| //===- InlineFunction.cpp - Code to perform function inlining -------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements inlining of a function into a call site, resolving |
| // parameters and the return value as appropriate. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Utils/Cloning.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Analysis/CallGraph.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/DebugInfo.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/Support/CallSite.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| using namespace llvm; |
| |
| bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI, |
| bool InsertLifetime) { |
| return InlineFunction(CallSite(CI), IFI, InsertLifetime); |
| } |
| bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI, |
| bool InsertLifetime) { |
| return InlineFunction(CallSite(II), IFI, InsertLifetime); |
| } |
| |
| namespace { |
| /// A class for recording information about inlining through an invoke. |
| class InvokeInliningInfo { |
| BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind. |
| BasicBlock *InnerResumeDest; ///< Destination for the callee's resume. |
| LandingPadInst *CallerLPad; ///< LandingPadInst associated with the invoke. |
| PHINode *InnerEHValuesPHI; ///< PHI for EH values from landingpad insts. |
| SmallVector<Value*, 8> UnwindDestPHIValues; |
| |
| public: |
| InvokeInliningInfo(InvokeInst *II) |
| : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(0), |
| CallerLPad(0), InnerEHValuesPHI(0) { |
| // If there are PHI nodes in the unwind destination block, we need to keep |
| // track of which values came into them from the invoke before removing |
| // the edge from this block. |
| llvm::BasicBlock *InvokeBB = II->getParent(); |
| BasicBlock::iterator I = OuterResumeDest->begin(); |
| for (; isa<PHINode>(I); ++I) { |
| // Save the value to use for this edge. |
| PHINode *PHI = cast<PHINode>(I); |
| UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); |
| } |
| |
| CallerLPad = cast<LandingPadInst>(I); |
| } |
| |
| /// getOuterResumeDest - The outer unwind destination is the target of |
| /// unwind edges introduced for calls within the inlined function. |
| BasicBlock *getOuterResumeDest() const { |
| return OuterResumeDest; |
| } |
| |
| BasicBlock *getInnerResumeDest(); |
| |
| LandingPadInst *getLandingPadInst() const { return CallerLPad; } |
| |
| /// forwardResume - Forward the 'resume' instruction to the caller's landing |
| /// pad block. When the landing pad block has only one predecessor, this is |
| /// a simple branch. When there is more than one predecessor, we need to |
| /// split the landing pad block after the landingpad instruction and jump |
| /// to there. |
| void forwardResume(ResumeInst *RI); |
| |
| /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind |
| /// destination block for the given basic block, using the values for the |
| /// original invoke's source block. |
| void addIncomingPHIValuesFor(BasicBlock *BB) const { |
| addIncomingPHIValuesForInto(BB, OuterResumeDest); |
| } |
| |
| void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { |
| BasicBlock::iterator I = dest->begin(); |
| for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { |
| PHINode *phi = cast<PHINode>(I); |
| phi->addIncoming(UnwindDestPHIValues[i], src); |
| } |
| } |
| }; |
| } |
| |
| /// getInnerResumeDest - Get or create a target for the branch from ResumeInsts. |
| BasicBlock *InvokeInliningInfo::getInnerResumeDest() { |
| if (InnerResumeDest) return InnerResumeDest; |
| |
| // Split the landing pad. |
| BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint; |
| InnerResumeDest = |
| OuterResumeDest->splitBasicBlock(SplitPoint, |
| OuterResumeDest->getName() + ".body"); |
| |
| // The number of incoming edges we expect to the inner landing pad. |
| const unsigned PHICapacity = 2; |
| |
| // Create corresponding new PHIs for all the PHIs in the outer landing pad. |
| BasicBlock::iterator InsertPoint = InnerResumeDest->begin(); |
| BasicBlock::iterator I = OuterResumeDest->begin(); |
| for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { |
| PHINode *OuterPHI = cast<PHINode>(I); |
| PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, |
| OuterPHI->getName() + ".lpad-body", |
| InsertPoint); |
| OuterPHI->replaceAllUsesWith(InnerPHI); |
| InnerPHI->addIncoming(OuterPHI, OuterResumeDest); |
| } |
| |
| // Create a PHI for the exception values. |
| InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, |
| "eh.lpad-body", InsertPoint); |
| CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); |
| InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); |
| |
| // All done. |
| return InnerResumeDest; |
| } |
| |
| /// forwardResume - Forward the 'resume' instruction to the caller's landing pad |
| /// block. When the landing pad block has only one predecessor, this is a simple |
| /// branch. When there is more than one predecessor, we need to split the |
| /// landing pad block after the landingpad instruction and jump to there. |
| void InvokeInliningInfo::forwardResume(ResumeInst *RI) { |
| BasicBlock *Dest = getInnerResumeDest(); |
| BasicBlock *Src = RI->getParent(); |
| |
| BranchInst::Create(Dest, Src); |
| |
| // Update the PHIs in the destination. They were inserted in an order which |
| // makes this work. |
| addIncomingPHIValuesForInto(Src, Dest); |
| |
| InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); |
| RI->eraseFromParent(); |
| } |
| |
| /// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into |
| /// an invoke, we have to turn all of the calls that can throw into |
| /// invokes. This function analyze BB to see if there are any calls, and if so, |
| /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI |
| /// nodes in that block with the values specified in InvokeDestPHIValues. |
| /// |
| /// Returns true to indicate that the next block should be skipped. |
| static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, |
| InvokeInliningInfo &Invoke) { |
| LandingPadInst *LPI = Invoke.getLandingPadInst(); |
| |
| for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { |
| Instruction *I = BBI++; |
| |
| if (LandingPadInst *L = dyn_cast<LandingPadInst>(I)) { |
| unsigned NumClauses = LPI->getNumClauses(); |
| L->reserveClauses(NumClauses); |
| for (unsigned i = 0; i != NumClauses; ++i) |
| L->addClause(LPI->getClause(i)); |
| } |
| |
| // We only need to check for function calls: inlined invoke |
| // instructions require no special handling. |
| CallInst *CI = dyn_cast<CallInst>(I); |
| |
| // If this call cannot unwind, don't convert it to an invoke. |
| if (!CI || CI->doesNotThrow()) |
| continue; |
| |
| // Convert this function call into an invoke instruction. First, split the |
| // basic block. |
| BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); |
| |
| // Delete the unconditional branch inserted by splitBasicBlock |
| BB->getInstList().pop_back(); |
| |
| // Create the new invoke instruction. |
| ImmutableCallSite CS(CI); |
| SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end()); |
| InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, |
| Invoke.getOuterResumeDest(), |
| InvokeArgs, CI->getName(), BB); |
| II->setCallingConv(CI->getCallingConv()); |
| II->setAttributes(CI->getAttributes()); |
| |
| // Make sure that anything using the call now uses the invoke! This also |
| // updates the CallGraph if present, because it uses a WeakVH. |
| CI->replaceAllUsesWith(II); |
| |
| // Delete the original call |
| Split->getInstList().pop_front(); |
| |
| // Update any PHI nodes in the exceptional block to indicate that there is |
| // now a new entry in them. |
| Invoke.addIncomingPHIValuesFor(BB); |
| return false; |
| } |
| |
| return false; |
| } |
| |
| /// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls |
| /// in the body of the inlined function into invokes. |
| /// |
| /// II is the invoke instruction being inlined. FirstNewBlock is the first |
| /// block of the inlined code (the last block is the end of the function), |
| /// and InlineCodeInfo is information about the code that got inlined. |
| static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock, |
| ClonedCodeInfo &InlinedCodeInfo) { |
| BasicBlock *InvokeDest = II->getUnwindDest(); |
| |
| Function *Caller = FirstNewBlock->getParent(); |
| |
| // The inlined code is currently at the end of the function, scan from the |
| // start of the inlined code to its end, checking for stuff we need to |
| // rewrite. If the code doesn't have calls or unwinds, we know there is |
| // nothing to rewrite. |
| if (!InlinedCodeInfo.ContainsCalls) { |
| // Now that everything is happy, we have one final detail. The PHI nodes in |
| // the exception destination block still have entries due to the original |
| // invoke instruction. Eliminate these entries (which might even delete the |
| // PHI node) now. |
| InvokeDest->removePredecessor(II->getParent()); |
| return; |
| } |
| |
| InvokeInliningInfo Invoke(II); |
| |
| for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){ |
| if (InlinedCodeInfo.ContainsCalls) |
| if (HandleCallsInBlockInlinedThroughInvoke(BB, Invoke)) { |
| // Honor a request to skip the next block. |
| ++BB; |
| continue; |
| } |
| |
| if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) |
| Invoke.forwardResume(RI); |
| } |
| |
| // Now that everything is happy, we have one final detail. The PHI nodes in |
| // the exception destination block still have entries due to the original |
| // invoke instruction. Eliminate these entries (which might even delete the |
| // PHI node) now. |
| InvokeDest->removePredecessor(II->getParent()); |
| } |
| |
| /// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee |
| /// into the caller, update the specified callgraph to reflect the changes we |
| /// made. Note that it's possible that not all code was copied over, so only |
| /// some edges of the callgraph may remain. |
| static void UpdateCallGraphAfterInlining(CallSite CS, |
| Function::iterator FirstNewBlock, |
| ValueToValueMapTy &VMap, |
| InlineFunctionInfo &IFI) { |
| CallGraph &CG = *IFI.CG; |
| const Function *Caller = CS.getInstruction()->getParent()->getParent(); |
| const Function *Callee = CS.getCalledFunction(); |
| CallGraphNode *CalleeNode = CG[Callee]; |
| CallGraphNode *CallerNode = CG[Caller]; |
| |
| // Since we inlined some uninlined call sites in the callee into the caller, |
| // add edges from the caller to all of the callees of the callee. |
| CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); |
| |
| // Consider the case where CalleeNode == CallerNode. |
| CallGraphNode::CalledFunctionsVector CallCache; |
| if (CalleeNode == CallerNode) { |
| CallCache.assign(I, E); |
| I = CallCache.begin(); |
| E = CallCache.end(); |
| } |
| |
| for (; I != E; ++I) { |
| const Value *OrigCall = I->first; |
| |
| ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); |
| // Only copy the edge if the call was inlined! |
| if (VMI == VMap.end() || VMI->second == 0) |
| continue; |
| |
| // If the call was inlined, but then constant folded, there is no edge to |
| // add. Check for this case. |
| Instruction *NewCall = dyn_cast<Instruction>(VMI->second); |
| if (NewCall == 0) continue; |
| |
| // Remember that this call site got inlined for the client of |
| // InlineFunction. |
| IFI.InlinedCalls.push_back(NewCall); |
| |
| // It's possible that inlining the callsite will cause it to go from an |
| // indirect to a direct call by resolving a function pointer. If this |
| // happens, set the callee of the new call site to a more precise |
| // destination. This can also happen if the call graph node of the caller |
| // was just unnecessarily imprecise. |
| if (I->second->getFunction() == 0) |
| if (Function *F = CallSite(NewCall).getCalledFunction()) { |
| // Indirect call site resolved to direct call. |
| CallerNode->addCalledFunction(CallSite(NewCall), CG[F]); |
| |
| continue; |
| } |
| |
| CallerNode->addCalledFunction(CallSite(NewCall), I->second); |
| } |
| |
| // Update the call graph by deleting the edge from Callee to Caller. We must |
| // do this after the loop above in case Caller and Callee are the same. |
| CallerNode->removeCallEdgeFor(CS); |
| } |
| |
| /// HandleByValArgument - When inlining a call site that has a byval argument, |
| /// we have to make the implicit memcpy explicit by adding it. |
| static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, |
| const Function *CalledFunc, |
| InlineFunctionInfo &IFI, |
| unsigned ByValAlignment) { |
| Type *AggTy = cast<PointerType>(Arg->getType())->getElementType(); |
| |
| // If the called function is readonly, then it could not mutate the caller's |
| // copy of the byval'd memory. In this case, it is safe to elide the copy and |
| // temporary. |
| if (CalledFunc->onlyReadsMemory()) { |
| // If the byval argument has a specified alignment that is greater than the |
| // passed in pointer, then we either have to round up the input pointer or |
| // give up on this transformation. |
| if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. |
| return Arg; |
| |
| // If the pointer is already known to be sufficiently aligned, or if we can |
| // round it up to a larger alignment, then we don't need a temporary. |
| if (getOrEnforceKnownAlignment(Arg, ByValAlignment, |
| IFI.TD) >= ByValAlignment) |
| return Arg; |
| |
| // Otherwise, we have to make a memcpy to get a safe alignment. This is bad |
| // for code quality, but rarely happens and is required for correctness. |
| } |
| |
| LLVMContext &Context = Arg->getContext(); |
| |
| Type *VoidPtrTy = Type::getInt8PtrTy(Context); |
| |
| // Create the alloca. If we have DataLayout, use nice alignment. |
| unsigned Align = 1; |
| if (IFI.TD) |
| Align = IFI.TD->getPrefTypeAlignment(AggTy); |
| |
| // If the byval had an alignment specified, we *must* use at least that |
| // alignment, as it is required by the byval argument (and uses of the |
| // pointer inside the callee). |
| Align = std::max(Align, ByValAlignment); |
| |
| Function *Caller = TheCall->getParent()->getParent(); |
| |
| Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(), |
| &*Caller->begin()->begin()); |
| // Emit a memcpy. |
| Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)}; |
| Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(), |
| Intrinsic::memcpy, |
| Tys); |
| Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall); |
| Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall); |
| |
| Value *Size; |
| if (IFI.TD == 0) |
| Size = ConstantExpr::getSizeOf(AggTy); |
| else |
| Size = ConstantInt::get(Type::getInt64Ty(Context), |
| IFI.TD->getTypeStoreSize(AggTy)); |
| |
| // Always generate a memcpy of alignment 1 here because we don't know |
| // the alignment of the src pointer. Other optimizations can infer |
| // better alignment. |
| Value *CallArgs[] = { |
| DestCast, SrcCast, Size, |
| ConstantInt::get(Type::getInt32Ty(Context), 1), |
| ConstantInt::getFalse(Context) // isVolatile |
| }; |
| IRBuilder<>(TheCall).CreateCall(MemCpyFn, CallArgs); |
| |
| // Uses of the argument in the function should use our new alloca |
| // instead. |
| return NewAlloca; |
| } |
| |
| // isUsedByLifetimeMarker - Check whether this Value is used by a lifetime |
| // intrinsic. |
| static bool isUsedByLifetimeMarker(Value *V) { |
| for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE; |
| ++UI) { |
| if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI)) { |
| switch (II->getIntrinsicID()) { |
| default: break; |
| case Intrinsic::lifetime_start: |
| case Intrinsic::lifetime_end: |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| // hasLifetimeMarkers - Check whether the given alloca already has |
| // lifetime.start or lifetime.end intrinsics. |
| static bool hasLifetimeMarkers(AllocaInst *AI) { |
| Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext()); |
| if (AI->getType() == Int8PtrTy) |
| return isUsedByLifetimeMarker(AI); |
| |
| // Do a scan to find all the casts to i8*. |
| for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E; |
| ++I) { |
| if (I->getType() != Int8PtrTy) continue; |
| if (I->stripPointerCasts() != AI) continue; |
| if (isUsedByLifetimeMarker(*I)) |
| return true; |
| } |
| return false; |
| } |
| |
| /// updateInlinedAtInfo - Helper function used by fixupLineNumbers to |
| /// recursively update InlinedAtEntry of a DebugLoc. |
| static DebugLoc updateInlinedAtInfo(const DebugLoc &DL, |
| const DebugLoc &InlinedAtDL, |
| LLVMContext &Ctx) { |
| if (MDNode *IA = DL.getInlinedAt(Ctx)) { |
| DebugLoc NewInlinedAtDL |
| = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx); |
| return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx), |
| NewInlinedAtDL.getAsMDNode(Ctx)); |
| } |
| |
| return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx), |
| InlinedAtDL.getAsMDNode(Ctx)); |
| } |
| |
| /// fixupLineNumbers - Update inlined instructions' line numbers to |
| /// to encode location where these instructions are inlined. |
| static void fixupLineNumbers(Function *Fn, Function::iterator FI, |
| Instruction *TheCall) { |
| DebugLoc TheCallDL = TheCall->getDebugLoc(); |
| if (TheCallDL.isUnknown()) |
| return; |
| |
| for (; FI != Fn->end(); ++FI) { |
| for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); |
| BI != BE; ++BI) { |
| DebugLoc DL = BI->getDebugLoc(); |
| if (!DL.isUnknown()) { |
| BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext())); |
| if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) { |
| LLVMContext &Ctx = BI->getContext(); |
| MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx); |
| DVI->setOperand(2, createInlinedVariable(DVI->getVariable(), |
| InlinedAt, Ctx)); |
| } |
| } |
| } |
| } |
| } |
| |
| /// InlineFunction - This function inlines the called function into the basic |
| /// block of the caller. This returns false if it is not possible to inline |
| /// this call. The program is still in a well defined state if this occurs |
| /// though. |
| /// |
| /// Note that this only does one level of inlining. For example, if the |
| /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now |
| /// exists in the instruction stream. Similarly this will inline a recursive |
| /// function by one level. |
| bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI, |
| bool InsertLifetime) { |
| Instruction *TheCall = CS.getInstruction(); |
| assert(TheCall->getParent() && TheCall->getParent()->getParent() && |
| "Instruction not in function!"); |
| |
| // If IFI has any state in it, zap it before we fill it in. |
| IFI.reset(); |
| |
| const Function *CalledFunc = CS.getCalledFunction(); |
| if (CalledFunc == 0 || // Can't inline external function or indirect |
| CalledFunc->isDeclaration() || // call, or call to a vararg function! |
| CalledFunc->getFunctionType()->isVarArg()) return false; |
| |
| // If the call to the callee is not a tail call, we must clear the 'tail' |
| // flags on any calls that we inline. |
| bool MustClearTailCallFlags = |
| !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall()); |
| |
| // If the call to the callee cannot throw, set the 'nounwind' flag on any |
| // calls that we inline. |
| bool MarkNoUnwind = CS.doesNotThrow(); |
| |
| BasicBlock *OrigBB = TheCall->getParent(); |
| Function *Caller = OrigBB->getParent(); |
| |
| // GC poses two hazards to inlining, which only occur when the callee has GC: |
| // 1. If the caller has no GC, then the callee's GC must be propagated to the |
| // caller. |
| // 2. If the caller has a differing GC, it is invalid to inline. |
| if (CalledFunc->hasGC()) { |
| if (!Caller->hasGC()) |
| Caller->setGC(CalledFunc->getGC()); |
| else if (CalledFunc->getGC() != Caller->getGC()) |
| return false; |
| } |
| |
| // Get the personality function from the callee if it contains a landing pad. |
| Value *CalleePersonality = 0; |
| for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end(); |
| I != E; ++I) |
| if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) { |
| const BasicBlock *BB = II->getUnwindDest(); |
| const LandingPadInst *LP = BB->getLandingPadInst(); |
| CalleePersonality = LP->getPersonalityFn(); |
| break; |
| } |
| |
| // Find the personality function used by the landing pads of the caller. If it |
| // exists, then check to see that it matches the personality function used in |
| // the callee. |
| if (CalleePersonality) { |
| for (Function::const_iterator I = Caller->begin(), E = Caller->end(); |
| I != E; ++I) |
| if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) { |
| const BasicBlock *BB = II->getUnwindDest(); |
| const LandingPadInst *LP = BB->getLandingPadInst(); |
| |
| // If the personality functions match, then we can perform the |
| // inlining. Otherwise, we can't inline. |
| // TODO: This isn't 100% true. Some personality functions are proper |
| // supersets of others and can be used in place of the other. |
| if (LP->getPersonalityFn() != CalleePersonality) |
| return false; |
| |
| break; |
| } |
| } |
| |
| // Get an iterator to the last basic block in the function, which will have |
| // the new function inlined after it. |
| Function::iterator LastBlock = &Caller->back(); |
| |
| // Make sure to capture all of the return instructions from the cloned |
| // function. |
| SmallVector<ReturnInst*, 8> Returns; |
| ClonedCodeInfo InlinedFunctionInfo; |
| Function::iterator FirstNewBlock; |
| |
| { // Scope to destroy VMap after cloning. |
| ValueToValueMapTy VMap; |
| |
| assert(CalledFunc->arg_size() == CS.arg_size() && |
| "No varargs calls can be inlined!"); |
| |
| // Calculate the vector of arguments to pass into the function cloner, which |
| // matches up the formal to the actual argument values. |
| CallSite::arg_iterator AI = CS.arg_begin(); |
| unsigned ArgNo = 0; |
| for (Function::const_arg_iterator I = CalledFunc->arg_begin(), |
| E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { |
| Value *ActualArg = *AI; |
| |
| // When byval arguments actually inlined, we need to make the copy implied |
| // by them explicit. However, we don't do this if the callee is readonly |
| // or readnone, because the copy would be unneeded: the callee doesn't |
| // modify the struct. |
| if (CS.isByValArgument(ArgNo)) { |
| ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, |
| CalledFunc->getParamAlignment(ArgNo+1)); |
| |
| // Calls that we inline may use the new alloca, so we need to clear |
| // their 'tail' flags if HandleByValArgument introduced a new alloca and |
| // the callee has calls. |
| MustClearTailCallFlags |= ActualArg != *AI; |
| } |
| |
| VMap[I] = ActualArg; |
| } |
| |
| // We want the inliner to prune the code as it copies. We would LOVE to |
| // have no dead or constant instructions leftover after inlining occurs |
| // (which can happen, e.g., because an argument was constant), but we'll be |
| // happy with whatever the cloner can do. |
| CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, |
| /*ModuleLevelChanges=*/false, Returns, ".i", |
| &InlinedFunctionInfo, IFI.TD, TheCall); |
| |
| // Remember the first block that is newly cloned over. |
| FirstNewBlock = LastBlock; ++FirstNewBlock; |
| |
| // Update the callgraph if requested. |
| if (IFI.CG) |
| UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); |
| |
| // Update inlined instructions' line number information. |
| fixupLineNumbers(Caller, FirstNewBlock, TheCall); |
| } |
| |
| // If there are any alloca instructions in the block that used to be the entry |
| // block for the callee, move them to the entry block of the caller. First |
| // calculate which instruction they should be inserted before. We insert the |
| // instructions at the end of the current alloca list. |
| { |
| BasicBlock::iterator InsertPoint = Caller->begin()->begin(); |
| for (BasicBlock::iterator I = FirstNewBlock->begin(), |
| E = FirstNewBlock->end(); I != E; ) { |
| AllocaInst *AI = dyn_cast<AllocaInst>(I++); |
| if (AI == 0) continue; |
| |
| // If the alloca is now dead, remove it. This often occurs due to code |
| // specialization. |
| if (AI->use_empty()) { |
| AI->eraseFromParent(); |
| continue; |
| } |
| |
| if (!isa<Constant>(AI->getArraySize())) |
| continue; |
| |
| // Keep track of the static allocas that we inline into the caller. |
| IFI.StaticAllocas.push_back(AI); |
| |
| // Scan for the block of allocas that we can move over, and move them |
| // all at once. |
| while (isa<AllocaInst>(I) && |
| isa<Constant>(cast<AllocaInst>(I)->getArraySize())) { |
| IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); |
| ++I; |
| } |
| |
| // Transfer all of the allocas over in a block. Using splice means |
| // that the instructions aren't removed from the symbol table, then |
| // reinserted. |
| Caller->getEntryBlock().getInstList().splice(InsertPoint, |
| FirstNewBlock->getInstList(), |
| AI, I); |
| } |
| } |
| |
| // Leave lifetime markers for the static alloca's, scoping them to the |
| // function we just inlined. |
| if (InsertLifetime && !IFI.StaticAllocas.empty()) { |
| IRBuilder<> builder(FirstNewBlock->begin()); |
| for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { |
| AllocaInst *AI = IFI.StaticAllocas[ai]; |
| |
| // If the alloca is already scoped to something smaller than the whole |
| // function then there's no need to add redundant, less accurate markers. |
| if (hasLifetimeMarkers(AI)) |
| continue; |
| |
| // Try to determine the size of the allocation. |
| ConstantInt *AllocaSize = 0; |
| if (ConstantInt *AIArraySize = |
| dyn_cast<ConstantInt>(AI->getArraySize())) { |
| if (IFI.TD) { |
| Type *AllocaType = AI->getAllocatedType(); |
| uint64_t AllocaTypeSize = IFI.TD->getTypeAllocSize(AllocaType); |
| uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); |
| assert(AllocaArraySize > 0 && "array size of AllocaInst is zero"); |
| // Check that array size doesn't saturate uint64_t and doesn't |
| // overflow when it's multiplied by type size. |
| if (AllocaArraySize != ~0ULL && |
| UINT64_MAX / AllocaArraySize >= AllocaTypeSize) { |
| AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), |
| AllocaArraySize * AllocaTypeSize); |
| } |
| } |
| } |
| |
| builder.CreateLifetimeStart(AI, AllocaSize); |
| for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) { |
| IRBuilder<> builder(Returns[ri]); |
| builder.CreateLifetimeEnd(AI, AllocaSize); |
| } |
| } |
| } |
| |
| // If the inlined code contained dynamic alloca instructions, wrap the inlined |
| // code with llvm.stacksave/llvm.stackrestore intrinsics. |
| if (InlinedFunctionInfo.ContainsDynamicAllocas) { |
| Module *M = Caller->getParent(); |
| // Get the two intrinsics we care about. |
| Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); |
| Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); |
| |
| // Insert the llvm.stacksave. |
| CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin()) |
| .CreateCall(StackSave, "savedstack"); |
| |
| // Insert a call to llvm.stackrestore before any return instructions in the |
| // inlined function. |
| for (unsigned i = 0, e = Returns.size(); i != e; ++i) { |
| IRBuilder<>(Returns[i]).CreateCall(StackRestore, SavedPtr); |
| } |
| } |
| |
| // If we are inlining tail call instruction through a call site that isn't |
| // marked 'tail', we must remove the tail marker for any calls in the inlined |
| // code. Also, calls inlined through a 'nounwind' call site should be marked |
| // 'nounwind'. |
| if (InlinedFunctionInfo.ContainsCalls && |
| (MustClearTailCallFlags || MarkNoUnwind)) { |
| for (Function::iterator BB = FirstNewBlock, E = Caller->end(); |
| BB != E; ++BB) |
| for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) |
| if (CallInst *CI = dyn_cast<CallInst>(I)) { |
| if (MustClearTailCallFlags) |
| CI->setTailCall(false); |
| if (MarkNoUnwind) |
| CI->setDoesNotThrow(); |
| } |
| } |
| |
| // If we are inlining for an invoke instruction, we must make sure to rewrite |
| // any call instructions into invoke instructions. |
| if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) |
| HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo); |
| |
| // If we cloned in _exactly one_ basic block, and if that block ends in a |
| // return instruction, we splice the body of the inlined callee directly into |
| // the calling basic block. |
| if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { |
| // Move all of the instructions right before the call. |
| OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(), |
| FirstNewBlock->begin(), FirstNewBlock->end()); |
| // Remove the cloned basic block. |
| Caller->getBasicBlockList().pop_back(); |
| |
| // If the call site was an invoke instruction, add a branch to the normal |
| // destination. |
| if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) |
| BranchInst::Create(II->getNormalDest(), TheCall); |
| |
| // If the return instruction returned a value, replace uses of the call with |
| // uses of the returned value. |
| if (!TheCall->use_empty()) { |
| ReturnInst *R = Returns[0]; |
| if (TheCall == R->getReturnValue()) |
| TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); |
| else |
| TheCall->replaceAllUsesWith(R->getReturnValue()); |
| } |
| // Since we are now done with the Call/Invoke, we can delete it. |
| TheCall->eraseFromParent(); |
| |
| // Since we are now done with the return instruction, delete it also. |
| Returns[0]->eraseFromParent(); |
| |
| // We are now done with the inlining. |
| return true; |
| } |
| |
| // Otherwise, we have the normal case, of more than one block to inline or |
| // multiple return sites. |
| |
| // We want to clone the entire callee function into the hole between the |
| // "starter" and "ender" blocks. How we accomplish this depends on whether |
| // this is an invoke instruction or a call instruction. |
| BasicBlock *AfterCallBB; |
| if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { |
| |
| // Add an unconditional branch to make this look like the CallInst case... |
| BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); |
| |
| // Split the basic block. This guarantees that no PHI nodes will have to be |
| // updated due to new incoming edges, and make the invoke case more |
| // symmetric to the call case. |
| AfterCallBB = OrigBB->splitBasicBlock(NewBr, |
| CalledFunc->getName()+".exit"); |
| |
| } else { // It's a call |
| // If this is a call instruction, we need to split the basic block that |
| // the call lives in. |
| // |
| AfterCallBB = OrigBB->splitBasicBlock(TheCall, |
| CalledFunc->getName()+".exit"); |
| } |
| |
| // Change the branch that used to go to AfterCallBB to branch to the first |
| // basic block of the inlined function. |
| // |
| TerminatorInst *Br = OrigBB->getTerminator(); |
| assert(Br && Br->getOpcode() == Instruction::Br && |
| "splitBasicBlock broken!"); |
| Br->setOperand(0, FirstNewBlock); |
| |
| |
| // Now that the function is correct, make it a little bit nicer. In |
| // particular, move the basic blocks inserted from the end of the function |
| // into the space made by splitting the source basic block. |
| Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(), |
| FirstNewBlock, Caller->end()); |
| |
| // Handle all of the return instructions that we just cloned in, and eliminate |
| // any users of the original call/invoke instruction. |
| Type *RTy = CalledFunc->getReturnType(); |
| |
| PHINode *PHI = 0; |
| if (Returns.size() > 1) { |
| // The PHI node should go at the front of the new basic block to merge all |
| // possible incoming values. |
| if (!TheCall->use_empty()) { |
| PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), |
| AfterCallBB->begin()); |
| // Anything that used the result of the function call should now use the |
| // PHI node as their operand. |
| TheCall->replaceAllUsesWith(PHI); |
| } |
| |
| // Loop over all of the return instructions adding entries to the PHI node |
| // as appropriate. |
| if (PHI) { |
| for (unsigned i = 0, e = Returns.size(); i != e; ++i) { |
| ReturnInst *RI = Returns[i]; |
| assert(RI->getReturnValue()->getType() == PHI->getType() && |
| "Ret value not consistent in function!"); |
| PHI->addIncoming(RI->getReturnValue(), RI->getParent()); |
| } |
| } |
| |
| |
| // Add a branch to the merge points and remove return instructions. |
| for (unsigned i = 0, e = Returns.size(); i != e; ++i) { |
| ReturnInst *RI = Returns[i]; |
| BranchInst::Create(AfterCallBB, RI); |
| RI->eraseFromParent(); |
| } |
| } else if (!Returns.empty()) { |
| // Otherwise, if there is exactly one return value, just replace anything |
| // using the return value of the call with the computed value. |
| if (!TheCall->use_empty()) { |
| if (TheCall == Returns[0]->getReturnValue()) |
| TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); |
| else |
| TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); |
| } |
| |
| // Update PHI nodes that use the ReturnBB to use the AfterCallBB. |
| BasicBlock *ReturnBB = Returns[0]->getParent(); |
| ReturnBB->replaceAllUsesWith(AfterCallBB); |
| |
| // Splice the code from the return block into the block that it will return |
| // to, which contains the code that was after the call. |
| AfterCallBB->getInstList().splice(AfterCallBB->begin(), |
| ReturnBB->getInstList()); |
| |
| // Delete the return instruction now and empty ReturnBB now. |
| Returns[0]->eraseFromParent(); |
| ReturnBB->eraseFromParent(); |
| } else if (!TheCall->use_empty()) { |
| // No returns, but something is using the return value of the call. Just |
| // nuke the result. |
| TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); |
| } |
| |
| // Since we are now done with the Call/Invoke, we can delete it. |
| TheCall->eraseFromParent(); |
| |
| // We should always be able to fold the entry block of the function into the |
| // single predecessor of the block... |
| assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); |
| BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); |
| |
| // Splice the code entry block into calling block, right before the |
| // unconditional branch. |
| CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes |
| OrigBB->getInstList().splice(Br, CalleeEntry->getInstList()); |
| |
| // Remove the unconditional branch. |
| OrigBB->getInstList().erase(Br); |
| |
| // Now we can remove the CalleeEntry block, which is now empty. |
| Caller->getBasicBlockList().erase(CalleeEntry); |
| |
| // If we inserted a phi node, check to see if it has a single value (e.g. all |
| // the entries are the same or undef). If so, remove the PHI so it doesn't |
| // block other optimizations. |
| if (PHI) { |
| if (Value *V = SimplifyInstruction(PHI, IFI.TD)) { |
| PHI->replaceAllUsesWith(V); |
| PHI->eraseFromParent(); |
| } |
| } |
| |
| return true; |
| } |