| // llvm/Target/TargetTransformImpl.cpp - Target Loop Trans Info ---*- C++ -*-=// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Target/TargetTransformImpl.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include <utility> |
| |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| // |
| // Calls used by scalar transformations. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| bool ScalarTargetTransformImpl::isLegalAddImmediate(int64_t imm) const { |
| return TLI->isLegalAddImmediate(imm); |
| } |
| |
| bool ScalarTargetTransformImpl::isLegalICmpImmediate(int64_t imm) const { |
| return TLI->isLegalICmpImmediate(imm); |
| } |
| |
| bool ScalarTargetTransformImpl::isLegalAddressingMode(const AddrMode &AM, |
| Type *Ty) const { |
| return TLI->isLegalAddressingMode(AM, Ty); |
| } |
| |
| bool ScalarTargetTransformImpl::isTruncateFree(Type *Ty1, Type *Ty2) const { |
| return TLI->isTruncateFree(Ty1, Ty2); |
| } |
| |
| bool ScalarTargetTransformImpl::isTypeLegal(Type *Ty) const { |
| EVT T = TLI->getValueType(Ty); |
| return TLI->isTypeLegal(T); |
| } |
| |
| unsigned ScalarTargetTransformImpl::getJumpBufAlignment() const { |
| return TLI->getJumpBufAlignment(); |
| } |
| |
| unsigned ScalarTargetTransformImpl::getJumpBufSize() const { |
| return TLI->getJumpBufSize(); |
| } |
| |
| bool ScalarTargetTransformImpl::shouldBuildLookupTables() const { |
| return TLI->supportJumpTables() && |
| (TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || |
| TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // |
| // Calls used by the vectorizers. |
| // |
| //===----------------------------------------------------------------------===// |
| int VectorTargetTransformImpl::InstructionOpcodeToISD(unsigned Opcode) const { |
| enum InstructionOpcodes { |
| #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM, |
| #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM |
| #include "llvm/Instruction.def" |
| }; |
| switch (static_cast<InstructionOpcodes>(Opcode)) { |
| case Ret: return 0; |
| case Br: return 0; |
| case Switch: return 0; |
| case IndirectBr: return 0; |
| case Invoke: return 0; |
| case Resume: return 0; |
| case Unreachable: return 0; |
| case Add: return ISD::ADD; |
| case FAdd: return ISD::FADD; |
| case Sub: return ISD::SUB; |
| case FSub: return ISD::FSUB; |
| case Mul: return ISD::MUL; |
| case FMul: return ISD::FMUL; |
| case UDiv: return ISD::UDIV; |
| case SDiv: return ISD::UDIV; |
| case FDiv: return ISD::FDIV; |
| case URem: return ISD::UREM; |
| case SRem: return ISD::SREM; |
| case FRem: return ISD::FREM; |
| case Shl: return ISD::SHL; |
| case LShr: return ISD::SRL; |
| case AShr: return ISD::SRA; |
| case And: return ISD::AND; |
| case Or: return ISD::OR; |
| case Xor: return ISD::XOR; |
| case Alloca: return 0; |
| case Load: return ISD::LOAD; |
| case Store: return ISD::STORE; |
| case GetElementPtr: return 0; |
| case Fence: return 0; |
| case AtomicCmpXchg: return 0; |
| case AtomicRMW: return 0; |
| case Trunc: return ISD::TRUNCATE; |
| case ZExt: return ISD::ZERO_EXTEND; |
| case SExt: return ISD::SIGN_EXTEND; |
| case FPToUI: return ISD::FP_TO_UINT; |
| case FPToSI: return ISD::FP_TO_SINT; |
| case UIToFP: return ISD::UINT_TO_FP; |
| case SIToFP: return ISD::SINT_TO_FP; |
| case FPTrunc: return ISD::FP_ROUND; |
| case FPExt: return ISD::FP_EXTEND; |
| case PtrToInt: return ISD::BITCAST; |
| case IntToPtr: return ISD::BITCAST; |
| case BitCast: return ISD::BITCAST; |
| case ICmp: return ISD::SETCC; |
| case FCmp: return ISD::SETCC; |
| case PHI: return 0; |
| case Call: return 0; |
| case Select: return ISD::SELECT; |
| case UserOp1: return 0; |
| case UserOp2: return 0; |
| case VAArg: return 0; |
| case ExtractElement: return ISD::EXTRACT_VECTOR_ELT; |
| case InsertElement: return ISD::INSERT_VECTOR_ELT; |
| case ShuffleVector: return ISD::VECTOR_SHUFFLE; |
| case ExtractValue: return ISD::MERGE_VALUES; |
| case InsertValue: return ISD::MERGE_VALUES; |
| case LandingPad: return 0; |
| } |
| |
| llvm_unreachable("Unknown instruction type encountered!"); |
| } |
| |
| std::pair<unsigned, MVT> |
| VectorTargetTransformImpl::getTypeLegalizationCost(Type *Ty) const { |
| |
| LLVMContext &C = Ty->getContext(); |
| EVT MTy = TLI->getValueType(Ty); |
| |
| unsigned Cost = 1; |
| // We keep legalizing the type until we find a legal kind. We assume that |
| // the only operation that costs anything is the split. After splitting |
| // we need to handle two types. |
| while (true) { |
| TargetLowering::LegalizeKind LK = TLI->getTypeConversion(C, MTy); |
| |
| if (LK.first == TargetLowering::TypeLegal) |
| return std::make_pair(Cost, MTy.getSimpleVT()); |
| |
| if (LK.first == TargetLowering::TypeSplitVector || |
| LK.first == TargetLowering::TypeExpandInteger) |
| Cost *= 2; |
| |
| // Keep legalizing the type. |
| MTy = LK.second; |
| } |
| } |
| |
| unsigned |
| VectorTargetTransformImpl::getScalarizationOverhead(Type *Ty, |
| bool Insert, |
| bool Extract) const { |
| assert (Ty->isVectorTy() && "Can only scalarize vectors"); |
| unsigned Cost = 0; |
| |
| for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { |
| if (Insert) |
| Cost += getVectorInstrCost(Instruction::InsertElement, Ty, i); |
| if (Extract) |
| Cost += getVectorInstrCost(Instruction::ExtractElement, Ty, i); |
| } |
| |
| return Cost; |
| } |
| |
| unsigned VectorTargetTransformImpl::getArithmeticInstrCost(unsigned Opcode, |
| Type *Ty) const { |
| // Check if any of the operands are vector operands. |
| int ISD = InstructionOpcodeToISD(Opcode); |
| assert(ISD && "Invalid opcode"); |
| |
| std::pair<unsigned, MVT> LT = getTypeLegalizationCost(Ty); |
| |
| if (!TLI->isOperationExpand(ISD, LT.second)) { |
| // The operation is legal. Assume it costs 1. Multiply |
| // by the type-legalization overhead. |
| return LT.first * 1; |
| } |
| |
| // Else, assume that we need to scalarize this op. |
| if (Ty->isVectorTy()) { |
| unsigned Num = Ty->getVectorNumElements(); |
| unsigned Cost = getArithmeticInstrCost(Opcode, Ty->getScalarType()); |
| // return the cost of multiple scalar invocation plus the cost of inserting |
| // and extracting the values. |
| return getScalarizationOverhead(Ty, true, true) + Num * Cost; |
| } |
| |
| // We don't know anything about this scalar instruction. |
| return 1; |
| } |
| |
| unsigned VectorTargetTransformImpl::getBroadcastCost(Type *Tp) const { |
| return 1; |
| } |
| |
| unsigned VectorTargetTransformImpl::getCastInstrCost(unsigned Opcode, Type *Dst, |
| Type *Src) const { |
| int ISD = InstructionOpcodeToISD(Opcode); |
| assert(ISD && "Invalid opcode"); |
| |
| std::pair<unsigned, MVT> SrcLT = getTypeLegalizationCost(Src); |
| std::pair<unsigned, MVT> DstLT = getTypeLegalizationCost(Dst); |
| |
| // Handle scalar conversions. |
| if (!Src->isVectorTy() && !Dst->isVectorTy()) { |
| |
| // Scalar bitcasts are usually free. |
| if (Opcode == Instruction::BitCast) |
| return 0; |
| |
| if (Opcode == Instruction::Trunc && |
| TLI->isTruncateFree(SrcLT.second, DstLT.second)) |
| return 0; |
| |
| if (Opcode == Instruction::ZExt && |
| TLI->isZExtFree(SrcLT.second, DstLT.second)) |
| return 0; |
| |
| // Just check the op cost. If the operation is legal then assume it costs 1. |
| if (!TLI->isOperationExpand(ISD, DstLT.second)) |
| return 1; |
| |
| // Assume that illegal scalar instruction are expensive. |
| return 4; |
| } |
| |
| // Check vector-to-vector casts. |
| if (Dst->isVectorTy() && Src->isVectorTy()) { |
| |
| // If the cast is between same-sized registers, then the check is simple. |
| if (SrcLT.first == DstLT.first && |
| SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) { |
| |
| // Bitcast between types that are legalized to the same type are free. |
| if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc) |
| return 0; |
| |
| // Assume that Zext is done using AND. |
| if (Opcode == Instruction::ZExt) |
| return 1; |
| |
| // Assume that sext is done using SHL and SRA. |
| if (Opcode == Instruction::SExt) |
| return 2; |
| |
| // Just check the op cost. If the operation is legal then assume it costs |
| // 1 and multiply by the type-legalization overhead. |
| if (!TLI->isOperationExpand(ISD, DstLT.second)) |
| return SrcLT.first * 1; |
| } |
| |
| // If we are converting vectors and the operation is illegal, or |
| // if the vectors are legalized to different types, estimate the |
| // scalarization costs. |
| unsigned Num = Dst->getVectorNumElements(); |
| unsigned Cost = getCastInstrCost(Opcode, Dst->getScalarType(), |
| Src->getScalarType()); |
| |
| // Return the cost of multiple scalar invocation plus the cost of |
| // inserting and extracting the values. |
| return getScalarizationOverhead(Dst, true, true) + Num * Cost; |
| } |
| |
| // We already handled vector-to-vector and scalar-to-scalar conversions. This |
| // is where we handle bitcast between vectors and scalars. We need to assume |
| // that the conversion is scalarized in one way or another. |
| if (Opcode == Instruction::BitCast) |
| // Illegal bitcasts are done by storing and loading from a stack slot. |
| return (Src->isVectorTy()? getScalarizationOverhead(Src, false, true):0) + |
| (Dst->isVectorTy()? getScalarizationOverhead(Dst, true, false):0); |
| |
| llvm_unreachable("Unhandled cast"); |
| } |
| |
| unsigned VectorTargetTransformImpl::getCFInstrCost(unsigned Opcode) const { |
| return 1; |
| } |
| |
| unsigned VectorTargetTransformImpl::getCmpSelInstrCost(unsigned Opcode, |
| Type *ValTy, |
| Type *CondTy) const { |
| int ISD = InstructionOpcodeToISD(Opcode); |
| assert(ISD && "Invalid opcode"); |
| |
| // Selects on vectors are actually vector selects. |
| if (ISD == ISD::SELECT) { |
| assert(CondTy && "CondTy must exist"); |
| if (CondTy->isVectorTy()) |
| ISD = ISD::VSELECT; |
| } |
| |
| std::pair<unsigned, MVT> LT = getTypeLegalizationCost(ValTy); |
| |
| if (!TLI->isOperationExpand(ISD, LT.second)) { |
| // The operation is legal. Assume it costs 1. Multiply |
| // by the type-legalization overhead. |
| return LT.first * 1; |
| } |
| |
| // Otherwise, assume that the cast is scalarized. |
| if (ValTy->isVectorTy()) { |
| unsigned Num = ValTy->getVectorNumElements(); |
| if (CondTy) |
| CondTy = CondTy->getScalarType(); |
| unsigned Cost = getCmpSelInstrCost(Opcode, ValTy->getScalarType(), |
| CondTy); |
| |
| // Return the cost of multiple scalar invocation plus the cost of inserting |
| // and extracting the values. |
| return getScalarizationOverhead(ValTy, true, false) + Num * Cost; |
| } |
| |
| // Unknown scalar opcode. |
| return 1; |
| } |
| |
| unsigned VectorTargetTransformImpl::getVectorInstrCost(unsigned Opcode, |
| Type *Val, |
| unsigned Index) const { |
| return 1; |
| } |
| |
| unsigned |
| VectorTargetTransformImpl::getInstrCost(unsigned Opcode, Type *Ty1, |
| Type *Ty2) const { |
| return 1; |
| } |
| |
| unsigned |
| VectorTargetTransformImpl::getMemoryOpCost(unsigned Opcode, Type *Src, |
| unsigned Alignment, |
| unsigned AddressSpace) const { |
| std::pair<unsigned, MVT> LT = getTypeLegalizationCost(Src); |
| |
| // Assume that all loads of legal types cost 1. |
| return LT.first; |
| } |
| |
| unsigned |
| VectorTargetTransformImpl::getNumberOfParts(Type *Tp) const { |
| std::pair<unsigned, MVT> LT = getTypeLegalizationCost(Tp); |
| return LT.first; |
| } |