SVI.SpillVNI immediately after its def, so clear out |
| // any later spills of the same value. |
| eliminateRedundantSpills(SibLI, SVI.SpillVNI); |
| |
| MachineBasicBlock *MBB = LIS.getMBBFromIndex(SVI.SpillVNI->def); |
| MachineBasicBlock::iterator MII; |
| if (SVI.SpillVNI->isPHIDef()) |
| MII = MBB->SkipPHIsAndLabels(MBB->begin()); |
| else { |
| MachineInstr *DefMI = LIS.getInstructionFromIndex(SVI.SpillVNI->def); |
| assert(DefMI && "Defining instruction disappeared"); |
| MII = DefMI; |
| ++MII; |
| } |
| // Insert spill without kill flag immediately after def. |
| TII.storeRegToStackSlot(*MBB, MII, SVI.SpillReg, false, StackSlot, |
| MRI.getRegClass(SVI.SpillReg), &TRI); |
| --MII; // Point to store instruction. |
| LIS.InsertMachineInstrInMaps(MII); |
| DEBUG(dbgs() << "\thoisted: " << SVI.SpillVNI->def << '\t' << *MII); |
| |
| ++NumSpills; |
| ++NumHoists; |
| return true; |
| } |
| |
| /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any |
| /// redundant spills of this value in SLI.reg and sibling copies. |
| void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) { |
| assert(VNI && "Missing value"); |
| SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; |
| WorkList.push_back(std::make_pair(&SLI, VNI)); |
| assert(StackInt && "No stack slot assigned yet."); |
| |
| do { |
| LiveInterval *LI; |
| tie(LI, VNI) = WorkList.pop_back_val(); |
| unsigned Reg = LI->reg; |
| DEBUG(dbgs() << "Checking redundant spills for " |
| << VNI->id << '@' << VNI->def << " in " << *LI << '\n'); |
| |
| // Regs to spill are taken care of. |
| if (isRegToSpill(Reg)) |
| continue; |
| |
| // Add all of VNI's live range to StackInt. |
| StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0)); |
| DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n'); |
| |
| // Find all spills and copies of VNI. |
| for (MachineRegisterInfo::use_nodbg_iterator UI = MRI.use_nodbg_begin(Reg); |
| MachineInstr *MI = UI.skipInstruction();) { |
| if (!MI->isCopy() && !MI->mayStore()) |
| continue; |
| SlotIndex Idx = LIS.getInstructionIndex(MI); |
| if (LI->getVNInfoAt(Idx) != VNI) |
| continue; |
| |
| // Follow sibling copies down the dominator tree. |
| if (unsigned DstReg = isFullCopyOf(MI, Reg)) { |
| if (isSibling(DstReg)) { |
| LiveInterval &DstLI = LIS.getInterval(DstReg); |
| VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot()); |
| assert(DstVNI && "Missing defined value"); |
| assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot"); |
| WorkList.push_back(std::make_pair(&DstLI, DstVNI)); |
| } |
| continue; |
| } |
| |
| // Erase spills. |
| int FI; |
| if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) { |
| DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << *MI); |
| // eliminateDeadDefs won't normally remove stores, so switch opcode. |
| MI->setDesc(TII.get(TargetOpcode::KILL)); |
| DeadDefs.push_back(MI); |
| ++NumSpillsRemoved; |
| --NumSpills; |
| } |
| } |
| } while (!WorkList.empty()); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Rematerialization |
| //===----------------------------------------------------------------------===// |
| |
| /// markValueUsed - Remember that VNI failed to rematerialize, so its defining |
| /// instruction cannot be eliminated. See through snippet copies |
| void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) { |
| SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; |
| WorkList.push_back(std::make_pair(LI, VNI)); |
| do { |
| tie(LI, VNI) = WorkList.pop_back_val(); |
| if (!UsedValues.insert(VNI)) |
| continue; |
| |
| if (VNI->isPHIDef()) { |
| MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); |
| for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), |
| PE = MBB->pred_end(); PI != PE; ++PI) { |
| VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI)); |
| if (PVNI) |
| WorkList.push_back(std::make_pair(LI, PVNI)); |
| } |
| continue; |
| } |
| |
| // Follow snippet copies. |
| MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); |
| if (!SnippetCopies.count(MI)) |
| continue; |
| LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg()); |
| assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy"); |
| VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true)); |
| assert(SnipVNI && "Snippet undefined before copy"); |
| WorkList.push_back(std::make_pair(&SnipLI, SnipVNI)); |
| } while (!WorkList.empty()); |
| } |
| |
| /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading. |
| bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, |
| MachineBasicBlock::iterator MI) { |
| SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true); |
| VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex()); |
| |
| if (!ParentVNI) { |
| DEBUG(dbgs() << "\tadding <undef> flags: "); |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) |
| MO.setIsUndef(); |
| } |
| DEBUG(dbgs() << UseIdx << '\t' << *MI); |
| return true; |
| } |
| |
| if (SnippetCopies.count(MI)) |
| return false; |
| |
| // Use an OrigVNI from traceSiblingValue when ParentVNI is a sibling copy. |
| LiveRangeEdit::Remat RM(ParentVNI); |
| SibValueMap::const_iterator SibI = SibValues.find(ParentVNI); |
| if (SibI != SibValues.end()) |
| RM.OrigMI = SibI->second.DefMI; |
| if (!Edit->canRematerializeAt(RM, UseIdx, false)) { |
| markValueUsed(&VirtReg, ParentVNI); |
| DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << *MI); |
| return false; |
| } |
| |
| // If the instruction also writes VirtReg.reg, it had better not require the |
| // same register for uses and defs. |
| SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops; |
| MIBundleOperands::VirtRegInfo RI = |
| MIBundleOperands(MI).analyzeVirtReg(VirtReg.reg, &Ops); |
| if (RI.Tied) { |
| markValueUsed(&VirtReg, ParentVNI); |
| DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << *MI); |
| return false; |
| } |
| |
| // Before rematerializing into a register for a single instruction, try to |
| // fold a load into the instruction. That avoids allocating a new register. |
| if (RM.OrigMI->canFoldAsLoad() && |
| foldMemoryOperand(Ops, RM.OrigMI)) { |
| Edit->markRematerialized(RM.ParentVNI); |
| ++NumFoldedLoads; |
| return true; |
| } |
| |
| // Alocate a new register for the remat. |
| LiveInterval &NewLI = Edit->createFrom(Original); |
| NewLI.markNotSpillable(); |
| |
| // Finally we can rematerialize OrigMI before MI. |
| SlotIndex DefIdx = Edit->rematerializeAt(*MI->getParent(), MI, NewLI.reg, RM, |
| TRI); |
| DEBUG(dbgs() << "\tremat: " << DefIdx << '\t' |
| << *LIS.getInstructionFromIndex(DefIdx)); |
| |
| // Replace operands |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(Ops[i].second); |
| if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) { |
| MO.setReg(NewLI.reg); |
| MO.setIsKill(); |
| } |
| } |
| DEBUG(dbgs() << "\t " << UseIdx << '\t' << *MI); |
| |
| VNInfo *DefVNI = NewLI.getNextValue(DefIdx, LIS.getVNInfoAllocator()); |
| NewLI.addRange(LiveRange(DefIdx, UseIdx.getRegSlot(), DefVNI)); |
| DEBUG(dbgs() << "\tinterval: " << NewLI << '\n'); |
| ++NumRemats; |
| return true; |
| } |
| |
| /// reMaterializeAll - Try to rematerialize as many uses as possible, |
| /// and trim the live ranges after. |
| void InlineSpiller::reMaterializeAll() { |
| // analyzeSiblingValues has already tested all relevant defining instructions. |
| if (!Edit->anyRematerializable(AA)) |
| return; |
| |
| UsedValues.clear(); |
| |
| // Try to remat before all uses of snippets. |
| bool anyRemat = false; |
| for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) { |
| unsigned Reg = RegsToSpill[i]; |
| LiveInterval &LI = LIS.getInterval(Reg); |
| for (MachineRegisterInfo::use_nodbg_iterator |
| RI = MRI.use_nodbg_begin(Reg); |
| MachineInstr *MI = RI.skipBundle();) |
| anyRemat |= reMaterializeFor(LI, MI); |
| } |
| if (!anyRemat) |
| return; |
| |
| // Remove any values that were completely rematted. |
| for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) { |
| unsigned Reg = RegsToSpill[i]; |
| LiveInterval &LI = LIS.getInterval(Reg); |
| for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end(); |
| I != E; ++I) { |
| VNInfo *VNI = *I; |
| if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI)) |
| continue; |
| MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); |
| MI->addRegisterDead(Reg, &TRI); |
| if (!MI->allDefsAreDead()) |
| continue; |
| DEBUG(dbgs() << "All defs dead: " << *MI); |
| DeadDefs.push_back(MI); |
| } |
| } |
| |
| // Eliminate dead code after remat. Note that some snippet copies may be |
| // deleted here. |
| if (DeadDefs.empty()) |
| return; |
| DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n"); |
| Edit->eliminateDeadDefs(DeadDefs, RegsToSpill); |
| |
| // Get rid of deleted and empty intervals. |
| for (unsigned i = RegsToSpill.size(); i != 0; --i) { |
| unsigned Reg = RegsToSpill[i-1]; |
| if (!LIS.hasInterval(Reg)) { |
| RegsToSpill.erase(RegsToSpill.begin() + (i - 1)); |
| continue; |
| } |
| LiveInterval &LI = LIS.getInterval(Reg); |
| if (!LI.empty()) |
| continue; |
| Edit->eraseVirtReg(Reg); |
| RegsToSpill.erase(RegsToSpill.begin() + (i - 1)); |
| } |
| DEBUG(dbgs() << RegsToSpill.size() << " registers to spill after remat.\n"); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Spilling |
| //===----------------------------------------------------------------------===// |
| |
| /// If MI is a load or store of StackSlot, it can be removed. |
| bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) { |
| int FI = 0; |
| unsigned InstrReg = TII.isLoadFromStackSlot(MI, FI); |
| bool IsLoad = InstrReg; |
| if (!IsLoad) |
| InstrReg = TII.isStoreToStackSlot(MI, FI); |
| |
| // We have a stack access. Is it the right register and slot? |
| if (InstrReg != Reg || FI != StackSlot) |
| return false; |
| |
| DEBUG(dbgs() << "Coalescing stack access: " << *MI); |
| LIS.RemoveMachineInstrFromMaps(MI); |
| MI->eraseFromParent(); |
| |
| if (IsLoad) { |
| ++NumReloadsRemoved; |
| --NumReloads; |
| } else { |
| ++NumSpillsRemoved; |
| --NumSpills; |
| } |
| |
| return true; |
| } |
| |
| /// foldMemoryOperand - Try folding stack slot references in Ops into their |
| /// instructions. |
| /// |
| /// @param Ops Operand indices from analyzeVirtReg(). |
| /// @param LoadMI Load instruction to use instead of stack slot when non-null. |
| /// @return True on success. |
| bool InlineSpiller:: |
| foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> > Ops, |
| MachineInstr *LoadMI) { |
| if (Ops.empty()) |
| return false; |
| // Don't attempt folding in bundles. |
| MachineInstr *MI = Ops.front().first; |
| if (Ops.back().first != MI || MI->isBundled()) |
| return false; |
| |
| bool WasCopy = MI->isCopy(); |
| unsigned ImpReg = 0; |
| |
| // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied |
| // operands. |
| SmallVector<unsigned, 8> FoldOps; |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) { |
| unsigned Idx = Ops[i].second; |
| MachineOperand &MO = MI->getOperand(Idx); |
| if (MO.isImplicit()) { |
| ImpReg = MO.getReg(); |
| continue; |
| } |
| // FIXME: Teach targets to deal with subregs. |
| if (MO.getSubReg()) |
| return false; |
| // We cannot fold a load instruction into a def. |
| if (LoadMI && MO.isDef()) |
| return false; |
| // Tied use operands should not be passed to foldMemoryOperand. |
| if (!MI->isRegTiedToDefOperand(Idx)) |
| FoldOps.push_back(Idx); |
| } |
| |
| MachineInstr *FoldMI = |
| LoadMI ? TII.foldMemoryOperand(MI, FoldOps, LoadMI) |
| : TII.foldMemoryOperand(MI, FoldOps, StackSlot); |
| if (!FoldMI) |
| return false; |
| LIS.ReplaceMachineInstrInMaps(MI, FoldMI); |
| MI->eraseFromParent(); |
| |
| // TII.foldMemoryOperand may have left some implicit operands on the |
| // instruction. Strip them. |
| if (ImpReg) |
| for (unsigned i = FoldMI->getNumOperands(); i; --i) { |
| MachineOperand &MO = FoldMI->getOperand(i - 1); |
| if (!MO.isReg() || !MO.isImplicit()) |
| break; |
| if (MO.getReg() == ImpReg) |
| FoldMI->RemoveOperand(i - 1); |
| } |
| |
| DEBUG(dbgs() << "\tfolded: " << LIS.getInstructionIndex(FoldMI) << '\t' |
| << *FoldMI); |
| if (!WasCopy) |
| ++NumFolded; |
| else if (Ops.front().second == 0) |
| ++NumSpills; |
| else |
| ++NumReloads; |
| return true; |
| } |
| |
| /// insertReload - Insert a reload of NewLI.reg before MI. |
| void InlineSpiller::insertReload(LiveInterval &NewLI, |
| SlotIndex Idx, |
| MachineBasicBlock::iterator MI) { |
| MachineBasicBlock &MBB = *MI->getParent(); |
| TII.loadRegFromStackSlot(MBB, MI, NewLI.reg, StackSlot, |
| MRI.getRegClass(NewLI.reg), &TRI); |
| --MI; // Point to load instruction. |
| SlotIndex LoadIdx = LIS.InsertMachineInstrInMaps(MI).getRegSlot(); |
| // Some (out-of-tree) targets have EC reload instructions. |
| if (MachineOperand *MO = MI->findRegisterDefOperand(NewLI.reg)) |
| if (MO->isEarlyClobber()) |
| LoadIdx = LoadIdx.getRegSlot(true); |
| DEBUG(dbgs() << "\treload: " << LoadIdx << '\t' << *MI); |
| VNInfo *LoadVNI = NewLI.getNextValue(LoadIdx, LIS.getVNInfoAllocator()); |
| NewLI.addRange(LiveRange(LoadIdx, Idx, LoadVNI)); |
| ++NumReloads; |
| } |
| |
| /// insertSpill - Insert a spill of NewLI.reg after MI. |
| void InlineSpiller::insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI, |
| SlotIndex Idx, MachineBasicBlock::iterator MI) { |
| MachineBasicBlock &MBB = *MI->getParent(); |
| TII.storeRegToStackSlot(MBB, ++MI, NewLI.reg, true, StackSlot, |
| MRI.getRegClass(NewLI.reg), &TRI); |
| --MI; // Point to store instruction. |
| SlotIndex StoreIdx = LIS.InsertMachineInstrInMaps(MI).getRegSlot(); |
| DEBUG(dbgs() << "\tspilled: " << StoreIdx << '\t' << *MI); |
| VNInfo *StoreVNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator()); |
| NewLI.addRange(LiveRange(Idx, StoreIdx, StoreVNI)); |
| ++NumSpills; |
| } |
| |
| /// spillAroundUses - insert spill code around each use of Reg. |
| void InlineSpiller::spillAroundUses(unsigned Reg) { |
| DEBUG(dbgs() << "spillAroundUses " << PrintReg(Reg) << '\n'); |
| LiveInterval &OldLI = LIS.getInterval(Reg); |
| |
| // Iterate over instructions using Reg. |
| for (MachineRegisterInfo::reg_iterator RegI = MRI.reg_begin(Reg); |
| MachineInstr *MI = RegI.skipBundle();) { |
| |
| // Debug values are not allowed to affect codegen. |
| if (MI->isDebugValue()) { |
| // Modify DBG_VALUE now that the value is in a spill slot. |
| uint64_t Offset = MI->getOperand(1).getImm(); |
| const MDNode *MDPtr = MI->getOperand(2).getMetadata(); |
| DebugLoc DL = MI->getDebugLoc(); |
| if (MachineInstr *NewDV = TII.emitFrameIndexDebugValue(MF, StackSlot, |
| Offset, MDPtr, DL)) { |
| DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI); |
| MachineBasicBlock *MBB = MI->getParent(); |
| MBB->insert(MBB->erase(MI), NewDV); |
| } else { |
| DEBUG(dbgs() << "Removing debug info due to spill:" << "\t" << *MI); |
| MI->eraseFromParent(); |
| } |
| continue; |
| } |
| |
| // Ignore copies to/from snippets. We'll delete them. |
| if (SnippetCopies.count(MI)) |
| continue; |
| |
| // Stack slot accesses may coalesce away. |
| if (coalesceStackAccess(MI, Reg)) |
| continue; |
| |
| // Analyze instruction. |
| SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops; |
| MIBundleOperands::VirtRegInfo RI = |
| MIBundleOperands(MI).analyzeVirtReg(Reg, &Ops); |
| |
| // Find the slot index where this instruction reads and writes OldLI. |
| // This is usually the def slot, except for tied early clobbers. |
| SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot(); |
| if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true))) |
| if (SlotIndex::isSameInstr(Idx, VNI->def)) |
| Idx = VNI->def; |
| |
| // Check for a sibling copy. |
| unsigned SibReg = isFullCopyOf(MI, Reg); |
| if (SibReg && isSibling(SibReg)) { |
| // This may actually be a copy between snippets. |
| if (isRegToSpill(SibReg)) { |
| DEBUG(dbgs() << "Found new snippet copy: " << *MI); |
| SnippetCopies.insert(MI); |
| continue; |
| } |
| if (RI.Writes) { |
| // Hoist the spill of a sib-reg copy. |
| if (hoistSpill(OldLI, MI)) { |
| // This COPY is now dead, the value is already in the stack slot. |
| MI->getOperand(0).setIsDead(); |
| DeadDefs.push_back(MI); |
| continue; |
| } |
| } else { |
| // This is a reload for a sib-reg copy. Drop spills downstream. |
| LiveInterval &SibLI = LIS.getInterval(SibReg); |
| eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx)); |
| // The COPY will fold to a reload below. |
| } |
| } |
| |
| // Attempt to fold memory ops. |
| if (foldMemoryOperand(Ops)) |
| continue; |
| |
| // Allocate interval around instruction. |
| // FIXME: Infer regclass from instruction alone. |
| LiveInterval &NewLI = Edit->createFrom(Reg); |
| NewLI.markNotSpillable(); |
| |
| if (RI.Reads) |
| insertReload(NewLI, Idx, MI); |
| |
| // Rewrite instruction operands. |
| bool hasLiveDef = false; |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) { |
| MachineOperand &MO = Ops[i].first->getOperand(Ops[i].second); |
| MO.setReg(NewLI.reg); |
| if (MO.isUse()) { |
| if (!Ops[i].first->isRegTiedToDefOperand(Ops[i].second)) |
| MO.setIsKill(); |
| } else { |
| if (!MO.isDead()) |
| hasLiveDef = true; |
| } |
| } |
| DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI); |
| |
| // FIXME: Use a second vreg if instruction has no tied ops. |
| if (RI.Writes) { |
| if (hasLiveDef) |
| insertSpill(NewLI, OldLI, Idx, MI); |
| else { |
| // This instruction defines a dead value. We don't need to spill it, |
| // but do create a live range for the dead value. |
| VNInfo *VNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator()); |
| NewLI.addRange(LiveRange(Idx, Idx.getDeadSlot(), VNI)); |
| } |
| } |
| |
| DEBUG(dbgs() << "\tinterval: " << NewLI << '\n'); |
| } |
| } |
| |
| /// spillAll - Spill all registers remaining after rematerialization. |
| void InlineSpiller::spillAll() { |
| // Update LiveStacks now that we are committed to spilling. |
| if (StackSlot == VirtRegMap::NO_STACK_SLOT) { |
| StackSlot = VRM.assignVirt2StackSlot(Original); |
| StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original)); |
| StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator()); |
| } else |
| StackInt = &LSS.getInterval(StackSlot); |
| |
| if (Original != Edit->getReg()) |
| VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot); |
| |
| assert(StackInt->getNumValNums() == 1 && "Bad stack interval values"); |
| for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) |
| StackInt->MergeRangesInAsValue(LIS.getInterval(RegsToSpill[i]), |
| StackInt->getValNumInfo(0)); |
| DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n'); |
| |
| // Spill around uses of all RegsToSpill. |
| for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) |
| spillAroundUses(RegsToSpill[i]); |
| |
| // Hoisted spills may cause dead code. |
| if (!DeadDefs.empty()) { |
| DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n"); |
| Edit->eliminateDeadDefs(DeadDefs, RegsToSpill); |
| } |
| |
| // Finally delete the SnippetCopies. |
| for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) { |
| for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(RegsToSpill[i]); |
| MachineInstr *MI = RI.skipInstruction();) { |
| assert(SnippetCopies.count(MI) && "Remaining use wasn't a snippet copy"); |
| // FIXME: Do this with a LiveRangeEdit callback. |
| LIS.RemoveMachineInstrFromMaps(MI); |
| MI->eraseFromParent(); |
| } |
| } |
| |
| // Delete all spilled registers. |
| for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) |
| Edit->eraseVirtReg(RegsToSpill[i]); |
| } |
| |
| void InlineSpiller::spill(LiveRangeEdit &edit) { |
| ++NumSpilledRanges; |
| Edit = &edit; |
| assert(!TargetRegisterInfo::isStackSlot(edit.getReg()) |
| && "Trying to spill a stack slot."); |
| // Share a stack slot among all descendants of Original. |
| Original = VRM.getOriginal(edit.getReg()); |
| StackSlot = VRM.getStackSlot(Original); |
| StackInt = 0; |
| |
| DEBUG(dbgs() << "Inline spilling " |
| << MRI.getRegClass(edit.getReg())->getName() |
| << ':' << PrintReg(edit.getReg()) << ' ' << edit.getParent() |
| << "\nFrom original " << LIS.getInterval(Original) << '\n'); |
| assert(edit.getParent().isSpillable() && |
| "Attempting to spill already spilled value."); |
| assert(DeadDefs.empty() && "Previous spill didn't remove dead defs"); |
| |
| collectRegsToSpill(); |
| analyzeSiblingValues(); |
| reMaterializeAll(); |
| |
| // Remat may handle everything. |
| if (!RegsToSpill.empty()) |
| spillAll(); |
| |
| Edit->calculateRegClassAndHint(MF, Loops); |
| } |