| //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the LoopInfo class that is used to identify natural loops |
| // and determine the loop depth of various nodes of the CFG. Note that the |
| // loops identified may actually be several natural loops that share the same |
| // header node... not just a single natural loop. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Analysis/Dominators.h" |
| #include "llvm/Assembly/Writer.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include <algorithm> |
| #include <iostream> |
| using namespace llvm; |
| |
| static RegisterAnalysis<LoopInfo> |
| X("loops", "Natural Loop Construction", true); |
| |
| //===----------------------------------------------------------------------===// |
| // Loop implementation |
| // |
| bool Loop::contains(const BasicBlock *BB) const { |
| return std::find(Blocks.begin(), Blocks.end(), BB) != Blocks.end(); |
| } |
| |
| bool Loop::isLoopExit(const BasicBlock *BB) const { |
| for (succ_const_iterator SI = succ_begin(BB), SE = succ_end(BB); |
| SI != SE; ++SI) { |
| if (!contains(*SI)) |
| return true; |
| } |
| return false; |
| } |
| |
| /// getNumBackEdges - Calculate the number of back edges to the loop header. |
| /// |
| unsigned Loop::getNumBackEdges() const { |
| unsigned NumBackEdges = 0; |
| BasicBlock *H = getHeader(); |
| |
| for (pred_iterator I = pred_begin(H), E = pred_end(H); I != E; ++I) |
| if (contains(*I)) |
| ++NumBackEdges; |
| |
| return NumBackEdges; |
| } |
| |
| /// isLoopInvariant - Return true if the specified value is loop invariant |
| /// |
| bool Loop::isLoopInvariant(Value *V) const { |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| return !contains(I->getParent()); |
| return true; // All non-instructions are loop invariant |
| } |
| |
| void Loop::print(std::ostream &OS, unsigned Depth) const { |
| OS << std::string(Depth*2, ' ') << "Loop Containing: "; |
| |
| for (unsigned i = 0; i < getBlocks().size(); ++i) { |
| if (i) OS << ","; |
| WriteAsOperand(OS, getBlocks()[i], false); |
| } |
| OS << "\n"; |
| |
| for (iterator I = begin(), E = end(); I != E; ++I) |
| (*I)->print(OS, Depth+2); |
| } |
| |
| void Loop::dump() const { |
| print(std::cerr); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // LoopInfo implementation |
| // |
| void LoopInfo::stub() {} |
| |
| bool LoopInfo::runOnFunction(Function &) { |
| releaseMemory(); |
| Calculate(getAnalysis<DominatorSet>()); // Update |
| return false; |
| } |
| |
| void LoopInfo::releaseMemory() { |
| for (std::vector<Loop*>::iterator I = TopLevelLoops.begin(), |
| E = TopLevelLoops.end(); I != E; ++I) |
| delete *I; // Delete all of the loops... |
| |
| BBMap.clear(); // Reset internal state of analysis |
| TopLevelLoops.clear(); |
| } |
| |
| |
| void LoopInfo::Calculate(const DominatorSet &DS) { |
| BasicBlock *RootNode = DS.getRoot(); |
| |
| for (df_iterator<BasicBlock*> NI = df_begin(RootNode), |
| NE = df_end(RootNode); NI != NE; ++NI) |
| if (Loop *L = ConsiderForLoop(*NI, DS)) |
| TopLevelLoops.push_back(L); |
| } |
| |
| void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesAll(); |
| AU.addRequired<DominatorSet>(); |
| } |
| |
| void LoopInfo::print(std::ostream &OS, const Module* ) const { |
| for (unsigned i = 0; i < TopLevelLoops.size(); ++i) |
| TopLevelLoops[i]->print(OS); |
| #if 0 |
| for (std::map<BasicBlock*, Loop*>::const_iterator I = BBMap.begin(), |
| E = BBMap.end(); I != E; ++I) |
| OS << "BB '" << I->first->getName() << "' level = " |
| << I->second->getLoopDepth() << "\n"; |
| #endif |
| } |
| |
| static bool isNotAlreadyContainedIn(Loop *SubLoop, Loop *ParentLoop) { |
| if (SubLoop == 0) return true; |
| if (SubLoop == ParentLoop) return false; |
| return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop); |
| } |
| |
| Loop *LoopInfo::ConsiderForLoop(BasicBlock *BB, const DominatorSet &DS) { |
| if (BBMap.find(BB) != BBMap.end()) return 0; // Haven't processed this node? |
| |
| std::vector<BasicBlock *> TodoStack; |
| |
| // Scan the predecessors of BB, checking to see if BB dominates any of |
| // them. This identifies backedges which target this node... |
| for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) |
| if (DS.dominates(BB, *I)) // If BB dominates it's predecessor... |
| TodoStack.push_back(*I); |
| |
| if (TodoStack.empty()) return 0; // No backedges to this block... |
| |
| // Create a new loop to represent this basic block... |
| Loop *L = new Loop(BB); |
| BBMap[BB] = L; |
| |
| BasicBlock *EntryBlock = &BB->getParent()->getEntryBlock(); |
| |
| while (!TodoStack.empty()) { // Process all the nodes in the loop |
| BasicBlock *X = TodoStack.back(); |
| TodoStack.pop_back(); |
| |
| if (!L->contains(X) && // As of yet unprocessed?? |
| DS.dominates(EntryBlock, X)) { // X is reachable from entry block? |
| // Check to see if this block already belongs to a loop. If this occurs |
| // then we have a case where a loop that is supposed to be a child of the |
| // current loop was processed before the current loop. When this occurs, |
| // this child loop gets added to a part of the current loop, making it a |
| // sibling to the current loop. We have to reparent this loop. |
| if (Loop *SubLoop = const_cast<Loop*>(getLoopFor(X))) |
| if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)) { |
| // Remove the subloop from it's current parent... |
| assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L); |
| Loop *SLP = SubLoop->ParentLoop; // SubLoopParent |
| std::vector<Loop*>::iterator I = |
| std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop); |
| assert(I != SLP->SubLoops.end() && "SubLoop not a child of parent?"); |
| SLP->SubLoops.erase(I); // Remove from parent... |
| |
| // Add the subloop to THIS loop... |
| SubLoop->ParentLoop = L; |
| L->SubLoops.push_back(SubLoop); |
| } |
| |
| // Normal case, add the block to our loop... |
| L->Blocks.push_back(X); |
| |
| // Add all of the predecessors of X to the end of the work stack... |
| TodoStack.insert(TodoStack.end(), pred_begin(X), pred_end(X)); |
| } |
| } |
| |
| // If there are any loops nested within this loop, create them now! |
| for (std::vector<BasicBlock*>::iterator I = L->Blocks.begin(), |
| E = L->Blocks.end(); I != E; ++I) |
| if (Loop *NewLoop = ConsiderForLoop(*I, DS)) { |
| L->SubLoops.push_back(NewLoop); |
| NewLoop->ParentLoop = L; |
| } |
| |
| // Add the basic blocks that comprise this loop to the BBMap so that this |
| // loop can be found for them. |
| // |
| for (std::vector<BasicBlock*>::iterator I = L->Blocks.begin(), |
| E = L->Blocks.end(); I != E; ++I) { |
| std::map<BasicBlock*, Loop*>::iterator BBMI = BBMap.lower_bound(*I); |
| if (BBMI == BBMap.end() || BBMI->first != *I) // Not in map yet... |
| BBMap.insert(BBMI, std::make_pair(*I, L)); // Must be at this level |
| } |
| |
| // Now that we have a list of all of the child loops of this loop, check to |
| // see if any of them should actually be nested inside of each other. We can |
| // accidentally pull loops our of their parents, so we must make sure to |
| // organize the loop nests correctly now. |
| { |
| std::map<BasicBlock*, Loop*> ContainingLoops; |
| for (unsigned i = 0; i != L->SubLoops.size(); ++i) { |
| Loop *Child = L->SubLoops[i]; |
| assert(Child->getParentLoop() == L && "Not proper child loop?"); |
| |
| if (Loop *ContainingLoop = ContainingLoops[Child->getHeader()]) { |
| // If there is already a loop which contains this loop, move this loop |
| // into the containing loop. |
| MoveSiblingLoopInto(Child, ContainingLoop); |
| --i; // The loop got removed from the SubLoops list. |
| } else { |
| // This is currently considered to be a top-level loop. Check to see if |
| // any of the contained blocks are loop headers for subloops we have |
| // already processed. |
| for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) { |
| Loop *&BlockLoop = ContainingLoops[Child->Blocks[b]]; |
| if (BlockLoop == 0) { // Child block not processed yet... |
| BlockLoop = Child; |
| } else if (BlockLoop != Child) { |
| Loop *SubLoop = BlockLoop; |
| // Reparent all of the blocks which used to belong to BlockLoops |
| for (unsigned j = 0, e = SubLoop->Blocks.size(); j != e; ++j) |
| ContainingLoops[SubLoop->Blocks[j]] = Child; |
| |
| // There is already a loop which contains this block, that means |
| // that we should reparent the loop which the block is currently |
| // considered to belong to to be a child of this loop. |
| MoveSiblingLoopInto(SubLoop, Child); |
| --i; // We just shrunk the SubLoops list. |
| } |
| } |
| } |
| } |
| } |
| |
| return L; |
| } |
| |
| /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside of |
| /// the NewParent Loop, instead of being a sibling of it. |
| void LoopInfo::MoveSiblingLoopInto(Loop *NewChild, Loop *NewParent) { |
| Loop *OldParent = NewChild->getParentLoop(); |
| assert(OldParent && OldParent == NewParent->getParentLoop() && |
| NewChild != NewParent && "Not sibling loops!"); |
| |
| // Remove NewChild from being a child of OldParent |
| std::vector<Loop*>::iterator I = |
| std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(), NewChild); |
| assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??"); |
| OldParent->SubLoops.erase(I); // Remove from parent's subloops list |
| NewChild->ParentLoop = 0; |
| |
| InsertLoopInto(NewChild, NewParent); |
| } |
| |
| /// InsertLoopInto - This inserts loop L into the specified parent loop. If the |
| /// parent loop contains a loop which should contain L, the loop gets inserted |
| /// into L instead. |
| void LoopInfo::InsertLoopInto(Loop *L, Loop *Parent) { |
| BasicBlock *LHeader = L->getHeader(); |
| assert(Parent->contains(LHeader) && "This loop should not be inserted here!"); |
| |
| // Check to see if it belongs in a child loop... |
| for (unsigned i = 0, e = Parent->SubLoops.size(); i != e; ++i) |
| if (Parent->SubLoops[i]->contains(LHeader)) { |
| InsertLoopInto(L, Parent->SubLoops[i]); |
| return; |
| } |
| |
| // If not, insert it here! |
| Parent->SubLoops.push_back(L); |
| L->ParentLoop = Parent; |
| } |
| |
| /// changeLoopFor - Change the top-level loop that contains BB to the |
| /// specified loop. This should be used by transformations that restructure |
| /// the loop hierarchy tree. |
| void LoopInfo::changeLoopFor(BasicBlock *BB, Loop *L) { |
| Loop *&OldLoop = BBMap[BB]; |
| assert(OldLoop && "Block not in a loop yet!"); |
| OldLoop = L; |
| } |
| |
| /// changeTopLevelLoop - Replace the specified loop in the top-level loops |
| /// list with the indicated loop. |
| void LoopInfo::changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) { |
| std::vector<Loop*>::iterator I = std::find(TopLevelLoops.begin(), |
| TopLevelLoops.end(), OldLoop); |
| assert(I != TopLevelLoops.end() && "Old loop not at top level!"); |
| *I = NewLoop; |
| assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 && |
| "Loops already embedded into a subloop!"); |
| } |
| |
| /// removeLoop - This removes the specified top-level loop from this loop info |
| /// object. The loop is not deleted, as it will presumably be inserted into |
| /// another loop. |
| Loop *LoopInfo::removeLoop(iterator I) { |
| assert(I != end() && "Cannot remove end iterator!"); |
| Loop *L = *I; |
| assert(L->getParentLoop() == 0 && "Not a top-level loop!"); |
| TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin())); |
| return L; |
| } |
| |
| /// removeBlock - This method completely removes BB from all data structures, |
| /// including all of the Loop objects it is nested in and our mapping from |
| /// BasicBlocks to loops. |
| void LoopInfo::removeBlock(BasicBlock *BB) { |
| std::map<BasicBlock *, Loop*>::iterator I = BBMap.find(BB); |
| if (I != BBMap.end()) { |
| for (Loop *L = I->second; L; L = L->getParentLoop()) |
| L->removeBlockFromLoop(BB); |
| |
| BBMap.erase(I); |
| } |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // APIs for simple analysis of the loop. |
| // |
| |
| /// getExitBlocks - Return all of the successor blocks of this loop. These |
| /// are the blocks _outside of the current loop_ which are branched to. |
| /// |
| void Loop::getExitBlocks(std::vector<BasicBlock*> &ExitBlocks) const { |
| for (std::vector<BasicBlock*>::const_iterator BI = Blocks.begin(), |
| BE = Blocks.end(); BI != BE; ++BI) |
| for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) |
| if (!contains(*I)) // Not in current loop? |
| ExitBlocks.push_back(*I); // It must be an exit block... |
| } |
| |
| |
| /// getLoopPreheader - If there is a preheader for this loop, return it. A |
| /// loop has a preheader if there is only one edge to the header of the loop |
| /// from outside of the loop. If this is the case, the block branching to the |
| /// header of the loop is the preheader node. |
| /// |
| /// This method returns null if there is no preheader for the loop. |
| /// |
| BasicBlock *Loop::getLoopPreheader() const { |
| // Keep track of nodes outside the loop branching to the header... |
| BasicBlock *Out = 0; |
| |
| // Loop over the predecessors of the header node... |
| BasicBlock *Header = getHeader(); |
| for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); |
| PI != PE; ++PI) |
| if (!contains(*PI)) { // If the block is not in the loop... |
| if (Out && Out != *PI) |
| return 0; // Multiple predecessors outside the loop |
| Out = *PI; |
| } |
| |
| // Make sure there is only one exit out of the preheader... |
| succ_iterator SI = succ_begin(Out); |
| ++SI; |
| if (SI != succ_end(Out)) |
| return 0; // Multiple exits from the block, must not be a preheader. |
| |
| // If there is exactly one preheader, return it. If there was zero, then Out |
| // is still null. |
| return Out; |
| } |
| |
| /// getLoopLatch - If there is a latch block for this loop, return it. A |
| /// latch block is the canonical backedge for a loop. A loop header in normal |
| /// form has two edges into it: one from a preheader and one from a latch |
| /// block. |
| BasicBlock *Loop::getLoopLatch() const { |
| BasicBlock *Header = getHeader(); |
| pred_iterator PI = pred_begin(Header), PE = pred_end(Header); |
| if (PI == PE) return 0; // no preds? |
| |
| BasicBlock *Latch = 0; |
| if (contains(*PI)) |
| Latch = *PI; |
| ++PI; |
| if (PI == PE) return 0; // only one pred? |
| |
| if (contains(*PI)) { |
| if (Latch) return 0; // multiple backedges |
| Latch = *PI; |
| } |
| ++PI; |
| if (PI != PE) return 0; // more than two preds |
| |
| return Latch; |
| } |
| |
| /// getCanonicalInductionVariable - Check to see if the loop has a canonical |
| /// induction variable: an integer recurrence that starts at 0 and increments by |
| /// one each time through the loop. If so, return the phi node that corresponds |
| /// to it. |
| /// |
| PHINode *Loop::getCanonicalInductionVariable() const { |
| BasicBlock *H = getHeader(); |
| |
| BasicBlock *Incoming = 0, *Backedge = 0; |
| pred_iterator PI = pred_begin(H); |
| assert(PI != pred_end(H) && "Loop must have at least one backedge!"); |
| Backedge = *PI++; |
| if (PI == pred_end(H)) return 0; // dead loop |
| Incoming = *PI++; |
| if (PI != pred_end(H)) return 0; // multiple backedges? |
| |
| if (contains(Incoming)) { |
| if (contains(Backedge)) |
| return 0; |
| std::swap(Incoming, Backedge); |
| } else if (!contains(Backedge)) |
| return 0; |
| |
| // Loop over all of the PHI nodes, looking for a canonical indvar. |
| for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { |
| PHINode *PN = cast<PHINode>(I); |
| if (Instruction *Inc = |
| dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) |
| if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN) |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) |
| if (CI->equalsInt(1)) |
| return PN; |
| } |
| return 0; |
| } |
| |
| /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds |
| /// the canonical induction variable value for the "next" iteration of the loop. |
| /// This always succeeds if getCanonicalInductionVariable succeeds. |
| /// |
| Instruction *Loop::getCanonicalInductionVariableIncrement() const { |
| if (PHINode *PN = getCanonicalInductionVariable()) { |
| bool P1InLoop = contains(PN->getIncomingBlock(1)); |
| return cast<Instruction>(PN->getIncomingValue(P1InLoop)); |
| } |
| return 0; |
| } |
| |
| /// getTripCount - Return a loop-invariant LLVM value indicating the number of |
| /// times the loop will be executed. Note that this means that the backedge of |
| /// the loop executes N-1 times. If the trip-count cannot be determined, this |
| /// returns null. |
| /// |
| Value *Loop::getTripCount() const { |
| // Canonical loops will end with a 'setne I, V', where I is the incremented |
| // canonical induction variable and V is the trip count of the loop. |
| Instruction *Inc = getCanonicalInductionVariableIncrement(); |
| if (Inc == 0) return 0; |
| PHINode *IV = cast<PHINode>(Inc->getOperand(0)); |
| |
| BasicBlock *BackedgeBlock = |
| IV->getIncomingBlock(contains(IV->getIncomingBlock(1))); |
| |
| if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator())) |
| if (BI->isConditional()) |
| if (SetCondInst *SCI = dyn_cast<SetCondInst>(BI->getCondition())) |
| if (SCI->getOperand(0) == Inc) |
| if (BI->getSuccessor(0) == getHeader()) { |
| if (SCI->getOpcode() == Instruction::SetNE) |
| return SCI->getOperand(1); |
| } else if (SCI->getOpcode() == Instruction::SetEQ) { |
| return SCI->getOperand(1); |
| } |
| |
| return 0; |
| } |
| |
| |
| //===-------------------------------------------------------------------===// |
| // APIs for updating loop information after changing the CFG |
| // |
| |
| /// addBasicBlockToLoop - This function is used by other analyses to update loop |
| /// information. NewBB is set to be a new member of the current loop. Because |
| /// of this, it is added as a member of all parent loops, and is added to the |
| /// specified LoopInfo object as being in the current basic block. It is not |
| /// valid to replace the loop header with this method. |
| /// |
| void Loop::addBasicBlockToLoop(BasicBlock *NewBB, LoopInfo &LI) { |
| assert((Blocks.empty() || LI[getHeader()] == this) && |
| "Incorrect LI specified for this loop!"); |
| assert(NewBB && "Cannot add a null basic block to the loop!"); |
| assert(LI[NewBB] == 0 && "BasicBlock already in the loop!"); |
| |
| // Add the loop mapping to the LoopInfo object... |
| LI.BBMap[NewBB] = this; |
| |
| // Add the basic block to this loop and all parent loops... |
| Loop *L = this; |
| while (L) { |
| L->Blocks.push_back(NewBB); |
| L = L->getParentLoop(); |
| } |
| } |
| |
| /// replaceChildLoopWith - This is used when splitting loops up. It replaces |
| /// the OldChild entry in our children list with NewChild, and updates the |
| /// parent pointers of the two loops as appropriate. |
| void Loop::replaceChildLoopWith(Loop *OldChild, Loop *NewChild) { |
| assert(OldChild->ParentLoop == this && "This loop is already broken!"); |
| assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!"); |
| std::vector<Loop*>::iterator I = std::find(SubLoops.begin(), SubLoops.end(), |
| OldChild); |
| assert(I != SubLoops.end() && "OldChild not in loop!"); |
| *I = NewChild; |
| OldChild->ParentLoop = 0; |
| NewChild->ParentLoop = this; |
| } |
| |
| /// addChildLoop - Add the specified loop to be a child of this loop. |
| /// |
| void Loop::addChildLoop(Loop *NewChild) { |
| assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!"); |
| NewChild->ParentLoop = this; |
| SubLoops.push_back(NewChild); |
| } |
| |
| template<typename T> |
| static void RemoveFromVector(std::vector<T*> &V, T *N) { |
| typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N); |
| assert(I != V.end() && "N is not in this list!"); |
| V.erase(I); |
| } |
| |
| /// removeChildLoop - This removes the specified child from being a subloop of |
| /// this loop. The loop is not deleted, as it will presumably be inserted |
| /// into another loop. |
| Loop *Loop::removeChildLoop(iterator I) { |
| assert(I != SubLoops.end() && "Cannot remove end iterator!"); |
| Loop *Child = *I; |
| assert(Child->ParentLoop == this && "Child is not a child of this loop!"); |
| SubLoops.erase(SubLoops.begin()+(I-begin())); |
| Child->ParentLoop = 0; |
| return Child; |
| } |
| |
| |
| /// removeBlockFromLoop - This removes the specified basic block from the |
| /// current loop, updating the Blocks and ExitBlocks lists as appropriate. This |
| /// does not update the mapping in the LoopInfo class. |
| void Loop::removeBlockFromLoop(BasicBlock *BB) { |
| RemoveFromVector(Blocks, BB); |
| } |