| //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass performs a simple dominator tree walk that eliminates trivially |
| // redundant instructions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "early-cse" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/ADT/Hashing.h" |
| #include "llvm/ADT/ScopedHashTable.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/Dominators.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/RecyclingAllocator.h" |
| #include "llvm/Target/TargetLibraryInfo.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include <deque> |
| using namespace llvm; |
| |
| STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd"); |
| STATISTIC(NumCSE, "Number of instructions CSE'd"); |
| STATISTIC(NumCSELoad, "Number of load instructions CSE'd"); |
| STATISTIC(NumCSECall, "Number of call instructions CSE'd"); |
| STATISTIC(NumDSE, "Number of trivial dead stores removed"); |
| |
| static unsigned getHash(const void *V) { |
| return DenseMapInfo<const void*>::getHashValue(V); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SimpleValue |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| /// SimpleValue - Instances of this struct represent available values in the |
| /// scoped hash table. |
| struct SimpleValue { |
| Instruction *Inst; |
| |
| SimpleValue(Instruction *I) : Inst(I) { |
| assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); |
| } |
| |
| bool isSentinel() const { |
| return Inst == DenseMapInfo<Instruction*>::getEmptyKey() || |
| Inst == DenseMapInfo<Instruction*>::getTombstoneKey(); |
| } |
| |
| static bool canHandle(Instruction *Inst) { |
| // This can only handle non-void readnone functions. |
| if (CallInst *CI = dyn_cast<CallInst>(Inst)) |
| return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy(); |
| return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) || |
| isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) || |
| isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) || |
| isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) || |
| isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst); |
| } |
| }; |
| } |
| |
| namespace llvm { |
| // SimpleValue is POD. |
| template<> struct isPodLike<SimpleValue> { |
| static const bool value = true; |
| }; |
| |
| template<> struct DenseMapInfo<SimpleValue> { |
| static inline SimpleValue getEmptyKey() { |
| return DenseMapInfo<Instruction*>::getEmptyKey(); |
| } |
| static inline SimpleValue getTombstoneKey() { |
| return DenseMapInfo<Instruction*>::getTombstoneKey(); |
| } |
| static unsigned getHashValue(SimpleValue Val); |
| static bool isEqual(SimpleValue LHS, SimpleValue RHS); |
| }; |
| } |
| |
| unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) { |
| Instruction *Inst = Val.Inst; |
| // Hash in all of the operands as pointers. |
| if (BinaryOperator* BinOp = dyn_cast<BinaryOperator>(Inst)) { |
| Value *LHS = BinOp->getOperand(0); |
| Value *RHS = BinOp->getOperand(1); |
| if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1)) |
| std::swap(LHS, RHS); |
| |
| if (isa<OverflowingBinaryOperator>(BinOp)) { |
| // Hash the overflow behavior |
| unsigned Overflow = |
| BinOp->hasNoSignedWrap() * OverflowingBinaryOperator::NoSignedWrap | |
| BinOp->hasNoUnsignedWrap() * OverflowingBinaryOperator::NoUnsignedWrap; |
| return hash_combine(BinOp->getOpcode(), Overflow, LHS, RHS); |
| } |
| |
| return hash_combine(BinOp->getOpcode(), LHS, RHS); |
| } |
| |
| if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) { |
| Value *LHS = CI->getOperand(0); |
| Value *RHS = CI->getOperand(1); |
| CmpInst::Predicate Pred = CI->getPredicate(); |
| if (Inst->getOperand(0) > Inst->getOperand(1)) { |
| std::swap(LHS, RHS); |
| Pred = CI->getSwappedPredicate(); |
| } |
| return hash_combine(Inst->getOpcode(), Pred, LHS, RHS); |
| } |
| |
| if (CastInst *CI = dyn_cast<CastInst>(Inst)) |
| return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0)); |
| |
| if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) |
| return hash_combine(EVI->getOpcode(), EVI->getOperand(0), |
| hash_combine_range(EVI->idx_begin(), EVI->idx_end())); |
| |
| if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) |
| return hash_combine(IVI->getOpcode(), IVI->getOperand(0), |
| IVI->getOperand(1), |
| hash_combine_range(IVI->idx_begin(), IVI->idx_end())); |
| |
| assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) || |
| isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) || |
| isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || |
| isa<ShuffleVectorInst>(Inst)) && "Invalid/unknown instruction"); |
| |
| // Mix in the opcode. |
| return hash_combine(Inst->getOpcode(), |
| hash_combine_range(Inst->value_op_begin(), |
| Inst->value_op_end())); |
| } |
| |
| bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) { |
| Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; |
| |
| if (LHS.isSentinel() || RHS.isSentinel()) |
| return LHSI == RHSI; |
| |
| if (LHSI->getOpcode() != RHSI->getOpcode()) return false; |
| if (LHSI->isIdenticalTo(RHSI)) return true; |
| |
| // If we're not strictly identical, we still might be a commutable instruction |
| if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) { |
| if (!LHSBinOp->isCommutative()) |
| return false; |
| |
| assert(isa<BinaryOperator>(RHSI) |
| && "same opcode, but different instruction type?"); |
| BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI); |
| |
| // Check overflow attributes |
| if (isa<OverflowingBinaryOperator>(LHSBinOp)) { |
| assert(isa<OverflowingBinaryOperator>(RHSBinOp) |
| && "same opcode, but different operator type?"); |
| if (LHSBinOp->hasNoUnsignedWrap() != RHSBinOp->hasNoUnsignedWrap() || |
| LHSBinOp->hasNoSignedWrap() != RHSBinOp->hasNoSignedWrap()) |
| return false; |
| } |
| |
| // Commuted equality |
| return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) && |
| LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0); |
| } |
| if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) { |
| assert(isa<CmpInst>(RHSI) |
| && "same opcode, but different instruction type?"); |
| CmpInst *RHSCmp = cast<CmpInst>(RHSI); |
| // Commuted equality |
| return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) && |
| LHSCmp->getOperand(1) == RHSCmp->getOperand(0) && |
| LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate(); |
| } |
| |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // CallValue |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| /// CallValue - Instances of this struct represent available call values in |
| /// the scoped hash table. |
| struct CallValue { |
| Instruction *Inst; |
| |
| CallValue(Instruction *I) : Inst(I) { |
| assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); |
| } |
| |
| bool isSentinel() const { |
| return Inst == DenseMapInfo<Instruction*>::getEmptyKey() || |
| Inst == DenseMapInfo<Instruction*>::getTombstoneKey(); |
| } |
| |
| static bool canHandle(Instruction *Inst) { |
| // Don't value number anything that returns void. |
| if (Inst->getType()->isVoidTy()) |
| return false; |
| |
| CallInst *CI = dyn_cast<CallInst>(Inst); |
| if (CI == 0 || !CI->onlyReadsMemory()) |
| return false; |
| return true; |
| } |
| }; |
| } |
| |
| namespace llvm { |
| // CallValue is POD. |
| template<> struct isPodLike<CallValue> { |
| static const bool value = true; |
| }; |
| |
| template<> struct DenseMapInfo<CallValue> { |
| static inline CallValue getEmptyKey() { |
| return DenseMapInfo<Instruction*>::getEmptyKey(); |
| } |
| static inline CallValue getTombstoneKey() { |
| return DenseMapInfo<Instruction*>::getTombstoneKey(); |
| } |
| static unsigned getHashValue(CallValue Val); |
| static bool isEqual(CallValue LHS, CallValue RHS); |
| }; |
| } |
| unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) { |
| Instruction *Inst = Val.Inst; |
| // Hash in all of the operands as pointers. |
| unsigned Res = 0; |
| for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) { |
| assert(!Inst->getOperand(i)->getType()->isMetadataTy() && |
| "Cannot value number calls with metadata operands"); |
| Res ^= getHash(Inst->getOperand(i)) << (i & 0xF); |
| } |
| |
| // Mix in the opcode. |
| return (Res << 1) ^ Inst->getOpcode(); |
| } |
| |
| bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) { |
| Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; |
| if (LHS.isSentinel() || RHS.isSentinel()) |
| return LHSI == RHSI; |
| return LHSI->isIdenticalTo(RHSI); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // EarlyCSE pass. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| /// EarlyCSE - This pass does a simple depth-first walk over the dominator |
| /// tree, eliminating trivially redundant instructions and using instsimplify |
| /// to canonicalize things as it goes. It is intended to be fast and catch |
| /// obvious cases so that instcombine and other passes are more effective. It |
| /// is expected that a later pass of GVN will catch the interesting/hard |
| /// cases. |
| class EarlyCSE : public FunctionPass { |
| public: |
| const DataLayout *TD; |
| const TargetLibraryInfo *TLI; |
| DominatorTree *DT; |
| typedef RecyclingAllocator<BumpPtrAllocator, |
| ScopedHashTableVal<SimpleValue, Value*> > AllocatorTy; |
| typedef ScopedHashTable<SimpleValue, Value*, DenseMapInfo<SimpleValue>, |
| AllocatorTy> ScopedHTType; |
| |
| /// AvailableValues - This scoped hash table contains the current values of |
| /// all of our simple scalar expressions. As we walk down the domtree, we |
| /// look to see if instructions are in this: if so, we replace them with what |
| /// we find, otherwise we insert them so that dominated values can succeed in |
| /// their lookup. |
| ScopedHTType *AvailableValues; |
| |
| /// AvailableLoads - This scoped hash table contains the current values |
| /// of loads. This allows us to get efficient access to dominating loads when |
| /// we have a fully redundant load. In addition to the most recent load, we |
| /// keep track of a generation count of the read, which is compared against |
| /// the current generation count. The current generation count is |
| /// incremented after every possibly writing memory operation, which ensures |
| /// that we only CSE loads with other loads that have no intervening store. |
| typedef RecyclingAllocator<BumpPtrAllocator, |
| ScopedHashTableVal<Value*, std::pair<Value*, unsigned> > > LoadMapAllocator; |
| typedef ScopedHashTable<Value*, std::pair<Value*, unsigned>, |
| DenseMapInfo<Value*>, LoadMapAllocator> LoadHTType; |
| LoadHTType *AvailableLoads; |
| |
| /// AvailableCalls - This scoped hash table contains the current values |
| /// of read-only call values. It uses the same generation count as loads. |
| typedef ScopedHashTable<CallValue, std::pair<Value*, unsigned> > CallHTType; |
| CallHTType *AvailableCalls; |
| |
| /// CurrentGeneration - This is the current generation of the memory value. |
| unsigned CurrentGeneration; |
| |
| static char ID; |
| explicit EarlyCSE() : FunctionPass(ID) { |
| initializeEarlyCSEPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnFunction(Function &F); |
| |
| private: |
| |
| // NodeScope - almost a POD, but needs to call the constructors for the |
| // scoped hash tables so that a new scope gets pushed on. These are RAII so |
| // that the scope gets popped when the NodeScope is destroyed. |
| class NodeScope { |
| public: |
| NodeScope(ScopedHTType *availableValues, |
| LoadHTType *availableLoads, |
| CallHTType *availableCalls) : |
| Scope(*availableValues), |
| LoadScope(*availableLoads), |
| CallScope(*availableCalls) {} |
| |
| private: |
| NodeScope(const NodeScope&) LLVM_DELETED_FUNCTION; |
| void operator=(const NodeScope&) LLVM_DELETED_FUNCTION; |
| |
| ScopedHTType::ScopeTy Scope; |
| LoadHTType::ScopeTy LoadScope; |
| CallHTType::ScopeTy CallScope; |
| }; |
| |
| // StackNode - contains all the needed information to create a stack for |
| // doing a depth first tranversal of the tree. This includes scopes for |
| // values, loads, and calls as well as the generation. There is a child |
| // iterator so that the children do not need to be store spearately. |
| class StackNode { |
| public: |
| StackNode(ScopedHTType *availableValues, |
| LoadHTType *availableLoads, |
| CallHTType *availableCalls, |
| unsigned cg, DomTreeNode *n, |
| DomTreeNode::iterator child, DomTreeNode::iterator end) : |
| CurrentGeneration(cg), ChildGeneration(cg), Node(n), |
| ChildIter(child), EndIter(end), |
| Scopes(availableValues, availableLoads, availableCalls), |
| Processed(false) {} |
| |
| // Accessors. |
| unsigned currentGeneration() { return CurrentGeneration; } |
| unsigned childGeneration() { return ChildGeneration; } |
| void childGeneration(unsigned generation) { ChildGeneration = generation; } |
| DomTreeNode *node() { return Node; } |
| DomTreeNode::iterator childIter() { return ChildIter; } |
| DomTreeNode *nextChild() { |
| DomTreeNode *child = *ChildIter; |
| ++ChildIter; |
| return child; |
| } |
| DomTreeNode::iterator end() { return EndIter; } |
| bool isProcessed() { return Processed; } |
| void process() { Processed = true; } |
| |
| private: |
| StackNode(const StackNode&) LLVM_DELETED_FUNCTION; |
| void operator=(const StackNode&) LLVM_DELETED_FUNCTION; |
| |
| // Members. |
| unsigned CurrentGeneration; |
| unsigned ChildGeneration; |
| DomTreeNode *Node; |
| DomTreeNode::iterator ChildIter; |
| DomTreeNode::iterator EndIter; |
| NodeScope Scopes; |
| bool Processed; |
| }; |
| |
| bool processNode(DomTreeNode *Node); |
| |
| // This transformation requires dominator postdominator info |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<DominatorTree>(); |
| AU.addRequired<TargetLibraryInfo>(); |
| AU.setPreservesCFG(); |
| } |
| }; |
| } |
| |
| char EarlyCSE::ID = 0; |
| |
| // createEarlyCSEPass - The public interface to this file. |
| FunctionPass *llvm::createEarlyCSEPass() { |
| return new EarlyCSE(); |
| } |
| |
| INITIALIZE_PASS_BEGIN(EarlyCSE, "early-cse", "Early CSE", false, false) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTree) |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) |
| INITIALIZE_PASS_END(EarlyCSE, "early-cse", "Early CSE", false, false) |
| |
| bool EarlyCSE::processNode(DomTreeNode *Node) { |
| BasicBlock *BB = Node->getBlock(); |
| |
| // If this block has a single predecessor, then the predecessor is the parent |
| // of the domtree node and all of the live out memory values are still current |
| // in this block. If this block has multiple predecessors, then they could |
| // have invalidated the live-out memory values of our parent value. For now, |
| // just be conservative and invalidate memory if this block has multiple |
| // predecessors. |
| if (BB->getSinglePredecessor() == 0) |
| ++CurrentGeneration; |
| |
| /// LastStore - Keep track of the last non-volatile store that we saw... for |
| /// as long as there in no instruction that reads memory. If we see a store |
| /// to the same location, we delete the dead store. This zaps trivial dead |
| /// stores which can occur in bitfield code among other things. |
| StoreInst *LastStore = 0; |
| |
| bool Changed = false; |
| |
| // See if any instructions in the block can be eliminated. If so, do it. If |
| // not, add them to AvailableValues. |
| for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { |
| Instruction *Inst = I++; |
| |
| // Dead instructions should just be removed. |
| if (isInstructionTriviallyDead(Inst, TLI)) { |
| DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n'); |
| Inst->eraseFromParent(); |
| Changed = true; |
| ++NumSimplify; |
| continue; |
| } |
| |
| // If the instruction can be simplified (e.g. X+0 = X) then replace it with |
| // its simpler value. |
| if (Value *V = SimplifyInstruction(Inst, TD, TLI, DT)) { |
| DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V << '\n'); |
| Inst->replaceAllUsesWith(V); |
| Inst->eraseFromParent(); |
| Changed = true; |
| ++NumSimplify; |
| continue; |
| } |
| |
| // If this is a simple instruction that we can value number, process it. |
| if (SimpleValue::canHandle(Inst)) { |
| // See if the instruction has an available value. If so, use it. |
| if (Value *V = AvailableValues->lookup(Inst)) { |
| DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << " to: " << *V << '\n'); |
| Inst->replaceAllUsesWith(V); |
| Inst->eraseFromParent(); |
| Changed = true; |
| ++NumCSE; |
| continue; |
| } |
| |
| // Otherwise, just remember that this value is available. |
| AvailableValues->insert(Inst, Inst); |
| continue; |
| } |
| |
| // If this is a non-volatile load, process it. |
| if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { |
| // Ignore volatile loads. |
| if (!LI->isSimple()) { |
| LastStore = 0; |
| continue; |
| } |
| |
| // If we have an available version of this load, and if it is the right |
| // generation, replace this instruction. |
| std::pair<Value*, unsigned> InVal = |
| AvailableLoads->lookup(Inst->getOperand(0)); |
| if (InVal.first != 0 && InVal.second == CurrentGeneration) { |
| DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst << " to: " |
| << *InVal.first << '\n'); |
| if (!Inst->use_empty()) Inst->replaceAllUsesWith(InVal.first); |
| Inst->eraseFromParent(); |
| Changed = true; |
| ++NumCSELoad; |
| continue; |
| } |
| |
| // Otherwise, remember that we have this instruction. |
| AvailableLoads->insert(Inst->getOperand(0), |
| std::pair<Value*, unsigned>(Inst, CurrentGeneration)); |
| LastStore = 0; |
| continue; |
| } |
| |
| // If this instruction may read from memory, forget LastStore. |
| if (Inst->mayReadFromMemory()) |
| LastStore = 0; |
| |
| // If this is a read-only call, process it. |
| if (CallValue::canHandle(Inst)) { |
| // If we have an available version of this call, and if it is the right |
| // generation, replace this instruction. |
| std::pair<Value*, unsigned> InVal = AvailableCalls->lookup(Inst); |
| if (InVal.first != 0 && InVal.second == CurrentGeneration) { |
| DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst << " to: " |
| << *InVal.first << '\n'); |
| if (!Inst->use_empty()) Inst->replaceAllUsesWith(InVal.first); |
| Inst->eraseFromParent(); |
| Changed = true; |
| ++NumCSECall; |
| continue; |
| } |
| |
| // Otherwise, remember that we have this instruction. |
| AvailableCalls->insert(Inst, |
| std::pair<Value*, unsigned>(Inst, CurrentGeneration)); |
| continue; |
| } |
| |
| // Okay, this isn't something we can CSE at all. Check to see if it is |
| // something that could modify memory. If so, our available memory values |
| // cannot be used so bump the generation count. |
| if (Inst->mayWriteToMemory()) { |
| ++CurrentGeneration; |
| |
| if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { |
| // We do a trivial form of DSE if there are two stores to the same |
| // location with no intervening loads. Delete the earlier store. |
| if (LastStore && |
| LastStore->getPointerOperand() == SI->getPointerOperand()) { |
| DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore << " due to: " |
| << *Inst << '\n'); |
| LastStore->eraseFromParent(); |
| Changed = true; |
| ++NumDSE; |
| LastStore = 0; |
| continue; |
| } |
| |
| // Okay, we just invalidated anything we knew about loaded values. Try |
| // to salvage *something* by remembering that the stored value is a live |
| // version of the pointer. It is safe to forward from volatile stores |
| // to non-volatile loads, so we don't have to check for volatility of |
| // the store. |
| AvailableLoads->insert(SI->getPointerOperand(), |
| std::pair<Value*, unsigned>(SI->getValueOperand(), CurrentGeneration)); |
| |
| // Remember that this was the last store we saw for DSE. |
| if (SI->isSimple()) |
| LastStore = SI; |
| } |
| } |
| } |
| |
| return Changed; |
| } |
| |
| |
| bool EarlyCSE::runOnFunction(Function &F) { |
| std::deque<StackNode *> nodesToProcess; |
| |
| TD = getAnalysisIfAvailable<DataLayout>(); |
| TLI = &getAnalysis<TargetLibraryInfo>(); |
| DT = &getAnalysis<DominatorTree>(); |
| |
| // Tables that the pass uses when walking the domtree. |
| ScopedHTType AVTable; |
| AvailableValues = &AVTable; |
| LoadHTType LoadTable; |
| AvailableLoads = &LoadTable; |
| CallHTType CallTable; |
| AvailableCalls = &CallTable; |
| |
| CurrentGeneration = 0; |
| bool Changed = false; |
| |
| // Process the root node. |
| nodesToProcess.push_front( |
| new StackNode(AvailableValues, AvailableLoads, AvailableCalls, |
| CurrentGeneration, DT->getRootNode(), |
| DT->getRootNode()->begin(), |
| DT->getRootNode()->end())); |
| |
| // Save the current generation. |
| unsigned LiveOutGeneration = CurrentGeneration; |
| |
| // Process the stack. |
| while (!nodesToProcess.empty()) { |
| // Grab the first item off the stack. Set the current generation, remove |
| // the node from the stack, and process it. |
| StackNode *NodeToProcess = nodesToProcess.front(); |
| |
| // Initialize class members. |
| CurrentGeneration = NodeToProcess->currentGeneration(); |
| |
| // Check if the node needs to be processed. |
| if (!NodeToProcess->isProcessed()) { |
| // Process the node. |
| Changed |= processNode(NodeToProcess->node()); |
| NodeToProcess->childGeneration(CurrentGeneration); |
| NodeToProcess->process(); |
| } else if (NodeToProcess->childIter() != NodeToProcess->end()) { |
| // Push the next child onto the stack. |
| DomTreeNode *child = NodeToProcess->nextChild(); |
| nodesToProcess.push_front( |
| new StackNode(AvailableValues, |
| AvailableLoads, |
| AvailableCalls, |
| NodeToProcess->childGeneration(), child, |
| child->begin(), child->end())); |
| } else { |
| // It has been processed, and there are no more children to process, |
| // so delete it and pop it off the stack. |
| delete NodeToProcess; |
| nodesToProcess.pop_front(); |
| } |
| } // while (!nodes...) |
| |
| // Reset the current generation. |
| CurrentGeneration = LiveOutGeneration; |
| |
| return Changed; |
| } |