| //===- FunctionAttrs.cpp - Pass which marks functions readnone or readonly ===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements a simple interprocedural pass which walks the |
| // call-graph, looking for functions which do not access or only read |
| // non-local memory, and marking them readnone/readonly. In addition, |
| // it marks function arguments (of pointer type) 'nocapture' if a call |
| // to the function does not create any copies of the pointer value that |
| // outlive the call. This more or less means that the pointer is only |
| // dereferenced, and not returned from the function or stored in a global. |
| // This pass is implemented as a bottom-up traversal of the call-graph. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "functionattrs" |
| #include "llvm/Transforms/IPO.h" |
| #include "llvm/ADT/SCCIterator.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/CallGraph.h" |
| #include "llvm/Analysis/CallGraphSCCPass.h" |
| #include "llvm/Analysis/CaptureTracking.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/Support/InstIterator.h" |
| using namespace llvm; |
| |
| STATISTIC(NumReadNone, "Number of functions marked readnone"); |
| STATISTIC(NumReadOnly, "Number of functions marked readonly"); |
| STATISTIC(NumNoCapture, "Number of arguments marked nocapture"); |
| STATISTIC(NumNoAlias, "Number of function returns marked noalias"); |
| |
| namespace { |
| struct FunctionAttrs : public CallGraphSCCPass { |
| static char ID; // Pass identification, replacement for typeid |
| FunctionAttrs() : CallGraphSCCPass(ID), AA(0) { |
| initializeFunctionAttrsPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| // runOnSCC - Analyze the SCC, performing the transformation if possible. |
| bool runOnSCC(CallGraphSCC &SCC); |
| |
| // AddReadAttrs - Deduce readonly/readnone attributes for the SCC. |
| bool AddReadAttrs(const CallGraphSCC &SCC); |
| |
| // AddNoCaptureAttrs - Deduce nocapture attributes for the SCC. |
| bool AddNoCaptureAttrs(const CallGraphSCC &SCC); |
| |
| // IsFunctionMallocLike - Does this function allocate new memory? |
| bool IsFunctionMallocLike(Function *F, |
| SmallPtrSet<Function*, 8> &) const; |
| |
| // AddNoAliasAttrs - Deduce noalias attributes for the SCC. |
| bool AddNoAliasAttrs(const CallGraphSCC &SCC); |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesCFG(); |
| AU.addRequired<AliasAnalysis>(); |
| CallGraphSCCPass::getAnalysisUsage(AU); |
| } |
| |
| private: |
| AliasAnalysis *AA; |
| }; |
| } |
| |
| char FunctionAttrs::ID = 0; |
| INITIALIZE_PASS_BEGIN(FunctionAttrs, "functionattrs", |
| "Deduce function attributes", false, false) |
| INITIALIZE_AG_DEPENDENCY(CallGraph) |
| INITIALIZE_PASS_END(FunctionAttrs, "functionattrs", |
| "Deduce function attributes", false, false) |
| |
| Pass *llvm::createFunctionAttrsPass() { return new FunctionAttrs(); } |
| |
| |
| /// AddReadAttrs - Deduce readonly/readnone attributes for the SCC. |
| bool FunctionAttrs::AddReadAttrs(const CallGraphSCC &SCC) { |
| SmallPtrSet<Function*, 8> SCCNodes; |
| |
| // Fill SCCNodes with the elements of the SCC. Used for quickly |
| // looking up whether a given CallGraphNode is in this SCC. |
| for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) |
| SCCNodes.insert((*I)->getFunction()); |
| |
| // Check if any of the functions in the SCC read or write memory. If they |
| // write memory then they can't be marked readnone or readonly. |
| bool ReadsMemory = false; |
| for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) { |
| Function *F = (*I)->getFunction(); |
| |
| if (F == 0) |
| // External node - may write memory. Just give up. |
| return false; |
| |
| AliasAnalysis::ModRefBehavior MRB = AA->getModRefBehavior(F); |
| if (MRB == AliasAnalysis::DoesNotAccessMemory) |
| // Already perfect! |
| continue; |
| |
| // Definitions with weak linkage may be overridden at linktime with |
| // something that writes memory, so treat them like declarations. |
| if (F->isDeclaration() || F->mayBeOverridden()) { |
| if (!AliasAnalysis::onlyReadsMemory(MRB)) |
| // May write memory. Just give up. |
| return false; |
| |
| ReadsMemory = true; |
| continue; |
| } |
| |
| // Scan the function body for instructions that may read or write memory. |
| for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) { |
| Instruction *I = &*II; |
| |
| // Some instructions can be ignored even if they read or write memory. |
| // Detect these now, skipping to the next instruction if one is found. |
| CallSite CS(cast<Value>(I)); |
| if (CS) { |
| // Ignore calls to functions in the same SCC. |
| if (CS.getCalledFunction() && SCCNodes.count(CS.getCalledFunction())) |
| continue; |
| AliasAnalysis::ModRefBehavior MRB = AA->getModRefBehavior(CS); |
| // If the call doesn't access arbitrary memory, we may be able to |
| // figure out something. |
| if (AliasAnalysis::onlyAccessesArgPointees(MRB)) { |
| // If the call does access argument pointees, check each argument. |
| if (AliasAnalysis::doesAccessArgPointees(MRB)) |
| // Check whether all pointer arguments point to local memory, and |
| // ignore calls that only access local memory. |
| for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end(); |
| CI != CE; ++CI) { |
| Value *Arg = *CI; |
| if (Arg->getType()->isPointerTy()) { |
| AliasAnalysis::Location Loc(Arg, |
| AliasAnalysis::UnknownSize, |
| I->getMetadata(LLVMContext::MD_tbaa)); |
| if (!AA->pointsToConstantMemory(Loc, /*OrLocal=*/true)) { |
| if (MRB & AliasAnalysis::Mod) |
| // Writes non-local memory. Give up. |
| return false; |
| if (MRB & AliasAnalysis::Ref) |
| // Ok, it reads non-local memory. |
| ReadsMemory = true; |
| } |
| } |
| } |
| continue; |
| } |
| // The call could access any memory. If that includes writes, give up. |
| if (MRB & AliasAnalysis::Mod) |
| return false; |
| // If it reads, note it. |
| if (MRB & AliasAnalysis::Ref) |
| ReadsMemory = true; |
| continue; |
| } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) { |
| // Ignore non-volatile loads from local memory. (Atomic is okay here.) |
| if (!LI->isVolatile()) { |
| AliasAnalysis::Location Loc = AA->getLocation(LI); |
| if (AA->pointsToConstantMemory(Loc, /*OrLocal=*/true)) |
| continue; |
| } |
| } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { |
| // Ignore non-volatile stores to local memory. (Atomic is okay here.) |
| if (!SI->isVolatile()) { |
| AliasAnalysis::Location Loc = AA->getLocation(SI); |
| if (AA->pointsToConstantMemory(Loc, /*OrLocal=*/true)) |
| continue; |
| } |
| } else if (VAArgInst *VI = dyn_cast<VAArgInst>(I)) { |
| // Ignore vaargs on local memory. |
| AliasAnalysis::Location Loc = AA->getLocation(VI); |
| if (AA->pointsToConstantMemory(Loc, /*OrLocal=*/true)) |
| continue; |
| } |
| |
| // Any remaining instructions need to be taken seriously! Check if they |
| // read or write memory. |
| if (I->mayWriteToMemory()) |
| // Writes memory. Just give up. |
| return false; |
| |
| // If this instruction may read memory, remember that. |
| ReadsMemory |= I->mayReadFromMemory(); |
| } |
| } |
| |
| // Success! Functions in this SCC do not access memory, or only read memory. |
| // Give them the appropriate attribute. |
| bool MadeChange = false; |
| for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) { |
| Function *F = (*I)->getFunction(); |
| |
| if (F->doesNotAccessMemory()) |
| // Already perfect! |
| continue; |
| |
| if (F->onlyReadsMemory() && ReadsMemory) |
| // No change. |
| continue; |
| |
| MadeChange = true; |
| |
| // Clear out any existing attributes. |
| AttrBuilder B; |
| B.addAttribute(Attribute::ReadOnly) |
| .addAttribute(Attribute::ReadNone); |
| F->removeAttributes(AttributeSet::FunctionIndex, |
| AttributeSet::get(F->getContext(), |
| AttributeSet::FunctionIndex, B)); |
| |
| // Add in the new attribute. |
| F->addAttribute(AttributeSet::FunctionIndex, |
| ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone); |
| |
| if (ReadsMemory) |
| ++NumReadOnly; |
| else |
| ++NumReadNone; |
| } |
| |
| return MadeChange; |
| } |
| |
| namespace { |
| // For a given pointer Argument, this retains a list of Arguments of functions |
| // in the same SCC that the pointer data flows into. We use this to build an |
| // SCC of the arguments. |
| struct ArgumentGraphNode { |
| Argument *Definition; |
| SmallVector<ArgumentGraphNode*, 4> Uses; |
| }; |
| |
| class ArgumentGraph { |
| // We store pointers to ArgumentGraphNode objects, so it's important that |
| // that they not move around upon insert. |
| typedef std::map<Argument*, ArgumentGraphNode> ArgumentMapTy; |
| |
| ArgumentMapTy ArgumentMap; |
| |
| // There is no root node for the argument graph, in fact: |
| // void f(int *x, int *y) { if (...) f(x, y); } |
| // is an example where the graph is disconnected. The SCCIterator requires a |
| // single entry point, so we maintain a fake ("synthetic") root node that |
| // uses every node. Because the graph is directed and nothing points into |
| // the root, it will not participate in any SCCs (except for its own). |
| ArgumentGraphNode SyntheticRoot; |
| |
| public: |
| ArgumentGraph() { SyntheticRoot.Definition = 0; } |
| |
| typedef SmallVectorImpl<ArgumentGraphNode*>::iterator iterator; |
| |
| iterator begin() { return SyntheticRoot.Uses.begin(); } |
| iterator end() { return SyntheticRoot.Uses.end(); } |
| ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; } |
| |
| ArgumentGraphNode *operator[](Argument *A) { |
| ArgumentGraphNode &Node = ArgumentMap[A]; |
| Node.Definition = A; |
| SyntheticRoot.Uses.push_back(&Node); |
| return &Node; |
| } |
| }; |
| |
| // This tracker checks whether callees are in the SCC, and if so it does not |
| // consider that a capture, instead adding it to the "Uses" list and |
| // continuing with the analysis. |
| struct ArgumentUsesTracker : public CaptureTracker { |
| ArgumentUsesTracker(const SmallPtrSet<Function*, 8> &SCCNodes) |
| : Captured(false), SCCNodes(SCCNodes) {} |
| |
| void tooManyUses() { Captured = true; } |
| |
| bool captured(Use *U) { |
| CallSite CS(U->getUser()); |
| if (!CS.getInstruction()) { Captured = true; return true; } |
| |
| Function *F = CS.getCalledFunction(); |
| if (!F || !SCCNodes.count(F)) { Captured = true; return true; } |
| |
| Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end(); |
| for (CallSite::arg_iterator PI = CS.arg_begin(), PE = CS.arg_end(); |
| PI != PE; ++PI, ++AI) { |
| if (AI == AE) { |
| assert(F->isVarArg() && "More params than args in non-varargs call"); |
| Captured = true; |
| return true; |
| } |
| if (PI == U) { |
| Uses.push_back(AI); |
| break; |
| } |
| } |
| assert(!Uses.empty() && "Capturing call-site captured nothing?"); |
| return false; |
| } |
| |
| bool Captured; // True only if certainly captured (used outside our SCC). |
| SmallVector<Argument*, 4> Uses; // Uses within our SCC. |
| |
| const SmallPtrSet<Function*, 8> &SCCNodes; |
| }; |
| } |
| |
| namespace llvm { |
| template<> struct GraphTraits<ArgumentGraphNode*> { |
| typedef ArgumentGraphNode NodeType; |
| typedef SmallVectorImpl<ArgumentGraphNode*>::iterator ChildIteratorType; |
| |
| static inline NodeType *getEntryNode(NodeType *A) { return A; } |
| static inline ChildIteratorType child_begin(NodeType *N) { |
| return N->Uses.begin(); |
| } |
| static inline ChildIteratorType child_end(NodeType *N) { |
| return N->Uses.end(); |
| } |
| }; |
| template<> struct GraphTraits<ArgumentGraph*> |
| : public GraphTraits<ArgumentGraphNode*> { |
| static NodeType *getEntryNode(ArgumentGraph *AG) { |
| return AG->getEntryNode(); |
| } |
| static ChildIteratorType nodes_begin(ArgumentGraph *AG) { |
| return AG->begin(); |
| } |
| static ChildIteratorType nodes_end(ArgumentGraph *AG) { |
| return AG->end(); |
| } |
| }; |
| } |
| |
| /// AddNoCaptureAttrs - Deduce nocapture attributes for the SCC. |
| bool FunctionAttrs::AddNoCaptureAttrs(const CallGraphSCC &SCC) { |
| bool Changed = false; |
| |
| SmallPtrSet<Function*, 8> SCCNodes; |
| |
| // Fill SCCNodes with the elements of the SCC. Used for quickly |
| // looking up whether a given CallGraphNode is in this SCC. |
| for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) { |
| Function *F = (*I)->getFunction(); |
| if (F && !F->isDeclaration() && !F->mayBeOverridden()) |
| SCCNodes.insert(F); |
| } |
| |
| ArgumentGraph AG; |
| |
| AttrBuilder B; |
| B.addAttribute(Attribute::NoCapture); |
| |
| // Check each function in turn, determining which pointer arguments are not |
| // captured. |
| for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) { |
| Function *F = (*I)->getFunction(); |
| |
| if (F == 0) |
| // External node - only a problem for arguments that we pass to it. |
| continue; |
| |
| // Definitions with weak linkage may be overridden at linktime with |
| // something that captures pointers, so treat them like declarations. |
| if (F->isDeclaration() || F->mayBeOverridden()) |
| continue; |
| |
| // Functions that are readonly (or readnone) and nounwind and don't return |
| // a value can't capture arguments. Don't analyze them. |
| if (F->onlyReadsMemory() && F->doesNotThrow() && |
| F->getReturnType()->isVoidTy()) { |
| for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); |
| A != E; ++A) { |
| if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) { |
| A->addAttr(AttributeSet::get(F->getContext(), A->getArgNo() + 1, B)); |
| ++NumNoCapture; |
| Changed = true; |
| } |
| } |
| continue; |
| } |
| |
| for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A!=E; ++A) |
| if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) { |
| ArgumentUsesTracker Tracker(SCCNodes); |
| PointerMayBeCaptured(A, &Tracker); |
| if (!Tracker.Captured) { |
| if (Tracker.Uses.empty()) { |
| // If it's trivially not captured, mark it nocapture now. |
| A->addAttr(AttributeSet::get(F->getContext(), A->getArgNo()+1, B)); |
| ++NumNoCapture; |
| Changed = true; |
| } else { |
| // If it's not trivially captured and not trivially not captured, |
| // then it must be calling into another function in our SCC. Save |
| // its particulars for Argument-SCC analysis later. |
| ArgumentGraphNode *Node = AG[A]; |
| for (SmallVectorImpl<Argument*>::iterator UI = Tracker.Uses.begin(), |
| UE = Tracker.Uses.end(); UI != UE; ++UI) |
| Node->Uses.push_back(AG[*UI]); |
| } |
| } |
| // Otherwise, it's captured. Don't bother doing SCC analysis on it. |
| } |
| } |
| |
| // The graph we've collected is partial because we stopped scanning for |
| // argument uses once we solved the argument trivially. These partial nodes |
| // show up as ArgumentGraphNode objects with an empty Uses list, and for |
| // these nodes the final decision about whether they capture has already been |
| // made. If the definition doesn't have a 'nocapture' attribute by now, it |
| // captures. |
| |
| for (scc_iterator<ArgumentGraph*> I = scc_begin(&AG), E = scc_end(&AG); |
| I != E; ++I) { |
| std::vector<ArgumentGraphNode*> &ArgumentSCC = *I; |
| if (ArgumentSCC.size() == 1) { |
| if (!ArgumentSCC[0]->Definition) continue; // synthetic root node |
| |
| // eg. "void f(int* x) { if (...) f(x); }" |
| if (ArgumentSCC[0]->Uses.size() == 1 && |
| ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) { |
| ArgumentSCC[0]-> |
| Definition-> |
| addAttr(AttributeSet::get(ArgumentSCC[0]->Definition->getContext(), |
| ArgumentSCC[0]->Definition->getArgNo() + 1, |
| B)); |
| ++NumNoCapture; |
| Changed = true; |
| } |
| continue; |
| } |
| |
| bool SCCCaptured = false; |
| for (std::vector<ArgumentGraphNode*>::iterator I = ArgumentSCC.begin(), |
| E = ArgumentSCC.end(); I != E && !SCCCaptured; ++I) { |
| ArgumentGraphNode *Node = *I; |
| if (Node->Uses.empty()) { |
| if (!Node->Definition->hasNoCaptureAttr()) |
| SCCCaptured = true; |
| } |
| } |
| if (SCCCaptured) continue; |
| |
| SmallPtrSet<Argument*, 8> ArgumentSCCNodes; |
| // Fill ArgumentSCCNodes with the elements of the ArgumentSCC. Used for |
| // quickly looking up whether a given Argument is in this ArgumentSCC. |
| for (std::vector<ArgumentGraphNode*>::iterator I = ArgumentSCC.begin(), |
| E = ArgumentSCC.end(); I != E; ++I) { |
| ArgumentSCCNodes.insert((*I)->Definition); |
| } |
| |
| for (std::vector<ArgumentGraphNode*>::iterator I = ArgumentSCC.begin(), |
| E = ArgumentSCC.end(); I != E && !SCCCaptured; ++I) { |
| ArgumentGraphNode *N = *I; |
| for (SmallVectorImpl<ArgumentGraphNode*>::iterator UI = N->Uses.begin(), |
| UE = N->Uses.end(); UI != UE; ++UI) { |
| Argument *A = (*UI)->Definition; |
| if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A)) |
| continue; |
| SCCCaptured = true; |
| break; |
| } |
| } |
| if (SCCCaptured) continue; |
| |
| for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { |
| Argument *A = ArgumentSCC[i]->Definition; |
| A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B)); |
| ++NumNoCapture; |
| Changed = true; |
| } |
| } |
| |
| return Changed; |
| } |
| |
| /// IsFunctionMallocLike - A function is malloc-like if it returns either null |
| /// or a pointer that doesn't alias any other pointer visible to the caller. |
| bool FunctionAttrs::IsFunctionMallocLike(Function *F, |
| SmallPtrSet<Function*, 8> &SCCNodes) const { |
| SmallSetVector<Value *, 8> FlowsToReturn; |
| for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) |
| if (ReturnInst *Ret = dyn_cast<ReturnInst>(I->getTerminator())) |
| FlowsToReturn.insert(Ret->getReturnValue()); |
| |
| for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { |
| Value *RetVal = FlowsToReturn[i]; |
| |
| if (Constant *C = dyn_cast<Constant>(RetVal)) { |
| if (!C->isNullValue() && !isa<UndefValue>(C)) |
| return false; |
| |
| continue; |
| } |
| |
| if (isa<Argument>(RetVal)) |
| return false; |
| |
| if (Instruction *RVI = dyn_cast<Instruction>(RetVal)) |
| switch (RVI->getOpcode()) { |
| // Extend the analysis by looking upwards. |
| case Instruction::BitCast: |
| case Instruction::GetElementPtr: |
| FlowsToReturn.insert(RVI->getOperand(0)); |
| continue; |
| case Instruction::Select: { |
| SelectInst *SI = cast<SelectInst>(RVI); |
| FlowsToReturn.insert(SI->getTrueValue()); |
| FlowsToReturn.insert(SI->getFalseValue()); |
| continue; |
| } |
| case Instruction::PHI: { |
| PHINode *PN = cast<PHINode>(RVI); |
| for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i) |
| FlowsToReturn.insert(PN->getIncomingValue(i)); |
| continue; |
| } |
| |
| // Check whether the pointer came from an allocation. |
| case Instruction::Alloca: |
| break; |
| case Instruction::Call: |
| case Instruction::Invoke: { |
| CallSite CS(RVI); |
| if (CS.paramHasAttr(0, Attribute::NoAlias)) |
| break; |
| if (CS.getCalledFunction() && |
| SCCNodes.count(CS.getCalledFunction())) |
| break; |
| } // fall-through |
| default: |
| return false; // Did not come from an allocation. |
| } |
| |
| if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// AddNoAliasAttrs - Deduce noalias attributes for the SCC. |
| bool FunctionAttrs::AddNoAliasAttrs(const CallGraphSCC &SCC) { |
| SmallPtrSet<Function*, 8> SCCNodes; |
| |
| // Fill SCCNodes with the elements of the SCC. Used for quickly |
| // looking up whether a given CallGraphNode is in this SCC. |
| for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) |
| SCCNodes.insert((*I)->getFunction()); |
| |
| // Check each function in turn, determining which functions return noalias |
| // pointers. |
| for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) { |
| Function *F = (*I)->getFunction(); |
| |
| if (F == 0) |
| // External node - skip it; |
| return false; |
| |
| // Already noalias. |
| if (F->doesNotAlias(0)) |
| continue; |
| |
| // Definitions with weak linkage may be overridden at linktime, so |
| // treat them like declarations. |
| if (F->isDeclaration() || F->mayBeOverridden()) |
| return false; |
| |
| // We annotate noalias return values, which are only applicable to |
| // pointer types. |
| if (!F->getReturnType()->isPointerTy()) |
| continue; |
| |
| if (!IsFunctionMallocLike(F, SCCNodes)) |
| return false; |
| } |
| |
| bool MadeChange = false; |
| for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) { |
| Function *F = (*I)->getFunction(); |
| if (F->doesNotAlias(0) || !F->getReturnType()->isPointerTy()) |
| continue; |
| |
| F->setDoesNotAlias(0); |
| ++NumNoAlias; |
| MadeChange = true; |
| } |
| |
| return MadeChange; |
| } |
| |
| bool FunctionAttrs::runOnSCC(CallGraphSCC &SCC) { |
| AA = &getAnalysis<AliasAnalysis>(); |
| |
| bool Changed = AddReadAttrs(SCC); |
| Changed |= AddNoCaptureAttrs(SCC); |
| Changed |= AddNoAliasAttrs(SCC); |
| return Changed; |
| } |