| //===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This header file implements the operating system Host concept. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Support/Host.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/Config/config.h" |
| #include "llvm/Support/DataStream.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <string.h> |
| |
| // Include the platform-specific parts of this class. |
| #ifdef LLVM_ON_UNIX |
| #include "Unix/Host.inc" |
| #endif |
| #ifdef LLVM_ON_WIN32 |
| #include "Windows/Host.inc" |
| #endif |
| #ifdef _MSC_VER |
| #include <intrin.h> |
| #endif |
| #if defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__)) |
| #include <mach/mach.h> |
| #include <mach/mach_host.h> |
| #include <mach/host_info.h> |
| #include <mach/machine.h> |
| #endif |
| |
| //===----------------------------------------------------------------------===// |
| // |
| // Implementations of the CPU detection routines |
| // |
| //===----------------------------------------------------------------------===// |
| |
| using namespace llvm; |
| |
| #if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)\ |
| || defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64) |
| |
| /// GetX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in the |
| /// specified arguments. If we can't run cpuid on the host, return true. |
| static bool GetX86CpuIDAndInfo(unsigned value, unsigned *rEAX, |
| unsigned *rEBX, unsigned *rECX, unsigned *rEDX) { |
| #if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64) |
| #if defined(__GNUC__) |
| // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually. |
| asm ("movq\t%%rbx, %%rsi\n\t" |
| "cpuid\n\t" |
| "xchgq\t%%rbx, %%rsi\n\t" |
| : "=a" (*rEAX), |
| "=S" (*rEBX), |
| "=c" (*rECX), |
| "=d" (*rEDX) |
| : "a" (value)); |
| return false; |
| #elif defined(_MSC_VER) |
| int registers[4]; |
| __cpuid(registers, value); |
| *rEAX = registers[0]; |
| *rEBX = registers[1]; |
| *rECX = registers[2]; |
| *rEDX = registers[3]; |
| return false; |
| #else |
| return true; |
| #endif |
| #elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86) |
| #if defined(__GNUC__) |
| asm ("movl\t%%ebx, %%esi\n\t" |
| "cpuid\n\t" |
| "xchgl\t%%ebx, %%esi\n\t" |
| : "=a" (*rEAX), |
| "=S" (*rEBX), |
| "=c" (*rECX), |
| "=d" (*rEDX) |
| : "a" (value)); |
| return false; |
| #elif defined(_MSC_VER) |
| __asm { |
| mov eax,value |
| cpuid |
| mov esi,rEAX |
| mov dword ptr [esi],eax |
| mov esi,rEBX |
| mov dword ptr [esi],ebx |
| mov esi,rECX |
| mov dword ptr [esi],ecx |
| mov esi,rEDX |
| mov dword ptr [esi],edx |
| } |
| return false; |
| // pedantic #else returns to appease -Wunreachable-code (so we don't generate |
| // postprocessed code that looks like "return true; return false;") |
| #else |
| return true; |
| #endif |
| #else |
| return true; |
| #endif |
| } |
| |
| static void DetectX86FamilyModel(unsigned EAX, unsigned &Family, |
| unsigned &Model) { |
| Family = (EAX >> 8) & 0xf; // Bits 8 - 11 |
| Model = (EAX >> 4) & 0xf; // Bits 4 - 7 |
| if (Family == 6 || Family == 0xf) { |
| if (Family == 0xf) |
| // Examine extended family ID if family ID is F. |
| Family += (EAX >> 20) & 0xff; // Bits 20 - 27 |
| // Examine extended model ID if family ID is 6 or F. |
| Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19 |
| } |
| } |
| |
| std::string sys::getHostCPUName() { |
| unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; |
| if (GetX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX)) |
| return "generic"; |
| unsigned Family = 0; |
| unsigned Model = 0; |
| DetectX86FamilyModel(EAX, Family, Model); |
| |
| bool HasSSE3 = (ECX & 0x1); |
| GetX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); |
| bool Em64T = (EDX >> 29) & 0x1; |
| |
| union { |
| unsigned u[3]; |
| char c[12]; |
| } text; |
| |
| GetX86CpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1); |
| if (memcmp(text.c, "GenuineIntel", 12) == 0) { |
| switch (Family) { |
| case 3: |
| return "i386"; |
| case 4: |
| switch (Model) { |
| case 0: // Intel486 DX processors |
| case 1: // Intel486 DX processors |
| case 2: // Intel486 SX processors |
| case 3: // Intel487 processors, IntelDX2 OverDrive processors, |
| // IntelDX2 processors |
| case 4: // Intel486 SL processor |
| case 5: // IntelSX2 processors |
| case 7: // Write-Back Enhanced IntelDX2 processors |
| case 8: // IntelDX4 OverDrive processors, IntelDX4 processors |
| default: return "i486"; |
| } |
| case 5: |
| switch (Model) { |
| case 1: // Pentium OverDrive processor for Pentium processor (60, 66), |
| // Pentium processors (60, 66) |
| case 2: // Pentium OverDrive processor for Pentium processor (75, 90, |
| // 100, 120, 133), Pentium processors (75, 90, 100, 120, 133, |
| // 150, 166, 200) |
| case 3: // Pentium OverDrive processors for Intel486 processor-based |
| // systems |
| return "pentium"; |
| |
| case 4: // Pentium OverDrive processor with MMX technology for Pentium |
| // processor (75, 90, 100, 120, 133), Pentium processor with |
| // MMX technology (166, 200) |
| return "pentium-mmx"; |
| |
| default: return "pentium"; |
| } |
| case 6: |
| switch (Model) { |
| case 1: // Pentium Pro processor |
| return "pentiumpro"; |
| |
| case 3: // Intel Pentium II OverDrive processor, Pentium II processor, |
| // model 03 |
| case 5: // Pentium II processor, model 05, Pentium II Xeon processor, |
| // model 05, and Intel Celeron processor, model 05 |
| case 6: // Celeron processor, model 06 |
| return "pentium2"; |
| |
| case 7: // Pentium III processor, model 07, and Pentium III Xeon |
| // processor, model 07 |
| case 8: // Pentium III processor, model 08, Pentium III Xeon processor, |
| // model 08, and Celeron processor, model 08 |
| case 10: // Pentium III Xeon processor, model 0Ah |
| case 11: // Pentium III processor, model 0Bh |
| return "pentium3"; |
| |
| case 9: // Intel Pentium M processor, Intel Celeron M processor model 09. |
| case 13: // Intel Pentium M processor, Intel Celeron M processor, model |
| // 0Dh. All processors are manufactured using the 90 nm process. |
| return "pentium-m"; |
| |
| case 14: // Intel Core Duo processor, Intel Core Solo processor, model |
| // 0Eh. All processors are manufactured using the 65 nm process. |
| return "yonah"; |
| |
| case 15: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile |
| // processor, Intel Core 2 Quad processor, Intel Core 2 Quad |
| // mobile processor, Intel Core 2 Extreme processor, Intel |
| // Pentium Dual-Core processor, Intel Xeon processor, model |
| // 0Fh. All processors are manufactured using the 65 nm process. |
| case 22: // Intel Celeron processor model 16h. All processors are |
| // manufactured using the 65 nm process |
| return "core2"; |
| |
| case 21: // Intel EP80579 Integrated Processor and Intel EP80579 |
| // Integrated Processor with Intel QuickAssist Technology |
| return "i686"; // FIXME: ??? |
| |
| case 23: // Intel Core 2 Extreme processor, Intel Xeon processor, model |
| // 17h. All processors are manufactured using the 45 nm process. |
| // |
| // 45nm: Penryn , Wolfdale, Yorkfield (XE) |
| return "penryn"; |
| |
| case 26: // Intel Core i7 processor and Intel Xeon processor. All |
| // processors are manufactured using the 45 nm process. |
| case 29: // Intel Xeon processor MP. All processors are manufactured using |
| // the 45 nm process. |
| case 30: // Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz. |
| // As found in a Summer 2010 model iMac. |
| case 37: // Intel Core i7, laptop version. |
| case 44: // Intel Core i7 processor and Intel Xeon processor. All |
| // processors are manufactured using the 32 nm process. |
| case 46: // Nehalem EX |
| case 47: // Westmere EX |
| return "corei7"; |
| |
| // SandyBridge: |
| case 42: // Intel Core i7 processor. All processors are manufactured |
| // using the 32 nm process. |
| case 45: |
| return "corei7-avx"; |
| |
| // Ivy Bridge: |
| case 58: |
| return "core-avx-i"; |
| |
| case 28: // Most 45 nm Intel Atom processors |
| case 38: // 45 nm Atom Lincroft |
| case 39: // 32 nm Atom Medfield |
| case 53: // 32 nm Atom Midview |
| case 54: // 32 nm Atom Midview |
| return "atom"; |
| |
| default: return (Em64T) ? "x86-64" : "i686"; |
| } |
| case 15: { |
| switch (Model) { |
| case 0: // Pentium 4 processor, Intel Xeon processor. All processors are |
| // model 00h and manufactured using the 0.18 micron process. |
| case 1: // Pentium 4 processor, Intel Xeon processor, Intel Xeon |
| // processor MP, and Intel Celeron processor. All processors are |
| // model 01h and manufactured using the 0.18 micron process. |
| case 2: // Pentium 4 processor, Mobile Intel Pentium 4 processor - M, |
| // Intel Xeon processor, Intel Xeon processor MP, Intel Celeron |
| // processor, and Mobile Intel Celeron processor. All processors |
| // are model 02h and manufactured using the 0.13 micron process. |
| return (Em64T) ? "x86-64" : "pentium4"; |
| |
| case 3: // Pentium 4 processor, Intel Xeon processor, Intel Celeron D |
| // processor. All processors are model 03h and manufactured using |
| // the 90 nm process. |
| case 4: // Pentium 4 processor, Pentium 4 processor Extreme Edition, |
| // Pentium D processor, Intel Xeon processor, Intel Xeon |
| // processor MP, Intel Celeron D processor. All processors are |
| // model 04h and manufactured using the 90 nm process. |
| case 6: // Pentium 4 processor, Pentium D processor, Pentium processor |
| // Extreme Edition, Intel Xeon processor, Intel Xeon processor |
| // MP, Intel Celeron D processor. All processors are model 06h |
| // and manufactured using the 65 nm process. |
| return (Em64T) ? "nocona" : "prescott"; |
| |
| default: |
| return (Em64T) ? "x86-64" : "pentium4"; |
| } |
| } |
| |
| default: |
| return "generic"; |
| } |
| } else if (memcmp(text.c, "AuthenticAMD", 12) == 0) { |
| // FIXME: this poorly matches the generated SubtargetFeatureKV table. There |
| // appears to be no way to generate the wide variety of AMD-specific targets |
| // from the information returned from CPUID. |
| switch (Family) { |
| case 4: |
| return "i486"; |
| case 5: |
| switch (Model) { |
| case 6: |
| case 7: return "k6"; |
| case 8: return "k6-2"; |
| case 9: |
| case 13: return "k6-3"; |
| case 10: return "geode"; |
| default: return "pentium"; |
| } |
| case 6: |
| switch (Model) { |
| case 4: return "athlon-tbird"; |
| case 6: |
| case 7: |
| case 8: return "athlon-mp"; |
| case 10: return "athlon-xp"; |
| default: return "athlon"; |
| } |
| case 15: |
| if (HasSSE3) |
| return "k8-sse3"; |
| switch (Model) { |
| case 1: return "opteron"; |
| case 5: return "athlon-fx"; // also opteron |
| default: return "athlon64"; |
| } |
| case 16: |
| return "amdfam10"; |
| case 20: |
| return "btver1"; |
| case 21: |
| return "bdver1"; |
| default: |
| return "generic"; |
| } |
| } |
| return "generic"; |
| } |
| #elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__)) |
| std::string sys::getHostCPUName() { |
| host_basic_info_data_t hostInfo; |
| mach_msg_type_number_t infoCount; |
| |
| infoCount = HOST_BASIC_INFO_COUNT; |
| host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&hostInfo, |
| &infoCount); |
| |
| if (hostInfo.cpu_type != CPU_TYPE_POWERPC) return "generic"; |
| |
| switch(hostInfo.cpu_subtype) { |
| case CPU_SUBTYPE_POWERPC_601: return "601"; |
| case CPU_SUBTYPE_POWERPC_602: return "602"; |
| case CPU_SUBTYPE_POWERPC_603: return "603"; |
| case CPU_SUBTYPE_POWERPC_603e: return "603e"; |
| case CPU_SUBTYPE_POWERPC_603ev: return "603ev"; |
| case CPU_SUBTYPE_POWERPC_604: return "604"; |
| case CPU_SUBTYPE_POWERPC_604e: return "604e"; |
| case CPU_SUBTYPE_POWERPC_620: return "620"; |
| case CPU_SUBTYPE_POWERPC_750: return "750"; |
| case CPU_SUBTYPE_POWERPC_7400: return "7400"; |
| case CPU_SUBTYPE_POWERPC_7450: return "7450"; |
| case CPU_SUBTYPE_POWERPC_970: return "970"; |
| default: ; |
| } |
| |
| return "generic"; |
| } |
| #elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__)) |
| std::string sys::getHostCPUName() { |
| // Access to the Processor Version Register (PVR) on PowerPC is privileged, |
| // and so we must use an operating-system interface to determine the current |
| // processor type. On Linux, this is exposed through the /proc/cpuinfo file. |
| const char *generic = "generic"; |
| |
| // Note: We cannot mmap /proc/cpuinfo here and then process the resulting |
| // memory buffer because the 'file' has 0 size (it can be read from only |
| // as a stream). |
| |
| std::string Err; |
| DataStreamer *DS = getDataFileStreamer("/proc/cpuinfo", &Err); |
| if (!DS) { |
| DEBUG(dbgs() << "Unable to open /proc/cpuinfo: " << Err << "\n"); |
| return generic; |
| } |
| |
| // The cpu line is second (after the 'processor: 0' line), so if this |
| // buffer is too small then something has changed (or is wrong). |
| char buffer[1024]; |
| size_t CPUInfoSize = DS->GetBytes((unsigned char*) buffer, sizeof(buffer)); |
| delete DS; |
| |
| const char *CPUInfoStart = buffer; |
| const char *CPUInfoEnd = buffer + CPUInfoSize; |
| |
| const char *CIP = CPUInfoStart; |
| |
| const char *CPUStart = 0; |
| size_t CPULen = 0; |
| |
| // We need to find the first line which starts with cpu, spaces, and a colon. |
| // After the colon, there may be some additional spaces and then the cpu type. |
| while (CIP < CPUInfoEnd && CPUStart == 0) { |
| if (CIP < CPUInfoEnd && *CIP == '\n') |
| ++CIP; |
| |
| if (CIP < CPUInfoEnd && *CIP == 'c') { |
| ++CIP; |
| if (CIP < CPUInfoEnd && *CIP == 'p') { |
| ++CIP; |
| if (CIP < CPUInfoEnd && *CIP == 'u') { |
| ++CIP; |
| while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t')) |
| ++CIP; |
| |
| if (CIP < CPUInfoEnd && *CIP == ':') { |
| ++CIP; |
| while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t')) |
| ++CIP; |
| |
| if (CIP < CPUInfoEnd) { |
| CPUStart = CIP; |
| while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' && |
| *CIP != ',' && *CIP != '\n')) |
| ++CIP; |
| CPULen = CIP - CPUStart; |
| } |
| } |
| } |
| } |
| } |
| |
| if (CPUStart == 0) |
| while (CIP < CPUInfoEnd && *CIP != '\n') |
| ++CIP; |
| } |
| |
| if (CPUStart == 0) |
| return generic; |
| |
| return StringSwitch<const char *>(StringRef(CPUStart, CPULen)) |
| .Case("604e", "604e") |
| .Case("604", "604") |
| .Case("7400", "7400") |
| .Case("7410", "7400") |
| .Case("7447", "7400") |
| .Case("7455", "7450") |
| .Case("G4", "g4") |
| .Case("POWER4", "970") |
| .Case("PPC970FX", "970") |
| .Case("PPC970MP", "970") |
| .Case("G5", "g5") |
| .Case("POWER5", "g5") |
| .Case("A2", "a2") |
| .Case("POWER6", "pwr6") |
| .Case("POWER7", "pwr7") |
| .Default(generic); |
| } |
| #elif defined(__linux__) && defined(__arm__) |
| std::string sys::getHostCPUName() { |
| // The cpuid register on arm is not accessible from user space. On Linux, |
| // it is exposed through the /proc/cpuinfo file. |
| // Note: We cannot mmap /proc/cpuinfo here and then process the resulting |
| // memory buffer because the 'file' has 0 size (it can be read from only |
| // as a stream). |
| |
| std::string Err; |
| DataStreamer *DS = getDataFileStreamer("/proc/cpuinfo", &Err); |
| if (!DS) { |
| DEBUG(dbgs() << "Unable to open /proc/cpuinfo: " << Err << "\n"); |
| return "generic"; |
| } |
| |
| // Read 1024 bytes from /proc/cpuinfo, which should contain the CPU part line |
| // in all cases. |
| char buffer[1024]; |
| size_t CPUInfoSize = DS->GetBytes((unsigned char*) buffer, sizeof(buffer)); |
| delete DS; |
| |
| StringRef Str(buffer, CPUInfoSize); |
| |
| SmallVector<StringRef, 32> Lines; |
| Str.split(Lines, "\n"); |
| |
| // Look for the CPU implementer line. |
| StringRef Implementer; |
| for (unsigned I = 0, E = Lines.size(); I != E; ++I) |
| if (Lines[I].startswith("CPU implementer")) |
| Implementer = Lines[I].substr(15).ltrim("\t :"); |
| |
| if (Implementer == "0x41") // ARM Ltd. |
| // Look for the CPU part line. |
| for (unsigned I = 0, E = Lines.size(); I != E; ++I) |
| if (Lines[I].startswith("CPU part")) |
| // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The |
| // values correspond to the "Part number" in the CP15/c0 register. The |
| // contents are specified in the various processor manuals. |
| return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :")) |
| .Case("0x926", "arm926ej-s") |
| .Case("0xb02", "mpcore") |
| .Case("0xb36", "arm1136j-s") |
| .Case("0xb56", "arm1156t2-s") |
| .Case("0xb76", "arm1176jz-s") |
| .Case("0xc08", "cortex-a8") |
| .Case("0xc09", "cortex-a9") |
| .Case("0xc0f", "cortex-a15") |
| .Case("0xc20", "cortex-m0") |
| .Case("0xc23", "cortex-m3") |
| .Case("0xc24", "cortex-m4") |
| .Default("generic"); |
| |
| return "generic"; |
| } |
| #else |
| std::string sys::getHostCPUName() { |
| return "generic"; |
| } |
| #endif |
| |
| bool sys::getHostCPUFeatures(StringMap<bool> &Features){ |
| return false; |
| } |