| //===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the LiveInterval analysis pass which is used |
| // by the Linear Scan Register allocator. This pass linearizes the |
| // basic blocks of the function in DFS order and uses the |
| // LiveVariables pass to conservatively compute live intervals for |
| // each virtual and physical register. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "regalloc" |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h" |
| #include "LiveRangeCalc.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/CodeGen/LiveVariables.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/VirtRegMap.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/Value.h" |
| #include <algorithm> |
| #include <cmath> |
| #include <limits> |
| using namespace llvm; |
| |
| // Switch to the new experimental algorithm for computing live intervals. |
| static cl::opt<bool> |
| NewLiveIntervals("new-live-intervals", cl::Hidden, |
| cl::desc("Use new algorithm forcomputing live intervals")); |
| |
| char LiveIntervals::ID = 0; |
| char &llvm::LiveIntervalsID = LiveIntervals::ID; |
| INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals", |
| "Live Interval Analysis", false, false) |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis) |
| INITIALIZE_PASS_DEPENDENCY(LiveVariables) |
| INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) |
| INITIALIZE_PASS_DEPENDENCY(SlotIndexes) |
| INITIALIZE_PASS_END(LiveIntervals, "liveintervals", |
| "Live Interval Analysis", false, false) |
| |
| void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesCFG(); |
| AU.addRequired<AliasAnalysis>(); |
| AU.addPreserved<AliasAnalysis>(); |
| AU.addRequired<LiveVariables>(); |
| AU.addPreserved<LiveVariables>(); |
| AU.addPreservedID(MachineLoopInfoID); |
| AU.addRequiredTransitiveID(MachineDominatorsID); |
| AU.addPreservedID(MachineDominatorsID); |
| AU.addPreserved<SlotIndexes>(); |
| AU.addRequiredTransitive<SlotIndexes>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| LiveIntervals::LiveIntervals() : MachineFunctionPass(ID), |
| DomTree(0), LRCalc(0) { |
| initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| LiveIntervals::~LiveIntervals() { |
| delete LRCalc; |
| } |
| |
| void LiveIntervals::releaseMemory() { |
| // Free the live intervals themselves. |
| for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i) |
| delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)]; |
| VirtRegIntervals.clear(); |
| RegMaskSlots.clear(); |
| RegMaskBits.clear(); |
| RegMaskBlocks.clear(); |
| |
| for (unsigned i = 0, e = RegUnitIntervals.size(); i != e; ++i) |
| delete RegUnitIntervals[i]; |
| RegUnitIntervals.clear(); |
| |
| // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd. |
| VNInfoAllocator.Reset(); |
| } |
| |
| /// runOnMachineFunction - Register allocate the whole function |
| /// |
| bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) { |
| MF = &fn; |
| MRI = &MF->getRegInfo(); |
| TM = &fn.getTarget(); |
| TRI = TM->getRegisterInfo(); |
| TII = TM->getInstrInfo(); |
| AA = &getAnalysis<AliasAnalysis>(); |
| LV = &getAnalysis<LiveVariables>(); |
| Indexes = &getAnalysis<SlotIndexes>(); |
| DomTree = &getAnalysis<MachineDominatorTree>(); |
| if (!LRCalc) |
| LRCalc = new LiveRangeCalc(); |
| |
| // Allocate space for all virtual registers. |
| VirtRegIntervals.resize(MRI->getNumVirtRegs()); |
| |
| if (NewLiveIntervals) { |
| // This is the new way of computing live intervals. |
| // It is independent of LiveVariables, and it can run at any time. |
| computeVirtRegs(); |
| computeRegMasks(); |
| } else { |
| // This is the old way of computing live intervals. |
| // It depends on LiveVariables. |
| computeIntervals(); |
| } |
| computeLiveInRegUnits(); |
| |
| DEBUG(dump()); |
| return true; |
| } |
| |
| /// print - Implement the dump method. |
| void LiveIntervals::print(raw_ostream &OS, const Module* ) const { |
| OS << "********** INTERVALS **********\n"; |
| |
| // Dump the regunits. |
| for (unsigned i = 0, e = RegUnitIntervals.size(); i != e; ++i) |
| if (LiveInterval *LI = RegUnitIntervals[i]) |
| OS << PrintRegUnit(i, TRI) << " = " << *LI << '\n'; |
| |
| // Dump the virtregs. |
| for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { |
| unsigned Reg = TargetRegisterInfo::index2VirtReg(i); |
| if (hasInterval(Reg)) |
| OS << PrintReg(Reg) << " = " << getInterval(Reg) << '\n'; |
| } |
| |
| OS << "RegMasks:"; |
| for (unsigned i = 0, e = RegMaskSlots.size(); i != e; ++i) |
| OS << ' ' << RegMaskSlots[i]; |
| OS << '\n'; |
| |
| printInstrs(OS); |
| } |
| |
| void LiveIntervals::printInstrs(raw_ostream &OS) const { |
| OS << "********** MACHINEINSTRS **********\n"; |
| MF->print(OS, Indexes); |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| void LiveIntervals::dumpInstrs() const { |
| printInstrs(dbgs()); |
| } |
| #endif |
| |
| static |
| bool MultipleDefsBySameMI(const MachineInstr &MI, unsigned MOIdx) { |
| unsigned Reg = MI.getOperand(MOIdx).getReg(); |
| for (unsigned i = MOIdx+1, e = MI.getNumOperands(); i < e; ++i) { |
| const MachineOperand &MO = MI.getOperand(i); |
| if (!MO.isReg()) |
| continue; |
| if (MO.getReg() == Reg && MO.isDef()) { |
| assert(MI.getOperand(MOIdx).getSubReg() != MO.getSubReg() && |
| MI.getOperand(MOIdx).getSubReg() && |
| (MO.getSubReg() || MO.isImplicit())); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// isPartialRedef - Return true if the specified def at the specific index is |
| /// partially re-defining the specified live interval. A common case of this is |
| /// a definition of the sub-register. |
| bool LiveIntervals::isPartialRedef(SlotIndex MIIdx, MachineOperand &MO, |
| LiveInterval &interval) { |
| if (!MO.getSubReg() || MO.isEarlyClobber()) |
| return false; |
| |
| SlotIndex RedefIndex = MIIdx.getRegSlot(); |
| const LiveRange *OldLR = |
| interval.getLiveRangeContaining(RedefIndex.getRegSlot(true)); |
| MachineInstr *DefMI = getInstructionFromIndex(OldLR->valno->def); |
| if (DefMI != 0) { |
| return DefMI->findRegisterDefOperandIdx(interval.reg) != -1; |
| } |
| return false; |
| } |
| |
| void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb, |
| MachineBasicBlock::iterator mi, |
| SlotIndex MIIdx, |
| MachineOperand& MO, |
| unsigned MOIdx, |
| LiveInterval &interval) { |
| DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, TRI)); |
| |
| // Virtual registers may be defined multiple times (due to phi |
| // elimination and 2-addr elimination). Much of what we do only has to be |
| // done once for the vreg. We use an empty interval to detect the first |
| // time we see a vreg. |
| LiveVariables::VarInfo& vi = LV->getVarInfo(interval.reg); |
| if (interval.empty()) { |
| // Get the Idx of the defining instructions. |
| SlotIndex defIndex = MIIdx.getRegSlot(MO.isEarlyClobber()); |
| |
| // Make sure the first definition is not a partial redefinition. |
| assert(!MO.readsReg() && "First def cannot also read virtual register " |
| "missing <undef> flag?"); |
| |
| VNInfo *ValNo = interval.getNextValue(defIndex, VNInfoAllocator); |
| assert(ValNo->id == 0 && "First value in interval is not 0?"); |
| |
| // Loop over all of the blocks that the vreg is defined in. There are |
| // two cases we have to handle here. The most common case is a vreg |
| // whose lifetime is contained within a basic block. In this case there |
| // will be a single kill, in MBB, which comes after the definition. |
| if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) { |
| // FIXME: what about dead vars? |
| SlotIndex killIdx; |
| if (vi.Kills[0] != mi) |
| killIdx = getInstructionIndex(vi.Kills[0]).getRegSlot(); |
| else |
| killIdx = defIndex.getDeadSlot(); |
| |
| // If the kill happens after the definition, we have an intra-block |
| // live range. |
| if (killIdx > defIndex) { |
| assert(vi.AliveBlocks.empty() && |
| "Shouldn't be alive across any blocks!"); |
| LiveRange LR(defIndex, killIdx, ValNo); |
| interval.addRange(LR); |
| DEBUG(dbgs() << " +" << LR << "\n"); |
| return; |
| } |
| } |
| |
| // The other case we handle is when a virtual register lives to the end |
| // of the defining block, potentially live across some blocks, then is |
| // live into some number of blocks, but gets killed. Start by adding a |
| // range that goes from this definition to the end of the defining block. |
| LiveRange NewLR(defIndex, getMBBEndIdx(mbb), ValNo); |
| DEBUG(dbgs() << " +" << NewLR); |
| interval.addRange(NewLR); |
| |
| bool PHIJoin = LV->isPHIJoin(interval.reg); |
| |
| if (PHIJoin) { |
| // A phi join register is killed at the end of the MBB and revived as a |
| // new valno in the killing blocks. |
| assert(vi.AliveBlocks.empty() && "Phi join can't pass through blocks"); |
| DEBUG(dbgs() << " phi-join"); |
| } else { |
| // Iterate over all of the blocks that the variable is completely |
| // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the |
| // live interval. |
| for (SparseBitVector<>::iterator I = vi.AliveBlocks.begin(), |
| E = vi.AliveBlocks.end(); I != E; ++I) { |
| MachineBasicBlock *aliveBlock = MF->getBlockNumbered(*I); |
| LiveRange LR(getMBBStartIdx(aliveBlock), getMBBEndIdx(aliveBlock), |
| ValNo); |
| interval.addRange(LR); |
| DEBUG(dbgs() << " +" << LR); |
| } |
| } |
| |
| // Finally, this virtual register is live from the start of any killing |
| // block to the 'use' slot of the killing instruction. |
| for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) { |
| MachineInstr *Kill = vi.Kills[i]; |
| SlotIndex Start = getMBBStartIdx(Kill->getParent()); |
| SlotIndex killIdx = getInstructionIndex(Kill).getRegSlot(); |
| |
| // Create interval with one of a NEW value number. Note that this value |
| // number isn't actually defined by an instruction, weird huh? :) |
| if (PHIJoin) { |
| assert(getInstructionFromIndex(Start) == 0 && |
| "PHI def index points at actual instruction."); |
| ValNo = interval.getNextValue(Start, VNInfoAllocator); |
| } |
| LiveRange LR(Start, killIdx, ValNo); |
| interval.addRange(LR); |
| DEBUG(dbgs() << " +" << LR); |
| } |
| |
| } else { |
| if (MultipleDefsBySameMI(*mi, MOIdx)) |
| // Multiple defs of the same virtual register by the same instruction. |
| // e.g. %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ... |
| // This is likely due to elimination of REG_SEQUENCE instructions. Return |
| // here since there is nothing to do. |
| return; |
| |
| // If this is the second time we see a virtual register definition, it |
| // must be due to phi elimination or two addr elimination. If this is |
| // the result of two address elimination, then the vreg is one of the |
| // def-and-use register operand. |
| |
| // It may also be partial redef like this: |
| // 80 %reg1041:6<def> = VSHRNv4i16 %reg1034<kill>, 12, pred:14, pred:%reg0 |
| // 120 %reg1041:5<def> = VSHRNv4i16 %reg1039<kill>, 12, pred:14, pred:%reg0 |
| bool PartReDef = isPartialRedef(MIIdx, MO, interval); |
| if (PartReDef || mi->isRegTiedToUseOperand(MOIdx)) { |
| // If this is a two-address definition, then we have already processed |
| // the live range. The only problem is that we didn't realize there |
| // are actually two values in the live interval. Because of this we |
| // need to take the LiveRegion that defines this register and split it |
| // into two values. |
| SlotIndex RedefIndex = MIIdx.getRegSlot(MO.isEarlyClobber()); |
| |
| const LiveRange *OldLR = |
| interval.getLiveRangeContaining(RedefIndex.getRegSlot(true)); |
| VNInfo *OldValNo = OldLR->valno; |
| SlotIndex DefIndex = OldValNo->def.getRegSlot(); |
| |
| // Delete the previous value, which should be short and continuous, |
| // because the 2-addr copy must be in the same MBB as the redef. |
| interval.removeRange(DefIndex, RedefIndex); |
| |
| // The new value number (#1) is defined by the instruction we claimed |
| // defined value #0. |
| VNInfo *ValNo = interval.createValueCopy(OldValNo, VNInfoAllocator); |
| |
| // Value#0 is now defined by the 2-addr instruction. |
| OldValNo->def = RedefIndex; |
| |
| // Add the new live interval which replaces the range for the input copy. |
| LiveRange LR(DefIndex, RedefIndex, ValNo); |
| DEBUG(dbgs() << " replace range with " << LR); |
| interval.addRange(LR); |
| |
| // If this redefinition is dead, we need to add a dummy unit live |
| // range covering the def slot. |
| if (MO.isDead()) |
| interval.addRange(LiveRange(RedefIndex, RedefIndex.getDeadSlot(), |
| OldValNo)); |
| |
| DEBUG(dbgs() << " RESULT: " << interval); |
| } else if (LV->isPHIJoin(interval.reg)) { |
| // In the case of PHI elimination, each variable definition is only |
| // live until the end of the block. We've already taken care of the |
| // rest of the live range. |
| |
| SlotIndex defIndex = MIIdx.getRegSlot(); |
| if (MO.isEarlyClobber()) |
| defIndex = MIIdx.getRegSlot(true); |
| |
| VNInfo *ValNo = interval.getNextValue(defIndex, VNInfoAllocator); |
| |
| SlotIndex killIndex = getMBBEndIdx(mbb); |
| LiveRange LR(defIndex, killIndex, ValNo); |
| interval.addRange(LR); |
| DEBUG(dbgs() << " phi-join +" << LR); |
| } else { |
| llvm_unreachable("Multiply defined register"); |
| } |
| } |
| |
| DEBUG(dbgs() << '\n'); |
| } |
| |
| void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator MI, |
| SlotIndex MIIdx, |
| MachineOperand& MO, |
| unsigned MOIdx) { |
| if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) |
| handleVirtualRegisterDef(MBB, MI, MIIdx, MO, MOIdx, |
| getOrCreateInterval(MO.getReg())); |
| } |
| |
| /// computeIntervals - computes the live intervals for virtual |
| /// registers. for some ordering of the machine instructions [1,N] a |
| /// live interval is an interval [i, j) where 1 <= i <= j < N for |
| /// which a variable is live |
| void LiveIntervals::computeIntervals() { |
| DEBUG(dbgs() << "********** COMPUTING LIVE INTERVALS **********\n" |
| << "********** Function: " << MF->getName() << '\n'); |
| |
| RegMaskBlocks.resize(MF->getNumBlockIDs()); |
| |
| SmallVector<unsigned, 8> UndefUses; |
| for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); |
| MBBI != E; ++MBBI) { |
| MachineBasicBlock *MBB = MBBI; |
| RegMaskBlocks[MBB->getNumber()].first = RegMaskSlots.size(); |
| |
| if (MBB->empty()) |
| continue; |
| |
| // Track the index of the current machine instr. |
| SlotIndex MIIndex = getMBBStartIdx(MBB); |
| DEBUG(dbgs() << "BB#" << MBB->getNumber() |
| << ":\t\t# derived from " << MBB->getName() << "\n"); |
| |
| // Skip over empty initial indices. |
| if (getInstructionFromIndex(MIIndex) == 0) |
| MIIndex = Indexes->getNextNonNullIndex(MIIndex); |
| |
| for (MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end(); |
| MI != miEnd; ++MI) { |
| DEBUG(dbgs() << MIIndex << "\t" << *MI); |
| if (MI->isDebugValue()) |
| continue; |
| assert(Indexes->getInstructionFromIndex(MIIndex) == MI && |
| "Lost SlotIndex synchronization"); |
| |
| // Handle defs. |
| for (int i = MI->getNumOperands() - 1; i >= 0; --i) { |
| MachineOperand &MO = MI->getOperand(i); |
| |
| // Collect register masks. |
| if (MO.isRegMask()) { |
| RegMaskSlots.push_back(MIIndex.getRegSlot()); |
| RegMaskBits.push_back(MO.getRegMask()); |
| continue; |
| } |
| |
| if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) |
| continue; |
| |
| // handle register defs - build intervals |
| if (MO.isDef()) |
| handleRegisterDef(MBB, MI, MIIndex, MO, i); |
| else if (MO.isUndef()) |
| UndefUses.push_back(MO.getReg()); |
| } |
| |
| // Move to the next instr slot. |
| MIIndex = Indexes->getNextNonNullIndex(MIIndex); |
| } |
| |
| // Compute the number of register mask instructions in this block. |
| std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()]; |
| RMB.second = RegMaskSlots.size() - RMB.first; |
| } |
| |
| // Create empty intervals for registers defined by implicit_def's (except |
| // for those implicit_def that define values which are liveout of their |
| // blocks. |
| for (unsigned i = 0, e = UndefUses.size(); i != e; ++i) { |
| unsigned UndefReg = UndefUses[i]; |
| (void)getOrCreateInterval(UndefReg); |
| } |
| } |
| |
| LiveInterval* LiveIntervals::createInterval(unsigned reg) { |
| float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? HUGE_VALF : 0.0F; |
| return new LiveInterval(reg, Weight); |
| } |
| |
| |
| /// computeVirtRegInterval - Compute the live interval of a virtual register, |
| /// based on defs and uses. |
| void LiveIntervals::computeVirtRegInterval(LiveInterval *LI) { |
| assert(LRCalc && "LRCalc not initialized."); |
| assert(LI->empty() && "Should only compute empty intervals."); |
| LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); |
| LRCalc->createDeadDefs(LI); |
| LRCalc->extendToUses(LI); |
| } |
| |
| void LiveIntervals::computeVirtRegs() { |
| for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { |
| unsigned Reg = TargetRegisterInfo::index2VirtReg(i); |
| if (MRI->reg_nodbg_empty(Reg)) |
| continue; |
| LiveInterval *LI = createInterval(Reg); |
| VirtRegIntervals[Reg] = LI; |
| computeVirtRegInterval(LI); |
| } |
| } |
| |
| void LiveIntervals::computeRegMasks() { |
| RegMaskBlocks.resize(MF->getNumBlockIDs()); |
| |
| // Find all instructions with regmask operands. |
| for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); |
| MBBI != E; ++MBBI) { |
| MachineBasicBlock *MBB = MBBI; |
| std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()]; |
| RMB.first = RegMaskSlots.size(); |
| for (MachineBasicBlock::iterator MI = MBB->begin(), ME = MBB->end(); |
| MI != ME; ++MI) |
| for (MIOperands MO(MI); MO.isValid(); ++MO) { |
| if (!MO->isRegMask()) |
| continue; |
| RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot()); |
| RegMaskBits.push_back(MO->getRegMask()); |
| } |
| // Compute the number of register mask instructions in this block. |
| RMB.second = RegMaskSlots.size() - RMB.first; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Register Unit Liveness |
| //===----------------------------------------------------------------------===// |
| // |
| // Fixed interference typically comes from ABI boundaries: Function arguments |
| // and return values are passed in fixed registers, and so are exception |
| // pointers entering landing pads. Certain instructions require values to be |
| // present in specific registers. That is also represented through fixed |
| // interference. |
| // |
| |
| /// computeRegUnitInterval - Compute the live interval of a register unit, based |
| /// on the uses and defs of aliasing registers. The interval should be empty, |
| /// or contain only dead phi-defs from ABI blocks. |
| void LiveIntervals::computeRegUnitInterval(LiveInterval *LI) { |
| unsigned Unit = LI->reg; |
| |
| assert(LRCalc && "LRCalc not initialized."); |
| LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); |
| |
| // The physregs aliasing Unit are the roots and their super-registers. |
| // Create all values as dead defs before extending to uses. Note that roots |
| // may share super-registers. That's OK because createDeadDefs() is |
| // idempotent. It is very rare for a register unit to have multiple roots, so |
| // uniquing super-registers is probably not worthwhile. |
| for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) { |
| unsigned Root = *Roots; |
| if (!MRI->reg_empty(Root)) |
| LRCalc->createDeadDefs(LI, Root); |
| for (MCSuperRegIterator Supers(Root, TRI); Supers.isValid(); ++Supers) { |
| if (!MRI->reg_empty(*Supers)) |
| LRCalc->createDeadDefs(LI, *Supers); |
| } |
| } |
| |
| // Now extend LI to reach all uses. |
| // Ignore uses of reserved registers. We only track defs of those. |
| for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) { |
| unsigned Root = *Roots; |
| if (!MRI->isReserved(Root) && !MRI->reg_empty(Root)) |
| LRCalc->extendToUses(LI, Root); |
| for (MCSuperRegIterator Supers(Root, TRI); Supers.isValid(); ++Supers) { |
| unsigned Reg = *Supers; |
| if (!MRI->isReserved(Reg) && !MRI->reg_empty(Reg)) |
| LRCalc->extendToUses(LI, Reg); |
| } |
| } |
| } |
| |
| |
| /// computeLiveInRegUnits - Precompute the live ranges of any register units |
| /// that are live-in to an ABI block somewhere. Register values can appear |
| /// without a corresponding def when entering the entry block or a landing pad. |
| /// |
| void LiveIntervals::computeLiveInRegUnits() { |
| RegUnitIntervals.resize(TRI->getNumRegUnits()); |
| DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n"); |
| |
| // Keep track of the intervals allocated. |
| SmallVector<LiveInterval*, 8> NewIntvs; |
| |
| // Check all basic blocks for live-ins. |
| for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); |
| MFI != MFE; ++MFI) { |
| const MachineBasicBlock *MBB = MFI; |
| |
| // We only care about ABI blocks: Entry + landing pads. |
| if ((MFI != MF->begin() && !MBB->isLandingPad()) || MBB->livein_empty()) |
| continue; |
| |
| // Create phi-defs at Begin for all live-in registers. |
| SlotIndex Begin = Indexes->getMBBStartIdx(MBB); |
| DEBUG(dbgs() << Begin << "\tBB#" << MBB->getNumber()); |
| for (MachineBasicBlock::livein_iterator LII = MBB->livein_begin(), |
| LIE = MBB->livein_end(); LII != LIE; ++LII) { |
| for (MCRegUnitIterator Units(*LII, TRI); Units.isValid(); ++Units) { |
| unsigned Unit = *Units; |
| LiveInterval *Intv = RegUnitIntervals[Unit]; |
| if (!Intv) { |
| Intv = RegUnitIntervals[Unit] = new LiveInterval(Unit, HUGE_VALF); |
| NewIntvs.push_back(Intv); |
| } |
| VNInfo *VNI = Intv->createDeadDef(Begin, getVNInfoAllocator()); |
| (void)VNI; |
| DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI) << '#' << VNI->id); |
| } |
| } |
| DEBUG(dbgs() << '\n'); |
| } |
| DEBUG(dbgs() << "Created " << NewIntvs.size() << " new intervals.\n"); |
| |
| // Compute the 'normal' part of the intervals. |
| for (unsigned i = 0, e = NewIntvs.size(); i != e; ++i) |
| computeRegUnitInterval(NewIntvs[i]); |
| } |
| |
| |
| /// shrinkToUses - After removing some uses of a register, shrink its live |
| /// range to just the remaining uses. This method does not compute reaching |
| /// defs for new uses, and it doesn't remove dead defs. |
| bool LiveIntervals::shrinkToUses(LiveInterval *li, |
| SmallVectorImpl<MachineInstr*> *dead) { |
| DEBUG(dbgs() << "Shrink: " << *li << '\n'); |
| assert(TargetRegisterInfo::isVirtualRegister(li->reg) |
| && "Can only shrink virtual registers"); |
| // Find all the values used, including PHI kills. |
| SmallVector<std::pair<SlotIndex, VNInfo*>, 16> WorkList; |
| |
| // Blocks that have already been added to WorkList as live-out. |
| SmallPtrSet<MachineBasicBlock*, 16> LiveOut; |
| |
| // Visit all instructions reading li->reg. |
| for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(li->reg); |
| MachineInstr *UseMI = I.skipInstruction();) { |
| if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg)) |
| continue; |
| SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot(); |
| LiveRangeQuery LRQ(*li, Idx); |
| VNInfo *VNI = LRQ.valueIn(); |
| if (!VNI) { |
| // This shouldn't happen: readsVirtualRegister returns true, but there is |
| // no live value. It is likely caused by a target getting <undef> flags |
| // wrong. |
| DEBUG(dbgs() << Idx << '\t' << *UseMI |
| << "Warning: Instr claims to read non-existent value in " |
| << *li << '\n'); |
| continue; |
| } |
| // Special case: An early-clobber tied operand reads and writes the |
| // register one slot early. |
| if (VNInfo *DefVNI = LRQ.valueDefined()) |
| Idx = DefVNI->def; |
| |
| WorkList.push_back(std::make_pair(Idx, VNI)); |
| } |
| |
| // Create a new live interval with only minimal live segments per def. |
| LiveInterval NewLI(li->reg, 0); |
| for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end(); |
| I != E; ++I) { |
| VNInfo *VNI = *I; |
| if (VNI->isUnused()) |
| continue; |
| NewLI.addRange(LiveRange(VNI->def, VNI->def.getDeadSlot(), VNI)); |
| } |
| |
| // Keep track of the PHIs that are in use. |
| SmallPtrSet<VNInfo*, 8> UsedPHIs; |
| |
| // Extend intervals to reach all uses in WorkList. |
| while (!WorkList.empty()) { |
| SlotIndex Idx = WorkList.back().first; |
| VNInfo *VNI = WorkList.back().second; |
| WorkList.pop_back(); |
| const MachineBasicBlock *MBB = getMBBFromIndex(Idx.getPrevSlot()); |
| SlotIndex BlockStart = getMBBStartIdx(MBB); |
| |
| // Extend the live range for VNI to be live at Idx. |
| if (VNInfo *ExtVNI = NewLI.extendInBlock(BlockStart, Idx)) { |
| (void)ExtVNI; |
| assert(ExtVNI == VNI && "Unexpected existing value number"); |
| // Is this a PHIDef we haven't seen before? |
| if (!VNI->isPHIDef() || VNI->def != BlockStart || !UsedPHIs.insert(VNI)) |
| continue; |
| // The PHI is live, make sure the predecessors are live-out. |
| for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), |
| PE = MBB->pred_end(); PI != PE; ++PI) { |
| if (!LiveOut.insert(*PI)) |
| continue; |
| SlotIndex Stop = getMBBEndIdx(*PI); |
| // A predecessor is not required to have a live-out value for a PHI. |
| if (VNInfo *PVNI = li->getVNInfoBefore(Stop)) |
| WorkList.push_back(std::make_pair(Stop, PVNI)); |
| } |
| continue; |
| } |
| |
| // VNI is live-in to MBB. |
| DEBUG(dbgs() << " live-in at " << BlockStart << '\n'); |
| NewLI.addRange(LiveRange(BlockStart, Idx, VNI)); |
| |
| // Make sure VNI is live-out from the predecessors. |
| for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), |
| PE = MBB->pred_end(); PI != PE; ++PI) { |
| if (!LiveOut.insert(*PI)) |
| continue; |
| SlotIndex Stop = getMBBEndIdx(*PI); |
| assert(li->getVNInfoBefore(Stop) == VNI && |
| "Wrong value out of predecessor"); |
| WorkList.push_back(std::make_pair(Stop, VNI)); |
| } |
| } |
| |
| // Handle dead values. |
| bool CanSeparate = false; |
| for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end(); |
| I != E; ++I) { |
| VNInfo *VNI = *I; |
| if (VNI->isUnused()) |
| continue; |
| LiveInterval::iterator LII = NewLI.FindLiveRangeContaining(VNI->def); |
| assert(LII != NewLI.end() && "Missing live range for PHI"); |
| if (LII->end != VNI->def.getDeadSlot()) |
| continue; |
| if (VNI->isPHIDef()) { |
| // This is a dead PHI. Remove it. |
| VNI->markUnused(); |
| NewLI.removeRange(*LII); |
| DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n"); |
| CanSeparate = true; |
| } else { |
| // This is a dead def. Make sure the instruction knows. |
| MachineInstr *MI = getInstructionFromIndex(VNI->def); |
| assert(MI && "No instruction defining live value"); |
| MI->addRegisterDead(li->reg, TRI); |
| if (dead && MI->allDefsAreDead()) { |
| DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI); |
| dead->push_back(MI); |
| } |
| } |
| } |
| |
| // Move the trimmed ranges back. |
| li->ranges.swap(NewLI.ranges); |
| DEBUG(dbgs() << "Shrunk: " << *li << '\n'); |
| return CanSeparate; |
| } |
| |
| void LiveIntervals::extendToIndices(LiveInterval *LI, |
| ArrayRef<SlotIndex> Indices) { |
| assert(LRCalc && "LRCalc not initialized."); |
| LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); |
| for (unsigned i = 0, e = Indices.size(); i != e; ++i) |
| LRCalc->extend(LI, Indices[i]); |
| } |
| |
| void LiveIntervals::pruneValue(LiveInterval *LI, SlotIndex Kill, |
| SmallVectorImpl<SlotIndex> *EndPoints) { |
| LiveRangeQuery LRQ(*LI, Kill); |
| VNInfo *VNI = LRQ.valueOut(); |
| if (!VNI) |
| return; |
| |
| MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill); |
| SlotIndex MBBStart, MBBEnd; |
| tie(MBBStart, MBBEnd) = Indexes->getMBBRange(KillMBB); |
| |
| // If VNI isn't live out from KillMBB, the value is trivially pruned. |
| if (LRQ.endPoint() < MBBEnd) { |
| LI->removeRange(Kill, LRQ.endPoint()); |
| if (EndPoints) EndPoints->push_back(LRQ.endPoint()); |
| return; |
| } |
| |
| // VNI is live out of KillMBB. |
| LI->removeRange(Kill, MBBEnd); |
| if (EndPoints) EndPoints->push_back(MBBEnd); |
| |
| // Find all blocks that are reachable from KillMBB without leaving VNI's live |
| // range. It is possible that KillMBB itself is reachable, so start a DFS |
| // from each successor. |
| typedef SmallPtrSet<MachineBasicBlock*, 9> VisitedTy; |
| VisitedTy Visited; |
| for (MachineBasicBlock::succ_iterator |
| SuccI = KillMBB->succ_begin(), SuccE = KillMBB->succ_end(); |
| SuccI != SuccE; ++SuccI) { |
| for (df_ext_iterator<MachineBasicBlock*, VisitedTy> |
| I = df_ext_begin(*SuccI, Visited), E = df_ext_end(*SuccI, Visited); |
| I != E;) { |
| MachineBasicBlock *MBB = *I; |
| |
| // Check if VNI is live in to MBB. |
| tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB); |
| LiveRangeQuery LRQ(*LI, MBBStart); |
| if (LRQ.valueIn() != VNI) { |
| // This block isn't part of the VNI live range. Prune the search. |
| I.skipChildren(); |
| continue; |
| } |
| |
| // Prune the search if VNI is killed in MBB. |
| if (LRQ.endPoint() < MBBEnd) { |
| LI->removeRange(MBBStart, LRQ.endPoint()); |
| if (EndPoints) EndPoints->push_back(LRQ.endPoint()); |
| I.skipChildren(); |
| continue; |
| } |
| |
| // VNI is live through MBB. |
| LI->removeRange(MBBStart, MBBEnd); |
| if (EndPoints) EndPoints->push_back(MBBEnd); |
| ++I; |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Register allocator hooks. |
| // |
| |
| void LiveIntervals::addKillFlags(const VirtRegMap *VRM) { |
| // Keep track of regunit ranges. |
| SmallVector<std::pair<LiveInterval*, LiveInterval::iterator>, 8> RU; |
| |
| for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { |
| unsigned Reg = TargetRegisterInfo::index2VirtReg(i); |
| if (MRI->reg_nodbg_empty(Reg)) |
| continue; |
| LiveInterval *LI = &getInterval(Reg); |
| if (LI->empty()) |
| continue; |
| |
| // Find the regunit intervals for the assigned register. They may overlap |
| // the virtual register live range, cancelling any kills. |
| RU.clear(); |
| for (MCRegUnitIterator Units(VRM->getPhys(Reg), TRI); Units.isValid(); |
| ++Units) { |
| LiveInterval *RUInt = &getRegUnit(*Units); |
| if (RUInt->empty()) |
| continue; |
| RU.push_back(std::make_pair(RUInt, RUInt->find(LI->begin()->end))); |
| } |
| |
| // Every instruction that kills Reg corresponds to a live range end point. |
| for (LiveInterval::iterator RI = LI->begin(), RE = LI->end(); RI != RE; |
| ++RI) { |
| // A block index indicates an MBB edge. |
| if (RI->end.isBlock()) |
| continue; |
| MachineInstr *MI = getInstructionFromIndex(RI->end); |
| if (!MI) |
| continue; |
| |
| // Check if any of the reguints are live beyond the end of RI. That could |
| // happen when a physreg is defined as a copy of a virtreg: |
| // |
| // %EAX = COPY %vreg5 |
| // FOO %vreg5 <--- MI, cancel kill because %EAX is live. |
| // BAR %EAX<kill> |
| // |
| // There should be no kill flag on FOO when %vreg5 is rewritten as %EAX. |
| bool CancelKill = false; |
| for (unsigned u = 0, e = RU.size(); u != e; ++u) { |
| LiveInterval *RInt = RU[u].first; |
| LiveInterval::iterator &I = RU[u].second; |
| if (I == RInt->end()) |
| continue; |
| I = RInt->advanceTo(I, RI->end); |
| if (I == RInt->end() || I->start >= RI->end) |
| continue; |
| // I is overlapping RI. |
| CancelKill = true; |
| break; |
| } |
| if (CancelKill) |
| MI->clearRegisterKills(Reg, NULL); |
| else |
| MI->addRegisterKilled(Reg, NULL); |
| } |
| } |
| } |
| |
| MachineBasicBlock* |
| LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const { |
| // A local live range must be fully contained inside the block, meaning it is |
| // defined and killed at instructions, not at block boundaries. It is not |
| // live in or or out of any block. |
| // |
| // It is technically possible to have a PHI-defined live range identical to a |
| // single block, but we are going to return false in that case. |
| |
| SlotIndex Start = LI.beginIndex(); |
| if (Start.isBlock()) |
| return NULL; |
| |
| SlotIndex Stop = LI.endIndex(); |
| if (Stop.isBlock()) |
| return NULL; |
| |
| // getMBBFromIndex doesn't need to search the MBB table when both indexes |
| // belong to proper instructions. |
| MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start); |
| MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop); |
| return MBB1 == MBB2 ? MBB1 : NULL; |
| } |
| |
| bool |
| LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const { |
| for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end(); |
| I != E; ++I) { |
| const VNInfo *PHI = *I; |
| if (PHI->isUnused() || !PHI->isPHIDef()) |
| continue; |
| const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def); |
| // Conservatively return true instead of scanning huge predecessor lists. |
| if (PHIMBB->pred_size() > 100) |
| return true; |
| for (MachineBasicBlock::const_pred_iterator |
| PI = PHIMBB->pred_begin(), PE = PHIMBB->pred_end(); PI != PE; ++PI) |
| if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(*PI))) |
| return true; |
| } |
| return false; |
| } |
| |
| float |
| LiveIntervals::getSpillWeight(bool isDef, bool isUse, unsigned loopDepth) { |
| // Limit the loop depth ridiculousness. |
| if (loopDepth > 200) |
| loopDepth = 200; |
| |
| // The loop depth is used to roughly estimate the number of times the |
| // instruction is executed. Something like 10^d is simple, but will quickly |
| // overflow a float. This expression behaves like 10^d for small d, but is |
| // more tempered for large d. At d=200 we get 6.7e33 which leaves a bit of |
| // headroom before overflow. |
| // By the way, powf() might be unavailable here. For consistency, |
| // We may take pow(double,double). |
| float lc = std::pow(1 + (100.0 / (loopDepth + 10)), (double)loopDepth); |
| |
| return (isDef + isUse) * lc; |
| } |
| |
| LiveRange LiveIntervals::addLiveRangeToEndOfBlock(unsigned reg, |
| MachineInstr* startInst) { |
| LiveInterval& Interval = getOrCreateInterval(reg); |
| VNInfo* VN = Interval.getNextValue( |
| SlotIndex(getInstructionIndex(startInst).getRegSlot()), |
| getVNInfoAllocator()); |
| LiveRange LR( |
| SlotIndex(getInstructionIndex(startInst).getRegSlot()), |
| getMBBEndIdx(startInst->getParent()), VN); |
| Interval.addRange(LR); |
| |
| return LR; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Register mask functions |
| //===----------------------------------------------------------------------===// |
| |
| bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI, |
| BitVector &UsableRegs) { |
| if (LI.empty()) |
| return false; |
| LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end(); |
| |
| // Use a smaller arrays for local live ranges. |
| ArrayRef<SlotIndex> Slots; |
| ArrayRef<const uint32_t*> Bits; |
| if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) { |
| Slots = getRegMaskSlotsInBlock(MBB->getNumber()); |
| Bits = getRegMaskBitsInBlock(MBB->getNumber()); |
| } else { |
| Slots = getRegMaskSlots(); |
| Bits = getRegMaskBits(); |
| } |
| |
| // We are going to enumerate all the register mask slots contained in LI. |
| // Start with a binary search of RegMaskSlots to find a starting point. |
| ArrayRef<SlotIndex>::iterator SlotI = |
| std::lower_bound(Slots.begin(), Slots.end(), LiveI->start); |
| ArrayRef<SlotIndex>::iterator SlotE = Slots.end(); |
| |
| // No slots in range, LI begins after the last call. |
| if (SlotI == SlotE) |
| return false; |
| |
| bool Found = false; |
| for (;;) { |
| assert(*SlotI >= LiveI->start); |
| // Loop over all slots overlapping this segment. |
| while (*SlotI < LiveI->end) { |
| // *SlotI overlaps LI. Collect mask bits. |
| if (!Found) { |
| // This is the first overlap. Initialize UsableRegs to all ones. |
| UsableRegs.clear(); |
| UsableRegs.resize(TRI->getNumRegs(), true); |
| Found = true; |
| } |
| // Remove usable registers clobbered by this mask. |
| UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]); |
| if (++SlotI == SlotE) |
| return Found; |
| } |
| // *SlotI is beyond the current LI segment. |
| LiveI = LI.advanceTo(LiveI, *SlotI); |
| if (LiveI == LiveE) |
| return Found; |
| // Advance SlotI until it overlaps. |
| while (*SlotI < LiveI->start) |
| if (++SlotI == SlotE) |
| return Found; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // IntervalUpdate class. |
| //===----------------------------------------------------------------------===// |
| |
| // HMEditor is a toolkit used by handleMove to trim or extend live intervals. |
| class LiveIntervals::HMEditor { |
| private: |
| LiveIntervals& LIS; |
| const MachineRegisterInfo& MRI; |
| const TargetRegisterInfo& TRI; |
| SlotIndex OldIdx; |
| SlotIndex NewIdx; |
| SmallPtrSet<LiveInterval*, 8> Updated; |
| bool UpdateFlags; |
| |
| public: |
| HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI, |
| const TargetRegisterInfo& TRI, |
| SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags) |
| : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx), |
| UpdateFlags(UpdateFlags) {} |
| |
| // FIXME: UpdateFlags is a workaround that creates live intervals for all |
| // physregs, even those that aren't needed for regalloc, in order to update |
| // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill |
| // flags, and postRA passes will use a live register utility instead. |
| LiveInterval *getRegUnitLI(unsigned Unit) { |
| if (UpdateFlags) |
| return &LIS.getRegUnit(Unit); |
| return LIS.getCachedRegUnit(Unit); |
| } |
| |
| /// Update all live ranges touched by MI, assuming a move from OldIdx to |
| /// NewIdx. |
| void updateAllRanges(MachineInstr *MI) { |
| DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " << *MI); |
| bool hasRegMask = false; |
| for (MIOperands MO(MI); MO.isValid(); ++MO) { |
| if (MO->isRegMask()) |
| hasRegMask = true; |
| if (!MO->isReg()) |
| continue; |
| // Aggressively clear all kill flags. |
| // They are reinserted by VirtRegRewriter. |
| if (MO->isUse()) |
| MO->setIsKill(false); |
| |
| unsigned Reg = MO->getReg(); |
| if (!Reg) |
| continue; |
| if (TargetRegisterInfo::isVirtualRegister(Reg)) { |
| updateRange(LIS.getInterval(Reg)); |
| continue; |
| } |
| |
| // For physregs, only update the regunits that actually have a |
| // precomputed live range. |
| for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units) |
| if (LiveInterval *LI = getRegUnitLI(*Units)) |
| updateRange(*LI); |
| } |
| if (hasRegMask) |
| updateRegMaskSlots(); |
| } |
| |
| private: |
| /// Update a single live range, assuming an instruction has been moved from |
| /// OldIdx to NewIdx. |
| void updateRange(LiveInterval &LI) { |
| if (!Updated.insert(&LI)) |
| return; |
| DEBUG({ |
| dbgs() << " "; |
| if (TargetRegisterInfo::isVirtualRegister(LI.reg)) |
| dbgs() << PrintReg(LI.reg); |
| else |
| dbgs() << PrintRegUnit(LI.reg, &TRI); |
| dbgs() << ":\t" << LI << '\n'; |
| }); |
| if (SlotIndex::isEarlierInstr(OldIdx, NewIdx)) |
| handleMoveDown(LI); |
| else |
| handleMoveUp(LI); |
| DEBUG(dbgs() << " -->\t" << LI << '\n'); |
| LI.verify(); |
| } |
| |
| /// Update LI to reflect an instruction has been moved downwards from OldIdx |
| /// to NewIdx. |
| /// |
| /// 1. Live def at OldIdx: |
| /// Move def to NewIdx, assert endpoint after NewIdx. |
| /// |
| /// 2. Live def at OldIdx, killed at NewIdx: |
| /// Change to dead def at NewIdx. |
| /// (Happens when bundling def+kill together). |
| /// |
| /// 3. Dead def at OldIdx: |
| /// Move def to NewIdx, possibly across another live value. |
| /// |
| /// 4. Def at OldIdx AND at NewIdx: |
| /// Remove live range [OldIdx;NewIdx) and value defined at OldIdx. |
| /// (Happens when bundling multiple defs together). |
| /// |
| /// 5. Value read at OldIdx, killed before NewIdx: |
| /// Extend kill to NewIdx. |
| /// |
| void handleMoveDown(LiveInterval &LI) { |
| // First look for a kill at OldIdx. |
| LiveInterval::iterator I = LI.find(OldIdx.getBaseIndex()); |
| LiveInterval::iterator E = LI.end(); |
| // Is LI even live at OldIdx? |
| if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start)) |
| return; |
| |
| // Handle a live-in value. |
| if (!SlotIndex::isSameInstr(I->start, OldIdx)) { |
| bool isKill = SlotIndex::isSameInstr(OldIdx, I->end); |
| // If the live-in value already extends to NewIdx, there is nothing to do. |
| if (!SlotIndex::isEarlierInstr(I->end, NewIdx)) |
| return; |
| // Aggressively remove all kill flags from the old kill point. |
| // Kill flags shouldn't be used while live intervals exist, they will be |
| // reinserted by VirtRegRewriter. |
| if (MachineInstr *KillMI = LIS.getInstructionFromIndex(I->end)) |
| for (MIBundleOperands MO(KillMI); MO.isValid(); ++MO) |
| if (MO->isReg() && MO->isUse()) |
| MO->setIsKill(false); |
| // Adjust I->end to reach NewIdx. This may temporarily make LI invalid by |
| // overlapping ranges. Case 5 above. |
| I->end = NewIdx.getRegSlot(I->end.isEarlyClobber()); |
| // If this was a kill, there may also be a def. Otherwise we're done. |
| if (!isKill) |
| return; |
| ++I; |
| } |
| |
| // Check for a def at OldIdx. |
| if (I == E || !SlotIndex::isSameInstr(OldIdx, I->start)) |
| return; |
| // We have a def at OldIdx. |
| VNInfo *DefVNI = I->valno; |
| assert(DefVNI->def == I->start && "Inconsistent def"); |
| DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber()); |
| // If the defined value extends beyond NewIdx, just move the def down. |
| // This is case 1 above. |
| if (SlotIndex::isEarlierInstr(NewIdx, I->end)) { |
| I->start = DefVNI->def; |
| return; |
| } |
| // The remaining possibilities are now: |
| // 2. Live def at OldIdx, killed at NewIdx: isSameInstr(I->end, NewIdx). |
| // 3. Dead def at OldIdx: I->end = OldIdx.getDeadSlot(). |
| // In either case, it is possible that there is an existing def at NewIdx. |
| assert((I->end == OldIdx.getDeadSlot() || |
| SlotIndex::isSameInstr(I->end, NewIdx)) && |
| "Cannot move def below kill"); |
| LiveInterval::iterator NewI = LI.advanceTo(I, NewIdx.getRegSlot()); |
| if (NewI != E && SlotIndex::isSameInstr(NewI->start, NewIdx)) { |
| // There is an existing def at NewIdx, case 4 above. The def at OldIdx is |
| // coalesced into that value. |
| assert(NewI->valno != DefVNI && "Multiple defs of value?"); |
| LI.removeValNo(DefVNI); |
| return; |
| } |
| // There was no existing def at NewIdx. Turn *I into a dead def at NewIdx. |
| // If the def at OldIdx was dead, we allow it to be moved across other LI |
| // values. The new range should be placed immediately before NewI, move any |
| // intermediate ranges up. |
| assert(NewI != I && "Inconsistent iterators"); |
| std::copy(llvm::next(I), NewI, I); |
| *llvm::prior(NewI) = LiveRange(DefVNI->def, NewIdx.getDeadSlot(), DefVNI); |
| } |
| |
| /// Update LI to reflect an instruction has been moved upwards from OldIdx |
| /// to NewIdx. |
| /// |
| /// 1. Live def at OldIdx: |
| /// Hoist def to NewIdx. |
| /// |
| /// 2. Dead def at OldIdx: |
| /// Hoist def+end to NewIdx, possibly move across other values. |
| /// |
| /// 3. Dead def at OldIdx AND existing def at NewIdx: |
| /// Remove value defined at OldIdx, coalescing it with existing value. |
| /// |
| /// 4. Live def at OldIdx AND existing def at NewIdx: |
| /// Remove value defined at NewIdx, hoist OldIdx def to NewIdx. |
| /// (Happens when bundling multiple defs together). |
| /// |
| /// 5. Value killed at OldIdx: |
| /// Hoist kill to NewIdx, then scan for last kill between NewIdx and |
| /// OldIdx. |
| /// |
| void handleMoveUp(LiveInterval &LI) { |
| // First look for a kill at OldIdx. |
| LiveInterval::iterator I = LI.find(OldIdx.getBaseIndex()); |
| LiveInterval::iterator E = LI.end(); |
| // Is LI even live at OldIdx? |
| if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start)) |
| return; |
| |
| // Handle a live-in value. |
| if (!SlotIndex::isSameInstr(I->start, OldIdx)) { |
| // If the live-in value isn't killed here, there is nothing to do. |
| if (!SlotIndex::isSameInstr(OldIdx, I->end)) |
| return; |
| // Adjust I->end to end at NewIdx. If we are hoisting a kill above |
| // another use, we need to search for that use. Case 5 above. |
| I->end = NewIdx.getRegSlot(I->end.isEarlyClobber()); |
| ++I; |
| // If OldIdx also defines a value, there couldn't have been another use. |
| if (I == E || !SlotIndex::isSameInstr(I->start, OldIdx)) { |
| // No def, search for the new kill. |
| // This can never be an early clobber kill since there is no def. |
| llvm::prior(I)->end = findLastUseBefore(LI.reg).getRegSlot(); |
| return; |
| } |
| } |
| |
| // Now deal with the def at OldIdx. |
| assert(I != E && SlotIndex::isSameInstr(I->start, OldIdx) && "No def?"); |
| VNInfo *DefVNI = I->valno; |
| assert(DefVNI->def == I->start && "Inconsistent def"); |
| DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber()); |
| |
| // Check for an existing def at NewIdx. |
| LiveInterval::iterator NewI = LI.find(NewIdx.getRegSlot()); |
| if (SlotIndex::isSameInstr(NewI->start, NewIdx)) { |
| assert(NewI->valno != DefVNI && "Same value defined more than once?"); |
| // There is an existing def at NewIdx. |
| if (I->end.isDead()) { |
| // Case 3: Remove the dead def at OldIdx. |
| LI.removeValNo(DefVNI); |
| return; |
| } |
| // Case 4: Replace def at NewIdx with live def at OldIdx. |
| I->start = DefVNI->def; |
| LI.removeValNo(NewI->valno); |
| return; |
| } |
| |
| // There is no existing def at NewIdx. Hoist DefVNI. |
| if (!I->end.isDead()) { |
| // Leave the end point of a live def. |
| I->start = DefVNI->def; |
| return; |
| } |
| |
| // DefVNI is a dead def. It may have been moved across other values in LI, |
| // so move I up to NewI. Slide [NewI;I) down one position. |
| std::copy_backward(NewI, I, llvm::next(I)); |
| *NewI = LiveRange(DefVNI->def, NewIdx.getDeadSlot(), DefVNI); |
| } |
| |
| void updateRegMaskSlots() { |
| SmallVectorImpl<SlotIndex>::iterator RI = |
| std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(), |
| OldIdx); |
| assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() && |
| "No RegMask at OldIdx."); |
| *RI = NewIdx.getRegSlot(); |
| assert((RI == LIS.RegMaskSlots.begin() || |
| SlotIndex::isEarlierInstr(*llvm::prior(RI), *RI)) && |
| "Cannot move regmask instruction above another call"); |
| assert((llvm::next(RI) == LIS.RegMaskSlots.end() || |
| SlotIndex::isEarlierInstr(*RI, *llvm::next(RI))) && |
| "Cannot move regmask instruction below another call"); |
| } |
| |
| // Return the last use of reg between NewIdx and OldIdx. |
| SlotIndex findLastUseBefore(unsigned Reg) { |
| SlotIndex LastUse = NewIdx; |
| |
| if (TargetRegisterInfo::isVirtualRegister(Reg)) { |
| for (MachineRegisterInfo::use_nodbg_iterator |
| UI = MRI.use_nodbg_begin(Reg), |
| UE = MRI.use_nodbg_end(); |
| UI != UE; UI.skipInstruction()) { |
| const MachineInstr* MI = &*UI; |
| SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI); |
| if (InstSlot > LastUse && InstSlot < OldIdx) |
| LastUse = InstSlot; |
| } |
| } else { |
| MachineInstr* MI = LIS.getSlotIndexes()->getInstructionFromIndex(NewIdx); |
| MachineBasicBlock::iterator MII(MI); |
| ++MII; |
| MachineBasicBlock* MBB = MI->getParent(); |
| for (; MII != MBB->end(); ++MII){ |
| if (MII->isDebugValue()) |
| continue; |
| if (LIS.getInstructionIndex(MII) < OldIdx) |
| break; |
| for (MachineInstr::mop_iterator MOI = MII->operands_begin(), |
| MOE = MII->operands_end(); |
| MOI != MOE; ++MOI) { |
| const MachineOperand& mop = *MOI; |
| if (!mop.isReg() || mop.getReg() == 0 || |
| TargetRegisterInfo::isVirtualRegister(mop.getReg())) |
| continue; |
| |
| if (TRI.hasRegUnit(mop.getReg(), Reg)) |
| LastUse = LIS.getInstructionIndex(MII); |
| } |
| } |
| } |
| return LastUse; |
| } |
| }; |
| |
| void LiveIntervals::handleMove(MachineInstr* MI, bool UpdateFlags) { |
| assert(!MI->isBundled() && "Can't handle bundled instructions yet."); |
| SlotIndex OldIndex = Indexes->getInstructionIndex(MI); |
| Indexes->removeMachineInstrFromMaps(MI); |
| SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI); |
| assert(getMBBStartIdx(MI->getParent()) <= OldIndex && |
| OldIndex < getMBBEndIdx(MI->getParent()) && |
| "Cannot handle moves across basic block boundaries."); |
| |
| HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags); |
| HME.updateAllRanges(MI); |
| } |
| |
| void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI, |
| MachineInstr* BundleStart, |
| bool UpdateFlags) { |
| SlotIndex OldIndex = Indexes->getInstructionIndex(MI); |
| SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart); |
| HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags); |
| HME.updateAllRanges(MI); |
| } |