| //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements the ScheduleDAGInstrs class, which implements re-scheduling |
| // of MachineInstrs. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "misched" |
| #include "llvm/CodeGen/ScheduleDAGInstrs.h" |
| #include "llvm/ADT/MapVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/PseudoSourceValue.h" |
| #include "llvm/CodeGen/RegisterPressure.h" |
| #include "llvm/CodeGen/ScheduleDFS.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/MC/MCInstrItineraries.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/Format.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/Target/TargetSubtargetInfo.h" |
| using namespace llvm; |
| |
| static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden, |
| cl::ZeroOrMore, cl::init(false), |
| cl::desc("Enable use of AA during MI GAD construction")); |
| |
| ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, |
| const MachineLoopInfo &mli, |
| const MachineDominatorTree &mdt, |
| bool IsPostRAFlag, |
| LiveIntervals *lis) |
| : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()), LIS(lis), |
| IsPostRA(IsPostRAFlag), CanHandleTerminators(false), FirstDbgValue(0) { |
| assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals"); |
| DbgValues.clear(); |
| assert(!(IsPostRA && MRI.getNumVirtRegs()) && |
| "Virtual registers must be removed prior to PostRA scheduling"); |
| |
| const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); |
| SchedModel.init(*ST.getSchedModel(), &ST, TII); |
| } |
| |
| /// getUnderlyingObjectFromInt - This is the function that does the work of |
| /// looking through basic ptrtoint+arithmetic+inttoptr sequences. |
| static const Value *getUnderlyingObjectFromInt(const Value *V) { |
| do { |
| if (const Operator *U = dyn_cast<Operator>(V)) { |
| // If we find a ptrtoint, we can transfer control back to the |
| // regular getUnderlyingObjectFromInt. |
| if (U->getOpcode() == Instruction::PtrToInt) |
| return U->getOperand(0); |
| // If we find an add of a constant, a multiplied value, or a phi, it's |
| // likely that the other operand will lead us to the base |
| // object. We don't have to worry about the case where the |
| // object address is somehow being computed by the multiply, |
| // because our callers only care when the result is an |
| // identifiable object. |
| if (U->getOpcode() != Instruction::Add || |
| (!isa<ConstantInt>(U->getOperand(1)) && |
| Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && |
| !isa<PHINode>(U->getOperand(1)))) |
| return V; |
| V = U->getOperand(0); |
| } else { |
| return V; |
| } |
| assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); |
| } while (1); |
| } |
| |
| /// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects |
| /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences. |
| static void getUnderlyingObjects(const Value *V, |
| SmallVectorImpl<Value *> &Objects) { |
| SmallPtrSet<const Value*, 16> Visited; |
| SmallVector<const Value *, 4> Working(1, V); |
| do { |
| V = Working.pop_back_val(); |
| |
| SmallVector<Value *, 4> Objs; |
| GetUnderlyingObjects(const_cast<Value *>(V), Objs); |
| |
| for (SmallVector<Value *, 4>::iterator I = Objs.begin(), IE = Objs.end(); |
| I != IE; ++I) { |
| V = *I; |
| if (!Visited.insert(V)) |
| continue; |
| if (Operator::getOpcode(V) == Instruction::IntToPtr) { |
| const Value *O = |
| getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); |
| if (O->getType()->isPointerTy()) { |
| Working.push_back(O); |
| continue; |
| } |
| } |
| Objects.push_back(const_cast<Value *>(V)); |
| } |
| } while (!Working.empty()); |
| } |
| |
| /// getUnderlyingObjectsForInstr - If this machine instr has memory reference |
| /// information and it can be tracked to a normal reference to a known |
| /// object, return the Value for that object. |
| static void getUnderlyingObjectsForInstr(const MachineInstr *MI, |
| const MachineFrameInfo *MFI, |
| SmallVectorImpl<std::pair<const Value *, bool> > &Objects) { |
| if (!MI->hasOneMemOperand() || |
| !(*MI->memoperands_begin())->getValue() || |
| (*MI->memoperands_begin())->isVolatile()) |
| return; |
| |
| const Value *V = (*MI->memoperands_begin())->getValue(); |
| if (!V) |
| return; |
| |
| SmallVector<Value *, 4> Objs; |
| getUnderlyingObjects(V, Objs); |
| |
| for (SmallVector<Value *, 4>::iterator I = Objs.begin(), IE = Objs.end(); |
| I != IE; ++I) { |
| bool MayAlias = true; |
| V = *I; |
| |
| if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) { |
| // For now, ignore PseudoSourceValues which may alias LLVM IR values |
| // because the code that uses this function has no way to cope with |
| // such aliases. |
| |
| if (PSV->isAliased(MFI)) { |
| Objects.clear(); |
| return; |
| } |
| |
| MayAlias = PSV->mayAlias(MFI); |
| } else if (!isIdentifiedObject(V)) { |
| Objects.clear(); |
| return; |
| } |
| |
| Objects.push_back(std::make_pair(V, MayAlias)); |
| } |
| } |
| |
| void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { |
| BB = bb; |
| } |
| |
| void ScheduleDAGInstrs::finishBlock() { |
| // Subclasses should no longer refer to the old block. |
| BB = 0; |
| } |
| |
| /// Initialize the DAG and common scheduler state for the current scheduling |
| /// region. This does not actually create the DAG, only clears it. The |
| /// scheduling driver may call BuildSchedGraph multiple times per scheduling |
| /// region. |
| void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, |
| MachineBasicBlock::iterator begin, |
| MachineBasicBlock::iterator end, |
| unsigned endcount) { |
| assert(bb == BB && "startBlock should set BB"); |
| RegionBegin = begin; |
| RegionEnd = end; |
| EndIndex = endcount; |
| MISUnitMap.clear(); |
| |
| ScheduleDAG::clearDAG(); |
| } |
| |
| /// Close the current scheduling region. Don't clear any state in case the |
| /// driver wants to refer to the previous scheduling region. |
| void ScheduleDAGInstrs::exitRegion() { |
| // Nothing to do. |
| } |
| |
| /// addSchedBarrierDeps - Add dependencies from instructions in the current |
| /// list of instructions being scheduled to scheduling barrier by adding |
| /// the exit SU to the register defs and use list. This is because we want to |
| /// make sure instructions which define registers that are either used by |
| /// the terminator or are live-out are properly scheduled. This is |
| /// especially important when the definition latency of the return value(s) |
| /// are too high to be hidden by the branch or when the liveout registers |
| /// used by instructions in the fallthrough block. |
| void ScheduleDAGInstrs::addSchedBarrierDeps() { |
| MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : 0; |
| ExitSU.setInstr(ExitMI); |
| bool AllDepKnown = ExitMI && |
| (ExitMI->isCall() || ExitMI->isBarrier()); |
| if (ExitMI && AllDepKnown) { |
| // If it's a call or a barrier, add dependencies on the defs and uses of |
| // instruction. |
| for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = ExitMI->getOperand(i); |
| if (!MO.isReg() || MO.isDef()) continue; |
| unsigned Reg = MO.getReg(); |
| if (Reg == 0) continue; |
| |
| if (TRI->isPhysicalRegister(Reg)) |
| Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); |
| else { |
| assert(!IsPostRA && "Virtual register encountered after regalloc."); |
| if (MO.readsReg()) // ignore undef operands |
| addVRegUseDeps(&ExitSU, i); |
| } |
| } |
| } else { |
| // For others, e.g. fallthrough, conditional branch, assume the exit |
| // uses all the registers that are livein to the successor blocks. |
| assert(Uses.empty() && "Uses in set before adding deps?"); |
| for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), |
| SE = BB->succ_end(); SI != SE; ++SI) |
| for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), |
| E = (*SI)->livein_end(); I != E; ++I) { |
| unsigned Reg = *I; |
| if (!Uses.contains(Reg)) |
| Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); |
| } |
| } |
| } |
| |
| /// MO is an operand of SU's instruction that defines a physical register. Add |
| /// data dependencies from SU to any uses of the physical register. |
| void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { |
| const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); |
| assert(MO.isDef() && "expect physreg def"); |
| |
| // Ask the target if address-backscheduling is desirable, and if so how much. |
| const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); |
| |
| for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); |
| Alias.isValid(); ++Alias) { |
| if (!Uses.contains(*Alias)) |
| continue; |
| for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) { |
| SUnit *UseSU = I->SU; |
| if (UseSU == SU) |
| continue; |
| |
| // Adjust the dependence latency using operand def/use information, |
| // then allow the target to perform its own adjustments. |
| int UseOp = I->OpIdx; |
| MachineInstr *RegUse = 0; |
| SDep Dep; |
| if (UseOp < 0) |
| Dep = SDep(SU, SDep::Artificial); |
| else { |
| Dep = SDep(SU, SDep::Data, *Alias); |
| RegUse = UseSU->getInstr(); |
| Dep.setMinLatency( |
| SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, |
| RegUse, UseOp, /*FindMin=*/true)); |
| } |
| Dep.setLatency( |
| SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, |
| RegUse, UseOp, /*FindMin=*/false)); |
| |
| ST.adjustSchedDependency(SU, UseSU, Dep); |
| UseSU->addPred(Dep); |
| } |
| } |
| } |
| |
| /// addPhysRegDeps - Add register dependencies (data, anti, and output) from |
| /// this SUnit to following instructions in the same scheduling region that |
| /// depend the physical register referenced at OperIdx. |
| void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { |
| const MachineInstr *MI = SU->getInstr(); |
| const MachineOperand &MO = MI->getOperand(OperIdx); |
| |
| // Optionally add output and anti dependencies. For anti |
| // dependencies we use a latency of 0 because for a multi-issue |
| // target we want to allow the defining instruction to issue |
| // in the same cycle as the using instruction. |
| // TODO: Using a latency of 1 here for output dependencies assumes |
| // there's no cost for reusing registers. |
| SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; |
| for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); |
| Alias.isValid(); ++Alias) { |
| if (!Defs.contains(*Alias)) |
| continue; |
| for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) { |
| SUnit *DefSU = I->SU; |
| if (DefSU == &ExitSU) |
| continue; |
| if (DefSU != SU && |
| (Kind != SDep::Output || !MO.isDead() || |
| !DefSU->getInstr()->registerDefIsDead(*Alias))) { |
| if (Kind == SDep::Anti) |
| DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias)); |
| else { |
| SDep Dep(SU, Kind, /*Reg=*/*Alias); |
| unsigned OutLatency = |
| SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()); |
| Dep.setMinLatency(OutLatency); |
| Dep.setLatency(OutLatency); |
| DefSU->addPred(Dep); |
| } |
| } |
| } |
| } |
| |
| if (!MO.isDef()) { |
| // Either insert a new Reg2SUnits entry with an empty SUnits list, or |
| // retrieve the existing SUnits list for this register's uses. |
| // Push this SUnit on the use list. |
| Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg())); |
| } |
| else { |
| addPhysRegDataDeps(SU, OperIdx); |
| unsigned Reg = MO.getReg(); |
| |
| // clear this register's use list |
| if (Uses.contains(Reg)) |
| Uses.eraseAll(Reg); |
| |
| if (!MO.isDead()) { |
| Defs.eraseAll(Reg); |
| } else if (SU->isCall) { |
| // Calls will not be reordered because of chain dependencies (see |
| // below). Since call operands are dead, calls may continue to be added |
| // to the DefList making dependence checking quadratic in the size of |
| // the block. Instead, we leave only one call at the back of the |
| // DefList. |
| Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg); |
| Reg2SUnitsMap::iterator B = P.first; |
| Reg2SUnitsMap::iterator I = P.second; |
| for (bool isBegin = I == B; !isBegin; /* empty */) { |
| isBegin = (--I) == B; |
| if (!I->SU->isCall) |
| break; |
| I = Defs.erase(I); |
| } |
| } |
| |
| // Defs are pushed in the order they are visited and never reordered. |
| Defs.insert(PhysRegSUOper(SU, OperIdx, Reg)); |
| } |
| } |
| |
| /// addVRegDefDeps - Add register output and data dependencies from this SUnit |
| /// to instructions that occur later in the same scheduling region if they read |
| /// from or write to the virtual register defined at OperIdx. |
| /// |
| /// TODO: Hoist loop induction variable increments. This has to be |
| /// reevaluated. Generally, IV scheduling should be done before coalescing. |
| void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { |
| const MachineInstr *MI = SU->getInstr(); |
| unsigned Reg = MI->getOperand(OperIdx).getReg(); |
| |
| // Singly defined vregs do not have output/anti dependencies. |
| // The current operand is a def, so we have at least one. |
| // Check here if there are any others... |
| if (MRI.hasOneDef(Reg)) |
| return; |
| |
| // Add output dependence to the next nearest def of this vreg. |
| // |
| // Unless this definition is dead, the output dependence should be |
| // transitively redundant with antidependencies from this definition's |
| // uses. We're conservative for now until we have a way to guarantee the uses |
| // are not eliminated sometime during scheduling. The output dependence edge |
| // is also useful if output latency exceeds def-use latency. |
| VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg); |
| if (DefI == VRegDefs.end()) |
| VRegDefs.insert(VReg2SUnit(Reg, SU)); |
| else { |
| SUnit *DefSU = DefI->SU; |
| if (DefSU != SU && DefSU != &ExitSU) { |
| SDep Dep(SU, SDep::Output, Reg); |
| unsigned OutLatency = |
| SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()); |
| Dep.setMinLatency(OutLatency); |
| Dep.setLatency(OutLatency); |
| DefSU->addPred(Dep); |
| } |
| DefI->SU = SU; |
| } |
| } |
| |
| /// addVRegUseDeps - Add a register data dependency if the instruction that |
| /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a |
| /// register antidependency from this SUnit to instructions that occur later in |
| /// the same scheduling region if they write the virtual register. |
| /// |
| /// TODO: Handle ExitSU "uses" properly. |
| void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { |
| MachineInstr *MI = SU->getInstr(); |
| unsigned Reg = MI->getOperand(OperIdx).getReg(); |
| |
| // Lookup this operand's reaching definition. |
| assert(LIS && "vreg dependencies requires LiveIntervals"); |
| LiveRangeQuery LRQ(LIS->getInterval(Reg), LIS->getInstructionIndex(MI)); |
| VNInfo *VNI = LRQ.valueIn(); |
| |
| // VNI will be valid because MachineOperand::readsReg() is checked by caller. |
| assert(VNI && "No value to read by operand"); |
| MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def); |
| // Phis and other noninstructions (after coalescing) have a NULL Def. |
| if (Def) { |
| SUnit *DefSU = getSUnit(Def); |
| if (DefSU) { |
| // The reaching Def lives within this scheduling region. |
| // Create a data dependence. |
| SDep dep(DefSU, SDep::Data, Reg); |
| // Adjust the dependence latency using operand def/use information, then |
| // allow the target to perform its own adjustments. |
| int DefOp = Def->findRegisterDefOperandIdx(Reg); |
| dep.setLatency( |
| SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx, false)); |
| dep.setMinLatency( |
| SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx, true)); |
| |
| const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); |
| ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep)); |
| SU->addPred(dep); |
| } |
| } |
| |
| // Add antidependence to the following def of the vreg it uses. |
| VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg); |
| if (DefI != VRegDefs.end() && DefI->SU != SU) |
| DefI->SU->addPred(SDep(SU, SDep::Anti, Reg)); |
| } |
| |
| /// Return true if MI is an instruction we are unable to reason about |
| /// (like a call or something with unmodeled side effects). |
| static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) { |
| if (MI->isCall() || MI->hasUnmodeledSideEffects() || |
| (MI->hasOrderedMemoryRef() && |
| (!MI->mayLoad() || !MI->isInvariantLoad(AA)))) |
| return true; |
| return false; |
| } |
| |
| // This MI might have either incomplete info, or known to be unsafe |
| // to deal with (i.e. volatile object). |
| static inline bool isUnsafeMemoryObject(MachineInstr *MI, |
| const MachineFrameInfo *MFI) { |
| if (!MI || MI->memoperands_empty()) |
| return true; |
| // We purposefully do no check for hasOneMemOperand() here |
| // in hope to trigger an assert downstream in order to |
| // finish implementation. |
| if ((*MI->memoperands_begin())->isVolatile() || |
| MI->hasUnmodeledSideEffects()) |
| return true; |
| const Value *V = (*MI->memoperands_begin())->getValue(); |
| if (!V) |
| return true; |
| |
| SmallVector<Value *, 4> Objs; |
| getUnderlyingObjects(V, Objs); |
| for (SmallVector<Value *, 4>::iterator I = Objs.begin(), |
| IE = Objs.end(); I != IE; ++I) { |
| V = *I; |
| |
| if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) { |
| // Similarly to getUnderlyingObjectForInstr: |
| // For now, ignore PseudoSourceValues which may alias LLVM IR values |
| // because the code that uses this function has no way to cope with |
| // such aliases. |
| if (PSV->isAliased(MFI)) |
| return true; |
| } |
| |
| // Does this pointer refer to a distinct and identifiable object? |
| if (!isIdentifiedObject(V)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// This returns true if the two MIs need a chain edge betwee them. |
| /// If these are not even memory operations, we still may need |
| /// chain deps between them. The question really is - could |
| /// these two MIs be reordered during scheduling from memory dependency |
| /// point of view. |
| static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI, |
| MachineInstr *MIa, |
| MachineInstr *MIb) { |
| // Cover a trivial case - no edge is need to itself. |
| if (MIa == MIb) |
| return false; |
| |
| if (isUnsafeMemoryObject(MIa, MFI) || isUnsafeMemoryObject(MIb, MFI)) |
| return true; |
| |
| // If we are dealing with two "normal" loads, we do not need an edge |
| // between them - they could be reordered. |
| if (!MIa->mayStore() && !MIb->mayStore()) |
| return false; |
| |
| // To this point analysis is generic. From here on we do need AA. |
| if (!AA) |
| return true; |
| |
| MachineMemOperand *MMOa = *MIa->memoperands_begin(); |
| MachineMemOperand *MMOb = *MIb->memoperands_begin(); |
| |
| // FIXME: Need to handle multiple memory operands to support all targets. |
| if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand()) |
| llvm_unreachable("Multiple memory operands."); |
| |
| // The following interface to AA is fashioned after DAGCombiner::isAlias |
| // and operates with MachineMemOperand offset with some important |
| // assumptions: |
| // - LLVM fundamentally assumes flat address spaces. |
| // - MachineOperand offset can *only* result from legalization and |
| // cannot affect queries other than the trivial case of overlap |
| // checking. |
| // - These offsets never wrap and never step outside |
| // of allocated objects. |
| // - There should never be any negative offsets here. |
| // |
| // FIXME: Modify API to hide this math from "user" |
| // FIXME: Even before we go to AA we can reason locally about some |
| // memory objects. It can save compile time, and possibly catch some |
| // corner cases not currently covered. |
| |
| assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset"); |
| assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset"); |
| |
| int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset()); |
| int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset; |
| int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset; |
| |
| AliasAnalysis::AliasResult AAResult = AA->alias( |
| AliasAnalysis::Location(MMOa->getValue(), Overlapa, |
| MMOa->getTBAAInfo()), |
| AliasAnalysis::Location(MMOb->getValue(), Overlapb, |
| MMOb->getTBAAInfo())); |
| |
| return (AAResult != AliasAnalysis::NoAlias); |
| } |
| |
| /// This recursive function iterates over chain deps of SUb looking for |
| /// "latest" node that needs a chain edge to SUa. |
| static unsigned |
| iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI, |
| SUnit *SUa, SUnit *SUb, SUnit *ExitSU, unsigned *Depth, |
| SmallPtrSet<const SUnit*, 16> &Visited) { |
| if (!SUa || !SUb || SUb == ExitSU) |
| return *Depth; |
| |
| // Remember visited nodes. |
| if (!Visited.insert(SUb)) |
| return *Depth; |
| // If there is _some_ dependency already in place, do not |
| // descend any further. |
| // TODO: Need to make sure that if that dependency got eliminated or ignored |
| // for any reason in the future, we would not violate DAG topology. |
| // Currently it does not happen, but makes an implicit assumption about |
| // future implementation. |
| // |
| // Independently, if we encounter node that is some sort of global |
| // object (like a call) we already have full set of dependencies to it |
| // and we can stop descending. |
| if (SUa->isSucc(SUb) || |
| isGlobalMemoryObject(AA, SUb->getInstr())) |
| return *Depth; |
| |
| // If we do need an edge, or we have exceeded depth budget, |
| // add that edge to the predecessors chain of SUb, |
| // and stop descending. |
| if (*Depth > 200 || |
| MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) { |
| SUb->addPred(SDep(SUa, SDep::MayAliasMem)); |
| return *Depth; |
| } |
| // Track current depth. |
| (*Depth)++; |
| // Iterate over chain dependencies only. |
| for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end(); |
| I != E; ++I) |
| if (I->isCtrl()) |
| iterateChainSucc (AA, MFI, SUa, I->getSUnit(), ExitSU, Depth, Visited); |
| return *Depth; |
| } |
| |
| /// This function assumes that "downward" from SU there exist |
| /// tail/leaf of already constructed DAG. It iterates downward and |
| /// checks whether SU can be aliasing any node dominated |
| /// by it. |
| static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI, |
| SUnit *SU, SUnit *ExitSU, std::set<SUnit *> &CheckList, |
| unsigned LatencyToLoad) { |
| if (!SU) |
| return; |
| |
| SmallPtrSet<const SUnit*, 16> Visited; |
| unsigned Depth = 0; |
| |
| for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end(); |
| I != IE; ++I) { |
| if (SU == *I) |
| continue; |
| if (MIsNeedChainEdge(AA, MFI, SU->getInstr(), (*I)->getInstr())) { |
| SDep Dep(SU, SDep::MayAliasMem); |
| Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0); |
| (*I)->addPred(Dep); |
| } |
| // Now go through all the chain successors and iterate from them. |
| // Keep track of visited nodes. |
| for (SUnit::const_succ_iterator J = (*I)->Succs.begin(), |
| JE = (*I)->Succs.end(); J != JE; ++J) |
| if (J->isCtrl()) |
| iterateChainSucc (AA, MFI, SU, J->getSUnit(), |
| ExitSU, &Depth, Visited); |
| } |
| } |
| |
| /// Check whether two objects need a chain edge, if so, add it |
| /// otherwise remember the rejected SU. |
| static inline |
| void addChainDependency (AliasAnalysis *AA, const MachineFrameInfo *MFI, |
| SUnit *SUa, SUnit *SUb, |
| std::set<SUnit *> &RejectList, |
| unsigned TrueMemOrderLatency = 0, |
| bool isNormalMemory = false) { |
| // If this is a false dependency, |
| // do not add the edge, but rememeber the rejected node. |
| if (!EnableAASchedMI || |
| MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) { |
| SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier); |
| Dep.setLatency(TrueMemOrderLatency); |
| SUb->addPred(Dep); |
| } |
| else { |
| // Duplicate entries should be ignored. |
| RejectList.insert(SUb); |
| DEBUG(dbgs() << "\tReject chain dep between SU(" |
| << SUa->NodeNum << ") and SU(" |
| << SUb->NodeNum << ")\n"); |
| } |
| } |
| |
| /// Create an SUnit for each real instruction, numbered in top-down toplological |
| /// order. The instruction order A < B, implies that no edge exists from B to A. |
| /// |
| /// Map each real instruction to its SUnit. |
| /// |
| /// After initSUnits, the SUnits vector cannot be resized and the scheduler may |
| /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs |
| /// instead of pointers. |
| /// |
| /// MachineScheduler relies on initSUnits numbering the nodes by their order in |
| /// the original instruction list. |
| void ScheduleDAGInstrs::initSUnits() { |
| // We'll be allocating one SUnit for each real instruction in the region, |
| // which is contained within a basic block. |
| SUnits.reserve(BB->size()); |
| |
| for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) { |
| MachineInstr *MI = I; |
| if (MI->isDebugValue()) |
| continue; |
| |
| SUnit *SU = newSUnit(MI); |
| MISUnitMap[MI] = SU; |
| |
| SU->isCall = MI->isCall(); |
| SU->isCommutable = MI->isCommutable(); |
| |
| // Assign the Latency field of SU using target-provided information. |
| SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); |
| } |
| } |
| |
| /// If RegPressure is non null, compute register pressure as a side effect. The |
| /// DAG builder is an efficient place to do it because it already visits |
| /// operands. |
| void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA, |
| RegPressureTracker *RPTracker) { |
| // Create an SUnit for each real instruction. |
| initSUnits(); |
| |
| // We build scheduling units by walking a block's instruction list from bottom |
| // to top. |
| |
| // Remember where a generic side-effecting instruction is as we procede. |
| SUnit *BarrierChain = 0, *AliasChain = 0; |
| |
| // Memory references to specific known memory locations are tracked |
| // so that they can be given more precise dependencies. We track |
| // separately the known memory locations that may alias and those |
| // that are known not to alias |
| MapVector<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs; |
| MapVector<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses; |
| std::set<SUnit*> RejectMemNodes; |
| |
| // Remove any stale debug info; sometimes BuildSchedGraph is called again |
| // without emitting the info from the previous call. |
| DbgValues.clear(); |
| FirstDbgValue = NULL; |
| |
| assert(Defs.empty() && Uses.empty() && |
| "Only BuildGraph should update Defs/Uses"); |
| Defs.setUniverse(TRI->getNumRegs()); |
| Uses.setUniverse(TRI->getNumRegs()); |
| |
| assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs"); |
| // FIXME: Allow SparseSet to reserve space for the creation of virtual |
| // registers during scheduling. Don't artificially inflate the Universe |
| // because we want to assert that vregs are not created during DAG building. |
| VRegDefs.setUniverse(MRI.getNumVirtRegs()); |
| |
| // Model data dependencies between instructions being scheduled and the |
| // ExitSU. |
| addSchedBarrierDeps(); |
| |
| // Walk the list of instructions, from bottom moving up. |
| MachineInstr *DbgMI = NULL; |
| for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; |
| MII != MIE; --MII) { |
| MachineInstr *MI = prior(MII); |
| if (MI && DbgMI) { |
| DbgValues.push_back(std::make_pair(DbgMI, MI)); |
| DbgMI = NULL; |
| } |
| |
| if (MI->isDebugValue()) { |
| DbgMI = MI; |
| continue; |
| } |
| if (RPTracker) { |
| RPTracker->recede(); |
| assert(RPTracker->getPos() == prior(MII) && "RPTracker can't find MI"); |
| } |
| |
| assert((CanHandleTerminators || (!MI->isTerminator() && !MI->isLabel())) && |
| "Cannot schedule terminators or labels!"); |
| |
| SUnit *SU = MISUnitMap[MI]; |
| assert(SU && "No SUnit mapped to this MI"); |
| |
| // Add register-based dependencies (data, anti, and output). |
| bool HasVRegDef = false; |
| for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) { |
| const MachineOperand &MO = MI->getOperand(j); |
| if (!MO.isReg()) continue; |
| unsigned Reg = MO.getReg(); |
| if (Reg == 0) continue; |
| |
| if (TRI->isPhysicalRegister(Reg)) |
| addPhysRegDeps(SU, j); |
| else { |
| assert(!IsPostRA && "Virtual register encountered!"); |
| if (MO.isDef()) { |
| HasVRegDef = true; |
| addVRegDefDeps(SU, j); |
| } |
| else if (MO.readsReg()) // ignore undef operands |
| addVRegUseDeps(SU, j); |
| } |
| } |
| // If we haven't seen any uses in this scheduling region, create a |
| // dependence edge to ExitSU to model the live-out latency. This is required |
| // for vreg defs with no in-region use, and prefetches with no vreg def. |
| // |
| // FIXME: NumDataSuccs would be more precise than NumSuccs here. This |
| // check currently relies on being called before adding chain deps. |
| if (SU->NumSuccs == 0 && SU->Latency > 1 |
| && (HasVRegDef || MI->mayLoad())) { |
| SDep Dep(SU, SDep::Artificial); |
| Dep.setLatency(SU->Latency - 1); |
| ExitSU.addPred(Dep); |
| } |
| |
| // Add chain dependencies. |
| // Chain dependencies used to enforce memory order should have |
| // latency of 0 (except for true dependency of Store followed by |
| // aliased Load... we estimate that with a single cycle of latency |
| // assuming the hardware will bypass) |
| // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable |
| // after stack slots are lowered to actual addresses. |
| // TODO: Use an AliasAnalysis and do real alias-analysis queries, and |
| // produce more precise dependence information. |
| unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0; |
| if (isGlobalMemoryObject(AA, MI)) { |
| // Be conservative with these and add dependencies on all memory |
| // references, even those that are known to not alias. |
| for (MapVector<const Value *, SUnit *>::iterator I = |
| NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) { |
| I->second->addPred(SDep(SU, SDep::Barrier)); |
| } |
| for (MapVector<const Value *, std::vector<SUnit *> >::iterator I = |
| NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) { |
| for (unsigned i = 0, e = I->second.size(); i != e; ++i) { |
| SDep Dep(SU, SDep::Barrier); |
| Dep.setLatency(TrueMemOrderLatency); |
| I->second[i]->addPred(Dep); |
| } |
| } |
| // Add SU to the barrier chain. |
| if (BarrierChain) |
| BarrierChain->addPred(SDep(SU, SDep::Barrier)); |
| BarrierChain = SU; |
| // This is a barrier event that acts as a pivotal node in the DAG, |
| // so it is safe to clear list of exposed nodes. |
| adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, |
| TrueMemOrderLatency); |
| RejectMemNodes.clear(); |
| NonAliasMemDefs.clear(); |
| NonAliasMemUses.clear(); |
| |
| // fall-through |
| new_alias_chain: |
| // Chain all possibly aliasing memory references though SU. |
| if (AliasChain) { |
| unsigned ChainLatency = 0; |
| if (AliasChain->getInstr()->mayLoad()) |
| ChainLatency = TrueMemOrderLatency; |
| addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes, |
| ChainLatency); |
| } |
| AliasChain = SU; |
| for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) |
| addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes, |
| TrueMemOrderLatency); |
| for (MapVector<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(), |
| E = AliasMemDefs.end(); I != E; ++I) |
| addChainDependency(AA, MFI, SU, I->second, RejectMemNodes); |
| for (MapVector<const Value *, std::vector<SUnit *> >::iterator I = |
| AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) { |
| for (unsigned i = 0, e = I->second.size(); i != e; ++i) |
| addChainDependency(AA, MFI, SU, I->second[i], RejectMemNodes, |
| TrueMemOrderLatency); |
| } |
| adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, |
| TrueMemOrderLatency); |
| PendingLoads.clear(); |
| AliasMemDefs.clear(); |
| AliasMemUses.clear(); |
| } else if (MI->mayStore()) { |
| SmallVector<std::pair<const Value *, bool>, 4> Objs; |
| getUnderlyingObjectsForInstr(MI, MFI, Objs); |
| |
| if (Objs.empty()) { |
| // Treat all other stores conservatively. |
| goto new_alias_chain; |
| } |
| |
| bool MayAlias = false; |
| for (SmallVector<std::pair<const Value *, bool>, 4>::iterator |
| K = Objs.begin(), KE = Objs.end(); K != KE; ++K) { |
| const Value *V = K->first; |
| bool ThisMayAlias = K->second; |
| if (ThisMayAlias) |
| MayAlias = true; |
| |
| // A store to a specific PseudoSourceValue. Add precise dependencies. |
| // Record the def in MemDefs, first adding a dep if there is |
| // an existing def. |
| MapVector<const Value *, SUnit *>::iterator I = |
| ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); |
| MapVector<const Value *, SUnit *>::iterator IE = |
| ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); |
| if (I != IE) { |
| addChainDependency(AA, MFI, SU, I->second, RejectMemNodes, 0, true); |
| I->second = SU; |
| } else { |
| if (ThisMayAlias) |
| AliasMemDefs[V] = SU; |
| else |
| NonAliasMemDefs[V] = SU; |
| } |
| // Handle the uses in MemUses, if there are any. |
| MapVector<const Value *, std::vector<SUnit *> >::iterator J = |
| ((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V)); |
| MapVector<const Value *, std::vector<SUnit *> >::iterator JE = |
| ((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end()); |
| if (J != JE) { |
| for (unsigned i = 0, e = J->second.size(); i != e; ++i) |
| addChainDependency(AA, MFI, SU, J->second[i], RejectMemNodes, |
| TrueMemOrderLatency, true); |
| J->second.clear(); |
| } |
| } |
| if (MayAlias) { |
| // Add dependencies from all the PendingLoads, i.e. loads |
| // with no underlying object. |
| for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) |
| addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes, |
| TrueMemOrderLatency); |
| // Add dependence on alias chain, if needed. |
| if (AliasChain) |
| addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes); |
| // But we also should check dependent instructions for the |
| // SU in question. |
| adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, |
| TrueMemOrderLatency); |
| } |
| // Add dependence on barrier chain, if needed. |
| // There is no point to check aliasing on barrier event. Even if |
| // SU and barrier _could_ be reordered, they should not. In addition, |
| // we have lost all RejectMemNodes below barrier. |
| if (BarrierChain) |
| BarrierChain->addPred(SDep(SU, SDep::Barrier)); |
| |
| if (!ExitSU.isPred(SU)) |
| // Push store's up a bit to avoid them getting in between cmp |
| // and branches. |
| ExitSU.addPred(SDep(SU, SDep::Artificial)); |
| } else if (MI->mayLoad()) { |
| bool MayAlias = true; |
| if (MI->isInvariantLoad(AA)) { |
| // Invariant load, no chain dependencies needed! |
| } else { |
| SmallVector<std::pair<const Value *, bool>, 4> Objs; |
| getUnderlyingObjectsForInstr(MI, MFI, Objs); |
| |
| if (Objs.empty()) { |
| // A load with no underlying object. Depend on all |
| // potentially aliasing stores. |
| for (MapVector<const Value *, SUnit *>::iterator I = |
| AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) |
| addChainDependency(AA, MFI, SU, I->second, RejectMemNodes); |
| |
| PendingLoads.push_back(SU); |
| MayAlias = true; |
| } else { |
| MayAlias = false; |
| } |
| |
| for (SmallVector<std::pair<const Value *, bool>, 4>::iterator |
| J = Objs.begin(), JE = Objs.end(); J != JE; ++J) { |
| const Value *V = J->first; |
| bool ThisMayAlias = J->second; |
| |
| if (ThisMayAlias) |
| MayAlias = true; |
| |
| // A load from a specific PseudoSourceValue. Add precise dependencies. |
| MapVector<const Value *, SUnit *>::iterator I = |
| ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); |
| MapVector<const Value *, SUnit *>::iterator IE = |
| ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); |
| if (I != IE) |
| addChainDependency(AA, MFI, SU, I->second, RejectMemNodes, 0, true); |
| if (ThisMayAlias) |
| AliasMemUses[V].push_back(SU); |
| else |
| NonAliasMemUses[V].push_back(SU); |
| } |
| if (MayAlias) |
| adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, /*Latency=*/0); |
| // Add dependencies on alias and barrier chains, if needed. |
| if (MayAlias && AliasChain) |
| addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes); |
| if (BarrierChain) |
| BarrierChain->addPred(SDep(SU, SDep::Barrier)); |
| } |
| } |
| } |
| if (DbgMI) |
| FirstDbgValue = DbgMI; |
| |
| Defs.clear(); |
| Uses.clear(); |
| VRegDefs.clear(); |
| PendingLoads.clear(); |
| } |
| |
| void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const { |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| SU->getInstr()->dump(); |
| #endif |
| } |
| |
| std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { |
| std::string s; |
| raw_string_ostream oss(s); |
| if (SU == &EntrySU) |
| oss << "<entry>"; |
| else if (SU == &ExitSU) |
| oss << "<exit>"; |
| else |
| SU->getInstr()->print(oss, &TM, /*SkipOpers=*/true); |
| return oss.str(); |
| } |
| |
| /// Return the basic block label. It is not necessarilly unique because a block |
| /// contains multiple scheduling regions. But it is fine for visualization. |
| std::string ScheduleDAGInstrs::getDAGName() const { |
| return "dag." + BB->getFullName(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SchedDFSResult Implementation |
| //===----------------------------------------------------------------------===// |
| |
| namespace llvm { |
| /// \brief Internal state used to compute SchedDFSResult. |
| class SchedDFSImpl { |
| SchedDFSResult &R; |
| |
| /// Join DAG nodes into equivalence classes by their subtree. |
| IntEqClasses SubtreeClasses; |
| /// List PredSU, SuccSU pairs that represent data edges between subtrees. |
| std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs; |
| |
| struct RootData { |
| unsigned NodeID; |
| unsigned ParentNodeID; // Parent node (member of the parent subtree). |
| unsigned SubInstrCount; // Instr count in this tree only, not children. |
| |
| RootData(unsigned id): NodeID(id), |
| ParentNodeID(SchedDFSResult::InvalidSubtreeID), |
| SubInstrCount(0) {} |
| |
| unsigned getSparseSetIndex() const { return NodeID; } |
| }; |
| |
| SparseSet<RootData> RootSet; |
| |
| public: |
| SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) { |
| RootSet.setUniverse(R.DFSNodeData.size()); |
| } |
| |
| /// Return true if this node been visited by the DFS traversal. |
| /// |
| /// During visitPostorderNode the Node's SubtreeID is assigned to the Node |
| /// ID. Later, SubtreeID is updated but remains valid. |
| bool isVisited(const SUnit *SU) const { |
| return R.DFSNodeData[SU->NodeNum].SubtreeID |
| != SchedDFSResult::InvalidSubtreeID; |
| } |
| |
| /// Initialize this node's instruction count. We don't need to flag the node |
| /// visited until visitPostorder because the DAG cannot have cycles. |
| void visitPreorder(const SUnit *SU) { |
| R.DFSNodeData[SU->NodeNum].InstrCount = |
| SU->getInstr()->isTransient() ? 0 : 1; |
| } |
| |
| /// Called once for each node after all predecessors are visited. Revisit this |
| /// node's predecessors and potentially join them now that we know the ILP of |
| /// the other predecessors. |
| void visitPostorderNode(const SUnit *SU) { |
| // Mark this node as the root of a subtree. It may be joined with its |
| // successors later. |
| R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum; |
| RootData RData(SU->NodeNum); |
| RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1; |
| |
| // If any predecessors are still in their own subtree, they either cannot be |
| // joined or are large enough to remain separate. If this parent node's |
| // total instruction count is not greater than a child subtree by at least |
| // the subtree limit, then try to join it now since splitting subtrees is |
| // only useful if multiple high-pressure paths are possible. |
| unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount; |
| for (SUnit::const_pred_iterator |
| PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { |
| if (PI->getKind() != SDep::Data) |
| continue; |
| unsigned PredNum = PI->getSUnit()->NodeNum; |
| if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit) |
| joinPredSubtree(*PI, SU, /*CheckLimit=*/false); |
| |
| // Either link or merge the TreeData entry from the child to the parent. |
| if (R.DFSNodeData[PredNum].SubtreeID == PredNum) { |
| // If the predecessor's parent is invalid, this is a tree edge and the |
| // current node is the parent. |
| if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID) |
| RootSet[PredNum].ParentNodeID = SU->NodeNum; |
| } |
| else if (RootSet.count(PredNum)) { |
| // The predecessor is not a root, but is still in the root set. This |
| // must be the new parent that it was just joined to. Note that |
| // RootSet[PredNum].ParentNodeID may either be invalid or may still be |
| // set to the original parent. |
| RData.SubInstrCount += RootSet[PredNum].SubInstrCount; |
| RootSet.erase(PredNum); |
| } |
| } |
| RootSet[SU->NodeNum] = RData; |
| } |
| |
| /// Called once for each tree edge after calling visitPostOrderNode on the |
| /// predecessor. Increment the parent node's instruction count and |
| /// preemptively join this subtree to its parent's if it is small enough. |
| void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) { |
| R.DFSNodeData[Succ->NodeNum].InstrCount |
| += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount; |
| joinPredSubtree(PredDep, Succ); |
| } |
| |
| /// Add a connection for cross edges. |
| void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) { |
| ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ)); |
| } |
| |
| /// Set each node's subtree ID to the representative ID and record connections |
| /// between trees. |
| void finalize() { |
| SubtreeClasses.compress(); |
| R.DFSTreeData.resize(SubtreeClasses.getNumClasses()); |
| assert(SubtreeClasses.getNumClasses() == RootSet.size() |
| && "number of roots should match trees"); |
| for (SparseSet<RootData>::const_iterator |
| RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) { |
| unsigned TreeID = SubtreeClasses[RI->NodeID]; |
| if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID) |
| R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID]; |
| R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount; |
| // Note that SubInstrCount may be greater than InstrCount if we joined |
| // subtrees across a cross edge. InstrCount will be attributed to the |
| // original parent, while SubInstrCount will be attributed to the joined |
| // parent. |
| } |
| R.SubtreeConnections.resize(SubtreeClasses.getNumClasses()); |
| R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses()); |
| DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n"); |
| for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) { |
| R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx]; |
| DEBUG(dbgs() << " SU(" << Idx << ") in tree " |
| << R.DFSNodeData[Idx].SubtreeID << '\n'); |
| } |
| for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator |
| I = ConnectionPairs.begin(), E = ConnectionPairs.end(); |
| I != E; ++I) { |
| unsigned PredTree = SubtreeClasses[I->first->NodeNum]; |
| unsigned SuccTree = SubtreeClasses[I->second->NodeNum]; |
| if (PredTree == SuccTree) |
| continue; |
| unsigned Depth = I->first->getDepth(); |
| addConnection(PredTree, SuccTree, Depth); |
| addConnection(SuccTree, PredTree, Depth); |
| } |
| } |
| |
| protected: |
| /// Join the predecessor subtree with the successor that is its DFS |
| /// parent. Apply some heuristics before joining. |
| bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ, |
| bool CheckLimit = true) { |
| assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges"); |
| |
| // Check if the predecessor is already joined. |
| const SUnit *PredSU = PredDep.getSUnit(); |
| unsigned PredNum = PredSU->NodeNum; |
| if (R.DFSNodeData[PredNum].SubtreeID != PredNum) |
| return false; |
| |
| // Four is the magic number of successors before a node is considered a |
| // pinch point. |
| unsigned NumDataSucs = 0; |
| for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(), |
| SE = PredSU->Succs.end(); SI != SE; ++SI) { |
| if (SI->getKind() == SDep::Data) { |
| if (++NumDataSucs >= 4) |
| return false; |
| } |
| } |
| if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit) |
| return false; |
| R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum; |
| SubtreeClasses.join(Succ->NodeNum, PredNum); |
| return true; |
| } |
| |
| /// Called by finalize() to record a connection between trees. |
| void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) { |
| if (!Depth) |
| return; |
| |
| do { |
| SmallVectorImpl<SchedDFSResult::Connection> &Connections = |
| R.SubtreeConnections[FromTree]; |
| for (SmallVectorImpl<SchedDFSResult::Connection>::iterator |
| I = Connections.begin(), E = Connections.end(); I != E; ++I) { |
| if (I->TreeID == ToTree) { |
| I->Level = std::max(I->Level, Depth); |
| return; |
| } |
| } |
| Connections.push_back(SchedDFSResult::Connection(ToTree, Depth)); |
| FromTree = R.DFSTreeData[FromTree].ParentTreeID; |
| } while (FromTree != SchedDFSResult::InvalidSubtreeID); |
| } |
| }; |
| } // namespace llvm |
| |
| namespace { |
| /// \brief Manage the stack used by a reverse depth-first search over the DAG. |
| class SchedDAGReverseDFS { |
| std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack; |
| public: |
| bool isComplete() const { return DFSStack.empty(); } |
| |
| void follow(const SUnit *SU) { |
| DFSStack.push_back(std::make_pair(SU, SU->Preds.begin())); |
| } |
| void advance() { ++DFSStack.back().second; } |
| |
| const SDep *backtrack() { |
| DFSStack.pop_back(); |
| return DFSStack.empty() ? 0 : llvm::prior(DFSStack.back().second); |
| } |
| |
| const SUnit *getCurr() const { return DFSStack.back().first; } |
| |
| SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } |
| |
| SUnit::const_pred_iterator getPredEnd() const { |
| return getCurr()->Preds.end(); |
| } |
| }; |
| } // anonymous |
| |
| static bool hasDataSucc(const SUnit *SU) { |
| for (SUnit::const_succ_iterator |
| SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) { |
| if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode()) |
| return true; |
| } |
| return false; |
| } |
| |
| /// Compute an ILP metric for all nodes in the subDAG reachable via depth-first |
| /// search from this root. |
| void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) { |
| if (!IsBottomUp) |
| llvm_unreachable("Top-down ILP metric is unimplemnted"); |
| |
| SchedDFSImpl Impl(*this); |
| for (ArrayRef<SUnit>::const_iterator |
| SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) { |
| const SUnit *SU = &*SI; |
| if (Impl.isVisited(SU) || hasDataSucc(SU)) |
| continue; |
| |
| SchedDAGReverseDFS DFS; |
| Impl.visitPreorder(SU); |
| DFS.follow(SU); |
| for (;;) { |
| // Traverse the leftmost path as far as possible. |
| while (DFS.getPred() != DFS.getPredEnd()) { |
| const SDep &PredDep = *DFS.getPred(); |
| DFS.advance(); |
| // Ignore non-data edges. |
| if (PredDep.getKind() != SDep::Data |
| || PredDep.getSUnit()->isBoundaryNode()) { |
| continue; |
| } |
| // An already visited edge is a cross edge, assuming an acyclic DAG. |
| if (Impl.isVisited(PredDep.getSUnit())) { |
| Impl.visitCrossEdge(PredDep, DFS.getCurr()); |
| continue; |
| } |
| Impl.visitPreorder(PredDep.getSUnit()); |
| DFS.follow(PredDep.getSUnit()); |
| } |
| // Visit the top of the stack in postorder and backtrack. |
| const SUnit *Child = DFS.getCurr(); |
| const SDep *PredDep = DFS.backtrack(); |
| Impl.visitPostorderNode(Child); |
| if (PredDep) |
| Impl.visitPostorderEdge(*PredDep, DFS.getCurr()); |
| if (DFS.isComplete()) |
| break; |
| } |
| } |
| Impl.finalize(); |
| } |
| |
| /// The root of the given SubtreeID was just scheduled. For all subtrees |
| /// connected to this tree, record the depth of the connection so that the |
| /// nearest connected subtrees can be prioritized. |
| void SchedDFSResult::scheduleTree(unsigned SubtreeID) { |
| for (SmallVectorImpl<Connection>::const_iterator |
| I = SubtreeConnections[SubtreeID].begin(), |
| E = SubtreeConnections[SubtreeID].end(); I != E; ++I) { |
| SubtreeConnectLevels[I->TreeID] = |
| std::max(SubtreeConnectLevels[I->TreeID], I->Level); |
| DEBUG(dbgs() << " Tree: " << I->TreeID |
| << " @" << SubtreeConnectLevels[I->TreeID] << '\n'); |
| } |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| void ILPValue::print(raw_ostream &OS) const { |
| OS << InstrCount << " / " << Length << " = "; |
| if (!Length) |
| OS << "BADILP"; |
| else |
| OS << format("%g", ((double)InstrCount / Length)); |
| } |
| |
| void ILPValue::dump() const { |
| dbgs() << *this << '\n'; |
| } |
| |
| namespace llvm { |
| |
| raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { |
| Val.print(OS); |
| return OS; |
| } |
| |
| } // namespace llvm |
| #endif // !NDEBUG || LLVM_ENABLE_DUMP |