| //===-- ConstantsContext.h - Constants-related Context Interals -----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines various helper methods and classes used by |
| // LLVMContextImpl for creating and managing constants. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_CONSTANTSCONTEXT_H |
| #define LLVM_CONSTANTSCONTEXT_H |
| |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/Hashing.h" |
| #include "llvm/InlineAsm.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Operator.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <map> |
| |
| namespace llvm { |
| template<class ValType> |
| struct ConstantTraits; |
| |
| /// UnaryConstantExpr - This class is private to Constants.cpp, and is used |
| /// behind the scenes to implement unary constant exprs. |
| class UnaryConstantExpr : public ConstantExpr { |
| virtual void anchor(); |
| void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; |
| public: |
| // allocate space for exactly one operand |
| void *operator new(size_t s) { |
| return User::operator new(s, 1); |
| } |
| UnaryConstantExpr(unsigned Opcode, Constant *C, Type *Ty) |
| : ConstantExpr(Ty, Opcode, &Op<0>(), 1) { |
| Op<0>() = C; |
| } |
| DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
| }; |
| |
| /// BinaryConstantExpr - This class is private to Constants.cpp, and is used |
| /// behind the scenes to implement binary constant exprs. |
| class BinaryConstantExpr : public ConstantExpr { |
| virtual void anchor(); |
| void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; |
| public: |
| // allocate space for exactly two operands |
| void *operator new(size_t s) { |
| return User::operator new(s, 2); |
| } |
| BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2, |
| unsigned Flags) |
| : ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) { |
| Op<0>() = C1; |
| Op<1>() = C2; |
| SubclassOptionalData = Flags; |
| } |
| /// Transparently provide more efficient getOperand methods. |
| DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
| }; |
| |
| /// SelectConstantExpr - This class is private to Constants.cpp, and is used |
| /// behind the scenes to implement select constant exprs. |
| class SelectConstantExpr : public ConstantExpr { |
| virtual void anchor(); |
| void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; |
| public: |
| // allocate space for exactly three operands |
| void *operator new(size_t s) { |
| return User::operator new(s, 3); |
| } |
| SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3) |
| : ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) { |
| Op<0>() = C1; |
| Op<1>() = C2; |
| Op<2>() = C3; |
| } |
| /// Transparently provide more efficient getOperand methods. |
| DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
| }; |
| |
| /// ExtractElementConstantExpr - This class is private to |
| /// Constants.cpp, and is used behind the scenes to implement |
| /// extractelement constant exprs. |
| class ExtractElementConstantExpr : public ConstantExpr { |
| virtual void anchor(); |
| void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; |
| public: |
| // allocate space for exactly two operands |
| void *operator new(size_t s) { |
| return User::operator new(s, 2); |
| } |
| ExtractElementConstantExpr(Constant *C1, Constant *C2) |
| : ConstantExpr(cast<VectorType>(C1->getType())->getElementType(), |
| Instruction::ExtractElement, &Op<0>(), 2) { |
| Op<0>() = C1; |
| Op<1>() = C2; |
| } |
| /// Transparently provide more efficient getOperand methods. |
| DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
| }; |
| |
| /// InsertElementConstantExpr - This class is private to |
| /// Constants.cpp, and is used behind the scenes to implement |
| /// insertelement constant exprs. |
| class InsertElementConstantExpr : public ConstantExpr { |
| virtual void anchor(); |
| void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; |
| public: |
| // allocate space for exactly three operands |
| void *operator new(size_t s) { |
| return User::operator new(s, 3); |
| } |
| InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3) |
| : ConstantExpr(C1->getType(), Instruction::InsertElement, |
| &Op<0>(), 3) { |
| Op<0>() = C1; |
| Op<1>() = C2; |
| Op<2>() = C3; |
| } |
| /// Transparently provide more efficient getOperand methods. |
| DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
| }; |
| |
| /// ShuffleVectorConstantExpr - This class is private to |
| /// Constants.cpp, and is used behind the scenes to implement |
| /// shufflevector constant exprs. |
| class ShuffleVectorConstantExpr : public ConstantExpr { |
| virtual void anchor(); |
| void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; |
| public: |
| // allocate space for exactly three operands |
| void *operator new(size_t s) { |
| return User::operator new(s, 3); |
| } |
| ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3) |
| : ConstantExpr(VectorType::get( |
| cast<VectorType>(C1->getType())->getElementType(), |
| cast<VectorType>(C3->getType())->getNumElements()), |
| Instruction::ShuffleVector, |
| &Op<0>(), 3) { |
| Op<0>() = C1; |
| Op<1>() = C2; |
| Op<2>() = C3; |
| } |
| /// Transparently provide more efficient getOperand methods. |
| DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
| }; |
| |
| /// ExtractValueConstantExpr - This class is private to |
| /// Constants.cpp, and is used behind the scenes to implement |
| /// extractvalue constant exprs. |
| class ExtractValueConstantExpr : public ConstantExpr { |
| virtual void anchor(); |
| void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; |
| public: |
| // allocate space for exactly one operand |
| void *operator new(size_t s) { |
| return User::operator new(s, 1); |
| } |
| ExtractValueConstantExpr(Constant *Agg, |
| const SmallVector<unsigned, 4> &IdxList, |
| Type *DestTy) |
| : ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1), |
| Indices(IdxList) { |
| Op<0>() = Agg; |
| } |
| |
| /// Indices - These identify which value to extract. |
| const SmallVector<unsigned, 4> Indices; |
| |
| /// Transparently provide more efficient getOperand methods. |
| DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
| }; |
| |
| /// InsertValueConstantExpr - This class is private to |
| /// Constants.cpp, and is used behind the scenes to implement |
| /// insertvalue constant exprs. |
| class InsertValueConstantExpr : public ConstantExpr { |
| virtual void anchor(); |
| void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; |
| public: |
| // allocate space for exactly one operand |
| void *operator new(size_t s) { |
| return User::operator new(s, 2); |
| } |
| InsertValueConstantExpr(Constant *Agg, Constant *Val, |
| const SmallVector<unsigned, 4> &IdxList, |
| Type *DestTy) |
| : ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2), |
| Indices(IdxList) { |
| Op<0>() = Agg; |
| Op<1>() = Val; |
| } |
| |
| /// Indices - These identify the position for the insertion. |
| const SmallVector<unsigned, 4> Indices; |
| |
| /// Transparently provide more efficient getOperand methods. |
| DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
| }; |
| |
| |
| /// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is |
| /// used behind the scenes to implement getelementpr constant exprs. |
| class GetElementPtrConstantExpr : public ConstantExpr { |
| virtual void anchor(); |
| GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList, |
| Type *DestTy); |
| public: |
| static GetElementPtrConstantExpr *Create(Constant *C, |
| ArrayRef<Constant*> IdxList, |
| Type *DestTy, |
| unsigned Flags) { |
| GetElementPtrConstantExpr *Result = |
| new(IdxList.size() + 1) GetElementPtrConstantExpr(C, IdxList, DestTy); |
| Result->SubclassOptionalData = Flags; |
| return Result; |
| } |
| /// Transparently provide more efficient getOperand methods. |
| DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
| }; |
| |
| // CompareConstantExpr - This class is private to Constants.cpp, and is used |
| // behind the scenes to implement ICmp and FCmp constant expressions. This is |
| // needed in order to store the predicate value for these instructions. |
| class CompareConstantExpr : public ConstantExpr { |
| virtual void anchor(); |
| void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; |
| public: |
| // allocate space for exactly two operands |
| void *operator new(size_t s) { |
| return User::operator new(s, 2); |
| } |
| unsigned short predicate; |
| CompareConstantExpr(Type *ty, Instruction::OtherOps opc, |
| unsigned short pred, Constant* LHS, Constant* RHS) |
| : ConstantExpr(ty, opc, &Op<0>(), 2), predicate(pred) { |
| Op<0>() = LHS; |
| Op<1>() = RHS; |
| } |
| /// Transparently provide more efficient getOperand methods. |
| DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
| }; |
| |
| template <> |
| struct OperandTraits<UnaryConstantExpr> : |
| public FixedNumOperandTraits<UnaryConstantExpr, 1> { |
| }; |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value) |
| |
| template <> |
| struct OperandTraits<BinaryConstantExpr> : |
| public FixedNumOperandTraits<BinaryConstantExpr, 2> { |
| }; |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value) |
| |
| template <> |
| struct OperandTraits<SelectConstantExpr> : |
| public FixedNumOperandTraits<SelectConstantExpr, 3> { |
| }; |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value) |
| |
| template <> |
| struct OperandTraits<ExtractElementConstantExpr> : |
| public FixedNumOperandTraits<ExtractElementConstantExpr, 2> { |
| }; |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value) |
| |
| template <> |
| struct OperandTraits<InsertElementConstantExpr> : |
| public FixedNumOperandTraits<InsertElementConstantExpr, 3> { |
| }; |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value) |
| |
| template <> |
| struct OperandTraits<ShuffleVectorConstantExpr> : |
| public FixedNumOperandTraits<ShuffleVectorConstantExpr, 3> { |
| }; |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value) |
| |
| template <> |
| struct OperandTraits<ExtractValueConstantExpr> : |
| public FixedNumOperandTraits<ExtractValueConstantExpr, 1> { |
| }; |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr, Value) |
| |
| template <> |
| struct OperandTraits<InsertValueConstantExpr> : |
| public FixedNumOperandTraits<InsertValueConstantExpr, 2> { |
| }; |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr, Value) |
| |
| template <> |
| struct OperandTraits<GetElementPtrConstantExpr> : |
| public VariadicOperandTraits<GetElementPtrConstantExpr, 1> { |
| }; |
| |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value) |
| |
| |
| template <> |
| struct OperandTraits<CompareConstantExpr> : |
| public FixedNumOperandTraits<CompareConstantExpr, 2> { |
| }; |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value) |
| |
| struct ExprMapKeyType { |
| ExprMapKeyType(unsigned opc, |
| ArrayRef<Constant*> ops, |
| unsigned short flags = 0, |
| unsigned short optionalflags = 0, |
| ArrayRef<unsigned> inds = ArrayRef<unsigned>()) |
| : opcode(opc), subclassoptionaldata(optionalflags), subclassdata(flags), |
| operands(ops.begin(), ops.end()), indices(inds.begin(), inds.end()) {} |
| uint8_t opcode; |
| uint8_t subclassoptionaldata; |
| uint16_t subclassdata; |
| std::vector<Constant*> operands; |
| SmallVector<unsigned, 4> indices; |
| bool operator==(const ExprMapKeyType& that) const { |
| return this->opcode == that.opcode && |
| this->subclassdata == that.subclassdata && |
| this->subclassoptionaldata == that.subclassoptionaldata && |
| this->operands == that.operands && |
| this->indices == that.indices; |
| } |
| bool operator<(const ExprMapKeyType & that) const { |
| if (this->opcode != that.opcode) return this->opcode < that.opcode; |
| if (this->operands != that.operands) return this->operands < that.operands; |
| if (this->subclassdata != that.subclassdata) |
| return this->subclassdata < that.subclassdata; |
| if (this->subclassoptionaldata != that.subclassoptionaldata) |
| return this->subclassoptionaldata < that.subclassoptionaldata; |
| if (this->indices != that.indices) return this->indices < that.indices; |
| return false; |
| } |
| |
| bool operator!=(const ExprMapKeyType& that) const { |
| return !(*this == that); |
| } |
| }; |
| |
| struct InlineAsmKeyType { |
| InlineAsmKeyType(StringRef AsmString, |
| StringRef Constraints, bool hasSideEffects, |
| bool isAlignStack, InlineAsm::AsmDialect asmDialect) |
| : asm_string(AsmString), constraints(Constraints), |
| has_side_effects(hasSideEffects), is_align_stack(isAlignStack), |
| asm_dialect(asmDialect) {} |
| std::string asm_string; |
| std::string constraints; |
| bool has_side_effects; |
| bool is_align_stack; |
| InlineAsm::AsmDialect asm_dialect; |
| bool operator==(const InlineAsmKeyType& that) const { |
| return this->asm_string == that.asm_string && |
| this->constraints == that.constraints && |
| this->has_side_effects == that.has_side_effects && |
| this->is_align_stack == that.is_align_stack && |
| this->asm_dialect == that.asm_dialect; |
| } |
| bool operator<(const InlineAsmKeyType& that) const { |
| if (this->asm_string != that.asm_string) |
| return this->asm_string < that.asm_string; |
| if (this->constraints != that.constraints) |
| return this->constraints < that.constraints; |
| if (this->has_side_effects != that.has_side_effects) |
| return this->has_side_effects < that.has_side_effects; |
| if (this->is_align_stack != that.is_align_stack) |
| return this->is_align_stack < that.is_align_stack; |
| if (this->asm_dialect != that.asm_dialect) |
| return this->asm_dialect < that.asm_dialect; |
| return false; |
| } |
| |
| bool operator!=(const InlineAsmKeyType& that) const { |
| return !(*this == that); |
| } |
| }; |
| |
| // The number of operands for each ConstantCreator::create method is |
| // determined by the ConstantTraits template. |
| // ConstantCreator - A class that is used to create constants by |
| // ConstantUniqueMap*. This class should be partially specialized if there is |
| // something strange that needs to be done to interface to the ctor for the |
| // constant. |
| // |
| template<typename T, typename Alloc> |
| struct ConstantTraits< std::vector<T, Alloc> > { |
| static unsigned uses(const std::vector<T, Alloc>& v) { |
| return v.size(); |
| } |
| }; |
| |
| template<> |
| struct ConstantTraits<Constant *> { |
| static unsigned uses(Constant * const & v) { |
| return 1; |
| } |
| }; |
| |
| template<class ConstantClass, class TypeClass, class ValType> |
| struct ConstantCreator { |
| static ConstantClass *create(TypeClass *Ty, const ValType &V) { |
| return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V); |
| } |
| }; |
| |
| template<class ConstantClass, class TypeClass> |
| struct ConstantArrayCreator { |
| static ConstantClass *create(TypeClass *Ty, ArrayRef<Constant*> V) { |
| return new(V.size()) ConstantClass(Ty, V); |
| } |
| }; |
| |
| template<class ConstantClass> |
| struct ConstantKeyData { |
| typedef void ValType; |
| static ValType getValType(ConstantClass *C) { |
| llvm_unreachable("Unknown Constant type!"); |
| } |
| }; |
| |
| template<> |
| struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> { |
| static ConstantExpr *create(Type *Ty, const ExprMapKeyType &V, |
| unsigned short pred = 0) { |
| if (Instruction::isCast(V.opcode)) |
| return new UnaryConstantExpr(V.opcode, V.operands[0], Ty); |
| if ((V.opcode >= Instruction::BinaryOpsBegin && |
| V.opcode < Instruction::BinaryOpsEnd)) |
| return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1], |
| V.subclassoptionaldata); |
| if (V.opcode == Instruction::Select) |
| return new SelectConstantExpr(V.operands[0], V.operands[1], |
| V.operands[2]); |
| if (V.opcode == Instruction::ExtractElement) |
| return new ExtractElementConstantExpr(V.operands[0], V.operands[1]); |
| if (V.opcode == Instruction::InsertElement) |
| return new InsertElementConstantExpr(V.operands[0], V.operands[1], |
| V.operands[2]); |
| if (V.opcode == Instruction::ShuffleVector) |
| return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1], |
| V.operands[2]); |
| if (V.opcode == Instruction::InsertValue) |
| return new InsertValueConstantExpr(V.operands[0], V.operands[1], |
| V.indices, Ty); |
| if (V.opcode == Instruction::ExtractValue) |
| return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty); |
| if (V.opcode == Instruction::GetElementPtr) { |
| std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end()); |
| return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty, |
| V.subclassoptionaldata); |
| } |
| |
| // The compare instructions are weird. We have to encode the predicate |
| // value and it is combined with the instruction opcode by multiplying |
| // the opcode by one hundred. We must decode this to get the predicate. |
| if (V.opcode == Instruction::ICmp) |
| return new CompareConstantExpr(Ty, Instruction::ICmp, V.subclassdata, |
| V.operands[0], V.operands[1]); |
| if (V.opcode == Instruction::FCmp) |
| return new CompareConstantExpr(Ty, Instruction::FCmp, V.subclassdata, |
| V.operands[0], V.operands[1]); |
| llvm_unreachable("Invalid ConstantExpr!"); |
| } |
| }; |
| |
| template<> |
| struct ConstantKeyData<ConstantExpr> { |
| typedef ExprMapKeyType ValType; |
| static ValType getValType(ConstantExpr *CE) { |
| std::vector<Constant*> Operands; |
| Operands.reserve(CE->getNumOperands()); |
| for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) |
| Operands.push_back(cast<Constant>(CE->getOperand(i))); |
| return ExprMapKeyType(CE->getOpcode(), Operands, |
| CE->isCompare() ? CE->getPredicate() : 0, |
| CE->getRawSubclassOptionalData(), |
| CE->hasIndices() ? |
| CE->getIndices() : ArrayRef<unsigned>()); |
| } |
| }; |
| |
| template<> |
| struct ConstantCreator<InlineAsm, PointerType, InlineAsmKeyType> { |
| static InlineAsm *create(PointerType *Ty, const InlineAsmKeyType &Key) { |
| return new InlineAsm(Ty, Key.asm_string, Key.constraints, |
| Key.has_side_effects, Key.is_align_stack, |
| Key.asm_dialect); |
| } |
| }; |
| |
| template<> |
| struct ConstantKeyData<InlineAsm> { |
| typedef InlineAsmKeyType ValType; |
| static ValType getValType(InlineAsm *Asm) { |
| return InlineAsmKeyType(Asm->getAsmString(), Asm->getConstraintString(), |
| Asm->hasSideEffects(), Asm->isAlignStack(), |
| Asm->getDialect()); |
| } |
| }; |
| |
| template<class ValType, class ValRefType, class TypeClass, class ConstantClass, |
| bool HasLargeKey = false /*true for arrays and structs*/ > |
| class ConstantUniqueMap { |
| public: |
| typedef std::pair<TypeClass*, ValType> MapKey; |
| typedef std::map<MapKey, ConstantClass *> MapTy; |
| typedef std::map<ConstantClass *, typename MapTy::iterator> InverseMapTy; |
| private: |
| /// Map - This is the main map from the element descriptor to the Constants. |
| /// This is the primary way we avoid creating two of the same shape |
| /// constant. |
| MapTy Map; |
| |
| /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping |
| /// from the constants to their element in Map. This is important for |
| /// removal of constants from the array, which would otherwise have to scan |
| /// through the map with very large keys. |
| InverseMapTy InverseMap; |
| |
| public: |
| typename MapTy::iterator map_begin() { return Map.begin(); } |
| typename MapTy::iterator map_end() { return Map.end(); } |
| |
| void freeConstants() { |
| for (typename MapTy::iterator I=Map.begin(), E=Map.end(); |
| I != E; ++I) { |
| // Asserts that use_empty(). |
| delete I->second; |
| } |
| } |
| |
| /// InsertOrGetItem - Return an iterator for the specified element. |
| /// If the element exists in the map, the returned iterator points to the |
| /// entry and Exists=true. If not, the iterator points to the newly |
| /// inserted entry and returns Exists=false. Newly inserted entries have |
| /// I->second == 0, and should be filled in. |
| typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, ConstantClass *> |
| &InsertVal, |
| bool &Exists) { |
| std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal); |
| Exists = !IP.second; |
| return IP.first; |
| } |
| |
| private: |
| typename MapTy::iterator FindExistingElement(ConstantClass *CP) { |
| if (HasLargeKey) { |
| typename InverseMapTy::iterator IMI = InverseMap.find(CP); |
| assert(IMI != InverseMap.end() && IMI->second != Map.end() && |
| IMI->second->second == CP && |
| "InverseMap corrupt!"); |
| return IMI->second; |
| } |
| |
| typename MapTy::iterator I = |
| Map.find(MapKey(static_cast<TypeClass*>(CP->getType()), |
| ConstantKeyData<ConstantClass>::getValType(CP))); |
| if (I == Map.end() || I->second != CP) { |
| // FIXME: This should not use a linear scan. If this gets to be a |
| // performance problem, someone should look at this. |
| for (I = Map.begin(); I != Map.end() && I->second != CP; ++I) |
| /* empty */; |
| } |
| return I; |
| } |
| |
| ConstantClass *Create(TypeClass *Ty, ValRefType V, |
| typename MapTy::iterator I) { |
| ConstantClass* Result = |
| ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V); |
| |
| assert(Result->getType() == Ty && "Type specified is not correct!"); |
| I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result)); |
| |
| if (HasLargeKey) // Remember the reverse mapping if needed. |
| InverseMap.insert(std::make_pair(Result, I)); |
| |
| return Result; |
| } |
| public: |
| |
| /// getOrCreate - Return the specified constant from the map, creating it if |
| /// necessary. |
| ConstantClass *getOrCreate(TypeClass *Ty, ValRefType V) { |
| MapKey Lookup(Ty, V); |
| ConstantClass* Result = 0; |
| |
| typename MapTy::iterator I = Map.find(Lookup); |
| // Is it in the map? |
| if (I != Map.end()) |
| Result = I->second; |
| |
| if (!Result) { |
| // If no preexisting value, create one now... |
| Result = Create(Ty, V, I); |
| } |
| |
| return Result; |
| } |
| |
| void remove(ConstantClass *CP) { |
| typename MapTy::iterator I = FindExistingElement(CP); |
| assert(I != Map.end() && "Constant not found in constant table!"); |
| assert(I->second == CP && "Didn't find correct element?"); |
| |
| if (HasLargeKey) // Remember the reverse mapping if needed. |
| InverseMap.erase(CP); |
| |
| Map.erase(I); |
| } |
| |
| /// MoveConstantToNewSlot - If we are about to change C to be the element |
| /// specified by I, update our internal data structures to reflect this |
| /// fact. |
| void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) { |
| // First, remove the old location of the specified constant in the map. |
| typename MapTy::iterator OldI = FindExistingElement(C); |
| assert(OldI != Map.end() && "Constant not found in constant table!"); |
| assert(OldI->second == C && "Didn't find correct element?"); |
| |
| // Remove the old entry from the map. |
| Map.erase(OldI); |
| |
| // Update the inverse map so that we know that this constant is now |
| // located at descriptor I. |
| if (HasLargeKey) { |
| assert(I->second == C && "Bad inversemap entry!"); |
| InverseMap[C] = I; |
| } |
| } |
| |
| void dump() const { |
| DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n"); |
| } |
| }; |
| |
| // Unique map for aggregate constants |
| template<class TypeClass, class ConstantClass> |
| class ConstantAggrUniqueMap { |
| public: |
| typedef ArrayRef<Constant*> Operands; |
| typedef std::pair<TypeClass*, Operands> LookupKey; |
| private: |
| struct MapInfo { |
| typedef DenseMapInfo<ConstantClass*> ConstantClassInfo; |
| typedef DenseMapInfo<Constant*> ConstantInfo; |
| typedef DenseMapInfo<TypeClass*> TypeClassInfo; |
| static inline ConstantClass* getEmptyKey() { |
| return ConstantClassInfo::getEmptyKey(); |
| } |
| static inline ConstantClass* getTombstoneKey() { |
| return ConstantClassInfo::getTombstoneKey(); |
| } |
| static unsigned getHashValue(const ConstantClass *CP) { |
| SmallVector<Constant*, 8> CPOperands; |
| CPOperands.reserve(CP->getNumOperands()); |
| for (unsigned I = 0, E = CP->getNumOperands(); I < E; ++I) |
| CPOperands.push_back(CP->getOperand(I)); |
| return getHashValue(LookupKey(CP->getType(), CPOperands)); |
| } |
| static bool isEqual(const ConstantClass *LHS, const ConstantClass *RHS) { |
| return LHS == RHS; |
| } |
| static unsigned getHashValue(const LookupKey &Val) { |
| return hash_combine(Val.first, hash_combine_range(Val.second.begin(), |
| Val.second.end())); |
| } |
| static bool isEqual(const LookupKey &LHS, const ConstantClass *RHS) { |
| if (RHS == getEmptyKey() || RHS == getTombstoneKey()) |
| return false; |
| if (LHS.first != RHS->getType() |
| || LHS.second.size() != RHS->getNumOperands()) |
| return false; |
| for (unsigned I = 0, E = RHS->getNumOperands(); I < E; ++I) { |
| if (LHS.second[I] != RHS->getOperand(I)) |
| return false; |
| } |
| return true; |
| } |
| }; |
| public: |
| typedef DenseMap<ConstantClass *, char, MapInfo> MapTy; |
| |
| private: |
| /// Map - This is the main map from the element descriptor to the Constants. |
| /// This is the primary way we avoid creating two of the same shape |
| /// constant. |
| MapTy Map; |
| |
| public: |
| typename MapTy::iterator map_begin() { return Map.begin(); } |
| typename MapTy::iterator map_end() { return Map.end(); } |
| |
| void freeConstants() { |
| for (typename MapTy::iterator I=Map.begin(), E=Map.end(); |
| I != E; ++I) { |
| // Asserts that use_empty(). |
| delete I->first; |
| } |
| } |
| |
| private: |
| typename MapTy::iterator findExistingElement(ConstantClass *CP) { |
| return Map.find(CP); |
| } |
| |
| ConstantClass *Create(TypeClass *Ty, Operands V, typename MapTy::iterator I) { |
| ConstantClass* Result = |
| ConstantArrayCreator<ConstantClass,TypeClass>::create(Ty, V); |
| |
| assert(Result->getType() == Ty && "Type specified is not correct!"); |
| Map[Result] = '\0'; |
| |
| return Result; |
| } |
| public: |
| |
| /// getOrCreate - Return the specified constant from the map, creating it if |
| /// necessary. |
| ConstantClass *getOrCreate(TypeClass *Ty, Operands V) { |
| LookupKey Lookup(Ty, V); |
| ConstantClass* Result = 0; |
| |
| typename MapTy::iterator I = Map.find_as(Lookup); |
| // Is it in the map? |
| if (I != Map.end()) |
| Result = I->first; |
| |
| if (!Result) { |
| // If no preexisting value, create one now... |
| Result = Create(Ty, V, I); |
| } |
| |
| return Result; |
| } |
| |
| /// Find the constant by lookup key. |
| typename MapTy::iterator find(LookupKey Lookup) { |
| return Map.find_as(Lookup); |
| } |
| |
| /// Insert the constant into its proper slot. |
| void insert(ConstantClass *CP) { |
| Map[CP] = '\0'; |
| } |
| |
| /// Remove this constant from the map |
| void remove(ConstantClass *CP) { |
| typename MapTy::iterator I = findExistingElement(CP); |
| assert(I != Map.end() && "Constant not found in constant table!"); |
| assert(I->first == CP && "Didn't find correct element?"); |
| Map.erase(I); |
| } |
| |
| void dump() const { |
| DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n"); |
| } |
| }; |
| |
| } |
| |
| #endif |