| //===- InstCombineMulDivRem.cpp -------------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv, |
| // srem, urem, frem. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "InstCombine.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/Support/PatternMatch.h" |
| using namespace llvm; |
| using namespace PatternMatch; |
| |
| |
| /// simplifyValueKnownNonZero - The specific integer value is used in a context |
| /// where it is known to be non-zero. If this allows us to simplify the |
| /// computation, do so and return the new operand, otherwise return null. |
| static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC) { |
| // If V has multiple uses, then we would have to do more analysis to determine |
| // if this is safe. For example, the use could be in dynamically unreached |
| // code. |
| if (!V->hasOneUse()) return 0; |
| |
| bool MadeChange = false; |
| |
| // ((1 << A) >>u B) --> (1 << (A-B)) |
| // Because V cannot be zero, we know that B is less than A. |
| Value *A = 0, *B = 0, *PowerOf2 = 0; |
| if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(PowerOf2), m_Value(A))), |
| m_Value(B))) && |
| // The "1" can be any value known to be a power of 2. |
| isKnownToBeAPowerOfTwo(PowerOf2)) { |
| A = IC.Builder->CreateSub(A, B); |
| return IC.Builder->CreateShl(PowerOf2, A); |
| } |
| |
| // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it |
| // inexact. Similarly for <<. |
| if (BinaryOperator *I = dyn_cast<BinaryOperator>(V)) |
| if (I->isLogicalShift() && isKnownToBeAPowerOfTwo(I->getOperand(0))) { |
| // We know that this is an exact/nuw shift and that the input is a |
| // non-zero context as well. |
| if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC)) { |
| I->setOperand(0, V2); |
| MadeChange = true; |
| } |
| |
| if (I->getOpcode() == Instruction::LShr && !I->isExact()) { |
| I->setIsExact(); |
| MadeChange = true; |
| } |
| |
| if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) { |
| I->setHasNoUnsignedWrap(); |
| MadeChange = true; |
| } |
| } |
| |
| // TODO: Lots more we could do here: |
| // If V is a phi node, we can call this on each of its operands. |
| // "select cond, X, 0" can simplify to "X". |
| |
| return MadeChange ? V : 0; |
| } |
| |
| |
| /// MultiplyOverflows - True if the multiply can not be expressed in an int |
| /// this size. |
| static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) { |
| uint32_t W = C1->getBitWidth(); |
| APInt LHSExt = C1->getValue(), RHSExt = C2->getValue(); |
| if (sign) { |
| LHSExt = LHSExt.sext(W * 2); |
| RHSExt = RHSExt.sext(W * 2); |
| } else { |
| LHSExt = LHSExt.zext(W * 2); |
| RHSExt = RHSExt.zext(W * 2); |
| } |
| |
| APInt MulExt = LHSExt * RHSExt; |
| |
| if (!sign) |
| return MulExt.ugt(APInt::getLowBitsSet(W * 2, W)); |
| |
| APInt Min = APInt::getSignedMinValue(W).sext(W * 2); |
| APInt Max = APInt::getSignedMaxValue(W).sext(W * 2); |
| return MulExt.slt(Min) || MulExt.sgt(Max); |
| } |
| |
| Instruction *InstCombiner::visitMul(BinaryOperator &I) { |
| bool Changed = SimplifyAssociativeOrCommutative(I); |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| |
| if (Value *V = SimplifyMulInst(Op0, Op1, TD)) |
| return ReplaceInstUsesWith(I, V); |
| |
| if (Value *V = SimplifyUsingDistributiveLaws(I)) |
| return ReplaceInstUsesWith(I, V); |
| |
| if (match(Op1, m_AllOnes())) // X * -1 == 0 - X |
| return BinaryOperator::CreateNeg(Op0, I.getName()); |
| |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { |
| |
| // ((X << C1)*C2) == (X * (C2 << C1)) |
| if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0)) |
| if (SI->getOpcode() == Instruction::Shl) |
| if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1))) |
| return BinaryOperator::CreateMul(SI->getOperand(0), |
| ConstantExpr::getShl(CI, ShOp)); |
| |
| const APInt &Val = CI->getValue(); |
| if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C |
| Constant *NewCst = ConstantInt::get(Op0->getType(), Val.logBase2()); |
| BinaryOperator *Shl = BinaryOperator::CreateShl(Op0, NewCst); |
| if (I.hasNoSignedWrap()) Shl->setHasNoSignedWrap(); |
| if (I.hasNoUnsignedWrap()) Shl->setHasNoUnsignedWrap(); |
| return Shl; |
| } |
| |
| // Canonicalize (X+C1)*CI -> X*CI+C1*CI. |
| { Value *X; ConstantInt *C1; |
| if (Op0->hasOneUse() && |
| match(Op0, m_Add(m_Value(X), m_ConstantInt(C1)))) { |
| Value *Add = Builder->CreateMul(X, CI); |
| return BinaryOperator::CreateAdd(Add, Builder->CreateMul(C1, CI)); |
| } |
| } |
| |
| // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n |
| // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n |
| // The "* (2**n)" thus becomes a potential shifting opportunity. |
| { |
| const APInt & Val = CI->getValue(); |
| const APInt &PosVal = Val.abs(); |
| if (Val.isNegative() && PosVal.isPowerOf2()) { |
| Value *X = 0, *Y = 0; |
| if (Op0->hasOneUse()) { |
| ConstantInt *C1; |
| Value *Sub = 0; |
| if (match(Op0, m_Sub(m_Value(Y), m_Value(X)))) |
| Sub = Builder->CreateSub(X, Y, "suba"); |
| else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1)))) |
| Sub = Builder->CreateSub(Builder->CreateNeg(C1), Y, "subc"); |
| if (Sub) |
| return |
| BinaryOperator::CreateMul(Sub, |
| ConstantInt::get(Y->getType(), PosVal)); |
| } |
| } |
| } |
| } |
| |
| // Simplify mul instructions with a constant RHS. |
| if (isa<Constant>(Op1)) { |
| // Try to fold constant mul into select arguments. |
| if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) |
| if (Instruction *R = FoldOpIntoSelect(I, SI)) |
| return R; |
| |
| if (isa<PHINode>(Op0)) |
| if (Instruction *NV = FoldOpIntoPhi(I)) |
| return NV; |
| } |
| |
| if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y |
| if (Value *Op1v = dyn_castNegVal(Op1)) |
| return BinaryOperator::CreateMul(Op0v, Op1v); |
| |
| // (X / Y) * Y = X - (X % Y) |
| // (X / Y) * -Y = (X % Y) - X |
| { |
| Value *Op1C = Op1; |
| BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0); |
| if (!BO || |
| (BO->getOpcode() != Instruction::UDiv && |
| BO->getOpcode() != Instruction::SDiv)) { |
| Op1C = Op0; |
| BO = dyn_cast<BinaryOperator>(Op1); |
| } |
| Value *Neg = dyn_castNegVal(Op1C); |
| if (BO && BO->hasOneUse() && |
| (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) && |
| (BO->getOpcode() == Instruction::UDiv || |
| BO->getOpcode() == Instruction::SDiv)) { |
| Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1); |
| |
| // If the division is exact, X % Y is zero, so we end up with X or -X. |
| if (PossiblyExactOperator *SDiv = dyn_cast<PossiblyExactOperator>(BO)) |
| if (SDiv->isExact()) { |
| if (Op1BO == Op1C) |
| return ReplaceInstUsesWith(I, Op0BO); |
| return BinaryOperator::CreateNeg(Op0BO); |
| } |
| |
| Value *Rem; |
| if (BO->getOpcode() == Instruction::UDiv) |
| Rem = Builder->CreateURem(Op0BO, Op1BO); |
| else |
| Rem = Builder->CreateSRem(Op0BO, Op1BO); |
| Rem->takeName(BO); |
| |
| if (Op1BO == Op1C) |
| return BinaryOperator::CreateSub(Op0BO, Rem); |
| return BinaryOperator::CreateSub(Rem, Op0BO); |
| } |
| } |
| |
| /// i1 mul -> i1 and. |
| if (I.getType()->isIntegerTy(1)) |
| return BinaryOperator::CreateAnd(Op0, Op1); |
| |
| // X*(1 << Y) --> X << Y |
| // (1 << Y)*X --> X << Y |
| { |
| Value *Y; |
| if (match(Op0, m_Shl(m_One(), m_Value(Y)))) |
| return BinaryOperator::CreateShl(Op1, Y); |
| if (match(Op1, m_Shl(m_One(), m_Value(Y)))) |
| return BinaryOperator::CreateShl(Op0, Y); |
| } |
| |
| // If one of the operands of the multiply is a cast from a boolean value, then |
| // we know the bool is either zero or one, so this is a 'masking' multiply. |
| // X * Y (where Y is 0 or 1) -> X & (0-Y) |
| if (!I.getType()->isVectorTy()) { |
| // -2 is "-1 << 1" so it is all bits set except the low one. |
| APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true); |
| |
| Value *BoolCast = 0, *OtherOp = 0; |
| if (MaskedValueIsZero(Op0, Negative2)) |
| BoolCast = Op0, OtherOp = Op1; |
| else if (MaskedValueIsZero(Op1, Negative2)) |
| BoolCast = Op1, OtherOp = Op0; |
| |
| if (BoolCast) { |
| Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()), |
| BoolCast); |
| return BinaryOperator::CreateAnd(V, OtherOp); |
| } |
| } |
| |
| return Changed ? &I : 0; |
| } |
| |
| // |
| // Detect pattern: |
| // |
| // log2(Y*0.5) |
| // |
| // And check for corresponding fast math flags |
| // |
| |
| static void detectLog2OfHalf(Value *&Op, Value *&Y, IntrinsicInst *&Log2) { |
| |
| if (!Op->hasOneUse()) |
| return; |
| |
| IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op); |
| if (!II) |
| return; |
| if (II->getIntrinsicID() != Intrinsic::log2 || !II->hasUnsafeAlgebra()) |
| return; |
| Log2 = II; |
| |
| Value *OpLog2Of = II->getArgOperand(0); |
| if (!OpLog2Of->hasOneUse()) |
| return; |
| |
| Instruction *I = dyn_cast<Instruction>(OpLog2Of); |
| if (!I) |
| return; |
| if (I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra()) |
| return; |
| |
| ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(0)); |
| if (CFP && CFP->isExactlyValue(0.5)) { |
| Y = I->getOperand(1); |
| return; |
| } |
| CFP = dyn_cast<ConstantFP>(I->getOperand(1)); |
| if (CFP && CFP->isExactlyValue(0.5)) |
| Y = I->getOperand(0); |
| } |
| |
| /// Helper function of InstCombiner::visitFMul(BinaryOperator(). It returns |
| /// true iff the given value is FMul or FDiv with one and only one operand |
| /// being a normal constant (i.e. not Zero/NaN/Infinity). |
| static bool isFMulOrFDivWithConstant(Value *V) { |
| Instruction *I = dyn_cast<Instruction>(V); |
| if (!I || (I->getOpcode() != Instruction::FMul && |
| I->getOpcode() != Instruction::FDiv)) |
| return false; |
| |
| ConstantFP *C0 = dyn_cast<ConstantFP>(I->getOperand(0)); |
| ConstantFP *C1 = dyn_cast<ConstantFP>(I->getOperand(1)); |
| |
| if (C0 && C1) |
| return false; |
| |
| return (C0 && C0->getValueAPF().isNormal()) || |
| (C1 && C1->getValueAPF().isNormal()); |
| } |
| |
| static bool isNormalFp(const ConstantFP *C) { |
| const APFloat &Flt = C->getValueAPF(); |
| return Flt.isNormal() && !Flt.isDenormal(); |
| } |
| |
| /// foldFMulConst() is a helper routine of InstCombiner::visitFMul(). |
| /// The input \p FMulOrDiv is a FMul/FDiv with one and only one operand |
| /// being a constant (i.e. isFMulOrFDivWithConstant(FMulOrDiv) == true). |
| /// This function is to simplify "FMulOrDiv * C" and returns the |
| /// resulting expression. Note that this function could return NULL in |
| /// case the constants cannot be folded into a normal floating-point. |
| /// |
| Value *InstCombiner::foldFMulConst(Instruction *FMulOrDiv, ConstantFP *C, |
| Instruction *InsertBefore) { |
| assert(isFMulOrFDivWithConstant(FMulOrDiv) && "V is invalid"); |
| |
| Value *Opnd0 = FMulOrDiv->getOperand(0); |
| Value *Opnd1 = FMulOrDiv->getOperand(1); |
| |
| ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0); |
| ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1); |
| |
| BinaryOperator *R = 0; |
| |
| // (X * C0) * C => X * (C0*C) |
| if (FMulOrDiv->getOpcode() == Instruction::FMul) { |
| Constant *F = ConstantExpr::getFMul(C1 ? C1 : C0, C); |
| if (isNormalFp(cast<ConstantFP>(F))) |
| R = BinaryOperator::CreateFMul(C1 ? Opnd0 : Opnd1, F); |
| } else { |
| if (C0) { |
| // (C0 / X) * C => (C0 * C) / X |
| ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFMul(C0, C)); |
| if (isNormalFp(F)) |
| R = BinaryOperator::CreateFDiv(F, Opnd1); |
| } else { |
| // (X / C1) * C => X * (C/C1) if C/C1 is not a denormal |
| ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFDiv(C, C1)); |
| if (isNormalFp(F)) { |
| R = BinaryOperator::CreateFMul(Opnd0, F); |
| } else { |
| // (X / C1) * C => X / (C1/C) |
| Constant *F = ConstantExpr::getFDiv(C1, C); |
| if (isNormalFp(cast<ConstantFP>(F))) |
| R = BinaryOperator::CreateFDiv(Opnd0, F); |
| } |
| } |
| } |
| |
| if (R) { |
| R->setHasUnsafeAlgebra(true); |
| InsertNewInstWith(R, *InsertBefore); |
| } |
| |
| return R; |
| } |
| |
| Instruction *InstCombiner::visitFMul(BinaryOperator &I) { |
| bool Changed = SimplifyAssociativeOrCommutative(I); |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| |
| if (isa<Constant>(Op0)) |
| std::swap(Op0, Op1); |
| |
| if (Value *V = SimplifyFMulInst(Op0, Op1, I.getFastMathFlags(), TD)) |
| return ReplaceInstUsesWith(I, V); |
| |
| bool AllowReassociate = I.hasUnsafeAlgebra(); |
| |
| // Simplify mul instructions with a constant RHS. |
| if (isa<Constant>(Op1)) { |
| // Try to fold constant mul into select arguments. |
| if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) |
| if (Instruction *R = FoldOpIntoSelect(I, SI)) |
| return R; |
| |
| if (isa<PHINode>(Op0)) |
| if (Instruction *NV = FoldOpIntoPhi(I)) |
| return NV; |
| |
| ConstantFP *C = dyn_cast<ConstantFP>(Op1); |
| if (C && AllowReassociate && C->getValueAPF().isNormal()) { |
| // Let MDC denote an expression in one of these forms: |
| // X * C, C/X, X/C, where C is a constant. |
| // |
| // Try to simplify "MDC * Constant" |
| if (isFMulOrFDivWithConstant(Op0)) { |
| Value *V = foldFMulConst(cast<Instruction>(Op0), C, &I); |
| if (V) |
| return ReplaceInstUsesWith(I, V); |
| } |
| |
| // (MDC +/- C1) * C => (MDC * C) +/- (C1 * C) |
| Instruction *FAddSub = dyn_cast<Instruction>(Op0); |
| if (FAddSub && |
| (FAddSub->getOpcode() == Instruction::FAdd || |
| FAddSub->getOpcode() == Instruction::FSub)) { |
| Value *Opnd0 = FAddSub->getOperand(0); |
| Value *Opnd1 = FAddSub->getOperand(1); |
| ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0); |
| ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1); |
| bool Swap = false; |
| if (C0) { |
| std::swap(C0, C1); |
| std::swap(Opnd0, Opnd1); |
| Swap = true; |
| } |
| |
| if (C1 && C1->getValueAPF().isNormal() && |
| isFMulOrFDivWithConstant(Opnd0)) { |
| Value *M1 = ConstantExpr::getFMul(C1, C); |
| Value *M0 = isNormalFp(cast<ConstantFP>(M1)) ? |
| foldFMulConst(cast<Instruction>(Opnd0), C, &I) : |
| 0; |
| if (M0 && M1) { |
| if (Swap && FAddSub->getOpcode() == Instruction::FSub) |
| std::swap(M0, M1); |
| |
| Value *R = (FAddSub->getOpcode() == Instruction::FAdd) ? |
| BinaryOperator::CreateFAdd(M0, M1) : |
| BinaryOperator::CreateFSub(M0, M1); |
| Instruction *RI = cast<Instruction>(R); |
| RI->copyFastMathFlags(&I); |
| return RI; |
| } |
| } |
| } |
| } |
| } |
| |
| |
| // Under unsafe algebra do: |
| // X * log2(0.5*Y) = X*log2(Y) - X |
| if (I.hasUnsafeAlgebra()) { |
| Value *OpX = NULL; |
| Value *OpY = NULL; |
| IntrinsicInst *Log2; |
| detectLog2OfHalf(Op0, OpY, Log2); |
| if (OpY) { |
| OpX = Op1; |
| } else { |
| detectLog2OfHalf(Op1, OpY, Log2); |
| if (OpY) { |
| OpX = Op0; |
| } |
| } |
| // if pattern detected emit alternate sequence |
| if (OpX && OpY) { |
| Log2->setArgOperand(0, OpY); |
| Value *FMulVal = Builder->CreateFMul(OpX, Log2); |
| Instruction *FMul = cast<Instruction>(FMulVal); |
| FMul->copyFastMathFlags(Log2); |
| Instruction *FSub = BinaryOperator::CreateFSub(FMulVal, OpX); |
| FSub->copyFastMathFlags(Log2); |
| return FSub; |
| } |
| } |
| |
| // Handle symmetric situation in a 2-iteration loop |
| Value *Opnd0 = Op0; |
| Value *Opnd1 = Op1; |
| for (int i = 0; i < 2; i++) { |
| bool IgnoreZeroSign = I.hasNoSignedZeros(); |
| if (BinaryOperator::isFNeg(Opnd0, IgnoreZeroSign)) { |
| Value *N0 = dyn_castFNegVal(Opnd0, IgnoreZeroSign); |
| Value *N1 = dyn_castFNegVal(Opnd1, IgnoreZeroSign); |
| |
| // -X * -Y => X*Y |
| if (N1) |
| return BinaryOperator::CreateFMul(N0, N1); |
| |
| if (Opnd0->hasOneUse()) { |
| // -X * Y => -(X*Y) (Promote negation as high as possible) |
| Value *T = Builder->CreateFMul(N0, Opnd1); |
| cast<Instruction>(T)->setDebugLoc(I.getDebugLoc()); |
| Instruction *Neg = BinaryOperator::CreateFNeg(T); |
| if (I.getFastMathFlags().any()) { |
| cast<Instruction>(T)->copyFastMathFlags(&I); |
| Neg->copyFastMathFlags(&I); |
| } |
| return Neg; |
| } |
| } |
| |
| // (X*Y) * X => (X*X) * Y where Y != X |
| // The purpose is two-fold: |
| // 1) to form a power expression (of X). |
| // 2) potentially shorten the critical path: After transformation, the |
| // latency of the instruction Y is amortized by the expression of X*X, |
| // and therefore Y is in a "less critical" position compared to what it |
| // was before the transformation. |
| // |
| if (AllowReassociate) { |
| Value *Opnd0_0, *Opnd0_1; |
| if (Opnd0->hasOneUse() && |
| match(Opnd0, m_FMul(m_Value(Opnd0_0), m_Value(Opnd0_1)))) { |
| Value *Y = 0; |
| if (Opnd0_0 == Opnd1 && Opnd0_1 != Opnd1) |
| Y = Opnd0_1; |
| else if (Opnd0_1 == Opnd1 && Opnd0_0 != Opnd1) |
| Y = Opnd0_0; |
| |
| if (Y) { |
| Instruction *T = cast<Instruction>(Builder->CreateFMul(Opnd1, Opnd1)); |
| T->copyFastMathFlags(&I); |
| T->setDebugLoc(I.getDebugLoc()); |
| |
| Instruction *R = BinaryOperator::CreateFMul(T, Y); |
| R->copyFastMathFlags(&I); |
| return R; |
| } |
| } |
| } |
| |
| if (!isa<Constant>(Op1)) |
| std::swap(Opnd0, Opnd1); |
| else |
| break; |
| } |
| |
| return Changed ? &I : 0; |
| } |
| |
| /// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select |
| /// instruction. |
| bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) { |
| SelectInst *SI = cast<SelectInst>(I.getOperand(1)); |
| |
| // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y |
| int NonNullOperand = -1; |
| if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1))) |
| if (ST->isNullValue()) |
| NonNullOperand = 2; |
| // div/rem X, (Cond ? Y : 0) -> div/rem X, Y |
| if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2))) |
| if (ST->isNullValue()) |
| NonNullOperand = 1; |
| |
| if (NonNullOperand == -1) |
| return false; |
| |
| Value *SelectCond = SI->getOperand(0); |
| |
| // Change the div/rem to use 'Y' instead of the select. |
| I.setOperand(1, SI->getOperand(NonNullOperand)); |
| |
| // Okay, we know we replace the operand of the div/rem with 'Y' with no |
| // problem. However, the select, or the condition of the select may have |
| // multiple uses. Based on our knowledge that the operand must be non-zero, |
| // propagate the known value for the select into other uses of it, and |
| // propagate a known value of the condition into its other users. |
| |
| // If the select and condition only have a single use, don't bother with this, |
| // early exit. |
| if (SI->use_empty() && SelectCond->hasOneUse()) |
| return true; |
| |
| // Scan the current block backward, looking for other uses of SI. |
| BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin(); |
| |
| while (BBI != BBFront) { |
| --BBI; |
| // If we found a call to a function, we can't assume it will return, so |
| // information from below it cannot be propagated above it. |
| if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI)) |
| break; |
| |
| // Replace uses of the select or its condition with the known values. |
| for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end(); |
| I != E; ++I) { |
| if (*I == SI) { |
| *I = SI->getOperand(NonNullOperand); |
| Worklist.Add(BBI); |
| } else if (*I == SelectCond) { |
| *I = NonNullOperand == 1 ? ConstantInt::getTrue(BBI->getContext()) : |
| ConstantInt::getFalse(BBI->getContext()); |
| Worklist.Add(BBI); |
| } |
| } |
| |
| // If we past the instruction, quit looking for it. |
| if (&*BBI == SI) |
| SI = 0; |
| if (&*BBI == SelectCond) |
| SelectCond = 0; |
| |
| // If we ran out of things to eliminate, break out of the loop. |
| if (SelectCond == 0 && SI == 0) |
| break; |
| |
| } |
| return true; |
| } |
| |
| |
| /// This function implements the transforms common to both integer division |
| /// instructions (udiv and sdiv). It is called by the visitors to those integer |
| /// division instructions. |
| /// @brief Common integer divide transforms |
| Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) { |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| |
| // The RHS is known non-zero. |
| if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) { |
| I.setOperand(1, V); |
| return &I; |
| } |
| |
| // Handle cases involving: [su]div X, (select Cond, Y, Z) |
| // This does not apply for fdiv. |
| if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I)) |
| return &I; |
| |
| if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { |
| // (X / C1) / C2 -> X / (C1*C2) |
| if (Instruction *LHS = dyn_cast<Instruction>(Op0)) |
| if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode()) |
| if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) { |
| if (MultiplyOverflows(RHS, LHSRHS, |
| I.getOpcode()==Instruction::SDiv)) |
| return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); |
| return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0), |
| ConstantExpr::getMul(RHS, LHSRHS)); |
| } |
| |
| if (!RHS->isZero()) { // avoid X udiv 0 |
| if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) |
| if (Instruction *R = FoldOpIntoSelect(I, SI)) |
| return R; |
| if (isa<PHINode>(Op0)) |
| if (Instruction *NV = FoldOpIntoPhi(I)) |
| return NV; |
| } |
| } |
| |
| // See if we can fold away this div instruction. |
| if (SimplifyDemandedInstructionBits(I)) |
| return &I; |
| |
| // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y |
| Value *X = 0, *Z = 0; |
| if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1 |
| bool isSigned = I.getOpcode() == Instruction::SDiv; |
| if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) || |
| (!isSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1))))) |
| return BinaryOperator::Create(I.getOpcode(), X, Op1); |
| } |
| |
| return 0; |
| } |
| |
| /// dyn_castZExtVal - Checks if V is a zext or constant that can |
| /// be truncated to Ty without losing bits. |
| static Value *dyn_castZExtVal(Value *V, Type *Ty) { |
| if (ZExtInst *Z = dyn_cast<ZExtInst>(V)) { |
| if (Z->getSrcTy() == Ty) |
| return Z->getOperand(0); |
| } else if (ConstantInt *C = dyn_cast<ConstantInt>(V)) { |
| if (C->getValue().getActiveBits() <= cast<IntegerType>(Ty)->getBitWidth()) |
| return ConstantExpr::getTrunc(C, Ty); |
| } |
| return 0; |
| } |
| |
| Instruction *InstCombiner::visitUDiv(BinaryOperator &I) { |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| |
| if (Value *V = SimplifyUDivInst(Op0, Op1, TD)) |
| return ReplaceInstUsesWith(I, V); |
| |
| // Handle the integer div common cases |
| if (Instruction *Common = commonIDivTransforms(I)) |
| return Common; |
| |
| { |
| // X udiv 2^C -> X >> C |
| // Check to see if this is an unsigned division with an exact power of 2, |
| // if so, convert to a right shift. |
| const APInt *C; |
| if (match(Op1, m_Power2(C))) { |
| BinaryOperator *LShr = |
| BinaryOperator::CreateLShr(Op0, |
| ConstantInt::get(Op0->getType(), |
| C->logBase2())); |
| if (I.isExact()) LShr->setIsExact(); |
| return LShr; |
| } |
| } |
| |
| if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) { |
| // X udiv C, where C >= signbit |
| if (C->getValue().isNegative()) { |
| Value *IC = Builder->CreateICmpULT(Op0, C); |
| return SelectInst::Create(IC, Constant::getNullValue(I.getType()), |
| ConstantInt::get(I.getType(), 1)); |
| } |
| } |
| |
| // (x lshr C1) udiv C2 --> x udiv (C2 << C1) |
| if (ConstantInt *C2 = dyn_cast<ConstantInt>(Op1)) { |
| Value *X; |
| ConstantInt *C1; |
| if (match(Op0, m_LShr(m_Value(X), m_ConstantInt(C1)))) { |
| APInt NC = C2->getValue().shl(C1->getLimitedValue(C1->getBitWidth()-1)); |
| return BinaryOperator::CreateUDiv(X, Builder->getInt(NC)); |
| } |
| } |
| |
| // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2) |
| { const APInt *CI; Value *N; |
| if (match(Op1, m_Shl(m_Power2(CI), m_Value(N))) || |
| match(Op1, m_ZExt(m_Shl(m_Power2(CI), m_Value(N))))) { |
| if (*CI != 1) |
| N = Builder->CreateAdd(N, |
| ConstantInt::get(N->getType(), CI->logBase2())); |
| if (ZExtInst *Z = dyn_cast<ZExtInst>(Op1)) |
| N = Builder->CreateZExt(N, Z->getDestTy()); |
| if (I.isExact()) |
| return BinaryOperator::CreateExactLShr(Op0, N); |
| return BinaryOperator::CreateLShr(Op0, N); |
| } |
| } |
| |
| // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2) |
| // where C1&C2 are powers of two. |
| { Value *Cond; const APInt *C1, *C2; |
| if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) { |
| // Construct the "on true" case of the select |
| Value *TSI = Builder->CreateLShr(Op0, C1->logBase2(), Op1->getName()+".t", |
| I.isExact()); |
| |
| // Construct the "on false" case of the select |
| Value *FSI = Builder->CreateLShr(Op0, C2->logBase2(), Op1->getName()+".f", |
| I.isExact()); |
| |
| // construct the select instruction and return it. |
| return SelectInst::Create(Cond, TSI, FSI); |
| } |
| } |
| |
| // (zext A) udiv (zext B) --> zext (A udiv B) |
| if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0)) |
| if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy())) |
| return new ZExtInst(Builder->CreateUDiv(ZOp0->getOperand(0), ZOp1, "div", |
| I.isExact()), |
| I.getType()); |
| |
| return 0; |
| } |
| |
| Instruction *InstCombiner::visitSDiv(BinaryOperator &I) { |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| |
| if (Value *V = SimplifySDivInst(Op0, Op1, TD)) |
| return ReplaceInstUsesWith(I, V); |
| |
| // Handle the integer div common cases |
| if (Instruction *Common = commonIDivTransforms(I)) |
| return Common; |
| |
| if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { |
| // sdiv X, -1 == -X |
| if (RHS->isAllOnesValue()) |
| return BinaryOperator::CreateNeg(Op0); |
| |
| // sdiv X, C --> ashr exact X, log2(C) |
| if (I.isExact() && RHS->getValue().isNonNegative() && |
| RHS->getValue().isPowerOf2()) { |
| Value *ShAmt = llvm::ConstantInt::get(RHS->getType(), |
| RHS->getValue().exactLogBase2()); |
| return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName()); |
| } |
| |
| // -X/C --> X/-C provided the negation doesn't overflow. |
| if (SubOperator *Sub = dyn_cast<SubOperator>(Op0)) |
| if (match(Sub->getOperand(0), m_Zero()) && Sub->hasNoSignedWrap()) |
| return BinaryOperator::CreateSDiv(Sub->getOperand(1), |
| ConstantExpr::getNeg(RHS)); |
| } |
| |
| // If the sign bits of both operands are zero (i.e. we can prove they are |
| // unsigned inputs), turn this into a udiv. |
| if (I.getType()->isIntegerTy()) { |
| APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())); |
| if (MaskedValueIsZero(Op0, Mask)) { |
| if (MaskedValueIsZero(Op1, Mask)) { |
| // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set |
| return BinaryOperator::CreateUDiv(Op0, Op1, I.getName()); |
| } |
| |
| if (match(Op1, m_Shl(m_Power2(), m_Value()))) { |
| // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y) |
| // Safe because the only negative value (1 << Y) can take on is |
| // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have |
| // the sign bit set. |
| return BinaryOperator::CreateUDiv(Op0, Op1, I.getName()); |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| /// CvtFDivConstToReciprocal tries to convert X/C into X*1/C if C not a special |
| /// FP value and: |
| /// 1) 1/C is exact, or |
| /// 2) reciprocal is allowed. |
| /// If the convertion was successful, the simplified expression "X * 1/C" is |
| /// returned; otherwise, NULL is returned. |
| /// |
| static Instruction *CvtFDivConstToReciprocal(Value *Dividend, |
| ConstantFP *Divisor, |
| bool AllowReciprocal) { |
| const APFloat &FpVal = Divisor->getValueAPF(); |
| APFloat Reciprocal(FpVal.getSemantics()); |
| bool Cvt = FpVal.getExactInverse(&Reciprocal); |
| |
| if (!Cvt && AllowReciprocal && FpVal.isNormal()) { |
| Reciprocal = APFloat(FpVal.getSemantics(), 1.0f); |
| (void)Reciprocal.divide(FpVal, APFloat::rmNearestTiesToEven); |
| Cvt = !Reciprocal.isDenormal(); |
| } |
| |
| if (!Cvt) |
| return 0; |
| |
| ConstantFP *R; |
| R = ConstantFP::get(Dividend->getType()->getContext(), Reciprocal); |
| return BinaryOperator::CreateFMul(Dividend, R); |
| } |
| |
| Instruction *InstCombiner::visitFDiv(BinaryOperator &I) { |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| |
| if (Value *V = SimplifyFDivInst(Op0, Op1, TD)) |
| return ReplaceInstUsesWith(I, V); |
| |
| bool AllowReassociate = I.hasUnsafeAlgebra(); |
| bool AllowReciprocal = I.hasAllowReciprocal(); |
| |
| if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) { |
| if (AllowReassociate) { |
| ConstantFP *C1 = 0; |
| ConstantFP *C2 = Op1C; |
| Value *X; |
| Instruction *Res = 0; |
| |
| if (match(Op0, m_FMul(m_Value(X), m_ConstantFP(C1)))) { |
| // (X*C1)/C2 => X * (C1/C2) |
| // |
| Constant *C = ConstantExpr::getFDiv(C1, C2); |
| const APFloat &F = cast<ConstantFP>(C)->getValueAPF(); |
| if (F.isNormal() && !F.isDenormal()) |
| Res = BinaryOperator::CreateFMul(X, C); |
| } else if (match(Op0, m_FDiv(m_Value(X), m_ConstantFP(C1)))) { |
| // (X/C1)/C2 => X /(C2*C1) [=> X * 1/(C2*C1) if reciprocal is allowed] |
| // |
| Constant *C = ConstantExpr::getFMul(C1, C2); |
| const APFloat &F = cast<ConstantFP>(C)->getValueAPF(); |
| if (F.isNormal() && !F.isDenormal()) { |
| Res = CvtFDivConstToReciprocal(X, cast<ConstantFP>(C), |
| AllowReciprocal); |
| if (!Res) |
| Res = BinaryOperator::CreateFDiv(X, C); |
| } |
| } |
| |
| if (Res) { |
| Res->setFastMathFlags(I.getFastMathFlags()); |
| return Res; |
| } |
| } |
| |
| // X / C => X * 1/C |
| if (Instruction *T = CvtFDivConstToReciprocal(Op0, Op1C, AllowReciprocal)) |
| return T; |
| |
| return 0; |
| } |
| |
| if (AllowReassociate && isa<ConstantFP>(Op0)) { |
| ConstantFP *C1 = cast<ConstantFP>(Op0), *C2; |
| Constant *Fold = 0; |
| Value *X; |
| bool CreateDiv = true; |
| |
| // C1 / (X*C2) => (C1/C2) / X |
| if (match(Op1, m_FMul(m_Value(X), m_ConstantFP(C2)))) |
| Fold = ConstantExpr::getFDiv(C1, C2); |
| else if (match(Op1, m_FDiv(m_Value(X), m_ConstantFP(C2)))) { |
| // C1 / (X/C2) => (C1*C2) / X |
| Fold = ConstantExpr::getFMul(C1, C2); |
| } else if (match(Op1, m_FDiv(m_ConstantFP(C2), m_Value(X)))) { |
| // C1 / (C2/X) => (C1/C2) * X |
| Fold = ConstantExpr::getFDiv(C1, C2); |
| CreateDiv = false; |
| } |
| |
| if (Fold) { |
| const APFloat &FoldC = cast<ConstantFP>(Fold)->getValueAPF(); |
| if (FoldC.isNormal() && !FoldC.isDenormal()) { |
| Instruction *R = CreateDiv ? |
| BinaryOperator::CreateFDiv(Fold, X) : |
| BinaryOperator::CreateFMul(X, Fold); |
| R->setFastMathFlags(I.getFastMathFlags()); |
| return R; |
| } |
| } |
| return 0; |
| } |
| |
| if (AllowReassociate) { |
| Value *X, *Y; |
| Value *NewInst = 0; |
| Instruction *SimpR = 0; |
| |
| if (Op0->hasOneUse() && match(Op0, m_FDiv(m_Value(X), m_Value(Y)))) { |
| // (X/Y) / Z => X / (Y*Z) |
| // |
| if (!isa<ConstantFP>(Y) || !isa<ConstantFP>(Op1)) { |
| NewInst = Builder->CreateFMul(Y, Op1); |
| SimpR = BinaryOperator::CreateFDiv(X, NewInst); |
| } |
| } else if (Op1->hasOneUse() && match(Op1, m_FDiv(m_Value(X), m_Value(Y)))) { |
| // Z / (X/Y) => Z*Y / X |
| // |
| if (!isa<ConstantFP>(Y) || !isa<ConstantFP>(Op0)) { |
| NewInst = Builder->CreateFMul(Op0, Y); |
| SimpR = BinaryOperator::CreateFDiv(NewInst, X); |
| } |
| } |
| |
| if (NewInst) { |
| if (Instruction *T = dyn_cast<Instruction>(NewInst)) |
| T->setDebugLoc(I.getDebugLoc()); |
| SimpR->setFastMathFlags(I.getFastMathFlags()); |
| return SimpR; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /// This function implements the transforms common to both integer remainder |
| /// instructions (urem and srem). It is called by the visitors to those integer |
| /// remainder instructions. |
| /// @brief Common integer remainder transforms |
| Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) { |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| |
| // The RHS is known non-zero. |
| if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) { |
| I.setOperand(1, V); |
| return &I; |
| } |
| |
| // Handle cases involving: rem X, (select Cond, Y, Z) |
| if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I)) |
| return &I; |
| |
| if (isa<ConstantInt>(Op1)) { |
| if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) { |
| if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) { |
| if (Instruction *R = FoldOpIntoSelect(I, SI)) |
| return R; |
| } else if (isa<PHINode>(Op0I)) { |
| if (Instruction *NV = FoldOpIntoPhi(I)) |
| return NV; |
| } |
| |
| // See if we can fold away this rem instruction. |
| if (SimplifyDemandedInstructionBits(I)) |
| return &I; |
| } |
| } |
| |
| return 0; |
| } |
| |
| Instruction *InstCombiner::visitURem(BinaryOperator &I) { |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| |
| if (Value *V = SimplifyURemInst(Op0, Op1, TD)) |
| return ReplaceInstUsesWith(I, V); |
| |
| if (Instruction *common = commonIRemTransforms(I)) |
| return common; |
| |
| // X urem C^2 -> X and C-1 |
| { const APInt *C; |
| if (match(Op1, m_Power2(C))) |
| return BinaryOperator::CreateAnd(Op0, |
| ConstantInt::get(I.getType(), *C-1)); |
| } |
| |
| // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1) |
| if (match(Op1, m_Shl(m_Power2(), m_Value()))) { |
| Constant *N1 = Constant::getAllOnesValue(I.getType()); |
| Value *Add = Builder->CreateAdd(Op1, N1); |
| return BinaryOperator::CreateAnd(Op0, Add); |
| } |
| |
| // urem X, (select Cond, 2^C1, 2^C2) --> |
| // select Cond, (and X, C1-1), (and X, C2-1) |
| // when C1&C2 are powers of two. |
| { Value *Cond; const APInt *C1, *C2; |
| if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) { |
| Value *TrueAnd = Builder->CreateAnd(Op0, *C1-1, Op1->getName()+".t"); |
| Value *FalseAnd = Builder->CreateAnd(Op0, *C2-1, Op1->getName()+".f"); |
| return SelectInst::Create(Cond, TrueAnd, FalseAnd); |
| } |
| } |
| |
| // (zext A) urem (zext B) --> zext (A urem B) |
| if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0)) |
| if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy())) |
| return new ZExtInst(Builder->CreateURem(ZOp0->getOperand(0), ZOp1), |
| I.getType()); |
| |
| return 0; |
| } |
| |
| Instruction *InstCombiner::visitSRem(BinaryOperator &I) { |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| |
| if (Value *V = SimplifySRemInst(Op0, Op1, TD)) |
| return ReplaceInstUsesWith(I, V); |
| |
| // Handle the integer rem common cases |
| if (Instruction *Common = commonIRemTransforms(I)) |
| return Common; |
| |
| if (Value *RHSNeg = dyn_castNegVal(Op1)) |
| if (!isa<Constant>(RHSNeg) || |
| (isa<ConstantInt>(RHSNeg) && |
| cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) { |
| // X % -Y -> X % Y |
| Worklist.AddValue(I.getOperand(1)); |
| I.setOperand(1, RHSNeg); |
| return &I; |
| } |
| |
| // If the sign bits of both operands are zero (i.e. we can prove they are |
| // unsigned inputs), turn this into a urem. |
| if (I.getType()->isIntegerTy()) { |
| APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())); |
| if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) { |
| // X srem Y -> X urem Y, iff X and Y don't have sign bit set |
| return BinaryOperator::CreateURem(Op0, Op1, I.getName()); |
| } |
| } |
| |
| // If it's a constant vector, flip any negative values positive. |
| if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) { |
| Constant *C = cast<Constant>(Op1); |
| unsigned VWidth = C->getType()->getVectorNumElements(); |
| |
| bool hasNegative = false; |
| bool hasMissing = false; |
| for (unsigned i = 0; i != VWidth; ++i) { |
| Constant *Elt = C->getAggregateElement(i); |
| if (Elt == 0) { |
| hasMissing = true; |
| break; |
| } |
| |
| if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt)) |
| if (RHS->isNegative()) |
| hasNegative = true; |
| } |
| |
| if (hasNegative && !hasMissing) { |
| SmallVector<Constant *, 16> Elts(VWidth); |
| for (unsigned i = 0; i != VWidth; ++i) { |
| Elts[i] = C->getAggregateElement(i); // Handle undef, etc. |
| if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) { |
| if (RHS->isNegative()) |
| Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS)); |
| } |
| } |
| |
| Constant *NewRHSV = ConstantVector::get(Elts); |
| if (NewRHSV != C) { // Don't loop on -MININT |
| Worklist.AddValue(I.getOperand(1)); |
| I.setOperand(1, NewRHSV); |
| return &I; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| Instruction *InstCombiner::visitFRem(BinaryOperator &I) { |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| |
| if (Value *V = SimplifyFRemInst(Op0, Op1, TD)) |
| return ReplaceInstUsesWith(I, V); |
| |
| // Handle cases involving: rem X, (select Cond, Y, Z) |
| if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I)) |
| return &I; |
| |
| return 0; |
| } |