| //===- InstCombine.h - Main InstCombine pass definition -------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef INSTCOMBINE_INSTCOMBINE_H |
| #define INSTCOMBINE_INSTCOMBINE_H |
| |
| #include "InstCombineWorklist.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/InstVisitor.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/TargetFolder.h" |
| #include "llvm/Transforms/Utils/SimplifyLibCalls.h" |
| |
| namespace llvm { |
| class CallSite; |
| class DataLayout; |
| class TargetLibraryInfo; |
| class DbgDeclareInst; |
| class MemIntrinsic; |
| class MemSetInst; |
| |
| /// SelectPatternFlavor - We can match a variety of different patterns for |
| /// select operations. |
| enum SelectPatternFlavor { |
| SPF_UNKNOWN = 0, |
| SPF_SMIN, SPF_UMIN, |
| SPF_SMAX, SPF_UMAX |
| //SPF_ABS - TODO. |
| }; |
| |
| /// getComplexity: Assign a complexity or rank value to LLVM Values... |
| /// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst |
| static inline unsigned getComplexity(Value *V) { |
| if (isa<Instruction>(V)) { |
| if (BinaryOperator::isNeg(V) || |
| BinaryOperator::isFNeg(V) || |
| BinaryOperator::isNot(V)) |
| return 3; |
| return 4; |
| } |
| if (isa<Argument>(V)) return 3; |
| return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2; |
| } |
| |
| |
| /// InstCombineIRInserter - This is an IRBuilder insertion helper that works |
| /// just like the normal insertion helper, but also adds any new instructions |
| /// to the instcombine worklist. |
| class LLVM_LIBRARY_VISIBILITY InstCombineIRInserter |
| : public IRBuilderDefaultInserter<true> { |
| InstCombineWorklist &Worklist; |
| public: |
| InstCombineIRInserter(InstCombineWorklist &WL) : Worklist(WL) {} |
| |
| void InsertHelper(Instruction *I, const Twine &Name, |
| BasicBlock *BB, BasicBlock::iterator InsertPt) const { |
| IRBuilderDefaultInserter<true>::InsertHelper(I, Name, BB, InsertPt); |
| Worklist.Add(I); |
| } |
| }; |
| |
| /// InstCombiner - The -instcombine pass. |
| class LLVM_LIBRARY_VISIBILITY InstCombiner |
| : public FunctionPass, |
| public InstVisitor<InstCombiner, Instruction*> { |
| DataLayout *TD; |
| TargetLibraryInfo *TLI; |
| bool MadeIRChange; |
| LibCallSimplifier *Simplifier; |
| bool MinimizeSize; |
| public: |
| /// Worklist - All of the instructions that need to be simplified. |
| InstCombineWorklist Worklist; |
| |
| /// Builder - This is an IRBuilder that automatically inserts new |
| /// instructions into the worklist when they are created. |
| typedef IRBuilder<true, TargetFolder, InstCombineIRInserter> BuilderTy; |
| BuilderTy *Builder; |
| |
| static char ID; // Pass identification, replacement for typeid |
| InstCombiner() : FunctionPass(ID), TD(0), Builder(0) { |
| MinimizeSize = false; |
| initializeInstCombinerPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| public: |
| virtual bool runOnFunction(Function &F); |
| |
| bool DoOneIteration(Function &F, unsigned ItNum); |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const; |
| |
| DataLayout *getDataLayout() const { return TD; } |
| |
| TargetLibraryInfo *getTargetLibraryInfo() const { return TLI; } |
| |
| // Visitation implementation - Implement instruction combining for different |
| // instruction types. The semantics are as follows: |
| // Return Value: |
| // null - No change was made |
| // I - Change was made, I is still valid, I may be dead though |
| // otherwise - Change was made, replace I with returned instruction |
| // |
| Instruction *visitAdd(BinaryOperator &I); |
| Instruction *visitFAdd(BinaryOperator &I); |
| Value *OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty); |
| Instruction *visitSub(BinaryOperator &I); |
| Instruction *visitFSub(BinaryOperator &I); |
| Instruction *visitMul(BinaryOperator &I); |
| Value *foldFMulConst(Instruction *FMulOrDiv, ConstantFP *C, |
| Instruction *InsertBefore); |
| Instruction *visitFMul(BinaryOperator &I); |
| Instruction *visitURem(BinaryOperator &I); |
| Instruction *visitSRem(BinaryOperator &I); |
| Instruction *visitFRem(BinaryOperator &I); |
| bool SimplifyDivRemOfSelect(BinaryOperator &I); |
| Instruction *commonRemTransforms(BinaryOperator &I); |
| Instruction *commonIRemTransforms(BinaryOperator &I); |
| Instruction *commonDivTransforms(BinaryOperator &I); |
| Instruction *commonIDivTransforms(BinaryOperator &I); |
| Instruction *visitUDiv(BinaryOperator &I); |
| Instruction *visitSDiv(BinaryOperator &I); |
| Instruction *visitFDiv(BinaryOperator &I); |
| Value *FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS); |
| Value *FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS); |
| Instruction *visitAnd(BinaryOperator &I); |
| Value *FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS); |
| Value *FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS); |
| Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op, |
| Value *A, Value *B, Value *C); |
| Instruction *visitOr (BinaryOperator &I); |
| Instruction *visitXor(BinaryOperator &I); |
| Instruction *visitShl(BinaryOperator &I); |
| Instruction *visitAShr(BinaryOperator &I); |
| Instruction *visitLShr(BinaryOperator &I); |
| Instruction *commonShiftTransforms(BinaryOperator &I); |
| Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI, |
| Constant *RHSC); |
| Instruction *FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, |
| GlobalVariable *GV, CmpInst &ICI, |
| ConstantInt *AndCst = 0); |
| Instruction *visitFCmpInst(FCmpInst &I); |
| Instruction *visitICmpInst(ICmpInst &I); |
| Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI); |
| Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI, |
| Instruction *LHS, |
| ConstantInt *RHS); |
| Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI, |
| ConstantInt *DivRHS); |
| Instruction *FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *DivI, |
| ConstantInt *DivRHS); |
| Instruction *FoldICmpAddOpCst(ICmpInst &ICI, Value *X, ConstantInt *CI, |
| ICmpInst::Predicate Pred, Value *TheAdd); |
| Instruction *FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS, |
| ICmpInst::Predicate Cond, Instruction &I); |
| Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1, |
| BinaryOperator &I); |
| Instruction *commonCastTransforms(CastInst &CI); |
| Instruction *commonPointerCastTransforms(CastInst &CI); |
| Instruction *visitTrunc(TruncInst &CI); |
| Instruction *visitZExt(ZExtInst &CI); |
| Instruction *visitSExt(SExtInst &CI); |
| Instruction *visitFPTrunc(FPTruncInst &CI); |
| Instruction *visitFPExt(CastInst &CI); |
| Instruction *visitFPToUI(FPToUIInst &FI); |
| Instruction *visitFPToSI(FPToSIInst &FI); |
| Instruction *visitUIToFP(CastInst &CI); |
| Instruction *visitSIToFP(CastInst &CI); |
| Instruction *visitPtrToInt(PtrToIntInst &CI); |
| Instruction *visitIntToPtr(IntToPtrInst &CI); |
| Instruction *visitBitCast(BitCastInst &CI); |
| Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI, |
| Instruction *FI); |
| Instruction *FoldSelectIntoOp(SelectInst &SI, Value*, Value*); |
| Instruction *FoldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1, |
| Value *A, Value *B, Instruction &Outer, |
| SelectPatternFlavor SPF2, Value *C); |
| Instruction *visitSelectInst(SelectInst &SI); |
| Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI); |
| Instruction *visitCallInst(CallInst &CI); |
| Instruction *visitInvokeInst(InvokeInst &II); |
| |
| Instruction *SliceUpIllegalIntegerPHI(PHINode &PN); |
| Instruction *visitPHINode(PHINode &PN); |
| Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP); |
| Instruction *visitAllocaInst(AllocaInst &AI); |
| Instruction *visitAllocSite(Instruction &FI); |
| Instruction *visitFree(CallInst &FI); |
| Instruction *visitLoadInst(LoadInst &LI); |
| Instruction *visitStoreInst(StoreInst &SI); |
| Instruction *visitBranchInst(BranchInst &BI); |
| Instruction *visitSwitchInst(SwitchInst &SI); |
| Instruction *visitInsertElementInst(InsertElementInst &IE); |
| Instruction *visitExtractElementInst(ExtractElementInst &EI); |
| Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI); |
| Instruction *visitExtractValueInst(ExtractValueInst &EV); |
| Instruction *visitLandingPadInst(LandingPadInst &LI); |
| |
| // visitInstruction - Specify what to return for unhandled instructions... |
| Instruction *visitInstruction(Instruction &I) { return 0; } |
| |
| private: |
| bool ShouldChangeType(Type *From, Type *To) const; |
| Value *dyn_castNegVal(Value *V) const; |
| Value *dyn_castFNegVal(Value *V, bool NoSignedZero=false) const; |
| Type *FindElementAtOffset(Type *Ty, int64_t Offset, |
| SmallVectorImpl<Value*> &NewIndices); |
| Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI); |
| |
| /// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually |
| /// results in any code being generated and is interesting to optimize out. If |
| /// the cast can be eliminated by some other simple transformation, we prefer |
| /// to do the simplification first. |
| bool ShouldOptimizeCast(Instruction::CastOps opcode,const Value *V, |
| Type *Ty); |
| |
| Instruction *visitCallSite(CallSite CS); |
| Instruction *tryOptimizeCall(CallInst *CI, const DataLayout *TD); |
| bool transformConstExprCastCall(CallSite CS); |
| Instruction *transformCallThroughTrampoline(CallSite CS, |
| IntrinsicInst *Tramp); |
| Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI, |
| bool DoXform = true); |
| Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI); |
| bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS); |
| Value *EmitGEPOffset(User *GEP); |
| |
| public: |
| // InsertNewInstBefore - insert an instruction New before instruction Old |
| // in the program. Add the new instruction to the worklist. |
| // |
| Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) { |
| assert(New && New->getParent() == 0 && |
| "New instruction already inserted into a basic block!"); |
| BasicBlock *BB = Old.getParent(); |
| BB->getInstList().insert(&Old, New); // Insert inst |
| Worklist.Add(New); |
| return New; |
| } |
| |
| // InsertNewInstWith - same as InsertNewInstBefore, but also sets the |
| // debug loc. |
| // |
| Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) { |
| New->setDebugLoc(Old.getDebugLoc()); |
| return InsertNewInstBefore(New, Old); |
| } |
| |
| // ReplaceInstUsesWith - This method is to be used when an instruction is |
| // found to be dead, replacable with another preexisting expression. Here |
| // we add all uses of I to the worklist, replace all uses of I with the new |
| // value, then return I, so that the inst combiner will know that I was |
| // modified. |
| // |
| Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) { |
| Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist. |
| |
| // If we are replacing the instruction with itself, this must be in a |
| // segment of unreachable code, so just clobber the instruction. |
| if (&I == V) |
| V = UndefValue::get(I.getType()); |
| |
| DEBUG(errs() << "IC: Replacing " << I << "\n" |
| " with " << *V << '\n'); |
| |
| I.replaceAllUsesWith(V); |
| return &I; |
| } |
| |
| // EraseInstFromFunction - When dealing with an instruction that has side |
| // effects or produces a void value, we can't rely on DCE to delete the |
| // instruction. Instead, visit methods should return the value returned by |
| // this function. |
| Instruction *EraseInstFromFunction(Instruction &I) { |
| DEBUG(errs() << "IC: ERASE " << I << '\n'); |
| |
| assert(I.use_empty() && "Cannot erase instruction that is used!"); |
| // Make sure that we reprocess all operands now that we reduced their |
| // use counts. |
| if (I.getNumOperands() < 8) { |
| for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i) |
| if (Instruction *Op = dyn_cast<Instruction>(*i)) |
| Worklist.Add(Op); |
| } |
| Worklist.Remove(&I); |
| I.eraseFromParent(); |
| MadeIRChange = true; |
| return 0; // Don't do anything with FI |
| } |
| |
| void ComputeMaskedBits(Value *V, APInt &KnownZero, |
| APInt &KnownOne, unsigned Depth = 0) const { |
| return llvm::ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth); |
| } |
| |
| bool MaskedValueIsZero(Value *V, const APInt &Mask, |
| unsigned Depth = 0) const { |
| return llvm::MaskedValueIsZero(V, Mask, TD, Depth); |
| } |
| unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const { |
| return llvm::ComputeNumSignBits(Op, TD, Depth); |
| } |
| |
| private: |
| |
| /// SimplifyAssociativeOrCommutative - This performs a few simplifications for |
| /// operators which are associative or commutative. |
| bool SimplifyAssociativeOrCommutative(BinaryOperator &I); |
| |
| /// SimplifyUsingDistributiveLaws - This tries to simplify binary operations |
| /// which some other binary operation distributes over either by factorizing |
| /// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this |
| /// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is |
| /// a win). Returns the simplified value, or null if it didn't simplify. |
| Value *SimplifyUsingDistributiveLaws(BinaryOperator &I); |
| |
| /// SimplifyDemandedUseBits - Attempts to replace V with a simpler value |
| /// based on the demanded bits. |
| Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, |
| APInt& KnownZero, APInt& KnownOne, |
| unsigned Depth); |
| bool SimplifyDemandedBits(Use &U, APInt DemandedMask, |
| APInt& KnownZero, APInt& KnownOne, |
| unsigned Depth=0); |
| /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded |
| /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence. |
| Value *SimplifyShrShlDemandedBits(Instruction *Lsr, Instruction *Sftl, |
| APInt DemandedMask, APInt &KnownZero, |
| APInt &KnownOne); |
| |
| /// SimplifyDemandedInstructionBits - Inst is an integer instruction that |
| /// SimplifyDemandedBits knows about. See if the instruction has any |
| /// properties that allow us to simplify its operands. |
| bool SimplifyDemandedInstructionBits(Instruction &Inst); |
| |
| Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, |
| APInt& UndefElts, unsigned Depth = 0); |
| |
| // FoldOpIntoPhi - Given a binary operator, cast instruction, or select |
| // which has a PHI node as operand #0, see if we can fold the instruction |
| // into the PHI (which is only possible if all operands to the PHI are |
| // constants). |
| // |
| Instruction *FoldOpIntoPhi(Instruction &I); |
| |
| // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary" |
| // operator and they all are only used by the PHI, PHI together their |
| // inputs, and do the operation once, to the result of the PHI. |
| Instruction *FoldPHIArgOpIntoPHI(PHINode &PN); |
| Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN); |
| Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN); |
| Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN); |
| |
| |
| Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS, |
| ConstantInt *AndRHS, BinaryOperator &TheAnd); |
| |
| Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask, |
| bool isSub, Instruction &I); |
| Value *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi, |
| bool isSigned, bool Inside); |
| Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI); |
| Instruction *MatchBSwap(BinaryOperator &I); |
| bool SimplifyStoreAtEndOfBlock(StoreInst &SI); |
| Instruction *SimplifyMemTransfer(MemIntrinsic *MI); |
| Instruction *SimplifyMemSet(MemSetInst *MI); |
| |
| |
| Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned); |
| |
| /// Descale - Return a value X such that Val = X * Scale, or null if none. If |
| /// the multiplication is known not to overflow then NoSignedWrap is set. |
| Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap); |
| }; |
| |
| |
| |
| } // end namespace llvm. |
| |
| #endif |