| //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the implementation of the scalar evolution analysis |
| // engine, which is used primarily to analyze expressions involving induction |
| // variables in loops. |
| // |
| // There are several aspects to this library. First is the representation of |
| // scalar expressions, which are represented as subclasses of the SCEV class. |
| // These classes are used to represent certain types of subexpressions that we |
| // can handle. These classes are reference counted, managed by the SCEVHandle |
| // class. We only create one SCEV of a particular shape, so pointer-comparisons |
| // for equality are legal. |
| // |
| // One important aspect of the SCEV objects is that they are never cyclic, even |
| // if there is a cycle in the dataflow for an expression (ie, a PHI node). If |
| // the PHI node is one of the idioms that we can represent (e.g., a polynomial |
| // recurrence) then we represent it directly as a recurrence node, otherwise we |
| // represent it as a SCEVUnknown node. |
| // |
| // In addition to being able to represent expressions of various types, we also |
| // have folders that are used to build the *canonical* representation for a |
| // particular expression. These folders are capable of using a variety of |
| // rewrite rules to simplify the expressions. |
| // |
| // Once the folders are defined, we can implement the more interesting |
| // higher-level code, such as the code that recognizes PHI nodes of various |
| // types, computes the execution count of a loop, etc. |
| // |
| // TODO: We should use these routines and value representations to implement |
| // dependence analysis! |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // There are several good references for the techniques used in this analysis. |
| // |
| // Chains of recurrences -- a method to expedite the evaluation |
| // of closed-form functions |
| // Olaf Bachmann, Paul S. Wang, Eugene V. Zima |
| // |
| // On computational properties of chains of recurrences |
| // Eugene V. Zima |
| // |
| // Symbolic Evaluation of Chains of Recurrences for Loop Optimization |
| // Robert A. van Engelen |
| // |
| // Efficient Symbolic Analysis for Optimizing Compilers |
| // Robert A. van Engelen |
| // |
| // Using the chains of recurrences algebra for data dependence testing and |
| // induction variable substitution |
| // MS Thesis, Johnie Birch |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "scalar-evolution" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Assembly/Writer.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/ConstantRange.h" |
| #include "llvm/Support/InstIterator.h" |
| #include "llvm/Support/ManagedStatic.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/Streams.h" |
| #include "llvm/ADT/Statistic.h" |
| #include <ostream> |
| #include <algorithm> |
| #include <cmath> |
| using namespace llvm; |
| |
| STATISTIC(NumBruteForceEvaluations, |
| "Number of brute force evaluations needed to " |
| "calculate high-order polynomial exit values"); |
| STATISTIC(NumArrayLenItCounts, |
| "Number of trip counts computed with array length"); |
| STATISTIC(NumTripCountsComputed, |
| "Number of loops with predictable loop counts"); |
| STATISTIC(NumTripCountsNotComputed, |
| "Number of loops without predictable loop counts"); |
| STATISTIC(NumBruteForceTripCountsComputed, |
| "Number of loops with trip counts computed by force"); |
| |
| cl::opt<unsigned> |
| MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, |
| cl::desc("Maximum number of iterations SCEV will " |
| "symbolically execute a constant derived loop"), |
| cl::init(100)); |
| |
| namespace { |
| RegisterPass<ScalarEvolution> |
| R("scalar-evolution", "Scalar Evolution Analysis"); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SCEV class definitions |
| //===----------------------------------------------------------------------===// |
| |
| //===----------------------------------------------------------------------===// |
| // Implementation of the SCEV class. |
| // |
| SCEV::~SCEV() {} |
| void SCEV::dump() const { |
| print(cerr); |
| } |
| |
| /// getValueRange - Return the tightest constant bounds that this value is |
| /// known to have. This method is only valid on integer SCEV objects. |
| ConstantRange SCEV::getValueRange() const { |
| const Type *Ty = getType(); |
| assert(Ty->isInteger() && "Can't get range for a non-integer SCEV!"); |
| // Default to a full range if no better information is available. |
| return ConstantRange(getBitWidth()); |
| } |
| |
| uint32_t SCEV::getBitWidth() const { |
| if (const IntegerType* ITy = dyn_cast<IntegerType>(getType())) |
| return ITy->getBitWidth(); |
| return 0; |
| } |
| |
| |
| SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {} |
| |
| bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { |
| assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); |
| return false; |
| } |
| |
| const Type *SCEVCouldNotCompute::getType() const { |
| assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); |
| return 0; |
| } |
| |
| bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { |
| assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); |
| return false; |
| } |
| |
| SCEVHandle SCEVCouldNotCompute:: |
| replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, |
| const SCEVHandle &Conc) const { |
| return this; |
| } |
| |
| void SCEVCouldNotCompute::print(std::ostream &OS) const { |
| OS << "***COULDNOTCOMPUTE***"; |
| } |
| |
| bool SCEVCouldNotCompute::classof(const SCEV *S) { |
| return S->getSCEVType() == scCouldNotCompute; |
| } |
| |
| |
| // SCEVConstants - Only allow the creation of one SCEVConstant for any |
| // particular value. Don't use a SCEVHandle here, or else the object will |
| // never be deleted! |
| static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants; |
| |
| |
| SCEVConstant::~SCEVConstant() { |
| SCEVConstants->erase(V); |
| } |
| |
| SCEVHandle SCEVConstant::get(ConstantInt *V) { |
| SCEVConstant *&R = (*SCEVConstants)[V]; |
| if (R == 0) R = new SCEVConstant(V); |
| return R; |
| } |
| |
| ConstantRange SCEVConstant::getValueRange() const { |
| return ConstantRange(V->getValue()); |
| } |
| |
| const Type *SCEVConstant::getType() const { return V->getType(); } |
| |
| void SCEVConstant::print(std::ostream &OS) const { |
| WriteAsOperand(OS, V, false); |
| } |
| |
| // SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any |
| // particular input. Don't use a SCEVHandle here, or else the object will |
| // never be deleted! |
| static ManagedStatic<std::map<std::pair<SCEV*, const Type*>, |
| SCEVTruncateExpr*> > SCEVTruncates; |
| |
| SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty) |
| : SCEV(scTruncate), Op(op), Ty(ty) { |
| assert(Op->getType()->isInteger() && Ty->isInteger() && |
| "Cannot truncate non-integer value!"); |
| assert(Op->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits() |
| && "This is not a truncating conversion!"); |
| } |
| |
| SCEVTruncateExpr::~SCEVTruncateExpr() { |
| SCEVTruncates->erase(std::make_pair(Op, Ty)); |
| } |
| |
| ConstantRange SCEVTruncateExpr::getValueRange() const { |
| return getOperand()->getValueRange().truncate(getBitWidth()); |
| } |
| |
| void SCEVTruncateExpr::print(std::ostream &OS) const { |
| OS << "(truncate " << *Op << " to " << *Ty << ")"; |
| } |
| |
| // SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any |
| // particular input. Don't use a SCEVHandle here, or else the object will never |
| // be deleted! |
| static ManagedStatic<std::map<std::pair<SCEV*, const Type*>, |
| SCEVZeroExtendExpr*> > SCEVZeroExtends; |
| |
| SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty) |
| : SCEV(scZeroExtend), Op(op), Ty(ty) { |
| assert(Op->getType()->isInteger() && Ty->isInteger() && |
| "Cannot zero extend non-integer value!"); |
| assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits() |
| && "This is not an extending conversion!"); |
| } |
| |
| SCEVZeroExtendExpr::~SCEVZeroExtendExpr() { |
| SCEVZeroExtends->erase(std::make_pair(Op, Ty)); |
| } |
| |
| ConstantRange SCEVZeroExtendExpr::getValueRange() const { |
| return getOperand()->getValueRange().zeroExtend(getBitWidth()); |
| } |
| |
| void SCEVZeroExtendExpr::print(std::ostream &OS) const { |
| OS << "(zeroextend " << *Op << " to " << *Ty << ")"; |
| } |
| |
| // SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any |
| // particular input. Don't use a SCEVHandle here, or else the object will never |
| // be deleted! |
| static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >, |
| SCEVCommutativeExpr*> > SCEVCommExprs; |
| |
| SCEVCommutativeExpr::~SCEVCommutativeExpr() { |
| SCEVCommExprs->erase(std::make_pair(getSCEVType(), |
| std::vector<SCEV*>(Operands.begin(), |
| Operands.end()))); |
| } |
| |
| void SCEVCommutativeExpr::print(std::ostream &OS) const { |
| assert(Operands.size() > 1 && "This plus expr shouldn't exist!"); |
| const char *OpStr = getOperationStr(); |
| OS << "(" << *Operands[0]; |
| for (unsigned i = 1, e = Operands.size(); i != e; ++i) |
| OS << OpStr << *Operands[i]; |
| OS << ")"; |
| } |
| |
| SCEVHandle SCEVCommutativeExpr:: |
| replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, |
| const SCEVHandle &Conc) const { |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc); |
| if (H != getOperand(i)) { |
| std::vector<SCEVHandle> NewOps; |
| NewOps.reserve(getNumOperands()); |
| for (unsigned j = 0; j != i; ++j) |
| NewOps.push_back(getOperand(j)); |
| NewOps.push_back(H); |
| for (++i; i != e; ++i) |
| NewOps.push_back(getOperand(i)-> |
| replaceSymbolicValuesWithConcrete(Sym, Conc)); |
| |
| if (isa<SCEVAddExpr>(this)) |
| return SCEVAddExpr::get(NewOps); |
| else if (isa<SCEVMulExpr>(this)) |
| return SCEVMulExpr::get(NewOps); |
| else |
| assert(0 && "Unknown commutative expr!"); |
| } |
| } |
| return this; |
| } |
| |
| |
| // SCEVSDivs - Only allow the creation of one SCEVSDivExpr for any particular |
| // input. Don't use a SCEVHandle here, or else the object will never be |
| // deleted! |
| static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>, |
| SCEVSDivExpr*> > SCEVSDivs; |
| |
| SCEVSDivExpr::~SCEVSDivExpr() { |
| SCEVSDivs->erase(std::make_pair(LHS, RHS)); |
| } |
| |
| void SCEVSDivExpr::print(std::ostream &OS) const { |
| OS << "(" << *LHS << " /s " << *RHS << ")"; |
| } |
| |
| const Type *SCEVSDivExpr::getType() const { |
| return LHS->getType(); |
| } |
| |
| // SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any |
| // particular input. Don't use a SCEVHandle here, or else the object will never |
| // be deleted! |
| static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >, |
| SCEVAddRecExpr*> > SCEVAddRecExprs; |
| |
| SCEVAddRecExpr::~SCEVAddRecExpr() { |
| SCEVAddRecExprs->erase(std::make_pair(L, |
| std::vector<SCEV*>(Operands.begin(), |
| Operands.end()))); |
| } |
| |
| SCEVHandle SCEVAddRecExpr:: |
| replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, |
| const SCEVHandle &Conc) const { |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc); |
| if (H != getOperand(i)) { |
| std::vector<SCEVHandle> NewOps; |
| NewOps.reserve(getNumOperands()); |
| for (unsigned j = 0; j != i; ++j) |
| NewOps.push_back(getOperand(j)); |
| NewOps.push_back(H); |
| for (++i; i != e; ++i) |
| NewOps.push_back(getOperand(i)-> |
| replaceSymbolicValuesWithConcrete(Sym, Conc)); |
| |
| return get(NewOps, L); |
| } |
| } |
| return this; |
| } |
| |
| |
| bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { |
| // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't |
| // contain L and if the start is invariant. |
| return !QueryLoop->contains(L->getHeader()) && |
| getOperand(0)->isLoopInvariant(QueryLoop); |
| } |
| |
| |
| void SCEVAddRecExpr::print(std::ostream &OS) const { |
| OS << "{" << *Operands[0]; |
| for (unsigned i = 1, e = Operands.size(); i != e; ++i) |
| OS << ",+," << *Operands[i]; |
| OS << "}<" << L->getHeader()->getName() + ">"; |
| } |
| |
| // SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular |
| // value. Don't use a SCEVHandle here, or else the object will never be |
| // deleted! |
| static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns; |
| |
| SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); } |
| |
| bool SCEVUnknown::isLoopInvariant(const Loop *L) const { |
| // All non-instruction values are loop invariant. All instructions are loop |
| // invariant if they are not contained in the specified loop. |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| return !L->contains(I->getParent()); |
| return true; |
| } |
| |
| const Type *SCEVUnknown::getType() const { |
| return V->getType(); |
| } |
| |
| void SCEVUnknown::print(std::ostream &OS) const { |
| WriteAsOperand(OS, V, false); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SCEV Utilities |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| /// SCEVComplexityCompare - Return true if the complexity of the LHS is less |
| /// than the complexity of the RHS. This comparator is used to canonicalize |
| /// expressions. |
| struct VISIBILITY_HIDDEN SCEVComplexityCompare { |
| bool operator()(SCEV *LHS, SCEV *RHS) { |
| return LHS->getSCEVType() < RHS->getSCEVType(); |
| } |
| }; |
| } |
| |
| /// GroupByComplexity - Given a list of SCEV objects, order them by their |
| /// complexity, and group objects of the same complexity together by value. |
| /// When this routine is finished, we know that any duplicates in the vector are |
| /// consecutive and that complexity is monotonically increasing. |
| /// |
| /// Note that we go take special precautions to ensure that we get determinstic |
| /// results from this routine. In other words, we don't want the results of |
| /// this to depend on where the addresses of various SCEV objects happened to |
| /// land in memory. |
| /// |
| static void GroupByComplexity(std::vector<SCEVHandle> &Ops) { |
| if (Ops.size() < 2) return; // Noop |
| if (Ops.size() == 2) { |
| // This is the common case, which also happens to be trivially simple. |
| // Special case it. |
| if (Ops[0]->getSCEVType() > Ops[1]->getSCEVType()) |
| std::swap(Ops[0], Ops[1]); |
| return; |
| } |
| |
| // Do the rough sort by complexity. |
| std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare()); |
| |
| // Now that we are sorted by complexity, group elements of the same |
| // complexity. Note that this is, at worst, N^2, but the vector is likely to |
| // be extremely short in practice. Note that we take this approach because we |
| // do not want to depend on the addresses of the objects we are grouping. |
| for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { |
| SCEV *S = Ops[i]; |
| unsigned Complexity = S->getSCEVType(); |
| |
| // If there are any objects of the same complexity and same value as this |
| // one, group them. |
| for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { |
| if (Ops[j] == S) { // Found a duplicate. |
| // Move it to immediately after i'th element. |
| std::swap(Ops[i+1], Ops[j]); |
| ++i; // no need to rescan it. |
| if (i == e-2) return; // Done! |
| } |
| } |
| } |
| } |
| |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Simple SCEV method implementations |
| //===----------------------------------------------------------------------===// |
| |
| /// getIntegerSCEV - Given an integer or FP type, create a constant for the |
| /// specified signed integer value and return a SCEV for the constant. |
| SCEVHandle SCEVUnknown::getIntegerSCEV(int Val, const Type *Ty) { |
| Constant *C; |
| if (Val == 0) |
| C = Constant::getNullValue(Ty); |
| else if (Ty->isFloatingPoint()) |
| C = ConstantFP::get(Ty, Val); |
| else |
| C = ConstantInt::get(Ty, Val); |
| return SCEVUnknown::get(C); |
| } |
| |
| SCEVHandle SCEVUnknown::getIntegerSCEV(const APInt& Val) { |
| return SCEVUnknown::get(ConstantInt::get(Val)); |
| } |
| |
| /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the |
| /// input value to the specified type. If the type must be extended, it is zero |
| /// extended. |
| static SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty) { |
| const Type *SrcTy = V->getType(); |
| assert(SrcTy->isInteger() && Ty->isInteger() && |
| "Cannot truncate or zero extend with non-integer arguments!"); |
| if (SrcTy->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits()) |
| return V; // No conversion |
| if (SrcTy->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()) |
| return SCEVTruncateExpr::get(V, Ty); |
| return SCEVZeroExtendExpr::get(V, Ty); |
| } |
| |
| /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V |
| /// |
| SCEVHandle SCEV::getNegativeSCEV(const SCEVHandle &V) { |
| if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) |
| return SCEVUnknown::get(ConstantExpr::getNeg(VC->getValue())); |
| |
| return SCEVMulExpr::get(V, SCEVUnknown::getIntegerSCEV(-1, V->getType())); |
| } |
| |
| /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. |
| /// |
| SCEVHandle SCEV::getMinusSCEV(const SCEVHandle &LHS, const SCEVHandle &RHS) { |
| // X - Y --> X + -Y |
| return SCEVAddExpr::get(LHS, SCEV::getNegativeSCEV(RHS)); |
| } |
| |
| |
| /// PartialFact - Compute V!/(V-NumSteps)! |
| static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps) { |
| // Handle this case efficiently, it is common to have constant iteration |
| // counts while computing loop exit values. |
| if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) { |
| APInt Val = SC->getValue()->getValue(); |
| APInt Result(Val.getBitWidth(), 1); |
| for (; NumSteps; --NumSteps) |
| Result *= Val-(NumSteps-1); |
| return SCEVUnknown::get(ConstantInt::get(Result)); |
| } |
| |
| const Type *Ty = V->getType(); |
| if (NumSteps == 0) |
| return SCEVUnknown::getIntegerSCEV(1, Ty); |
| |
| SCEVHandle Result = V; |
| for (unsigned i = 1; i != NumSteps; ++i) |
| Result = SCEVMulExpr::get(Result, SCEV::getMinusSCEV(V, |
| SCEVUnknown::getIntegerSCEV(i, Ty))); |
| return Result; |
| } |
| |
| |
| /// evaluateAtIteration - Return the value of this chain of recurrences at |
| /// the specified iteration number. We can evaluate this recurrence by |
| /// multiplying each element in the chain by the binomial coefficient |
| /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: |
| /// |
| /// A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3) |
| /// |
| /// FIXME/VERIFY: I don't trust that this is correct in the face of overflow. |
| /// Is the binomial equation safe using modular arithmetic?? |
| /// |
| SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It) const { |
| SCEVHandle Result = getStart(); |
| int Divisor = 1; |
| const Type *Ty = It->getType(); |
| for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { |
| SCEVHandle BC = PartialFact(It, i); |
| Divisor *= i; |
| SCEVHandle Val = SCEVSDivExpr::get(SCEVMulExpr::get(BC, getOperand(i)), |
| SCEVUnknown::getIntegerSCEV(Divisor,Ty)); |
| Result = SCEVAddExpr::get(Result, Val); |
| } |
| return Result; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // SCEV Expression folder implementations |
| //===----------------------------------------------------------------------===// |
| |
| SCEVHandle SCEVTruncateExpr::get(const SCEVHandle &Op, const Type *Ty) { |
| if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) |
| return SCEVUnknown::get( |
| ConstantExpr::getTrunc(SC->getValue(), Ty)); |
| |
| // If the input value is a chrec scev made out of constants, truncate |
| // all of the constants. |
| if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { |
| std::vector<SCEVHandle> Operands; |
| for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) |
| // FIXME: This should allow truncation of other expression types! |
| if (isa<SCEVConstant>(AddRec->getOperand(i))) |
| Operands.push_back(get(AddRec->getOperand(i), Ty)); |
| else |
| break; |
| if (Operands.size() == AddRec->getNumOperands()) |
| return SCEVAddRecExpr::get(Operands, AddRec->getLoop()); |
| } |
| |
| SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)]; |
| if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty); |
| return Result; |
| } |
| |
| SCEVHandle SCEVZeroExtendExpr::get(const SCEVHandle &Op, const Type *Ty) { |
| if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) |
| return SCEVUnknown::get( |
| ConstantExpr::getZExt(SC->getValue(), Ty)); |
| |
| // FIXME: If the input value is a chrec scev, and we can prove that the value |
| // did not overflow the old, smaller, value, we can zero extend all of the |
| // operands (often constants). This would allow analysis of something like |
| // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } |
| |
| SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)]; |
| if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty); |
| return Result; |
| } |
| |
| // get - Get a canonical add expression, or something simpler if possible. |
| SCEVHandle SCEVAddExpr::get(std::vector<SCEVHandle> &Ops) { |
| assert(!Ops.empty() && "Cannot get empty add!"); |
| if (Ops.size() == 1) return Ops[0]; |
| |
| // Sort by complexity, this groups all similar expression types together. |
| GroupByComplexity(Ops); |
| |
| // If there are any constants, fold them together. |
| unsigned Idx = 0; |
| if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { |
| ++Idx; |
| assert(Idx < Ops.size()); |
| while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { |
| // We found two constants, fold them together! |
| Constant *Fold = ConstantExpr::getAdd(LHSC->getValue(), RHSC->getValue()); |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) { |
| Ops[0] = SCEVConstant::get(CI); |
| Ops.erase(Ops.begin()+1); // Erase the folded element |
| if (Ops.size() == 1) return Ops[0]; |
| LHSC = cast<SCEVConstant>(Ops[0]); |
| } else { |
| // If we couldn't fold the expression, move to the next constant. Note |
| // that this is impossible to happen in practice because we always |
| // constant fold constant ints to constant ints. |
| ++Idx; |
| } |
| } |
| |
| // If we are left with a constant zero being added, strip it off. |
| if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { |
| Ops.erase(Ops.begin()); |
| --Idx; |
| } |
| } |
| |
| if (Ops.size() == 1) return Ops[0]; |
| |
| // Okay, check to see if the same value occurs in the operand list twice. If |
| // so, merge them together into an multiply expression. Since we sorted the |
| // list, these values are required to be adjacent. |
| const Type *Ty = Ops[0]->getType(); |
| for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) |
| if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 |
| // Found a match, merge the two values into a multiply, and add any |
| // remaining values to the result. |
| SCEVHandle Two = SCEVUnknown::getIntegerSCEV(2, Ty); |
| SCEVHandle Mul = SCEVMulExpr::get(Ops[i], Two); |
| if (Ops.size() == 2) |
| return Mul; |
| Ops.erase(Ops.begin()+i, Ops.begin()+i+2); |
| Ops.push_back(Mul); |
| return SCEVAddExpr::get(Ops); |
| } |
| |
| // Okay, now we know the first non-constant operand. If there are add |
| // operands they would be next. |
| if (Idx < Ops.size()) { |
| bool DeletedAdd = false; |
| while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { |
| // If we have an add, expand the add operands onto the end of the operands |
| // list. |
| Ops.insert(Ops.end(), Add->op_begin(), Add->op_end()); |
| Ops.erase(Ops.begin()+Idx); |
| DeletedAdd = true; |
| } |
| |
| // If we deleted at least one add, we added operands to the end of the list, |
| // and they are not necessarily sorted. Recurse to resort and resimplify |
| // any operands we just aquired. |
| if (DeletedAdd) |
| return get(Ops); |
| } |
| |
| // Skip over the add expression until we get to a multiply. |
| while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) |
| ++Idx; |
| |
| // If we are adding something to a multiply expression, make sure the |
| // something is not already an operand of the multiply. If so, merge it into |
| // the multiply. |
| for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { |
| SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); |
| for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { |
| SCEV *MulOpSCEV = Mul->getOperand(MulOp); |
| for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) |
| if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) { |
| // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) |
| SCEVHandle InnerMul = Mul->getOperand(MulOp == 0); |
| if (Mul->getNumOperands() != 2) { |
| // If the multiply has more than two operands, we must get the |
| // Y*Z term. |
| std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end()); |
| MulOps.erase(MulOps.begin()+MulOp); |
| InnerMul = SCEVMulExpr::get(MulOps); |
| } |
| SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, Ty); |
| SCEVHandle AddOne = SCEVAddExpr::get(InnerMul, One); |
| SCEVHandle OuterMul = SCEVMulExpr::get(AddOne, Ops[AddOp]); |
| if (Ops.size() == 2) return OuterMul; |
| if (AddOp < Idx) { |
| Ops.erase(Ops.begin()+AddOp); |
| Ops.erase(Ops.begin()+Idx-1); |
| } else { |
| Ops.erase(Ops.begin()+Idx); |
| Ops.erase(Ops.begin()+AddOp-1); |
| } |
| Ops.push_back(OuterMul); |
| return SCEVAddExpr::get(Ops); |
| } |
| |
| // Check this multiply against other multiplies being added together. |
| for (unsigned OtherMulIdx = Idx+1; |
| OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); |
| ++OtherMulIdx) { |
| SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); |
| // If MulOp occurs in OtherMul, we can fold the two multiplies |
| // together. |
| for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); |
| OMulOp != e; ++OMulOp) |
| if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { |
| // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) |
| SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0); |
| if (Mul->getNumOperands() != 2) { |
| std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end()); |
| MulOps.erase(MulOps.begin()+MulOp); |
| InnerMul1 = SCEVMulExpr::get(MulOps); |
| } |
| SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0); |
| if (OtherMul->getNumOperands() != 2) { |
| std::vector<SCEVHandle> MulOps(OtherMul->op_begin(), |
| OtherMul->op_end()); |
| MulOps.erase(MulOps.begin()+OMulOp); |
| InnerMul2 = SCEVMulExpr::get(MulOps); |
| } |
| SCEVHandle InnerMulSum = SCEVAddExpr::get(InnerMul1,InnerMul2); |
| SCEVHandle OuterMul = SCEVMulExpr::get(MulOpSCEV, InnerMulSum); |
| if (Ops.size() == 2) return OuterMul; |
| Ops.erase(Ops.begin()+Idx); |
| Ops.erase(Ops.begin()+OtherMulIdx-1); |
| Ops.push_back(OuterMul); |
| return SCEVAddExpr::get(Ops); |
| } |
| } |
| } |
| } |
| |
| // If there are any add recurrences in the operands list, see if any other |
| // added values are loop invariant. If so, we can fold them into the |
| // recurrence. |
| while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) |
| ++Idx; |
| |
| // Scan over all recurrences, trying to fold loop invariants into them. |
| for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { |
| // Scan all of the other operands to this add and add them to the vector if |
| // they are loop invariant w.r.t. the recurrence. |
| std::vector<SCEVHandle> LIOps; |
| SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { |
| LIOps.push_back(Ops[i]); |
| Ops.erase(Ops.begin()+i); |
| --i; --e; |
| } |
| |
| // If we found some loop invariants, fold them into the recurrence. |
| if (!LIOps.empty()) { |
| // NLI + LI + { Start,+,Step} --> NLI + { LI+Start,+,Step } |
| LIOps.push_back(AddRec->getStart()); |
| |
| std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end()); |
| AddRecOps[0] = SCEVAddExpr::get(LIOps); |
| |
| SCEVHandle NewRec = SCEVAddRecExpr::get(AddRecOps, AddRec->getLoop()); |
| // If all of the other operands were loop invariant, we are done. |
| if (Ops.size() == 1) return NewRec; |
| |
| // Otherwise, add the folded AddRec by the non-liv parts. |
| for (unsigned i = 0;; ++i) |
| if (Ops[i] == AddRec) { |
| Ops[i] = NewRec; |
| break; |
| } |
| return SCEVAddExpr::get(Ops); |
| } |
| |
| // Okay, if there weren't any loop invariants to be folded, check to see if |
| // there are multiple AddRec's with the same loop induction variable being |
| // added together. If so, we can fold them. |
| for (unsigned OtherIdx = Idx+1; |
| OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) |
| if (OtherIdx != Idx) { |
| SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); |
| if (AddRec->getLoop() == OtherAddRec->getLoop()) { |
| // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} |
| std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end()); |
| for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { |
| if (i >= NewOps.size()) { |
| NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i, |
| OtherAddRec->op_end()); |
| break; |
| } |
| NewOps[i] = SCEVAddExpr::get(NewOps[i], OtherAddRec->getOperand(i)); |
| } |
| SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop()); |
| |
| if (Ops.size() == 2) return NewAddRec; |
| |
| Ops.erase(Ops.begin()+Idx); |
| Ops.erase(Ops.begin()+OtherIdx-1); |
| Ops.push_back(NewAddRec); |
| return SCEVAddExpr::get(Ops); |
| } |
| } |
| |
| // Otherwise couldn't fold anything into this recurrence. Move onto the |
| // next one. |
| } |
| |
| // Okay, it looks like we really DO need an add expr. Check to see if we |
| // already have one, otherwise create a new one. |
| std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); |
| SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr, |
| SCEVOps)]; |
| if (Result == 0) Result = new SCEVAddExpr(Ops); |
| return Result; |
| } |
| |
| |
| SCEVHandle SCEVMulExpr::get(std::vector<SCEVHandle> &Ops) { |
| assert(!Ops.empty() && "Cannot get empty mul!"); |
| |
| // Sort by complexity, this groups all similar expression types together. |
| GroupByComplexity(Ops); |
| |
| // If there are any constants, fold them together. |
| unsigned Idx = 0; |
| if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { |
| |
| // C1*(C2+V) -> C1*C2 + C1*V |
| if (Ops.size() == 2) |
| if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) |
| if (Add->getNumOperands() == 2 && |
| isa<SCEVConstant>(Add->getOperand(0))) |
| return SCEVAddExpr::get(SCEVMulExpr::get(LHSC, Add->getOperand(0)), |
| SCEVMulExpr::get(LHSC, Add->getOperand(1))); |
| |
| |
| ++Idx; |
| while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { |
| // We found two constants, fold them together! |
| Constant *Fold = ConstantExpr::getMul(LHSC->getValue(), RHSC->getValue()); |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) { |
| Ops[0] = SCEVConstant::get(CI); |
| Ops.erase(Ops.begin()+1); // Erase the folded element |
| if (Ops.size() == 1) return Ops[0]; |
| LHSC = cast<SCEVConstant>(Ops[0]); |
| } else { |
| // If we couldn't fold the expression, move to the next constant. Note |
| // that this is impossible to happen in practice because we always |
| // constant fold constant ints to constant ints. |
| ++Idx; |
| } |
| } |
| |
| // If we are left with a constant one being multiplied, strip it off. |
| if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { |
| Ops.erase(Ops.begin()); |
| --Idx; |
| } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { |
| // If we have a multiply of zero, it will always be zero. |
| return Ops[0]; |
| } |
| } |
| |
| // Skip over the add expression until we get to a multiply. |
| while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) |
| ++Idx; |
| |
| if (Ops.size() == 1) |
| return Ops[0]; |
| |
| // If there are mul operands inline them all into this expression. |
| if (Idx < Ops.size()) { |
| bool DeletedMul = false; |
| while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { |
| // If we have an mul, expand the mul operands onto the end of the operands |
| // list. |
| Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end()); |
| Ops.erase(Ops.begin()+Idx); |
| DeletedMul = true; |
| } |
| |
| // If we deleted at least one mul, we added operands to the end of the list, |
| // and they are not necessarily sorted. Recurse to resort and resimplify |
| // any operands we just aquired. |
| if (DeletedMul) |
| return get(Ops); |
| } |
| |
| // If there are any add recurrences in the operands list, see if any other |
| // added values are loop invariant. If so, we can fold them into the |
| // recurrence. |
| while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) |
| ++Idx; |
| |
| // Scan over all recurrences, trying to fold loop invariants into them. |
| for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { |
| // Scan all of the other operands to this mul and add them to the vector if |
| // they are loop invariant w.r.t. the recurrence. |
| std::vector<SCEVHandle> LIOps; |
| SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { |
| LIOps.push_back(Ops[i]); |
| Ops.erase(Ops.begin()+i); |
| --i; --e; |
| } |
| |
| // If we found some loop invariants, fold them into the recurrence. |
| if (!LIOps.empty()) { |
| // NLI * LI * { Start,+,Step} --> NLI * { LI*Start,+,LI*Step } |
| std::vector<SCEVHandle> NewOps; |
| NewOps.reserve(AddRec->getNumOperands()); |
| if (LIOps.size() == 1) { |
| SCEV *Scale = LIOps[0]; |
| for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) |
| NewOps.push_back(SCEVMulExpr::get(Scale, AddRec->getOperand(i))); |
| } else { |
| for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { |
| std::vector<SCEVHandle> MulOps(LIOps); |
| MulOps.push_back(AddRec->getOperand(i)); |
| NewOps.push_back(SCEVMulExpr::get(MulOps)); |
| } |
| } |
| |
| SCEVHandle NewRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop()); |
| |
| // If all of the other operands were loop invariant, we are done. |
| if (Ops.size() == 1) return NewRec; |
| |
| // Otherwise, multiply the folded AddRec by the non-liv parts. |
| for (unsigned i = 0;; ++i) |
| if (Ops[i] == AddRec) { |
| Ops[i] = NewRec; |
| break; |
| } |
| return SCEVMulExpr::get(Ops); |
| } |
| |
| // Okay, if there weren't any loop invariants to be folded, check to see if |
| // there are multiple AddRec's with the same loop induction variable being |
| // multiplied together. If so, we can fold them. |
| for (unsigned OtherIdx = Idx+1; |
| OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) |
| if (OtherIdx != Idx) { |
| SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); |
| if (AddRec->getLoop() == OtherAddRec->getLoop()) { |
| // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} |
| SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; |
| SCEVHandle NewStart = SCEVMulExpr::get(F->getStart(), |
| G->getStart()); |
| SCEVHandle B = F->getStepRecurrence(); |
| SCEVHandle D = G->getStepRecurrence(); |
| SCEVHandle NewStep = SCEVAddExpr::get(SCEVMulExpr::get(F, D), |
| SCEVMulExpr::get(G, B), |
| SCEVMulExpr::get(B, D)); |
| SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewStart, NewStep, |
| F->getLoop()); |
| if (Ops.size() == 2) return NewAddRec; |
| |
| Ops.erase(Ops.begin()+Idx); |
| Ops.erase(Ops.begin()+OtherIdx-1); |
| Ops.push_back(NewAddRec); |
| return SCEVMulExpr::get(Ops); |
| } |
| } |
| |
| // Otherwise couldn't fold anything into this recurrence. Move onto the |
| // next one. |
| } |
| |
| // Okay, it looks like we really DO need an mul expr. Check to see if we |
| // already have one, otherwise create a new one. |
| std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); |
| SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr, |
| SCEVOps)]; |
| if (Result == 0) |
| Result = new SCEVMulExpr(Ops); |
| return Result; |
| } |
| |
| SCEVHandle SCEVSDivExpr::get(const SCEVHandle &LHS, const SCEVHandle &RHS) { |
| if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { |
| if (RHSC->getValue()->equalsInt(1)) |
| return LHS; // X sdiv 1 --> x |
| if (RHSC->getValue()->isAllOnesValue()) |
| return SCEV::getNegativeSCEV(LHS); // X sdiv -1 --> -x |
| |
| if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { |
| Constant *LHSCV = LHSC->getValue(); |
| Constant *RHSCV = RHSC->getValue(); |
| return SCEVUnknown::get(ConstantExpr::getSDiv(LHSCV, RHSCV)); |
| } |
| } |
| |
| // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow. |
| |
| SCEVSDivExpr *&Result = (*SCEVSDivs)[std::make_pair(LHS, RHS)]; |
| if (Result == 0) Result = new SCEVSDivExpr(LHS, RHS); |
| return Result; |
| } |
| |
| |
| /// SCEVAddRecExpr::get - Get a add recurrence expression for the |
| /// specified loop. Simplify the expression as much as possible. |
| SCEVHandle SCEVAddRecExpr::get(const SCEVHandle &Start, |
| const SCEVHandle &Step, const Loop *L) { |
| std::vector<SCEVHandle> Operands; |
| Operands.push_back(Start); |
| if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) |
| if (StepChrec->getLoop() == L) { |
| Operands.insert(Operands.end(), StepChrec->op_begin(), |
| StepChrec->op_end()); |
| return get(Operands, L); |
| } |
| |
| Operands.push_back(Step); |
| return get(Operands, L); |
| } |
| |
| /// SCEVAddRecExpr::get - Get a add recurrence expression for the |
| /// specified loop. Simplify the expression as much as possible. |
| SCEVHandle SCEVAddRecExpr::get(std::vector<SCEVHandle> &Operands, |
| const Loop *L) { |
| if (Operands.size() == 1) return Operands[0]; |
| |
| if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Operands.back())) |
| if (StepC->getValue()->isZero()) { |
| Operands.pop_back(); |
| return get(Operands, L); // { X,+,0 } --> X |
| } |
| |
| SCEVAddRecExpr *&Result = |
| (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(), |
| Operands.end()))]; |
| if (Result == 0) Result = new SCEVAddRecExpr(Operands, L); |
| return Result; |
| } |
| |
| SCEVHandle SCEVUnknown::get(Value *V) { |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) |
| return SCEVConstant::get(CI); |
| SCEVUnknown *&Result = (*SCEVUnknowns)[V]; |
| if (Result == 0) Result = new SCEVUnknown(V); |
| return Result; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // ScalarEvolutionsImpl Definition and Implementation |
| //===----------------------------------------------------------------------===// |
| // |
| /// ScalarEvolutionsImpl - This class implements the main driver for the scalar |
| /// evolution code. |
| /// |
| namespace { |
| struct VISIBILITY_HIDDEN ScalarEvolutionsImpl { |
| /// F - The function we are analyzing. |
| /// |
| Function &F; |
| |
| /// LI - The loop information for the function we are currently analyzing. |
| /// |
| LoopInfo &LI; |
| |
| /// UnknownValue - This SCEV is used to represent unknown trip counts and |
| /// things. |
| SCEVHandle UnknownValue; |
| |
| /// Scalars - This is a cache of the scalars we have analyzed so far. |
| /// |
| std::map<Value*, SCEVHandle> Scalars; |
| |
| /// IterationCounts - Cache the iteration count of the loops for this |
| /// function as they are computed. |
| std::map<const Loop*, SCEVHandle> IterationCounts; |
| |
| /// ConstantEvolutionLoopExitValue - This map contains entries for all of |
| /// the PHI instructions that we attempt to compute constant evolutions for. |
| /// This allows us to avoid potentially expensive recomputation of these |
| /// properties. An instruction maps to null if we are unable to compute its |
| /// exit value. |
| std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue; |
| |
| public: |
| ScalarEvolutionsImpl(Function &f, LoopInfo &li) |
| : F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {} |
| |
| /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the |
| /// expression and create a new one. |
| SCEVHandle getSCEV(Value *V); |
| |
| /// hasSCEV - Return true if the SCEV for this value has already been |
| /// computed. |
| bool hasSCEV(Value *V) const { |
| return Scalars.count(V); |
| } |
| |
| /// setSCEV - Insert the specified SCEV into the map of current SCEVs for |
| /// the specified value. |
| void setSCEV(Value *V, const SCEVHandle &H) { |
| bool isNew = Scalars.insert(std::make_pair(V, H)).second; |
| assert(isNew && "This entry already existed!"); |
| } |
| |
| |
| /// getSCEVAtScope - Compute the value of the specified expression within |
| /// the indicated loop (which may be null to indicate in no loop). If the |
| /// expression cannot be evaluated, return UnknownValue itself. |
| SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L); |
| |
| |
| /// hasLoopInvariantIterationCount - Return true if the specified loop has |
| /// an analyzable loop-invariant iteration count. |
| bool hasLoopInvariantIterationCount(const Loop *L); |
| |
| /// getIterationCount - If the specified loop has a predictable iteration |
| /// count, return it. Note that it is not valid to call this method on a |
| /// loop without a loop-invariant iteration count. |
| SCEVHandle getIterationCount(const Loop *L); |
| |
| /// deleteInstructionFromRecords - This method should be called by the |
| /// client before it removes an instruction from the program, to make sure |
| /// that no dangling references are left around. |
| void deleteInstructionFromRecords(Instruction *I); |
| |
| private: |
| /// createSCEV - We know that there is no SCEV for the specified value. |
| /// Analyze the expression. |
| SCEVHandle createSCEV(Value *V); |
| |
| /// createNodeForPHI - Provide the special handling we need to analyze PHI |
| /// SCEVs. |
| SCEVHandle createNodeForPHI(PHINode *PN); |
| |
| /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value |
| /// for the specified instruction and replaces any references to the |
| /// symbolic value SymName with the specified value. This is used during |
| /// PHI resolution. |
| void ReplaceSymbolicValueWithConcrete(Instruction *I, |
| const SCEVHandle &SymName, |
| const SCEVHandle &NewVal); |
| |
| /// ComputeIterationCount - Compute the number of times the specified loop |
| /// will iterate. |
| SCEVHandle ComputeIterationCount(const Loop *L); |
| |
| /// ComputeLoadConstantCompareIterationCount - Given an exit condition of |
| /// 'setcc load X, cst', try to se if we can compute the trip count. |
| SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI, |
| Constant *RHS, |
| const Loop *L, |
| ICmpInst::Predicate p); |
| |
| /// ComputeIterationCountExhaustively - If the trip is known to execute a |
| /// constant number of times (the condition evolves only from constants), |
| /// try to evaluate a few iterations of the loop until we get the exit |
| /// condition gets a value of ExitWhen (true or false). If we cannot |
| /// evaluate the trip count of the loop, return UnknownValue. |
| SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond, |
| bool ExitWhen); |
| |
| /// HowFarToZero - Return the number of times a backedge comparing the |
| /// specified value to zero will execute. If not computable, return |
| /// UnknownValue. |
| SCEVHandle HowFarToZero(SCEV *V, const Loop *L); |
| |
| /// HowFarToNonZero - Return the number of times a backedge checking the |
| /// specified value for nonzero will execute. If not computable, return |
| /// UnknownValue. |
| SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L); |
| |
| /// HowManyLessThans - Return the number of times a backedge containing the |
| /// specified less-than comparison will execute. If not computable, return |
| /// UnknownValue. |
| SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L); |
| |
| /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is |
| /// in the header of its containing loop, we know the loop executes a |
| /// constant number of times, and the PHI node is just a recurrence |
| /// involving constants, fold it. |
| Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its, |
| const Loop *L); |
| }; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Basic SCEV Analysis and PHI Idiom Recognition Code |
| // |
| |
| /// deleteInstructionFromRecords - This method should be called by the |
| /// client before it removes an instruction from the program, to make sure |
| /// that no dangling references are left around. |
| void ScalarEvolutionsImpl::deleteInstructionFromRecords(Instruction *I) { |
| Scalars.erase(I); |
| if (PHINode *PN = dyn_cast<PHINode>(I)) |
| ConstantEvolutionLoopExitValue.erase(PN); |
| } |
| |
| |
| /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the |
| /// expression and create a new one. |
| SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) { |
| assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!"); |
| |
| std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V); |
| if (I != Scalars.end()) return I->second; |
| SCEVHandle S = createSCEV(V); |
| Scalars.insert(std::make_pair(V, S)); |
| return S; |
| } |
| |
| /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for |
| /// the specified instruction and replaces any references to the symbolic value |
| /// SymName with the specified value. This is used during PHI resolution. |
| void ScalarEvolutionsImpl:: |
| ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName, |
| const SCEVHandle &NewVal) { |
| std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I); |
| if (SI == Scalars.end()) return; |
| |
| SCEVHandle NV = |
| SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal); |
| if (NV == SI->second) return; // No change. |
| |
| SI->second = NV; // Update the scalars map! |
| |
| // Any instruction values that use this instruction might also need to be |
| // updated! |
| for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); |
| UI != E; ++UI) |
| ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal); |
| } |
| |
| /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in |
| /// a loop header, making it a potential recurrence, or it doesn't. |
| /// |
| SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) { |
| if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized. |
| if (const Loop *L = LI.getLoopFor(PN->getParent())) |
| if (L->getHeader() == PN->getParent()) { |
| // If it lives in the loop header, it has two incoming values, one |
| // from outside the loop, and one from inside. |
| unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); |
| unsigned BackEdge = IncomingEdge^1; |
| |
| // While we are analyzing this PHI node, handle its value symbolically. |
| SCEVHandle SymbolicName = SCEVUnknown::get(PN); |
| assert(Scalars.find(PN) == Scalars.end() && |
| "PHI node already processed?"); |
| Scalars.insert(std::make_pair(PN, SymbolicName)); |
| |
| // Using this symbolic name for the PHI, analyze the value coming around |
| // the back-edge. |
| SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge)); |
| |
| // NOTE: If BEValue is loop invariant, we know that the PHI node just |
| // has a special value for the first iteration of the loop. |
| |
| // If the value coming around the backedge is an add with the symbolic |
| // value we just inserted, then we found a simple induction variable! |
| if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { |
| // If there is a single occurrence of the symbolic value, replace it |
| // with a recurrence. |
| unsigned FoundIndex = Add->getNumOperands(); |
| for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) |
| if (Add->getOperand(i) == SymbolicName) |
| if (FoundIndex == e) { |
| FoundIndex = i; |
| break; |
| } |
| |
| if (FoundIndex != Add->getNumOperands()) { |
| // Create an add with everything but the specified operand. |
| std::vector<SCEVHandle> Ops; |
| for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) |
| if (i != FoundIndex) |
| Ops.push_back(Add->getOperand(i)); |
| SCEVHandle Accum = SCEVAddExpr::get(Ops); |
| |
| // This is not a valid addrec if the step amount is varying each |
| // loop iteration, but is not itself an addrec in this loop. |
| if (Accum->isLoopInvariant(L) || |
| (isa<SCEVAddRecExpr>(Accum) && |
| cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { |
| SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); |
| SCEVHandle PHISCEV = SCEVAddRecExpr::get(StartVal, Accum, L); |
| |
| // Okay, for the entire analysis of this edge we assumed the PHI |
| // to be symbolic. We now need to go back and update all of the |
| // entries for the scalars that use the PHI (except for the PHI |
| // itself) to use the new analyzed value instead of the "symbolic" |
| // value. |
| ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); |
| return PHISCEV; |
| } |
| } |
| } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) { |
| // Otherwise, this could be a loop like this: |
| // i = 0; for (j = 1; ..; ++j) { .... i = j; } |
| // In this case, j = {1,+,1} and BEValue is j. |
| // Because the other in-value of i (0) fits the evolution of BEValue |
| // i really is an addrec evolution. |
| if (AddRec->getLoop() == L && AddRec->isAffine()) { |
| SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); |
| |
| // If StartVal = j.start - j.stride, we can use StartVal as the |
| // initial step of the addrec evolution. |
| if (StartVal == SCEV::getMinusSCEV(AddRec->getOperand(0), |
| AddRec->getOperand(1))) { |
| SCEVHandle PHISCEV = |
| SCEVAddRecExpr::get(StartVal, AddRec->getOperand(1), L); |
| |
| // Okay, for the entire analysis of this edge we assumed the PHI |
| // to be symbolic. We now need to go back and update all of the |
| // entries for the scalars that use the PHI (except for the PHI |
| // itself) to use the new analyzed value instead of the "symbolic" |
| // value. |
| ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); |
| return PHISCEV; |
| } |
| } |
| } |
| |
| return SymbolicName; |
| } |
| |
| // If it's not a loop phi, we can't handle it yet. |
| return SCEVUnknown::get(PN); |
| } |
| |
| /// GetConstantFactor - Determine the largest constant factor that S has. For |
| /// example, turn {4,+,8} -> 4. (S umod result) should always equal zero. |
| static APInt GetConstantFactor(SCEVHandle S) { |
| if (SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { |
| APInt V = C->getValue()->getValue(); |
| if (!V.isMinValue()) |
| return V; |
| else // Zero is a multiple of everything. |
| return APInt(C->getBitWidth(), 1).shl(C->getBitWidth()-1); |
| } |
| |
| if (SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) |
| return GetConstantFactor(T->getOperand()) & |
| cast<IntegerType>(T->getType())->getMask(); |
| if (SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) |
| return GetConstantFactor(E->getOperand()); |
| |
| if (SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { |
| // The result is the min of all operands. |
| APInt Res = GetConstantFactor(A->getOperand(0)); |
| for (unsigned i = 1, e = A->getNumOperands(); |
| i != e && Res.ugt(APInt(Res.getBitWidth(),1)); ++i) |
| Res = APIntOps::umin(Res, GetConstantFactor(A->getOperand(i))); |
| return Res; |
| } |
| |
| if (SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { |
| // The result is the product of all the operands. |
| APInt Res = GetConstantFactor(M->getOperand(0)); |
| for (unsigned i = 1, e = M->getNumOperands(); i != e; ++i) |
| Res *= GetConstantFactor(M->getOperand(i)); |
| return Res; |
| } |
| |
| if (SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { |
| // For now, we just handle linear expressions. |
| if (A->getNumOperands() == 2) { |
| // We want the GCD between the start and the stride value. |
| APInt Start = GetConstantFactor(A->getOperand(0)); |
| if (Start == 1) |
| return APInt(A->getBitWidth(),1); |
| APInt Stride = GetConstantFactor(A->getOperand(1)); |
| return APIntOps::GreatestCommonDivisor(Start, Stride); |
| } |
| } |
| |
| // SCEVSDivExpr, SCEVUnknown. |
| return APInt(S->getBitWidth(), 1); |
| } |
| |
| /// createSCEV - We know that there is no SCEV for the specified value. |
| /// Analyze the expression. |
| /// |
| SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) { |
| if (Instruction *I = dyn_cast<Instruction>(V)) { |
| switch (I->getOpcode()) { |
| case Instruction::Add: |
| return SCEVAddExpr::get(getSCEV(I->getOperand(0)), |
| getSCEV(I->getOperand(1))); |
| case Instruction::Mul: |
| return SCEVMulExpr::get(getSCEV(I->getOperand(0)), |
| getSCEV(I->getOperand(1))); |
| case Instruction::SDiv: |
| return SCEVSDivExpr::get(getSCEV(I->getOperand(0)), |
| getSCEV(I->getOperand(1))); |
| break; |
| |
| case Instruction::Sub: |
| return SCEV::getMinusSCEV(getSCEV(I->getOperand(0)), |
| getSCEV(I->getOperand(1))); |
| case Instruction::Or: |
| // If the RHS of the Or is a constant, we may have something like: |
| // X*4+1 which got turned into X*4|1. Handle this as an add so loop |
| // optimizations will transparently handle this case. |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { |
| SCEVHandle LHS = getSCEV(I->getOperand(0)); |
| APInt CommonFact = GetConstantFactor(LHS); |
| assert(!CommonFact.isMinValue() && |
| "Common factor should at least be 1!"); |
| CommonFact.zextOrTrunc(CI->getValue().getBitWidth()); |
| if (CommonFact.ugt(CI->getValue())) { |
| // If the LHS is a multiple that is larger than the RHS, use +. |
| return SCEVAddExpr::get(LHS, |
| getSCEV(I->getOperand(1))); |
| } |
| } |
| break; |
| |
| case Instruction::Shl: |
| // Turn shift left of a constant amount into a multiply. |
| if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { |
| Constant *X = ConstantInt::get(V->getType(), 1); |
| X = ConstantExpr::getShl(X, SA); |
| return SCEVMulExpr::get(getSCEV(I->getOperand(0)), getSCEV(X)); |
| } |
| break; |
| |
| case Instruction::Trunc: |
| return SCEVTruncateExpr::get(getSCEV(I->getOperand(0)), I->getType()); |
| |
| case Instruction::ZExt: |
| return SCEVZeroExtendExpr::get(getSCEV(I->getOperand(0)), I->getType()); |
| |
| case Instruction::BitCast: |
| // BitCasts are no-op casts so we just eliminate the cast. |
| if (I->getType()->isInteger() && |
| I->getOperand(0)->getType()->isInteger()) |
| return getSCEV(I->getOperand(0)); |
| break; |
| |
| case Instruction::PHI: |
| return createNodeForPHI(cast<PHINode>(I)); |
| |
| default: // We cannot analyze this expression. |
| break; |
| } |
| } |
| |
| return SCEVUnknown::get(V); |
| } |
| |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Iteration Count Computation Code |
| // |
| |
| /// getIterationCount - If the specified loop has a predictable iteration |
| /// count, return it. Note that it is not valid to call this method on a |
| /// loop without a loop-invariant iteration count. |
| SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) { |
| std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L); |
| if (I == IterationCounts.end()) { |
| SCEVHandle ItCount = ComputeIterationCount(L); |
| I = IterationCounts.insert(std::make_pair(L, ItCount)).first; |
| if (ItCount != UnknownValue) { |
| assert(ItCount->isLoopInvariant(L) && |
| "Computed trip count isn't loop invariant for loop!"); |
| ++NumTripCountsComputed; |
| } else if (isa<PHINode>(L->getHeader()->begin())) { |
| // Only count loops that have phi nodes as not being computable. |
| ++NumTripCountsNotComputed; |
| } |
| } |
| return I->second; |
| } |
| |
| /// ComputeIterationCount - Compute the number of times the specified loop |
| /// will iterate. |
| SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) { |
| // If the loop has a non-one exit block count, we can't analyze it. |
| std::vector<BasicBlock*> ExitBlocks; |
| L->getExitBlocks(ExitBlocks); |
| if (ExitBlocks.size() != 1) return UnknownValue; |
| |
| // Okay, there is one exit block. Try to find the condition that causes the |
| // loop to be exited. |
| BasicBlock *ExitBlock = ExitBlocks[0]; |
| |
| BasicBlock *ExitingBlock = 0; |
| for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock); |
| PI != E; ++PI) |
| if (L->contains(*PI)) { |
| if (ExitingBlock == 0) |
| ExitingBlock = *PI; |
| else |
| return UnknownValue; // More than one block exiting! |
| } |
| assert(ExitingBlock && "No exits from loop, something is broken!"); |
| |
| // Okay, we've computed the exiting block. See what condition causes us to |
| // exit. |
| // |
| // FIXME: we should be able to handle switch instructions (with a single exit) |
| BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); |
| if (ExitBr == 0) return UnknownValue; |
| assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); |
| |
| // At this point, we know we have a conditional branch that determines whether |
| // the loop is exited. However, we don't know if the branch is executed each |
| // time through the loop. If not, then the execution count of the branch will |
| // not be equal to the trip count of the loop. |
| // |
| // Currently we check for this by checking to see if the Exit branch goes to |
| // the loop header. If so, we know it will always execute the same number of |
| // times as the loop. We also handle the case where the exit block *is* the |
| // loop header. This is common for un-rotated loops. More extensive analysis |
| // could be done to handle more cases here. |
| if (ExitBr->getSuccessor(0) != L->getHeader() && |
| ExitBr->getSuccessor(1) != L->getHeader() && |
| ExitBr->getParent() != L->getHeader()) |
| return UnknownValue; |
| |
| ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition()); |
| |
| // If its not an integer comparison then compute it the hard way. |
| // Note that ICmpInst deals with pointer comparisons too so we must check |
| // the type of the operand. |
| if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType())) |
| return ComputeIterationCountExhaustively(L, ExitBr->getCondition(), |
| ExitBr->getSuccessor(0) == ExitBlock); |
| |
| // If the condition was exit on true, convert the condition to exit on false |
| ICmpInst::Predicate Cond; |
| if (ExitBr->getSuccessor(1) == ExitBlock) |
| Cond = ExitCond->getPredicate(); |
| else |
| Cond = ExitCond->getInversePredicate(); |
| |
| // Handle common loops like: for (X = "string"; *X; ++X) |
| if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) |
| if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { |
| SCEVHandle ItCnt = |
| ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond); |
| if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt; |
| } |
| |
| SCEVHandle LHS = getSCEV(ExitCond->getOperand(0)); |
| SCEVHandle RHS = getSCEV(ExitCond->getOperand(1)); |
| |
| // Try to evaluate any dependencies out of the loop. |
| SCEVHandle Tmp = getSCEVAtScope(LHS, L); |
| if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp; |
| Tmp = getSCEVAtScope(RHS, L); |
| if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp; |
| |
| // At this point, we would like to compute how many iterations of the |
| // loop the predicate will return true for these inputs. |
| if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) { |
| // If there is a constant, force it into the RHS. |
| std::swap(LHS, RHS); |
| Cond = ICmpInst::getSwappedPredicate(Cond); |
| } |
| |
| // FIXME: think about handling pointer comparisons! i.e.: |
| // while (P != P+100) ++P; |
| |
| // If we have a comparison of a chrec against a constant, try to use value |
| // ranges to answer this query. |
| if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) |
| if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) |
| if (AddRec->getLoop() == L) { |
| // Form the comparison range using the constant of the correct type so |
| // that the ConstantRange class knows to do a signed or unsigned |
| // comparison. |
| ConstantInt *CompVal = RHSC->getValue(); |
| const Type *RealTy = ExitCond->getOperand(0)->getType(); |
| CompVal = dyn_cast<ConstantInt>( |
| ConstantExpr::getBitCast(CompVal, RealTy)); |
| if (CompVal) { |
| // Form the constant range. |
| ConstantRange CompRange( |
| ICmpInst::makeConstantRange(Cond, CompVal->getValue())); |
| |
| SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, |
| false /*Always treat as unsigned range*/); |
| if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; |
| } |
| } |
| |
| switch (Cond) { |
| case ICmpInst::ICMP_NE: { // while (X != Y) |
| // Convert to: while (X-Y != 0) |
| SCEVHandle TC = HowFarToZero(SCEV::getMinusSCEV(LHS, RHS), L); |
| if (!isa<SCEVCouldNotCompute>(TC)) return TC; |
| break; |
| } |
| case ICmpInst::ICMP_EQ: { |
| // Convert to: while (X-Y == 0) // while (X == Y) |
| SCEVHandle TC = HowFarToNonZero(SCEV::getMinusSCEV(LHS, RHS), L); |
| if (!isa<SCEVCouldNotCompute>(TC)) return TC; |
| break; |
| } |
| case ICmpInst::ICMP_SLT: { |
| SCEVHandle TC = HowManyLessThans(LHS, RHS, L); |
| if (!isa<SCEVCouldNotCompute>(TC)) return TC; |
| break; |
| } |
| case ICmpInst::ICMP_SGT: { |
| SCEVHandle TC = HowManyLessThans(RHS, LHS, L); |
| if (!isa<SCEVCouldNotCompute>(TC)) return TC; |
| break; |
| } |
| default: |
| #if 0 |
| cerr << "ComputeIterationCount "; |
| if (ExitCond->getOperand(0)->getType()->isUnsigned()) |
| cerr << "[unsigned] "; |
| cerr << *LHS << " " |
| << Instruction::getOpcodeName(Instruction::ICmp) |
| << " " << *RHS << "\n"; |
| #endif |
| break; |
| } |
| return ComputeIterationCountExhaustively(L, ExitCond, |
| ExitBr->getSuccessor(0) == ExitBlock); |
| } |
| |
| static ConstantInt * |
| EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, Constant *C) { |
| SCEVHandle InVal = SCEVConstant::get(cast<ConstantInt>(C)); |
| SCEVHandle Val = AddRec->evaluateAtIteration(InVal); |
| assert(isa<SCEVConstant>(Val) && |
| "Evaluation of SCEV at constant didn't fold correctly?"); |
| return cast<SCEVConstant>(Val)->getValue(); |
| } |
| |
| /// GetAddressedElementFromGlobal - Given a global variable with an initializer |
| /// and a GEP expression (missing the pointer index) indexing into it, return |
| /// the addressed element of the initializer or null if the index expression is |
| /// invalid. |
| static Constant * |
| GetAddressedElementFromGlobal(GlobalVariable *GV, |
| const std::vector<ConstantInt*> &Indices) { |
| Constant *Init = GV->getInitializer(); |
| for (unsigned i = 0, e = Indices.size(); i != e; ++i) { |
| uint64_t Idx = Indices[i]->getZExtValue(); |
| if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { |
| assert(Idx < CS->getNumOperands() && "Bad struct index!"); |
| Init = cast<Constant>(CS->getOperand(Idx)); |
| } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { |
| if (Idx >= CA->getNumOperands()) return 0; // Bogus program |
| Init = cast<Constant>(CA->getOperand(Idx)); |
| } else if (isa<ConstantAggregateZero>(Init)) { |
| if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { |
| assert(Idx < STy->getNumElements() && "Bad struct index!"); |
| Init = Constant::getNullValue(STy->getElementType(Idx)); |
| } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { |
| if (Idx >= ATy->getNumElements()) return 0; // Bogus program |
| Init = Constant::getNullValue(ATy->getElementType()); |
| } else { |
| assert(0 && "Unknown constant aggregate type!"); |
| } |
| return 0; |
| } else { |
| return 0; // Unknown initializer type |
| } |
| } |
| return Init; |
| } |
| |
| /// ComputeLoadConstantCompareIterationCount - Given an exit condition of |
| /// 'setcc load X, cst', try to se if we can compute the trip count. |
| SCEVHandle ScalarEvolutionsImpl:: |
| ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS, |
| const Loop *L, |
| ICmpInst::Predicate predicate) { |
| if (LI->isVolatile()) return UnknownValue; |
| |
| // Check to see if the loaded pointer is a getelementptr of a global. |
| GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); |
| if (!GEP) return UnknownValue; |
| |
| // Make sure that it is really a constant global we are gepping, with an |
| // initializer, and make sure the first IDX is really 0. |
| GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); |
| if (!GV || !GV->isConstant() || !GV->hasInitializer() || |
| GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || |
| !cast<Constant>(GEP->getOperand(1))->isNullValue()) |
| return UnknownValue; |
| |
| // Okay, we allow one non-constant index into the GEP instruction. |
| Value *VarIdx = 0; |
| std::vector<ConstantInt*> Indexes; |
| unsigned VarIdxNum = 0; |
| for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { |
| Indexes.push_back(CI); |
| } else if (!isa<ConstantInt>(GEP->getOperand(i))) { |
| if (VarIdx) return UnknownValue; // Multiple non-constant idx's. |
| VarIdx = GEP->getOperand(i); |
| VarIdxNum = i-2; |
| Indexes.push_back(0); |
| } |
| |
| // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. |
| // Check to see if X is a loop variant variable value now. |
| SCEVHandle Idx = getSCEV(VarIdx); |
| SCEVHandle Tmp = getSCEVAtScope(Idx, L); |
| if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp; |
| |
| // We can only recognize very limited forms of loop index expressions, in |
| // particular, only affine AddRec's like {C1,+,C2}. |
| SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); |
| if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || |
| !isa<SCEVConstant>(IdxExpr->getOperand(0)) || |
| !isa<SCEVConstant>(IdxExpr->getOperand(1))) |
| return UnknownValue; |
| |
| unsigned MaxSteps = MaxBruteForceIterations; |
| for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { |
| ConstantInt *ItCst = |
| ConstantInt::get(IdxExpr->getType(), IterationNum); |
| ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst); |
| |
| // Form the GEP offset. |
| Indexes[VarIdxNum] = Val; |
| |
| Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); |
| if (Result == 0) break; // Cannot compute! |
| |
| // Evaluate the condition for this iteration. |
| Result = ConstantExpr::getICmp(predicate, Result, RHS); |
| if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure |
| if (cast<ConstantInt>(Result)->getValue().isMinValue()) { |
| #if 0 |
| cerr << "\n***\n*** Computed loop count " << *ItCst |
| << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() |
| << "***\n"; |
| #endif |
| ++NumArrayLenItCounts; |
| return SCEVConstant::get(ItCst); // Found terminating iteration! |
| } |
| } |
| return UnknownValue; |
| } |
| |
| |
| /// CanConstantFold - Return true if we can constant fold an instruction of the |
| /// specified type, assuming that all operands were constants. |
| static bool CanConstantFold(const Instruction *I) { |
| if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || |
| isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) |
| return true; |
| |
| if (const CallInst *CI = dyn_cast<CallInst>(I)) |
| if (const Function *F = CI->getCalledFunction()) |
| return canConstantFoldCallTo((Function*)F); // FIXME: elim cast |
| return false; |
| } |
| |
| /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node |
| /// in the loop that V is derived from. We allow arbitrary operations along the |
| /// way, but the operands of an operation must either be constants or a value |
| /// derived from a constant PHI. If this expression does not fit with these |
| /// constraints, return null. |
| static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { |
| // If this is not an instruction, or if this is an instruction outside of the |
| // loop, it can't be derived from a loop PHI. |
| Instruction *I = dyn_cast<Instruction>(V); |
| if (I == 0 || !L->contains(I->getParent())) return 0; |
| |
| if (PHINode *PN = dyn_cast<PHINode>(I)) |
| if (L->getHeader() == I->getParent()) |
| return PN; |
| else |
| // We don't currently keep track of the control flow needed to evaluate |
| // PHIs, so we cannot handle PHIs inside of loops. |
| return 0; |
| |
| // If we won't be able to constant fold this expression even if the operands |
| // are constants, return early. |
| if (!CanConstantFold(I)) return 0; |
| |
| // Otherwise, we can evaluate this instruction if all of its operands are |
| // constant or derived from a PHI node themselves. |
| PHINode *PHI = 0; |
| for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) |
| if (!(isa<Constant>(I->getOperand(Op)) || |
| isa<GlobalValue>(I->getOperand(Op)))) { |
| PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); |
| if (P == 0) return 0; // Not evolving from PHI |
| if (PHI == 0) |
| PHI = P; |
| else if (PHI != P) |
| return 0; // Evolving from multiple different PHIs. |
| } |
| |
| // This is a expression evolving from a constant PHI! |
| return PHI; |
| } |
| |
| /// EvaluateExpression - Given an expression that passes the |
| /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node |
| /// in the loop has the value PHIVal. If we can't fold this expression for some |
| /// reason, return null. |
| static Constant *EvaluateExpression(Value *V, Constant *PHIVal) { |
| if (isa<PHINode>(V)) return PHIVal; |
| if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) |
| return GV; |
| if (Constant *C = dyn_cast<Constant>(V)) return C; |
| Instruction *I = cast<Instruction>(V); |
| |
| std::vector<Constant*> Operands; |
| Operands.resize(I->getNumOperands()); |
| |
| for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { |
| Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal); |
| if (Operands[i] == 0) return 0; |
| } |
| |
| return ConstantFoldInstOperands(I, &Operands[0], Operands.size()); |
| } |
| |
| /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is |
| /// in the header of its containing loop, we know the loop executes a |
| /// constant number of times, and the PHI node is just a recurrence |
| /// involving constants, fold it. |
| Constant *ScalarEvolutionsImpl:: |
| getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its, const Loop *L){ |
| std::map<PHINode*, Constant*>::iterator I = |
| ConstantEvolutionLoopExitValue.find(PN); |
| if (I != ConstantEvolutionLoopExitValue.end()) |
| return I->second; |
| |
| if (Its.ugt(APInt(Its.getBitWidth(),MaxBruteForceIterations))) |
| return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. |
| |
| Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; |
| |
| // Since the loop is canonicalized, the PHI node must have two entries. One |
| // entry must be a constant (coming in from outside of the loop), and the |
| // second must be derived from the same PHI. |
| bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); |
| Constant *StartCST = |
| dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); |
| if (StartCST == 0) |
| return RetVal = 0; // Must be a constant. |
| |
| Value *BEValue = PN->getIncomingValue(SecondIsBackedge); |
| PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); |
| if (PN2 != PN) |
| return RetVal = 0; // Not derived from same PHI. |
| |
| // Execute the loop symbolically to determine the exit value. |
| if (Its.getActiveBits() >= 32) |
| return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! |
| |
| unsigned NumIterations = Its.getZExtValue(); // must be in range |
| unsigned IterationNum = 0; |
| for (Constant *PHIVal = StartCST; ; ++IterationNum) { |
| if (IterationNum == NumIterations) |
| return RetVal = PHIVal; // Got exit value! |
| |
| // Compute the value of the PHI node for the next iteration. |
| Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); |
| if (NextPHI == PHIVal) |
| return RetVal = NextPHI; // Stopped evolving! |
| if (NextPHI == 0) |
| return 0; // Couldn't evaluate! |
| PHIVal = NextPHI; |
| } |
| } |
| |
| /// ComputeIterationCountExhaustively - If the trip is known to execute a |
| /// constant number of times (the condition evolves only from constants), |
| /// try to evaluate a few iterations of the loop until we get the exit |
| /// condition gets a value of ExitWhen (true or false). If we cannot |
| /// evaluate the trip count of the loop, return UnknownValue. |
| SCEVHandle ScalarEvolutionsImpl:: |
| ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) { |
| PHINode *PN = getConstantEvolvingPHI(Cond, L); |
| if (PN == 0) return UnknownValue; |
| |
| // Since the loop is canonicalized, the PHI node must have two entries. One |
| // entry must be a constant (coming in from outside of the loop), and the |
| // second must be derived from the same PHI. |
| bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); |
| Constant *StartCST = |
| dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); |
| if (StartCST == 0) return UnknownValue; // Must be a constant. |
| |
| Value *BEValue = PN->getIncomingValue(SecondIsBackedge); |
| PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); |
| if (PN2 != PN) return UnknownValue; // Not derived from same PHI. |
| |
| // Okay, we find a PHI node that defines the trip count of this loop. Execute |
| // the loop symbolically to determine when the condition gets a value of |
| // "ExitWhen". |
| unsigned IterationNum = 0; |
| unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. |
| for (Constant *PHIVal = StartCST; |
| IterationNum != MaxIterations; ++IterationNum) { |
| ConstantInt *CondVal = |
| dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal)); |
| |
| // Couldn't symbolically evaluate. |
| if (!CondVal) return UnknownValue; |
| |
| if (CondVal->getValue() == uint64_t(ExitWhen)) { |
| ConstantEvolutionLoopExitValue[PN] = PHIVal; |
| ++NumBruteForceTripCountsComputed; |
| return SCEVConstant::get(ConstantInt::get(Type::Int32Ty, IterationNum)); |
| } |
| |
| // Compute the value of the PHI node for the next iteration. |
| Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); |
| if (NextPHI == 0 || NextPHI == PHIVal) |
| return UnknownValue; // Couldn't evaluate or not making progress... |
| PHIVal = NextPHI; |
| } |
| |
| // Too many iterations were needed to evaluate. |
| return UnknownValue; |
| } |
| |
| /// getSCEVAtScope - Compute the value of the specified expression within the |
| /// indicated loop (which may be null to indicate in no loop). If the |
| /// expression cannot be evaluated, return UnknownValue. |
| SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) { |
| // FIXME: this should be turned into a virtual method on SCEV! |
| |
| if (isa<SCEVConstant>(V)) return V; |
| |
| // If this instruction is evolves from a constant-evolving PHI, compute the |
| // exit value from the loop without using SCEVs. |
| if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { |
| if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { |
| const Loop *LI = this->LI[I->getParent()]; |
| if (LI && LI->getParentLoop() == L) // Looking for loop exit value. |
| if (PHINode *PN = dyn_cast<PHINode>(I)) |
| if (PN->getParent() == LI->getHeader()) { |
| // Okay, there is no closed form solution for the PHI node. Check |
| // to see if the loop that contains it has a known iteration count. |
| // If so, we may be able to force computation of the exit value. |
| SCEVHandle IterationCount = getIterationCount(LI); |
| if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) { |
| // Okay, we know how many times the containing loop executes. If |
| // this is a constant evolving PHI node, get the final value at |
| // the specified iteration number. |
| Constant *RV = getConstantEvolutionLoopExitValue(PN, |
| ICC->getValue()->getValue(), |
| LI); |
| if (RV) return SCEVUnknown::get(RV); |
| } |
| } |
| |
| // Okay, this is an expression that we cannot symbolically evaluate |
| // into a SCEV. Check to see if it's possible to symbolically evaluate |
| // the arguments into constants, and if so, try to constant propagate the |
| // result. This is particularly useful for computing loop exit values. |
| if (CanConstantFold(I)) { |
| std::vector<Constant*> Operands; |
| Operands.reserve(I->getNumOperands()); |
| for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { |
| Value *Op = I->getOperand(i); |
| if (Constant *C = dyn_cast<Constant>(Op)) { |
| Operands.push_back(C); |
| } else { |
| SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L); |
| if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) |
| Operands.push_back(ConstantExpr::getIntegerCast(SC->getValue(), |
| Op->getType(), |
| false)); |
| else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) { |
| if (Constant *C = dyn_cast<Constant>(SU->getValue())) |
| Operands.push_back(ConstantExpr::getIntegerCast(C, |
| Op->getType(), |
| false)); |
| else |
| return V; |
| } else { |
| return V; |
| } |
| } |
| } |
| Constant *C =ConstantFoldInstOperands(I, &Operands[0], Operands.size()); |
| return SCEVUnknown::get(C); |
| } |
| } |
| |
| // This is some other type of SCEVUnknown, just return it. |
| return V; |
| } |
| |
| if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { |
| // Avoid performing the look-up in the common case where the specified |
| // expression has no loop-variant portions. |
| for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { |
| SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); |
| if (OpAtScope != Comm->getOperand(i)) { |
| if (OpAtScope == UnknownValue) return UnknownValue; |
| // Okay, at least one of these operands is loop variant but might be |
| // foldable. Build a new instance of the folded commutative expression. |
| std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i); |
| NewOps.push_back(OpAtScope); |
| |
| for (++i; i != e; ++i) { |
| OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); |
| if (OpAtScope == UnknownValue) return UnknownValue; |
| NewOps.push_back(OpAtScope); |
| } |
| if (isa<SCEVAddExpr>(Comm)) |
| return SCEVAddExpr::get(NewOps); |
| assert(isa<SCEVMulExpr>(Comm) && "Only know about add and mul!"); |
| return SCEVMulExpr::get(NewOps); |
| } |
| } |
| // If we got here, all operands are loop invariant. |
| return Comm; |
| } |
| |
| if (SCEVSDivExpr *Div = dyn_cast<SCEVSDivExpr>(V)) { |
| SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L); |
| if (LHS == UnknownValue) return LHS; |
| SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L); |
| if (RHS == UnknownValue) return RHS; |
| if (LHS == Div->getLHS() && RHS == Div->getRHS()) |
| return Div; // must be loop invariant |
| return SCEVSDivExpr::get(LHS, RHS); |
| } |
| |
| // If this is a loop recurrence for a loop that does not contain L, then we |
| // are dealing with the final value computed by the loop. |
| if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { |
| if (!L || !AddRec->getLoop()->contains(L->getHeader())) { |
| // To evaluate this recurrence, we need to know how many times the AddRec |
| // loop iterates. Compute this now. |
| SCEVHandle IterationCount = getIterationCount(AddRec->getLoop()); |
| if (IterationCount == UnknownValue) return UnknownValue; |
| IterationCount = getTruncateOrZeroExtend(IterationCount, |
| AddRec->getType()); |
| |
| // If the value is affine, simplify the expression evaluation to just |
| // Start + Step*IterationCount. |
| if (AddRec->isAffine()) |
| return SCEVAddExpr::get(AddRec->getStart(), |
| SCEVMulExpr::get(IterationCount, |
| AddRec->getOperand(1))); |
| |
| // Otherwise, evaluate it the hard way. |
| return AddRec->evaluateAtIteration(IterationCount); |
| } |
| return UnknownValue; |
| } |
| |
| //assert(0 && "Unknown SCEV type!"); |
| return UnknownValue; |
| } |
| |
| |
| /// SolveQuadraticEquation - Find the roots of the quadratic equation for the |
| /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which |
| /// might be the same) or two SCEVCouldNotCompute objects. |
| /// |
| static std::pair<SCEVHandle,SCEVHandle> |
| SolveQuadraticEquation(const SCEVAddRecExpr *AddRec) { |
| assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); |
| SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); |
| SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); |
| SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); |
| |
| // We currently can only solve this if the coefficients are constants. |
| if (!LC || !MC || !NC) { |
| SCEV *CNC = new SCEVCouldNotCompute(); |
| return std::make_pair(CNC, CNC); |
| } |
| |
| uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); |
| APInt L(LC->getValue()->getValue()); |
| APInt M(MC->getValue()->getValue()); |
| APInt N(MC->getValue()->getValue()); |
| APInt Two(BitWidth, 2); |
| APInt Four(BitWidth, 4); |
| |
| { |
| using namespace APIntOps; |
| APInt C(L); |
| // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C |
| // The B coefficient is M-N/2 |
| APInt B(M); |
| B -= sdiv(N,Two); |
| |
| // The A coefficient is N/2 |
| APInt A(N); |
| A = A.sdiv(Two); |
| |
| // Compute the B^2-4ac term. |
| APInt SqrtTerm(B); |
| SqrtTerm *= B; |
| SqrtTerm -= Four * (A * C); |
| |
| // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest |
| // integer value or else APInt::sqrt() will assert. |
| APInt SqrtVal(SqrtTerm.sqrt()); |
| |
| // Compute the two solutions for the quadratic formula. |
| // The divisions must be performed as signed divisions. |
| APInt NegB(-B); |
| APInt TwoA( A * Two ); |
| ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA)); |
| ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA)); |
| |
| return std::make_pair(SCEVUnknown::get(Solution1), |
| SCEVUnknown::get(Solution2)); |
| } // end APIntOps namespace |
| } |
| |
| /// HowFarToZero - Return the number of times a backedge comparing the specified |
| /// value to zero will execute. If not computable, return UnknownValue |
| SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) { |
| // If the value is a constant |
| if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { |
| // If the value is already zero, the branch will execute zero times. |
| if (C->getValue()->isZero()) return C; |
| return UnknownValue; // Otherwise it will loop infinitely. |
| } |
| |
| SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); |
| if (!AddRec || AddRec->getLoop() != L) |
| return UnknownValue; |
| |
| if (AddRec->isAffine()) { |
| // If this is an affine expression the execution count of this branch is |
| // equal to: |
| // |
| // (0 - Start/Step) iff Start % Step == 0 |
| // |
| // Get the initial value for the loop. |
| SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); |
| if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue; |
| SCEVHandle Step = AddRec->getOperand(1); |
| |
| Step = getSCEVAtScope(Step, L->getParentLoop()); |
| |
| // Figure out if Start % Step == 0. |
| // FIXME: We should add DivExpr and RemExpr operations to our AST. |
| if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { |
| if (StepC->getValue()->equalsInt(1)) // N % 1 == 0 |
| return SCEV::getNegativeSCEV(Start); // 0 - Start/1 == -Start |
| if (StepC->getValue()->isAllOnesValue()) // N % -1 == 0 |
| return Start; // 0 - Start/-1 == Start |
| |
| // Check to see if Start is divisible by SC with no remainder. |
| if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) { |
| ConstantInt *StartCC = StartC->getValue(); |
| Constant *StartNegC = ConstantExpr::getNeg(StartCC); |
| Constant *Rem = ConstantExpr::getSRem(StartNegC, StepC->getValue()); |
| if (Rem->isNullValue()) { |
| Constant *Result =ConstantExpr::getSDiv(StartNegC,StepC->getValue()); |
| return SCEVUnknown::get(Result); |
| } |
| } |
| } |
| } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) { |
| // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of |
| // the quadratic equation to solve it. |
| std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec); |
| SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); |
| SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); |
| if (R1) { |
| #if 0 |
| cerr << "HFTZ: " << *V << " - sol#1: " << *R1 |
| << " sol#2: " << *R2 << "\n"; |
| #endif |
| // Pick the smallest positive root value. |
| if (ConstantInt *CB = |
| dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, |
| R1->getValue(), R2->getValue()))) { |
| if (CB->getZExtValue() == false) |
| std::swap(R1, R2); // R1 is the minimum root now. |
| |
| // We can only use this value if the chrec ends up with an exact zero |
| // value at this index. When solving for "X*X != 5", for example, we |
| // should not accept a root of 2. |
| SCEVHandle Val = AddRec->evaluateAtIteration(R1); |
| if (SCEVConstant *EvalVal = dyn_cast<SCEVConstant>(Val)) |
| if (EvalVal->getValue()->isZero()) |
| return R1; // We found a quadratic root! |
| } |
| } |
| } |
| |
| return UnknownValue; |
| } |
| |
| /// HowFarToNonZero - Return the number of times a backedge checking the |
| /// specified value for nonzero will execute. If not computable, return |
| /// UnknownValue |
| SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) { |
| // Loops that look like: while (X == 0) are very strange indeed. We don't |
| // handle them yet except for the trivial case. This could be expanded in the |
| // future as needed. |
| |
| // If the value is a constant, check to see if it is known to be non-zero |
| // already. If so, the backedge will execute zero times. |
| if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { |
| Constant *Zero = Constant::getNullValue(C->getValue()->getType()); |
| Constant *NonZero = |
| ConstantExpr::getICmp(ICmpInst::ICMP_NE, C->getValue(), Zero); |
| if (NonZero == ConstantInt::getTrue()) |
| return getSCEV(Zero); |
| return UnknownValue; // Otherwise it will loop infinitely. |
| } |
| |
| // We could implement others, but I really doubt anyone writes loops like |
| // this, and if they did, they would already be constant folded. |
| return UnknownValue; |
| } |
| |
| /// HowManyLessThans - Return the number of times a backedge containing the |
| /// specified less-than comparison will execute. If not computable, return |
| /// UnknownValue. |
| SCEVHandle ScalarEvolutionsImpl:: |
| HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L) { |
| // Only handle: "ADDREC < LoopInvariant". |
| if (!RHS->isLoopInvariant(L)) return UnknownValue; |
| |
| SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); |
| if (!AddRec || AddRec->getLoop() != L) |
| return UnknownValue; |
| |
| if (AddRec->isAffine()) { |
| // FORNOW: We only support unit strides. |
| SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, RHS->getType()); |
| if (AddRec->getOperand(1) != One) |
| return UnknownValue; |
| |
| // The number of iterations for "[n,+,1] < m", is m-n. However, we don't |
| // know that m is >= n on input to the loop. If it is, the condition return |
| // true zero times. What we really should return, for full generality, is |
| // SMAX(0, m-n). Since we cannot check this, we will instead check for a |
| // canonical loop form: most do-loops will have a check that dominates the |
| // loop, that only enters the loop if [n-1]<m. If we can find this check, |
| // we know that the SMAX will evaluate to m-n, because we know that m >= n. |
| |
| // Search for the check. |
| BasicBlock *Preheader = L->getLoopPreheader(); |
| BasicBlock *PreheaderDest = L->getHeader(); |
| if (Preheader == 0) return UnknownValue; |
| |
| BranchInst *LoopEntryPredicate = |
| dyn_cast<BranchInst>(Preheader->getTerminator()); |
| if (!LoopEntryPredicate) return UnknownValue; |
| |
| // This might be a critical edge broken out. If the loop preheader ends in |
| // an unconditional branch to the loop, check to see if the preheader has a |
| // single predecessor, and if so, look for its terminator. |
| while (LoopEntryPredicate->isUnconditional()) { |
| PreheaderDest = Preheader; |
| Preheader = Preheader->getSinglePredecessor(); |
| if (!Preheader) return UnknownValue; // Multiple preds. |
| |
| LoopEntryPredicate = |
| dyn_cast<BranchInst>(Preheader->getTerminator()); |
| if (!LoopEntryPredicate) return UnknownValue; |
| } |
| |
| // Now that we found a conditional branch that dominates the loop, check to |
| // see if it is the comparison we are looking for. |
| if (ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition())){ |
| Value *PreCondLHS = ICI->getOperand(0); |
| Value *PreCondRHS = ICI->getOperand(1); |
| ICmpInst::Predicate Cond; |
| if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest) |
| Cond = ICI->getPredicate(); |
| else |
| Cond = ICI->getInversePredicate(); |
| |
| switch (Cond) { |
| case ICmpInst::ICMP_UGT: |
| std::swap(PreCondLHS, PreCondRHS); |
| Cond = ICmpInst::ICMP_ULT; |
| break; |
| case ICmpInst::ICMP_SGT: |
| std::swap(PreCondLHS, PreCondRHS); |
| Cond = ICmpInst::ICMP_SLT; |
| break; |
| default: break; |
| } |
| |
| if (Cond == ICmpInst::ICMP_SLT) { |
| if (PreCondLHS->getType()->isInteger()) { |
| if (RHS != getSCEV(PreCondRHS)) |
| return UnknownValue; // Not a comparison against 'm'. |
| |
| if (SCEV::getMinusSCEV(AddRec->getOperand(0), One) |
| != getSCEV(PreCondLHS)) |
| return UnknownValue; // Not a comparison against 'n-1'. |
| } |
| else return UnknownValue; |
| } else if (Cond == ICmpInst::ICMP_ULT) |
| return UnknownValue; |
| |
| // cerr << "Computed Loop Trip Count as: " |
| // << // *SCEV::getMinusSCEV(RHS, AddRec->getOperand(0)) << "\n"; |
| return SCEV::getMinusSCEV(RHS, AddRec->getOperand(0)); |
| } |
| else |
| return UnknownValue; |
| } |
| |
| return UnknownValue; |
| } |
| |
| /// getNumIterationsInRange - Return the number of iterations of this loop that |
| /// produce values in the specified constant range. Another way of looking at |
| /// this is that it returns the first iteration number where the value is not in |
| /// the condition, thus computing the exit count. If the iteration count can't |
| /// be computed, an instance of SCEVCouldNotCompute is returned. |
| SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, |
| bool isSigned) const { |
| if (Range.isFullSet()) // Infinite loop. |
| return new SCEVCouldNotCompute(); |
| |
| // If the start is a non-zero constant, shift the range to simplify things. |
| if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) |
| if (!SC->getValue()->isZero()) { |
| std::vector<SCEVHandle> Operands(op_begin(), op_end()); |
| Operands[0] = SCEVUnknown::getIntegerSCEV(0, SC->getType()); |
| SCEVHandle Shifted = SCEVAddRecExpr::get(Operands, getLoop()); |
| if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) |
| return ShiftedAddRec->getNumIterationsInRange( |
| Range.subtract(SC->getValue()->getValue()),isSigned); |
| // This is strange and shouldn't happen. |
| return new SCEVCouldNotCompute(); |
| } |
| |
| // The only time we can solve this is when we have all constant indices. |
| // Otherwise, we cannot determine the overflow conditions. |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) |
| if (!isa<SCEVConstant>(getOperand(i))) |
| return new SCEVCouldNotCompute(); |
| |
| |
| // Okay at this point we know that all elements of the chrec are constants and |
| // that the start element is zero. |
| |
| // First check to see if the range contains zero. If not, the first |
| // iteration exits. |
| if (!Range.contains(APInt(getBitWidth(),0))) |
| return SCEVConstant::get(ConstantInt::get(getType(),0)); |
| |
| if (isAffine()) { |
| // If this is an affine expression then we have this situation: |
| // Solve {0,+,A} in Range === Ax in Range |
| |
| // Since we know that zero is in the range, we know that the upper value of |
| // the range must be the first possible exit value. Also note that we |
| // already checked for a full range. |
| const APInt &Upper = Range.getUpper(); |
| APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); |
| APInt One(getBitWidth(),1); |
| |
| // The exit value should be (Upper+A-1)/A. |
| APInt ExitVal(Upper); |
| if (A != One) |
| ExitVal = (Upper + A - One).sdiv(A); |
| ConstantInt *ExitValue = ConstantInt::get(ExitVal); |
| |
| // Evaluate at the exit value. If we really did fall out of the valid |
| // range, then we computed our trip count, otherwise wrap around or other |
| // things must have happened. |
| ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue); |
| if (Range.contains(Val->getValue())) |
| return new SCEVCouldNotCompute(); // Something strange happened |
| |
| // Ensure that the previous value is in the range. This is a sanity check. |
| assert(Range.contains( |
| EvaluateConstantChrecAtConstant(this, |
| ConstantInt::get(ExitVal - One))->getValue()) && |
| "Linear scev computation is off in a bad way!"); |
| return SCEVConstant::get(cast<ConstantInt>(ExitValue)); |
| } else if (isQuadratic()) { |
| // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the |
| // quadratic equation to solve it. To do this, we must frame our problem in |
| // terms of figuring out when zero is crossed, instead of when |
| // Range.getUpper() is crossed. |
| std::vector<SCEVHandle> NewOps(op_begin(), op_end()); |
| NewOps[0] = SCEV::getNegativeSCEV(SCEVUnknown::get( |
| ConstantInt::get(Range.getUpper()))); |
| SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, getLoop()); |
| |
| // Next, solve the constructed addrec |
| std::pair<SCEVHandle,SCEVHandle> Roots = |
| SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec)); |
| SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); |
| SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); |
| if (R1) { |
| // Pick the smallest positive root value. |
| if (ConstantInt *CB = |
| dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, |
| R1->getValue(), R2->getValue()))) { |
| if (CB->getZExtValue() == false) |
| std::swap(R1, R2); // R1 is the minimum root now. |
| |
| // Make sure the root is not off by one. The returned iteration should |
| // not be in the range, but the previous one should be. When solving |
| // for "X*X < 5", for example, we should not return a root of 2. |
| ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, |
| R1->getValue()); |
| if (Range.contains(R1Val->getValue())) { |
| // The next iteration must be out of the range... |
| Constant *NextVal = |
| ConstantExpr::getAdd(R1->getValue(), |
| ConstantInt::get(R1->getType(), 1)); |
| |
| R1Val = EvaluateConstantChrecAtConstant(this, NextVal); |
| if (!Range.contains(R1Val->getValue())) |
| return SCEVUnknown::get(NextVal); |
| return new SCEVCouldNotCompute(); // Something strange happened |
| } |
| |
| // If R1 was not in the range, then it is a good return value. Make |
| // sure that R1-1 WAS in the range though, just in case. |
| Constant *NextVal = |
| ConstantExpr::getSub(R1->getValue(), |
| ConstantInt::get(R1->getType(), 1)); |
| R1Val = EvaluateConstantChrecAtConstant(this, NextVal); |
| if (Range.contains(R1Val->getValue())) |
| return R1; |
| return new SCEVCouldNotCompute(); // Something strange happened |
| } |
| } |
| } |
| |
| // Fallback, if this is a general polynomial, figure out the progression |
| // through brute force: evaluate until we find an iteration that fails the |
| // test. This is likely to be slow, but getting an accurate trip count is |
| // incredibly important, we will be able to simplify the exit test a lot, and |
| // we are almost guaranteed to get a trip count in this case. |
| ConstantInt *TestVal = ConstantInt::get(getType(), 0); |
| ConstantInt *One = ConstantInt::get(getType(), 1); |
| ConstantInt *EndVal = TestVal; // Stop when we wrap around. |
| do { |
| ++NumBruteForceEvaluations; |
| SCEVHandle Val = evaluateAtIteration(SCEVConstant::get(TestVal)); |
| if (!isa<SCEVConstant>(Val)) // This shouldn't happen. |
| return new SCEVCouldNotCompute(); |
| |
| // Check to see if we found the value! |
| if (!Range.contains(cast<SCEVConstant>(Val)->getValue()->getValue())) |
| return SCEVConstant::get(TestVal); |
| |
| // Increment to test the next index. |
| TestVal = cast<ConstantInt>(ConstantExpr::getAdd(TestVal, One)); |
| } while (TestVal != EndVal); |
| |
| return new SCEVCouldNotCompute(); |
| } |
| |
| |
| |
| //===----------------------------------------------------------------------===// |
| // ScalarEvolution Class Implementation |
| //===----------------------------------------------------------------------===// |
| |
| bool ScalarEvolution::runOnFunction(Function &F) { |
| Impl = new ScalarEvolutionsImpl(F, getAnalysis<LoopInfo>()); |
| return false; |
| } |
| |
| void ScalarEvolution::releaseMemory() { |
| delete (ScalarEvolutionsImpl*)Impl; |
| Impl = 0; |
| } |
| |
| void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesAll(); |
| AU.addRequiredTransitive<LoopInfo>(); |
| } |
| |
| SCEVHandle ScalarEvolution::getSCEV(Value *V) const { |
| return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V); |
| } |
| |
| /// hasSCEV - Return true if the SCEV for this value has already been |
| /// computed. |
| bool ScalarEvolution::hasSCEV(Value *V) const { |
| return ((ScalarEvolutionsImpl*)Impl)->hasSCEV(V); |
| } |
| |
| |
| /// setSCEV - Insert the specified SCEV into the map of current SCEVs for |
| /// the specified value. |
| void ScalarEvolution::setSCEV(Value *V, const SCEVHandle &H) { |
| ((ScalarEvolutionsImpl*)Impl)->setSCEV(V, H); |
| } |
| |
| |
| SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const { |
| return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L); |
| } |
| |
| bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const { |
| return !isa<SCEVCouldNotCompute>(getIterationCount(L)); |
| } |
| |
| SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const { |
| return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L); |
| } |
| |
| void ScalarEvolution::deleteInstructionFromRecords(Instruction *I) const { |
| return ((ScalarEvolutionsImpl*)Impl)->deleteInstructionFromRecords(I); |
| } |
| |
| static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE, |
| const Loop *L) { |
| // Print all inner loops first |
| for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) |
| PrintLoopInfo(OS, SE, *I); |
| |
| cerr << "Loop " << L->getHeader()->getName() << ": "; |
| |
| std::vector<BasicBlock*> ExitBlocks; |
| L->getExitBlocks(ExitBlocks); |
| if (ExitBlocks.size() != 1) |
| cerr << "<multiple exits> "; |
| |
| if (SE->hasLoopInvariantIterationCount(L)) { |
| cerr << *SE->getIterationCount(L) << " iterations! "; |
| } else { |
| cerr << "Unpredictable iteration count. "; |
| } |
| |
| cerr << "\n"; |
| } |
| |
| void ScalarEvolution::print(std::ostream &OS, const Module* ) const { |
| Function &F = ((ScalarEvolutionsImpl*)Impl)->F; |
| LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI; |
| |
| OS << "Classifying expressions for: " << F.getName() << "\n"; |
| for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) |
| if (I->getType()->isInteger()) { |
| OS << *I; |
| OS << " --> "; |
| SCEVHandle SV = getSCEV(&*I); |
| SV->print(OS); |
| OS << "\t\t"; |
| |
| if ((*I).getType()->isInteger()) { |
| ConstantRange Bounds = SV->getValueRange(); |
| if (!Bounds.isFullSet()) |
| OS << "Bounds: " << Bounds << " "; |
| } |
| |
| if (const Loop *L = LI.getLoopFor((*I).getParent())) { |
| OS << "Exits: "; |
| SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop()); |
| if (isa<SCEVCouldNotCompute>(ExitValue)) { |
| OS << "<<Unknown>>"; |
| } else { |
| OS << *ExitValue; |
| } |
| } |
| |
| |
| OS << "\n"; |
| } |
| |
| OS << "Determining loop execution counts for: " << F.getName() << "\n"; |
| for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I) |
| PrintLoopInfo(OS, this, *I); |
| } |
| |