| //===----------------- LLVMContextImpl.h - Implementation ------*- C++ -*--===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file declares LLVMContextImpl, the opaque implementation |
| // of LLVMContext. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_LLVMCONTEXT_IMPL_H |
| #define LLVM_LLVMCONTEXT_IMPL_H |
| |
| #include "llvm/LLVMContext.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Operator.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/System/Mutex.h" |
| #include "llvm/System/RWMutex.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/FoldingSet.h" |
| #include "llvm/ADT/StringMap.h" |
| #include <map> |
| #include <vector> |
| |
| namespace llvm { |
| template<class ValType> |
| struct ConstantTraits; |
| |
| |
| /// UnaryConstantExpr - This class is private to Constants.cpp, and is used |
| /// behind the scenes to implement unary constant exprs. |
| class UnaryConstantExpr : public ConstantExpr { |
| void *operator new(size_t, unsigned); // DO NOT IMPLEMENT |
| public: |
| // allocate space for exactly one operand |
| void *operator new(size_t s) { |
| return User::operator new(s, 1); |
| } |
| UnaryConstantExpr(unsigned Opcode, Constant *C, const Type *Ty) |
| : ConstantExpr(Ty, Opcode, &Op<0>(), 1) { |
| Op<0>() = C; |
| } |
| DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
| }; |
| |
| /// BinaryConstantExpr - This class is private to Constants.cpp, and is used |
| /// behind the scenes to implement binary constant exprs. |
| class BinaryConstantExpr : public ConstantExpr { |
| void *operator new(size_t, unsigned); // DO NOT IMPLEMENT |
| public: |
| // allocate space for exactly two operands |
| void *operator new(size_t s) { |
| return User::operator new(s, 2); |
| } |
| BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2) |
| : ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) { |
| Op<0>() = C1; |
| Op<1>() = C2; |
| } |
| /// Transparently provide more efficient getOperand methods. |
| DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
| }; |
| |
| /// SelectConstantExpr - This class is private to Constants.cpp, and is used |
| /// behind the scenes to implement select constant exprs. |
| class SelectConstantExpr : public ConstantExpr { |
| void *operator new(size_t, unsigned); // DO NOT IMPLEMENT |
| public: |
| // allocate space for exactly three operands |
| void *operator new(size_t s) { |
| return User::operator new(s, 3); |
| } |
| SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3) |
| : ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) { |
| Op<0>() = C1; |
| Op<1>() = C2; |
| Op<2>() = C3; |
| } |
| /// Transparently provide more efficient getOperand methods. |
| DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
| }; |
| |
| /// ExtractElementConstantExpr - This class is private to |
| /// Constants.cpp, and is used behind the scenes to implement |
| /// extractelement constant exprs. |
| class ExtractElementConstantExpr : public ConstantExpr { |
| void *operator new(size_t, unsigned); // DO NOT IMPLEMENT |
| public: |
| // allocate space for exactly two operands |
| void *operator new(size_t s) { |
| return User::operator new(s, 2); |
| } |
| ExtractElementConstantExpr(Constant *C1, Constant *C2) |
| : ConstantExpr(cast<VectorType>(C1->getType())->getElementType(), |
| Instruction::ExtractElement, &Op<0>(), 2) { |
| Op<0>() = C1; |
| Op<1>() = C2; |
| } |
| /// Transparently provide more efficient getOperand methods. |
| DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
| }; |
| |
| /// InsertElementConstantExpr - This class is private to |
| /// Constants.cpp, and is used behind the scenes to implement |
| /// insertelement constant exprs. |
| class InsertElementConstantExpr : public ConstantExpr { |
| void *operator new(size_t, unsigned); // DO NOT IMPLEMENT |
| public: |
| // allocate space for exactly three operands |
| void *operator new(size_t s) { |
| return User::operator new(s, 3); |
| } |
| InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3) |
| : ConstantExpr(C1->getType(), Instruction::InsertElement, |
| &Op<0>(), 3) { |
| Op<0>() = C1; |
| Op<1>() = C2; |
| Op<2>() = C3; |
| } |
| /// Transparently provide more efficient getOperand methods. |
| DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
| }; |
| |
| /// ShuffleVectorConstantExpr - This class is private to |
| /// Constants.cpp, and is used behind the scenes to implement |
| /// shufflevector constant exprs. |
| class ShuffleVectorConstantExpr : public ConstantExpr { |
| void *operator new(size_t, unsigned); // DO NOT IMPLEMENT |
| public: |
| // allocate space for exactly three operands |
| void *operator new(size_t s) { |
| return User::operator new(s, 3); |
| } |
| ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3) |
| : ConstantExpr(VectorType::get( |
| cast<VectorType>(C1->getType())->getElementType(), |
| cast<VectorType>(C3->getType())->getNumElements()), |
| Instruction::ShuffleVector, |
| &Op<0>(), 3) { |
| Op<0>() = C1; |
| Op<1>() = C2; |
| Op<2>() = C3; |
| } |
| /// Transparently provide more efficient getOperand methods. |
| DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
| }; |
| |
| /// ExtractValueConstantExpr - This class is private to |
| /// Constants.cpp, and is used behind the scenes to implement |
| /// extractvalue constant exprs. |
| class ExtractValueConstantExpr : public ConstantExpr { |
| void *operator new(size_t, unsigned); // DO NOT IMPLEMENT |
| public: |
| // allocate space for exactly one operand |
| void *operator new(size_t s) { |
| return User::operator new(s, 1); |
| } |
| ExtractValueConstantExpr(Constant *Agg, |
| const SmallVector<unsigned, 4> &IdxList, |
| const Type *DestTy) |
| : ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1), |
| Indices(IdxList) { |
| Op<0>() = Agg; |
| } |
| |
| /// Indices - These identify which value to extract. |
| const SmallVector<unsigned, 4> Indices; |
| |
| /// Transparently provide more efficient getOperand methods. |
| DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
| }; |
| |
| /// InsertValueConstantExpr - This class is private to |
| /// Constants.cpp, and is used behind the scenes to implement |
| /// insertvalue constant exprs. |
| class InsertValueConstantExpr : public ConstantExpr { |
| void *operator new(size_t, unsigned); // DO NOT IMPLEMENT |
| public: |
| // allocate space for exactly one operand |
| void *operator new(size_t s) { |
| return User::operator new(s, 2); |
| } |
| InsertValueConstantExpr(Constant *Agg, Constant *Val, |
| const SmallVector<unsigned, 4> &IdxList, |
| const Type *DestTy) |
| : ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2), |
| Indices(IdxList) { |
| Op<0>() = Agg; |
| Op<1>() = Val; |
| } |
| |
| /// Indices - These identify the position for the insertion. |
| const SmallVector<unsigned, 4> Indices; |
| |
| /// Transparently provide more efficient getOperand methods. |
| DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
| }; |
| |
| |
| /// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is |
| /// used behind the scenes to implement getelementpr constant exprs. |
| class GetElementPtrConstantExpr : public ConstantExpr { |
| GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList, |
| const Type *DestTy); |
| public: |
| static GetElementPtrConstantExpr *Create(Constant *C, |
| const std::vector<Constant*>&IdxList, |
| const Type *DestTy) { |
| return |
| new(IdxList.size() + 1) GetElementPtrConstantExpr(C, IdxList, DestTy); |
| } |
| /// Transparently provide more efficient getOperand methods. |
| DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
| }; |
| |
| // CompareConstantExpr - This class is private to Constants.cpp, and is used |
| // behind the scenes to implement ICmp and FCmp constant expressions. This is |
| // needed in order to store the predicate value for these instructions. |
| struct CompareConstantExpr : public ConstantExpr { |
| void *operator new(size_t, unsigned); // DO NOT IMPLEMENT |
| // allocate space for exactly two operands |
| void *operator new(size_t s) { |
| return User::operator new(s, 2); |
| } |
| unsigned short predicate; |
| CompareConstantExpr(const Type *ty, Instruction::OtherOps opc, |
| unsigned short pred, Constant* LHS, Constant* RHS) |
| : ConstantExpr(ty, opc, &Op<0>(), 2), predicate(pred) { |
| Op<0>() = LHS; |
| Op<1>() = RHS; |
| } |
| /// Transparently provide more efficient getOperand methods. |
| DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
| }; |
| |
| template <> |
| struct OperandTraits<UnaryConstantExpr> : FixedNumOperandTraits<1> { |
| }; |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value) |
| |
| template <> |
| struct OperandTraits<BinaryConstantExpr> : FixedNumOperandTraits<2> { |
| }; |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value) |
| |
| template <> |
| struct OperandTraits<SelectConstantExpr> : FixedNumOperandTraits<3> { |
| }; |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value) |
| |
| template <> |
| struct OperandTraits<ExtractElementConstantExpr> : FixedNumOperandTraits<2> { |
| }; |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value) |
| |
| template <> |
| struct OperandTraits<InsertElementConstantExpr> : FixedNumOperandTraits<3> { |
| }; |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value) |
| |
| template <> |
| struct OperandTraits<ShuffleVectorConstantExpr> : FixedNumOperandTraits<3> { |
| }; |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value) |
| |
| template <> |
| struct OperandTraits<ExtractValueConstantExpr> : FixedNumOperandTraits<1> { |
| }; |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr, Value) |
| |
| template <> |
| struct OperandTraits<InsertValueConstantExpr> : FixedNumOperandTraits<2> { |
| }; |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr, Value) |
| |
| template <> |
| struct OperandTraits<GetElementPtrConstantExpr> : VariadicOperandTraits<1> { |
| }; |
| |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value) |
| |
| |
| template <> |
| struct OperandTraits<CompareConstantExpr> : FixedNumOperandTraits<2> { |
| }; |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value) |
| |
| struct ExprMapKeyType { |
| typedef SmallVector<unsigned, 4> IndexList; |
| |
| ExprMapKeyType(unsigned opc, |
| const std::vector<Constant*> &ops, |
| unsigned short pred = 0, |
| const IndexList &inds = IndexList()) |
| : opcode(opc), predicate(pred), operands(ops), indices(inds) {} |
| uint16_t opcode; |
| uint16_t predicate; |
| std::vector<Constant*> operands; |
| IndexList indices; |
| bool operator==(const ExprMapKeyType& that) const { |
| return this->opcode == that.opcode && |
| this->predicate == that.predicate && |
| this->operands == that.operands && |
| this->indices == that.indices; |
| } |
| bool operator<(const ExprMapKeyType & that) const { |
| return this->opcode < that.opcode || |
| (this->opcode == that.opcode && this->predicate < that.predicate) || |
| (this->opcode == that.opcode && this->predicate == that.predicate && |
| this->operands < that.operands) || |
| (this->opcode == that.opcode && this->predicate == that.predicate && |
| this->operands == that.operands && this->indices < that.indices); |
| } |
| |
| bool operator!=(const ExprMapKeyType& that) const { |
| return !(*this == that); |
| } |
| }; |
| |
| // The number of operands for each ConstantCreator::create method is |
| // determined by the ConstantTraits template. |
| // ConstantCreator - A class that is used to create constants by |
| // ValueMap*. This class should be partially specialized if there is |
| // something strange that needs to be done to interface to the ctor for the |
| // constant. |
| // |
| template<typename T, typename Alloc> |
| struct ConstantTraits< std::vector<T, Alloc> > { |
| static unsigned uses(const std::vector<T, Alloc>& v) { |
| return v.size(); |
| } |
| }; |
| |
| template<class ConstantClass, class TypeClass, class ValType> |
| struct ConstantCreator { |
| static ConstantClass *create(const TypeClass *Ty, const ValType &V) { |
| return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V); |
| } |
| }; |
| |
| template<class ConstantClass, class TypeClass> |
| struct ConvertConstantType { |
| static void convert(ConstantClass *OldC, const TypeClass *NewTy) { |
| llvm_unreachable("This type cannot be converted!"); |
| } |
| }; |
| |
| template<> |
| struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> { |
| static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V, |
| unsigned short pred = 0) { |
| if (Instruction::isCast(V.opcode)) |
| return new UnaryConstantExpr(V.opcode, V.operands[0], Ty); |
| if ((V.opcode >= Instruction::BinaryOpsBegin && |
| V.opcode < Instruction::BinaryOpsEnd)) |
| return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1]); |
| if (V.opcode == Instruction::Select) |
| return new SelectConstantExpr(V.operands[0], V.operands[1], |
| V.operands[2]); |
| if (V.opcode == Instruction::ExtractElement) |
| return new ExtractElementConstantExpr(V.operands[0], V.operands[1]); |
| if (V.opcode == Instruction::InsertElement) |
| return new InsertElementConstantExpr(V.operands[0], V.operands[1], |
| V.operands[2]); |
| if (V.opcode == Instruction::ShuffleVector) |
| return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1], |
| V.operands[2]); |
| if (V.opcode == Instruction::InsertValue) |
| return new InsertValueConstantExpr(V.operands[0], V.operands[1], |
| V.indices, Ty); |
| if (V.opcode == Instruction::ExtractValue) |
| return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty); |
| if (V.opcode == Instruction::GetElementPtr) { |
| std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end()); |
| return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty); |
| } |
| |
| // The compare instructions are weird. We have to encode the predicate |
| // value and it is combined with the instruction opcode by multiplying |
| // the opcode by one hundred. We must decode this to get the predicate. |
| if (V.opcode == Instruction::ICmp) |
| return new CompareConstantExpr(Ty, Instruction::ICmp, V.predicate, |
| V.operands[0], V.operands[1]); |
| if (V.opcode == Instruction::FCmp) |
| return new CompareConstantExpr(Ty, Instruction::FCmp, V.predicate, |
| V.operands[0], V.operands[1]); |
| llvm_unreachable("Invalid ConstantExpr!"); |
| return 0; |
| } |
| }; |
| |
| template<> |
| struct ConvertConstantType<ConstantExpr, Type> { |
| static void convert(ConstantExpr *OldC, const Type *NewTy) { |
| Constant *New; |
| switch (OldC->getOpcode()) { |
| case Instruction::Trunc: |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| case Instruction::FPTrunc: |
| case Instruction::FPExt: |
| case Instruction::UIToFP: |
| case Instruction::SIToFP: |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: |
| case Instruction::PtrToInt: |
| case Instruction::IntToPtr: |
| case Instruction::BitCast: |
| New = ConstantExpr::getCast(OldC->getOpcode(), OldC->getOperand(0), |
| NewTy); |
| break; |
| case Instruction::Select: |
| New = ConstantExpr::getSelectTy(NewTy, OldC->getOperand(0), |
| OldC->getOperand(1), |
| OldC->getOperand(2)); |
| break; |
| default: |
| assert(OldC->getOpcode() >= Instruction::BinaryOpsBegin && |
| OldC->getOpcode() < Instruction::BinaryOpsEnd); |
| New = ConstantExpr::getTy(NewTy, OldC->getOpcode(), OldC->getOperand(0), |
| OldC->getOperand(1)); |
| break; |
| case Instruction::GetElementPtr: |
| // Make everyone now use a constant of the new type... |
| std::vector<Value*> Idx(OldC->op_begin()+1, OldC->op_end()); |
| New = ConstantExpr::getGetElementPtrTy(NewTy, OldC->getOperand(0), |
| &Idx[0], Idx.size()); |
| break; |
| } |
| |
| assert(New != OldC && "Didn't replace constant??"); |
| OldC->uncheckedReplaceAllUsesWith(New); |
| OldC->destroyConstant(); // This constant is now dead, destroy it. |
| } |
| }; |
| |
| // ConstantAggregateZero does not take extra "value" argument... |
| template<class ValType> |
| struct ConstantCreator<ConstantAggregateZero, Type, ValType> { |
| static ConstantAggregateZero *create(const Type *Ty, const ValType &V){ |
| return new ConstantAggregateZero(Ty); |
| } |
| }; |
| |
| template<> |
| struct ConvertConstantType<ConstantVector, VectorType> { |
| static void convert(ConstantVector *OldC, const VectorType *NewTy) { |
| // Make everyone now use a constant of the new type... |
| std::vector<Constant*> C; |
| for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i) |
| C.push_back(cast<Constant>(OldC->getOperand(i))); |
| Constant *New = ConstantVector::get(NewTy, C); |
| assert(New != OldC && "Didn't replace constant??"); |
| OldC->uncheckedReplaceAllUsesWith(New); |
| OldC->destroyConstant(); // This constant is now dead, destroy it. |
| } |
| }; |
| |
| template<> |
| struct ConvertConstantType<ConstantAggregateZero, Type> { |
| static void convert(ConstantAggregateZero *OldC, const Type *NewTy) { |
| // Make everyone now use a constant of the new type... |
| Constant *New = ConstantAggregateZero::get(NewTy); |
| assert(New != OldC && "Didn't replace constant??"); |
| OldC->uncheckedReplaceAllUsesWith(New); |
| OldC->destroyConstant(); // This constant is now dead, destroy it. |
| } |
| }; |
| |
| template<> |
| struct ConvertConstantType<ConstantArray, ArrayType> { |
| static void convert(ConstantArray *OldC, const ArrayType *NewTy) { |
| // Make everyone now use a constant of the new type... |
| std::vector<Constant*> C; |
| for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i) |
| C.push_back(cast<Constant>(OldC->getOperand(i))); |
| Constant *New = ConstantArray::get(NewTy, C); |
| assert(New != OldC && "Didn't replace constant??"); |
| OldC->uncheckedReplaceAllUsesWith(New); |
| OldC->destroyConstant(); // This constant is now dead, destroy it. |
| } |
| }; |
| |
| template<> |
| struct ConvertConstantType<ConstantStruct, StructType> { |
| static void convert(ConstantStruct *OldC, const StructType *NewTy) { |
| // Make everyone now use a constant of the new type... |
| std::vector<Constant*> C; |
| for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i) |
| C.push_back(cast<Constant>(OldC->getOperand(i))); |
| Constant *New = ConstantStruct::get(NewTy, C); |
| assert(New != OldC && "Didn't replace constant??"); |
| |
| OldC->uncheckedReplaceAllUsesWith(New); |
| OldC->destroyConstant(); // This constant is now dead, destroy it. |
| } |
| }; |
| |
| // ConstantPointerNull does not take extra "value" argument... |
| template<class ValType> |
| struct ConstantCreator<ConstantPointerNull, PointerType, ValType> { |
| static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){ |
| return new ConstantPointerNull(Ty); |
| } |
| }; |
| |
| template<> |
| struct ConvertConstantType<ConstantPointerNull, PointerType> { |
| static void convert(ConstantPointerNull *OldC, const PointerType *NewTy) { |
| // Make everyone now use a constant of the new type... |
| Constant *New = ConstantPointerNull::get(NewTy); |
| assert(New != OldC && "Didn't replace constant??"); |
| OldC->uncheckedReplaceAllUsesWith(New); |
| OldC->destroyConstant(); // This constant is now dead, destroy it. |
| } |
| }; |
| |
| // UndefValue does not take extra "value" argument... |
| template<class ValType> |
| struct ConstantCreator<UndefValue, Type, ValType> { |
| static UndefValue *create(const Type *Ty, const ValType &V) { |
| return new UndefValue(Ty); |
| } |
| }; |
| |
| template<> |
| struct ConvertConstantType<UndefValue, Type> { |
| static void convert(UndefValue *OldC, const Type *NewTy) { |
| // Make everyone now use a constant of the new type. |
| Constant *New = UndefValue::get(NewTy); |
| assert(New != OldC && "Didn't replace constant??"); |
| OldC->uncheckedReplaceAllUsesWith(New); |
| OldC->destroyConstant(); // This constant is now dead, destroy it. |
| } |
| }; |
| |
| template<class ValType, class TypeClass, class ConstantClass, |
| bool HasLargeKey = false /*true for arrays and structs*/ > |
| class ValueMap : public AbstractTypeUser { |
| public: |
| typedef std::pair<const Type*, ValType> MapKey; |
| typedef std::map<MapKey, Constant *> MapTy; |
| typedef std::map<Constant*, typename MapTy::iterator> InverseMapTy; |
| typedef std::map<const Type*, typename MapTy::iterator> AbstractTypeMapTy; |
| private: |
| /// Map - This is the main map from the element descriptor to the Constants. |
| /// This is the primary way we avoid creating two of the same shape |
| /// constant. |
| MapTy Map; |
| |
| /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping |
| /// from the constants to their element in Map. This is important for |
| /// removal of constants from the array, which would otherwise have to scan |
| /// through the map with very large keys. |
| InverseMapTy InverseMap; |
| |
| /// AbstractTypeMap - Map for abstract type constants. |
| /// |
| AbstractTypeMapTy AbstractTypeMap; |
| |
| /// ValueMapLock - Mutex for this map. |
| sys::SmartMutex<true> ValueMapLock; |
| |
| public: |
| // NOTE: This function is not locked. It is the caller's responsibility |
| // to enforce proper synchronization. |
| typename MapTy::iterator map_end() { return Map.end(); } |
| |
| /// InsertOrGetItem - Return an iterator for the specified element. |
| /// If the element exists in the map, the returned iterator points to the |
| /// entry and Exists=true. If not, the iterator points to the newly |
| /// inserted entry and returns Exists=false. Newly inserted entries have |
| /// I->second == 0, and should be filled in. |
| /// NOTE: This function is not locked. It is the caller's responsibility |
| // to enforce proper synchronization. |
| typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, Constant *> |
| &InsertVal, |
| bool &Exists) { |
| std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal); |
| Exists = !IP.second; |
| return IP.first; |
| } |
| |
| private: |
| typename MapTy::iterator FindExistingElement(ConstantClass *CP) { |
| if (HasLargeKey) { |
| typename InverseMapTy::iterator IMI = InverseMap.find(CP); |
| assert(IMI != InverseMap.end() && IMI->second != Map.end() && |
| IMI->second->second == CP && |
| "InverseMap corrupt!"); |
| return IMI->second; |
| } |
| |
| typename MapTy::iterator I = |
| Map.find(MapKey(static_cast<const TypeClass*>(CP->getRawType()), |
| getValType(CP))); |
| if (I == Map.end() || I->second != CP) { |
| // FIXME: This should not use a linear scan. If this gets to be a |
| // performance problem, someone should look at this. |
| for (I = Map.begin(); I != Map.end() && I->second != CP; ++I) |
| /* empty */; |
| } |
| return I; |
| } |
| |
| ConstantClass* Create(const TypeClass *Ty, const ValType &V, |
| typename MapTy::iterator I) { |
| ConstantClass* Result = |
| ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V); |
| |
| assert(Result->getType() == Ty && "Type specified is not correct!"); |
| I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result)); |
| |
| if (HasLargeKey) // Remember the reverse mapping if needed. |
| InverseMap.insert(std::make_pair(Result, I)); |
| |
| // If the type of the constant is abstract, make sure that an entry |
| // exists for it in the AbstractTypeMap. |
| if (Ty->isAbstract()) { |
| typename AbstractTypeMapTy::iterator TI = |
| AbstractTypeMap.find(Ty); |
| |
| if (TI == AbstractTypeMap.end()) { |
| // Add ourselves to the ATU list of the type. |
| cast<DerivedType>(Ty)->addAbstractTypeUser(this); |
| |
| AbstractTypeMap.insert(TI, std::make_pair(Ty, I)); |
| } |
| } |
| |
| return Result; |
| } |
| public: |
| |
| /// getOrCreate - Return the specified constant from the map, creating it if |
| /// necessary. |
| ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) { |
| sys::SmartScopedLock<true> Lock(ValueMapLock); |
| MapKey Lookup(Ty, V); |
| ConstantClass* Result = 0; |
| |
| typename MapTy::iterator I = Map.find(Lookup); |
| // Is it in the map? |
| if (I != Map.end()) |
| Result = static_cast<ConstantClass *>(I->second); |
| |
| if (!Result) { |
| // If no preexisting value, create one now... |
| Result = Create(Ty, V, I); |
| } |
| |
| return Result; |
| } |
| |
| void remove(ConstantClass *CP) { |
| sys::SmartScopedLock<true> Lock(ValueMapLock); |
| typename MapTy::iterator I = FindExistingElement(CP); |
| assert(I != Map.end() && "Constant not found in constant table!"); |
| assert(I->second == CP && "Didn't find correct element?"); |
| |
| if (HasLargeKey) // Remember the reverse mapping if needed. |
| InverseMap.erase(CP); |
| |
| // Now that we found the entry, make sure this isn't the entry that |
| // the AbstractTypeMap points to. |
| const TypeClass *Ty = static_cast<const TypeClass *>(I->first.first); |
| if (Ty->isAbstract()) { |
| assert(AbstractTypeMap.count(Ty) && |
| "Abstract type not in AbstractTypeMap?"); |
| typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty]; |
| if (ATMEntryIt == I) { |
| // Yes, we are removing the representative entry for this type. |
| // See if there are any other entries of the same type. |
| typename MapTy::iterator TmpIt = ATMEntryIt; |
| |
| // First check the entry before this one... |
| if (TmpIt != Map.begin()) { |
| --TmpIt; |
| if (TmpIt->first.first != Ty) // Not the same type, move back... |
| ++TmpIt; |
| } |
| |
| // If we didn't find the same type, try to move forward... |
| if (TmpIt == ATMEntryIt) { |
| ++TmpIt; |
| if (TmpIt == Map.end() || TmpIt->first.first != Ty) |
| --TmpIt; // No entry afterwards with the same type |
| } |
| |
| // If there is another entry in the map of the same abstract type, |
| // update the AbstractTypeMap entry now. |
| if (TmpIt != ATMEntryIt) { |
| ATMEntryIt = TmpIt; |
| } else { |
| // Otherwise, we are removing the last instance of this type |
| // from the table. Remove from the ATM, and from user list. |
| cast<DerivedType>(Ty)->removeAbstractTypeUser(this); |
| AbstractTypeMap.erase(Ty); |
| } |
| } |
| } |
| |
| Map.erase(I); |
| } |
| |
| |
| /// MoveConstantToNewSlot - If we are about to change C to be the element |
| /// specified by I, update our internal data structures to reflect this |
| /// fact. |
| /// NOTE: This function is not locked. It is the responsibility of the |
| /// caller to enforce proper synchronization if using this method. |
| void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) { |
| // First, remove the old location of the specified constant in the map. |
| typename MapTy::iterator OldI = FindExistingElement(C); |
| assert(OldI != Map.end() && "Constant not found in constant table!"); |
| assert(OldI->second == C && "Didn't find correct element?"); |
| |
| // If this constant is the representative element for its abstract type, |
| // update the AbstractTypeMap so that the representative element is I. |
| if (C->getType()->isAbstract()) { |
| typename AbstractTypeMapTy::iterator ATI = |
| AbstractTypeMap.find(C->getType()); |
| assert(ATI != AbstractTypeMap.end() && |
| "Abstract type not in AbstractTypeMap?"); |
| if (ATI->second == OldI) |
| ATI->second = I; |
| } |
| |
| // Remove the old entry from the map. |
| Map.erase(OldI); |
| |
| // Update the inverse map so that we know that this constant is now |
| // located at descriptor I. |
| if (HasLargeKey) { |
| assert(I->second == C && "Bad inversemap entry!"); |
| InverseMap[C] = I; |
| } |
| } |
| |
| void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) { |
| sys::SmartScopedLock<true> Lock(ValueMapLock); |
| typename AbstractTypeMapTy::iterator I = |
| AbstractTypeMap.find(cast<Type>(OldTy)); |
| |
| assert(I != AbstractTypeMap.end() && |
| "Abstract type not in AbstractTypeMap?"); |
| |
| // Convert a constant at a time until the last one is gone. The last one |
| // leaving will remove() itself, causing the AbstractTypeMapEntry to be |
| // eliminated eventually. |
| do { |
| ConvertConstantType<ConstantClass, |
| TypeClass>::convert( |
| static_cast<ConstantClass *>(I->second->second), |
| cast<TypeClass>(NewTy)); |
| |
| I = AbstractTypeMap.find(cast<Type>(OldTy)); |
| } while (I != AbstractTypeMap.end()); |
| } |
| |
| // If the type became concrete without being refined to any other existing |
| // type, we just remove ourselves from the ATU list. |
| void typeBecameConcrete(const DerivedType *AbsTy) { |
| AbsTy->removeAbstractTypeUser(this); |
| } |
| |
| void dump() const { |
| DOUT << "Constant.cpp: ValueMap\n"; |
| } |
| }; |
| |
| |
| class ConstantInt; |
| class ConstantFP; |
| class MDString; |
| class MDNode; |
| class LLVMContext; |
| class Type; |
| class Value; |
| |
| struct DenseMapAPIntKeyInfo { |
| struct KeyTy { |
| APInt val; |
| const Type* type; |
| KeyTy(const APInt& V, const Type* Ty) : val(V), type(Ty) {} |
| KeyTy(const KeyTy& that) : val(that.val), type(that.type) {} |
| bool operator==(const KeyTy& that) const { |
| return type == that.type && this->val == that.val; |
| } |
| bool operator!=(const KeyTy& that) const { |
| return !this->operator==(that); |
| } |
| }; |
| static inline KeyTy getEmptyKey() { return KeyTy(APInt(1,0), 0); } |
| static inline KeyTy getTombstoneKey() { return KeyTy(APInt(1,1), 0); } |
| static unsigned getHashValue(const KeyTy &Key) { |
| return DenseMapInfo<void*>::getHashValue(Key.type) ^ |
| Key.val.getHashValue(); |
| } |
| static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) { |
| return LHS == RHS; |
| } |
| static bool isPod() { return false; } |
| }; |
| |
| struct DenseMapAPFloatKeyInfo { |
| struct KeyTy { |
| APFloat val; |
| KeyTy(const APFloat& V) : val(V){} |
| KeyTy(const KeyTy& that) : val(that.val) {} |
| bool operator==(const KeyTy& that) const { |
| return this->val.bitwiseIsEqual(that.val); |
| } |
| bool operator!=(const KeyTy& that) const { |
| return !this->operator==(that); |
| } |
| }; |
| static inline KeyTy getEmptyKey() { |
| return KeyTy(APFloat(APFloat::Bogus,1)); |
| } |
| static inline KeyTy getTombstoneKey() { |
| return KeyTy(APFloat(APFloat::Bogus,2)); |
| } |
| static unsigned getHashValue(const KeyTy &Key) { |
| return Key.val.getHashValue(); |
| } |
| static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) { |
| return LHS == RHS; |
| } |
| static bool isPod() { return false; } |
| }; |
| |
| struct LLVMContextImpl { |
| sys::SmartRWMutex<true> ConstantsLock; |
| |
| typedef DenseMap<DenseMapAPIntKeyInfo::KeyTy, ConstantInt*, |
| DenseMapAPIntKeyInfo> IntMapTy; |
| IntMapTy IntConstants; |
| |
| typedef DenseMap<DenseMapAPFloatKeyInfo::KeyTy, ConstantFP*, |
| DenseMapAPFloatKeyInfo> FPMapTy; |
| FPMapTy FPConstants; |
| |
| StringMap<MDString*> MDStringCache; |
| |
| FoldingSet<MDNode> MDNodeSet; |
| |
| ValueMap<char, Type, ConstantAggregateZero> AggZeroConstants; |
| |
| typedef ValueMap<std::vector<Constant*>, ArrayType, |
| ConstantArray, true /*largekey*/> ArrayConstantsTy; |
| ArrayConstantsTy ArrayConstants; |
| |
| typedef ValueMap<std::vector<Constant*>, StructType, |
| ConstantStruct, true /*largekey*/> StructConstantsTy; |
| StructConstantsTy StructConstants; |
| |
| typedef ValueMap<std::vector<Constant*>, VectorType, |
| ConstantVector> VectorConstantsTy; |
| VectorConstantsTy VectorConstants; |
| |
| ValueMap<char, PointerType, ConstantPointerNull> NullPtrConstants; |
| |
| ValueMap<char, Type, UndefValue> UndefValueConstants; |
| |
| ValueMap<ExprMapKeyType, Type, ConstantExpr> ExprConstants; |
| |
| LLVMContext &Context; |
| ConstantInt *TheTrueVal; |
| ConstantInt *TheFalseVal; |
| |
| LLVMContextImpl(LLVMContext &C); |
| private: |
| LLVMContextImpl(); |
| LLVMContextImpl(const LLVMContextImpl&); |
| }; |
| |
| } |
| |
| #endif |