| //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This transformation analyzes and transforms the induction variables (and |
| // computations derived from them) into forms suitable for efficient execution |
| // on the target. |
| // |
| // This pass performs a strength reduction on array references inside loops that |
| // have as one or more of their components the loop induction variable, it |
| // rewrites expressions to take advantage of scaled-index addressing modes |
| // available on the target, and it performs a variety of other optimizations |
| // related to loop induction variables. |
| // |
| // Terminology note: this code has a lot of handling for "post-increment" or |
| // "post-inc" users. This is not talking about post-increment addressing modes; |
| // it is instead talking about code like this: |
| // |
| // %i = phi [ 0, %entry ], [ %i.next, %latch ] |
| // ... |
| // %i.next = add %i, 1 |
| // %c = icmp eq %i.next, %n |
| // |
| // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however |
| // it's useful to think about these as the same register, with some uses using |
| // the value of the register before the add and some using // it after. In this |
| // example, the icmp is a post-increment user, since it uses %i.next, which is |
| // the value of the induction variable after the increment. The other common |
| // case of post-increment users is users outside the loop. |
| // |
| // TODO: More sophistication in the way Formulae are generated and filtered. |
| // |
| // TODO: Handle multiple loops at a time. |
| // |
| // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead |
| // of a GlobalValue? |
| // |
| // TODO: When truncation is free, truncate ICmp users' operands to make it a |
| // smaller encoding (on x86 at least). |
| // |
| // TODO: When a negated register is used by an add (such as in a list of |
| // multiple base registers, or as the increment expression in an addrec), |
| // we may not actually need both reg and (-1 * reg) in registers; the |
| // negation can be implemented by using a sub instead of an add. The |
| // lack of support for taking this into consideration when making |
| // register pressure decisions is partly worked around by the "Special" |
| // use kind. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "loop-reduce" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallBitVector.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/Analysis/Dominators.h" |
| #include "llvm/Analysis/IVUsers.h" |
| #include "llvm/Analysis/LoopPass.h" |
| #include "llvm/Analysis/ScalarEvolutionExpander.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/Assembly/Writer.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ValueHandle.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for |
| /// bail out. This threshold is far beyond the number of users that LSR can |
| /// conceivably solve, so it should not affect generated code, but catches the |
| /// worst cases before LSR burns too much compile time and stack space. |
| static const unsigned MaxIVUsers = 200; |
| |
| // Temporary flag to cleanup congruent phis after LSR phi expansion. |
| // It's currently disabled until we can determine whether it's truly useful or |
| // not. The flag should be removed after the v3.0 release. |
| // This is now needed for ivchains. |
| static cl::opt<bool> EnablePhiElim( |
| "enable-lsr-phielim", cl::Hidden, cl::init(true), |
| cl::desc("Enable LSR phi elimination")); |
| |
| #ifndef NDEBUG |
| // Stress test IV chain generation. |
| static cl::opt<bool> StressIVChain( |
| "stress-ivchain", cl::Hidden, cl::init(false), |
| cl::desc("Stress test LSR IV chains")); |
| #else |
| static bool StressIVChain = false; |
| #endif |
| |
| namespace { |
| |
| /// RegSortData - This class holds data which is used to order reuse candidates. |
| class RegSortData { |
| public: |
| /// UsedByIndices - This represents the set of LSRUse indices which reference |
| /// a particular register. |
| SmallBitVector UsedByIndices; |
| |
| RegSortData() {} |
| |
| void print(raw_ostream &OS) const; |
| void dump() const; |
| }; |
| |
| } |
| |
| void RegSortData::print(raw_ostream &OS) const { |
| OS << "[NumUses=" << UsedByIndices.count() << ']'; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| void RegSortData::dump() const { |
| print(errs()); errs() << '\n'; |
| } |
| #endif |
| |
| namespace { |
| |
| /// RegUseTracker - Map register candidates to information about how they are |
| /// used. |
| class RegUseTracker { |
| typedef DenseMap<const SCEV *, RegSortData> RegUsesTy; |
| |
| RegUsesTy RegUsesMap; |
| SmallVector<const SCEV *, 16> RegSequence; |
| |
| public: |
| void CountRegister(const SCEV *Reg, size_t LUIdx); |
| void DropRegister(const SCEV *Reg, size_t LUIdx); |
| void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx); |
| |
| bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; |
| |
| const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; |
| |
| void clear(); |
| |
| typedef SmallVectorImpl<const SCEV *>::iterator iterator; |
| typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator; |
| iterator begin() { return RegSequence.begin(); } |
| iterator end() { return RegSequence.end(); } |
| const_iterator begin() const { return RegSequence.begin(); } |
| const_iterator end() const { return RegSequence.end(); } |
| }; |
| |
| } |
| |
| void |
| RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) { |
| std::pair<RegUsesTy::iterator, bool> Pair = |
| RegUsesMap.insert(std::make_pair(Reg, RegSortData())); |
| RegSortData &RSD = Pair.first->second; |
| if (Pair.second) |
| RegSequence.push_back(Reg); |
| RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); |
| RSD.UsedByIndices.set(LUIdx); |
| } |
| |
| void |
| RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) { |
| RegUsesTy::iterator It = RegUsesMap.find(Reg); |
| assert(It != RegUsesMap.end()); |
| RegSortData &RSD = It->second; |
| assert(RSD.UsedByIndices.size() > LUIdx); |
| RSD.UsedByIndices.reset(LUIdx); |
| } |
| |
| void |
| RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) { |
| assert(LUIdx <= LastLUIdx); |
| |
| // Update RegUses. The data structure is not optimized for this purpose; |
| // we must iterate through it and update each of the bit vectors. |
| for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end(); |
| I != E; ++I) { |
| SmallBitVector &UsedByIndices = I->second.UsedByIndices; |
| if (LUIdx < UsedByIndices.size()) |
| UsedByIndices[LUIdx] = |
| LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0; |
| UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); |
| } |
| } |
| |
| bool |
| RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { |
| RegUsesTy::const_iterator I = RegUsesMap.find(Reg); |
| if (I == RegUsesMap.end()) |
| return false; |
| const SmallBitVector &UsedByIndices = I->second.UsedByIndices; |
| int i = UsedByIndices.find_first(); |
| if (i == -1) return false; |
| if ((size_t)i != LUIdx) return true; |
| return UsedByIndices.find_next(i) != -1; |
| } |
| |
| const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { |
| RegUsesTy::const_iterator I = RegUsesMap.find(Reg); |
| assert(I != RegUsesMap.end() && "Unknown register!"); |
| return I->second.UsedByIndices; |
| } |
| |
| void RegUseTracker::clear() { |
| RegUsesMap.clear(); |
| RegSequence.clear(); |
| } |
| |
| namespace { |
| |
| /// Formula - This class holds information that describes a formula for |
| /// computing satisfying a use. It may include broken-out immediates and scaled |
| /// registers. |
| struct Formula { |
| /// Global base address used for complex addressing. |
| GlobalValue *BaseGV; |
| |
| /// Base offset for complex addressing. |
| int64_t BaseOffset; |
| |
| /// Whether any complex addressing has a base register. |
| bool HasBaseReg; |
| |
| /// The scale of any complex addressing. |
| int64_t Scale; |
| |
| /// BaseRegs - The list of "base" registers for this use. When this is |
| /// non-empty, |
| SmallVector<const SCEV *, 4> BaseRegs; |
| |
| /// ScaledReg - The 'scaled' register for this use. This should be non-null |
| /// when Scale is not zero. |
| const SCEV *ScaledReg; |
| |
| /// UnfoldedOffset - An additional constant offset which added near the |
| /// use. This requires a temporary register, but the offset itself can |
| /// live in an add immediate field rather than a register. |
| int64_t UnfoldedOffset; |
| |
| Formula() |
| : BaseGV(0), BaseOffset(0), HasBaseReg(false), Scale(0), ScaledReg(0), |
| UnfoldedOffset(0) {} |
| |
| void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); |
| |
| unsigned getNumRegs() const; |
| Type *getType() const; |
| |
| void DeleteBaseReg(const SCEV *&S); |
| |
| bool referencesReg(const SCEV *S) const; |
| bool hasRegsUsedByUsesOtherThan(size_t LUIdx, |
| const RegUseTracker &RegUses) const; |
| |
| void print(raw_ostream &OS) const; |
| void dump() const; |
| }; |
| |
| } |
| |
| /// DoInitialMatch - Recursion helper for InitialMatch. |
| static void DoInitialMatch(const SCEV *S, Loop *L, |
| SmallVectorImpl<const SCEV *> &Good, |
| SmallVectorImpl<const SCEV *> &Bad, |
| ScalarEvolution &SE) { |
| // Collect expressions which properly dominate the loop header. |
| if (SE.properlyDominates(S, L->getHeader())) { |
| Good.push_back(S); |
| return; |
| } |
| |
| // Look at add operands. |
| if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { |
| for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); |
| I != E; ++I) |
| DoInitialMatch(*I, L, Good, Bad, SE); |
| return; |
| } |
| |
| // Look at addrec operands. |
| if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) |
| if (!AR->getStart()->isZero()) { |
| DoInitialMatch(AR->getStart(), L, Good, Bad, SE); |
| DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), |
| AR->getStepRecurrence(SE), |
| // FIXME: AR->getNoWrapFlags() |
| AR->getLoop(), SCEV::FlagAnyWrap), |
| L, Good, Bad, SE); |
| return; |
| } |
| |
| // Handle a multiplication by -1 (negation) if it didn't fold. |
| if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) |
| if (Mul->getOperand(0)->isAllOnesValue()) { |
| SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); |
| const SCEV *NewMul = SE.getMulExpr(Ops); |
| |
| SmallVector<const SCEV *, 4> MyGood; |
| SmallVector<const SCEV *, 4> MyBad; |
| DoInitialMatch(NewMul, L, MyGood, MyBad, SE); |
| const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( |
| SE.getEffectiveSCEVType(NewMul->getType()))); |
| for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(), |
| E = MyGood.end(); I != E; ++I) |
| Good.push_back(SE.getMulExpr(NegOne, *I)); |
| for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(), |
| E = MyBad.end(); I != E; ++I) |
| Bad.push_back(SE.getMulExpr(NegOne, *I)); |
| return; |
| } |
| |
| // Ok, we can't do anything interesting. Just stuff the whole thing into a |
| // register and hope for the best. |
| Bad.push_back(S); |
| } |
| |
| /// InitialMatch - Incorporate loop-variant parts of S into this Formula, |
| /// attempting to keep all loop-invariant and loop-computable values in a |
| /// single base register. |
| void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { |
| SmallVector<const SCEV *, 4> Good; |
| SmallVector<const SCEV *, 4> Bad; |
| DoInitialMatch(S, L, Good, Bad, SE); |
| if (!Good.empty()) { |
| const SCEV *Sum = SE.getAddExpr(Good); |
| if (!Sum->isZero()) |
| BaseRegs.push_back(Sum); |
| HasBaseReg = true; |
| } |
| if (!Bad.empty()) { |
| const SCEV *Sum = SE.getAddExpr(Bad); |
| if (!Sum->isZero()) |
| BaseRegs.push_back(Sum); |
| HasBaseReg = true; |
| } |
| } |
| |
| /// getNumRegs - Return the total number of register operands used by this |
| /// formula. This does not include register uses implied by non-constant |
| /// addrec strides. |
| unsigned Formula::getNumRegs() const { |
| return !!ScaledReg + BaseRegs.size(); |
| } |
| |
| /// getType - Return the type of this formula, if it has one, or null |
| /// otherwise. This type is meaningless except for the bit size. |
| Type *Formula::getType() const { |
| return !BaseRegs.empty() ? BaseRegs.front()->getType() : |
| ScaledReg ? ScaledReg->getType() : |
| BaseGV ? BaseGV->getType() : |
| 0; |
| } |
| |
| /// DeleteBaseReg - Delete the given base reg from the BaseRegs list. |
| void Formula::DeleteBaseReg(const SCEV *&S) { |
| if (&S != &BaseRegs.back()) |
| std::swap(S, BaseRegs.back()); |
| BaseRegs.pop_back(); |
| } |
| |
| /// referencesReg - Test if this formula references the given register. |
| bool Formula::referencesReg(const SCEV *S) const { |
| return S == ScaledReg || |
| std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end(); |
| } |
| |
| /// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers |
| /// which are used by uses other than the use with the given index. |
| bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, |
| const RegUseTracker &RegUses) const { |
| if (ScaledReg) |
| if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) |
| return true; |
| for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), |
| E = BaseRegs.end(); I != E; ++I) |
| if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx)) |
| return true; |
| return false; |
| } |
| |
| void Formula::print(raw_ostream &OS) const { |
| bool First = true; |
| if (BaseGV) { |
| if (!First) OS << " + "; else First = false; |
| WriteAsOperand(OS, BaseGV, /*PrintType=*/false); |
| } |
| if (BaseOffset != 0) { |
| if (!First) OS << " + "; else First = false; |
| OS << BaseOffset; |
| } |
| for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), |
| E = BaseRegs.end(); I != E; ++I) { |
| if (!First) OS << " + "; else First = false; |
| OS << "reg(" << **I << ')'; |
| } |
| if (HasBaseReg && BaseRegs.empty()) { |
| if (!First) OS << " + "; else First = false; |
| OS << "**error: HasBaseReg**"; |
| } else if (!HasBaseReg && !BaseRegs.empty()) { |
| if (!First) OS << " + "; else First = false; |
| OS << "**error: !HasBaseReg**"; |
| } |
| if (Scale != 0) { |
| if (!First) OS << " + "; else First = false; |
| OS << Scale << "*reg("; |
| if (ScaledReg) |
| OS << *ScaledReg; |
| else |
| OS << "<unknown>"; |
| OS << ')'; |
| } |
| if (UnfoldedOffset != 0) { |
| if (!First) OS << " + "; else First = false; |
| OS << "imm(" << UnfoldedOffset << ')'; |
| } |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| void Formula::dump() const { |
| print(errs()); errs() << '\n'; |
| } |
| #endif |
| |
| /// isAddRecSExtable - Return true if the given addrec can be sign-extended |
| /// without changing its value. |
| static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { |
| Type *WideTy = |
| IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); |
| return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); |
| } |
| |
| /// isAddSExtable - Return true if the given add can be sign-extended |
| /// without changing its value. |
| static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { |
| Type *WideTy = |
| IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); |
| return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); |
| } |
| |
| /// isMulSExtable - Return true if the given mul can be sign-extended |
| /// without changing its value. |
| static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { |
| Type *WideTy = |
| IntegerType::get(SE.getContext(), |
| SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); |
| return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); |
| } |
| |
| /// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined |
| /// and if the remainder is known to be zero, or null otherwise. If |
| /// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified |
| /// to Y, ignoring that the multiplication may overflow, which is useful when |
| /// the result will be used in a context where the most significant bits are |
| /// ignored. |
| static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, |
| ScalarEvolution &SE, |
| bool IgnoreSignificantBits = false) { |
| // Handle the trivial case, which works for any SCEV type. |
| if (LHS == RHS) |
| return SE.getConstant(LHS->getType(), 1); |
| |
| // Handle a few RHS special cases. |
| const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); |
| if (RC) { |
| const APInt &RA = RC->getValue()->getValue(); |
| // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do |
| // some folding. |
| if (RA.isAllOnesValue()) |
| return SE.getMulExpr(LHS, RC); |
| // Handle x /s 1 as x. |
| if (RA == 1) |
| return LHS; |
| } |
| |
| // Check for a division of a constant by a constant. |
| if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { |
| if (!RC) |
| return 0; |
| const APInt &LA = C->getValue()->getValue(); |
| const APInt &RA = RC->getValue()->getValue(); |
| if (LA.srem(RA) != 0) |
| return 0; |
| return SE.getConstant(LA.sdiv(RA)); |
| } |
| |
| // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. |
| if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { |
| if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) { |
| const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, |
| IgnoreSignificantBits); |
| if (!Step) return 0; |
| const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, |
| IgnoreSignificantBits); |
| if (!Start) return 0; |
| // FlagNW is independent of the start value, step direction, and is |
| // preserved with smaller magnitude steps. |
| // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) |
| return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); |
| } |
| return 0; |
| } |
| |
| // Distribute the sdiv over add operands, if the add doesn't overflow. |
| if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { |
| if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { |
| SmallVector<const SCEV *, 8> Ops; |
| for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); |
| I != E; ++I) { |
| const SCEV *Op = getExactSDiv(*I, RHS, SE, |
| IgnoreSignificantBits); |
| if (!Op) return 0; |
| Ops.push_back(Op); |
| } |
| return SE.getAddExpr(Ops); |
| } |
| return 0; |
| } |
| |
| // Check for a multiply operand that we can pull RHS out of. |
| if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { |
| if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { |
| SmallVector<const SCEV *, 4> Ops; |
| bool Found = false; |
| for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end(); |
| I != E; ++I) { |
| const SCEV *S = *I; |
| if (!Found) |
| if (const SCEV *Q = getExactSDiv(S, RHS, SE, |
| IgnoreSignificantBits)) { |
| S = Q; |
| Found = true; |
| } |
| Ops.push_back(S); |
| } |
| return Found ? SE.getMulExpr(Ops) : 0; |
| } |
| return 0; |
| } |
| |
| // Otherwise we don't know. |
| return 0; |
| } |
| |
| /// ExtractImmediate - If S involves the addition of a constant integer value, |
| /// return that integer value, and mutate S to point to a new SCEV with that |
| /// value excluded. |
| static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { |
| if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { |
| if (C->getValue()->getValue().getMinSignedBits() <= 64) { |
| S = SE.getConstant(C->getType(), 0); |
| return C->getValue()->getSExtValue(); |
| } |
| } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { |
| SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); |
| int64_t Result = ExtractImmediate(NewOps.front(), SE); |
| if (Result != 0) |
| S = SE.getAddExpr(NewOps); |
| return Result; |
| } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { |
| SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); |
| int64_t Result = ExtractImmediate(NewOps.front(), SE); |
| if (Result != 0) |
| S = SE.getAddRecExpr(NewOps, AR->getLoop(), |
| // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) |
| SCEV::FlagAnyWrap); |
| return Result; |
| } |
| return 0; |
| } |
| |
| /// ExtractSymbol - If S involves the addition of a GlobalValue address, |
| /// return that symbol, and mutate S to point to a new SCEV with that |
| /// value excluded. |
| static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { |
| if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { |
| if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { |
| S = SE.getConstant(GV->getType(), 0); |
| return GV; |
| } |
| } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { |
| SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); |
| GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); |
| if (Result) |
| S = SE.getAddExpr(NewOps); |
| return Result; |
| } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { |
| SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); |
| GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); |
| if (Result) |
| S = SE.getAddRecExpr(NewOps, AR->getLoop(), |
| // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) |
| SCEV::FlagAnyWrap); |
| return Result; |
| } |
| return 0; |
| } |
| |
| /// isAddressUse - Returns true if the specified instruction is using the |
| /// specified value as an address. |
| static bool isAddressUse(Instruction *Inst, Value *OperandVal) { |
| bool isAddress = isa<LoadInst>(Inst); |
| if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { |
| if (SI->getOperand(1) == OperandVal) |
| isAddress = true; |
| } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { |
| // Addressing modes can also be folded into prefetches and a variety |
| // of intrinsics. |
| switch (II->getIntrinsicID()) { |
| default: break; |
| case Intrinsic::prefetch: |
| case Intrinsic::x86_sse_storeu_ps: |
| case Intrinsic::x86_sse2_storeu_pd: |
| case Intrinsic::x86_sse2_storeu_dq: |
| case Intrinsic::x86_sse2_storel_dq: |
| if (II->getArgOperand(0) == OperandVal) |
| isAddress = true; |
| break; |
| } |
| } |
| return isAddress; |
| } |
| |
| /// getAccessType - Return the type of the memory being accessed. |
| static Type *getAccessType(const Instruction *Inst) { |
| Type *AccessTy = Inst->getType(); |
| if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) |
| AccessTy = SI->getOperand(0)->getType(); |
| else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { |
| // Addressing modes can also be folded into prefetches and a variety |
| // of intrinsics. |
| switch (II->getIntrinsicID()) { |
| default: break; |
| case Intrinsic::x86_sse_storeu_ps: |
| case Intrinsic::x86_sse2_storeu_pd: |
| case Intrinsic::x86_sse2_storeu_dq: |
| case Intrinsic::x86_sse2_storel_dq: |
| AccessTy = II->getArgOperand(0)->getType(); |
| break; |
| } |
| } |
| |
| // All pointers have the same requirements, so canonicalize them to an |
| // arbitrary pointer type to minimize variation. |
| if (PointerType *PTy = dyn_cast<PointerType>(AccessTy)) |
| AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), |
| PTy->getAddressSpace()); |
| |
| return AccessTy; |
| } |
| |
| /// isExistingPhi - Return true if this AddRec is already a phi in its loop. |
| static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { |
| for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); |
| PHINode *PN = dyn_cast<PHINode>(I); ++I) { |
| if (SE.isSCEVable(PN->getType()) && |
| (SE.getEffectiveSCEVType(PN->getType()) == |
| SE.getEffectiveSCEVType(AR->getType())) && |
| SE.getSCEV(PN) == AR) |
| return true; |
| } |
| return false; |
| } |
| |
| /// Check if expanding this expression is likely to incur significant cost. This |
| /// is tricky because SCEV doesn't track which expressions are actually computed |
| /// by the current IR. |
| /// |
| /// We currently allow expansion of IV increments that involve adds, |
| /// multiplication by constants, and AddRecs from existing phis. |
| /// |
| /// TODO: Allow UDivExpr if we can find an existing IV increment that is an |
| /// obvious multiple of the UDivExpr. |
| static bool isHighCostExpansion(const SCEV *S, |
| SmallPtrSet<const SCEV*, 8> &Processed, |
| ScalarEvolution &SE) { |
| // Zero/One operand expressions |
| switch (S->getSCEVType()) { |
| case scUnknown: |
| case scConstant: |
| return false; |
| case scTruncate: |
| return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), |
| Processed, SE); |
| case scZeroExtend: |
| return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), |
| Processed, SE); |
| case scSignExtend: |
| return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), |
| Processed, SE); |
| } |
| |
| if (!Processed.insert(S)) |
| return false; |
| |
| if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { |
| for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); |
| I != E; ++I) { |
| if (isHighCostExpansion(*I, Processed, SE)) |
| return true; |
| } |
| return false; |
| } |
| |
| if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { |
| if (Mul->getNumOperands() == 2) { |
| // Multiplication by a constant is ok |
| if (isa<SCEVConstant>(Mul->getOperand(0))) |
| return isHighCostExpansion(Mul->getOperand(1), Processed, SE); |
| |
| // If we have the value of one operand, check if an existing |
| // multiplication already generates this expression. |
| if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { |
| Value *UVal = U->getValue(); |
| for (Value::use_iterator UI = UVal->use_begin(), UE = UVal->use_end(); |
| UI != UE; ++UI) { |
| // If U is a constant, it may be used by a ConstantExpr. |
| Instruction *User = dyn_cast<Instruction>(*UI); |
| if (User && User->getOpcode() == Instruction::Mul |
| && SE.isSCEVable(User->getType())) { |
| return SE.getSCEV(User) == Mul; |
| } |
| } |
| } |
| } |
| } |
| |
| if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { |
| if (isExistingPhi(AR, SE)) |
| return false; |
| } |
| |
| // Fow now, consider any other type of expression (div/mul/min/max) high cost. |
| return true; |
| } |
| |
| /// DeleteTriviallyDeadInstructions - If any of the instructions is the |
| /// specified set are trivially dead, delete them and see if this makes any of |
| /// their operands subsequently dead. |
| static bool |
| DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) { |
| bool Changed = false; |
| |
| while (!DeadInsts.empty()) { |
| Value *V = DeadInsts.pop_back_val(); |
| Instruction *I = dyn_cast_or_null<Instruction>(V); |
| |
| if (I == 0 || !isInstructionTriviallyDead(I)) |
| continue; |
| |
| for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) |
| if (Instruction *U = dyn_cast<Instruction>(*OI)) { |
| *OI = 0; |
| if (U->use_empty()) |
| DeadInsts.push_back(U); |
| } |
| |
| I->eraseFromParent(); |
| Changed = true; |
| } |
| |
| return Changed; |
| } |
| |
| namespace { |
| |
| /// Cost - This class is used to measure and compare candidate formulae. |
| class Cost { |
| /// TODO: Some of these could be merged. Also, a lexical ordering |
| /// isn't always optimal. |
| unsigned NumRegs; |
| unsigned AddRecCost; |
| unsigned NumIVMuls; |
| unsigned NumBaseAdds; |
| unsigned ImmCost; |
| unsigned SetupCost; |
| |
| public: |
| Cost() |
| : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0), |
| SetupCost(0) {} |
| |
| bool operator<(const Cost &Other) const; |
| |
| void Loose(); |
| |
| #ifndef NDEBUG |
| // Once any of the metrics loses, they must all remain losers. |
| bool isValid() { |
| return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds |
| | ImmCost | SetupCost) != ~0u) |
| || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds |
| & ImmCost & SetupCost) == ~0u); |
| } |
| #endif |
| |
| bool isLoser() { |
| assert(isValid() && "invalid cost"); |
| return NumRegs == ~0u; |
| } |
| |
| void RateFormula(const Formula &F, |
| SmallPtrSet<const SCEV *, 16> &Regs, |
| const DenseSet<const SCEV *> &VisitedRegs, |
| const Loop *L, |
| const SmallVectorImpl<int64_t> &Offsets, |
| ScalarEvolution &SE, DominatorTree &DT, |
| SmallPtrSet<const SCEV *, 16> *LoserRegs = 0); |
| |
| void print(raw_ostream &OS) const; |
| void dump() const; |
| |
| private: |
| void RateRegister(const SCEV *Reg, |
| SmallPtrSet<const SCEV *, 16> &Regs, |
| const Loop *L, |
| ScalarEvolution &SE, DominatorTree &DT); |
| void RatePrimaryRegister(const SCEV *Reg, |
| SmallPtrSet<const SCEV *, 16> &Regs, |
| const Loop *L, |
| ScalarEvolution &SE, DominatorTree &DT, |
| SmallPtrSet<const SCEV *, 16> *LoserRegs); |
| }; |
| |
| } |
| |
| /// RateRegister - Tally up interesting quantities from the given register. |
| void Cost::RateRegister(const SCEV *Reg, |
| SmallPtrSet<const SCEV *, 16> &Regs, |
| const Loop *L, |
| ScalarEvolution &SE, DominatorTree &DT) { |
| if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { |
| // If this is an addrec for another loop, don't second-guess its addrec phi |
| // nodes. LSR isn't currently smart enough to reason about more than one |
| // loop at a time. LSR has already run on inner loops, will not run on outer |
| // loops, and cannot be expected to change sibling loops. |
| if (AR->getLoop() != L) { |
| // If the AddRec exists, consider it's register free and leave it alone. |
| if (isExistingPhi(AR, SE)) |
| return; |
| |
| // Otherwise, do not consider this formula at all. |
| Loose(); |
| return; |
| } |
| AddRecCost += 1; /// TODO: This should be a function of the stride. |
| |
| // Add the step value register, if it needs one. |
| // TODO: The non-affine case isn't precisely modeled here. |
| if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { |
| if (!Regs.count(AR->getOperand(1))) { |
| RateRegister(AR->getOperand(1), Regs, L, SE, DT); |
| if (isLoser()) |
| return; |
| } |
| } |
| } |
| ++NumRegs; |
| |
| // Rough heuristic; favor registers which don't require extra setup |
| // instructions in the preheader. |
| if (!isa<SCEVUnknown>(Reg) && |
| !isa<SCEVConstant>(Reg) && |
| !(isa<SCEVAddRecExpr>(Reg) && |
| (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || |
| isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) |
| ++SetupCost; |
| |
| NumIVMuls += isa<SCEVMulExpr>(Reg) && |
| SE.hasComputableLoopEvolution(Reg, L); |
| } |
| |
| /// RatePrimaryRegister - Record this register in the set. If we haven't seen it |
| /// before, rate it. Optional LoserRegs provides a way to declare any formula |
| /// that refers to one of those regs an instant loser. |
| void Cost::RatePrimaryRegister(const SCEV *Reg, |
| SmallPtrSet<const SCEV *, 16> &Regs, |
| const Loop *L, |
| ScalarEvolution &SE, DominatorTree &DT, |
| SmallPtrSet<const SCEV *, 16> *LoserRegs) { |
| if (LoserRegs && LoserRegs->count(Reg)) { |
| Loose(); |
| return; |
| } |
| if (Regs.insert(Reg)) { |
| RateRegister(Reg, Regs, L, SE, DT); |
| if (isLoser()) |
| LoserRegs->insert(Reg); |
| } |
| } |
| |
| void Cost::RateFormula(const Formula &F, |
| SmallPtrSet<const SCEV *, 16> &Regs, |
| const DenseSet<const SCEV *> &VisitedRegs, |
| const Loop *L, |
| const SmallVectorImpl<int64_t> &Offsets, |
| ScalarEvolution &SE, DominatorTree &DT, |
| SmallPtrSet<const SCEV *, 16> *LoserRegs) { |
| // Tally up the registers. |
| if (const SCEV *ScaledReg = F.ScaledReg) { |
| if (VisitedRegs.count(ScaledReg)) { |
| Loose(); |
| return; |
| } |
| RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs); |
| if (isLoser()) |
| return; |
| } |
| for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), |
| E = F.BaseRegs.end(); I != E; ++I) { |
| const SCEV *BaseReg = *I; |
| if (VisitedRegs.count(BaseReg)) { |
| Loose(); |
| return; |
| } |
| RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs); |
| if (isLoser()) |
| return; |
| } |
| |
| // Determine how many (unfolded) adds we'll need inside the loop. |
| size_t NumBaseParts = F.BaseRegs.size() + (F.UnfoldedOffset != 0); |
| if (NumBaseParts > 1) |
| NumBaseAdds += NumBaseParts - 1; |
| |
| // Tally up the non-zero immediates. |
| for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), |
| E = Offsets.end(); I != E; ++I) { |
| int64_t Offset = (uint64_t)*I + F.BaseOffset; |
| if (F.BaseGV) |
| ImmCost += 64; // Handle symbolic values conservatively. |
| // TODO: This should probably be the pointer size. |
| else if (Offset != 0) |
| ImmCost += APInt(64, Offset, true).getMinSignedBits(); |
| } |
| assert(isValid() && "invalid cost"); |
| } |
| |
| /// Loose - Set this cost to a losing value. |
| void Cost::Loose() { |
| NumRegs = ~0u; |
| AddRecCost = ~0u; |
| NumIVMuls = ~0u; |
| NumBaseAdds = ~0u; |
| ImmCost = ~0u; |
| SetupCost = ~0u; |
| } |
| |
| /// operator< - Choose the lower cost. |
| bool Cost::operator<(const Cost &Other) const { |
| if (NumRegs != Other.NumRegs) |
| return NumRegs < Other.NumRegs; |
| if (AddRecCost != Other.AddRecCost) |
| return AddRecCost < Other.AddRecCost; |
| if (NumIVMuls != Other.NumIVMuls) |
| return NumIVMuls < Other.NumIVMuls; |
| if (NumBaseAdds != Other.NumBaseAdds) |
| return NumBaseAdds < Other.NumBaseAdds; |
| if (ImmCost != Other.ImmCost) |
| return ImmCost < Other.ImmCost; |
| if (SetupCost != Other.SetupCost) |
| return SetupCost < Other.SetupCost; |
| return false; |
| } |
| |
| void Cost::print(raw_ostream &OS) const { |
| OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s"); |
| if (AddRecCost != 0) |
| OS << ", with addrec cost " << AddRecCost; |
| if (NumIVMuls != 0) |
| OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s"); |
| if (NumBaseAdds != 0) |
| OS << ", plus " << NumBaseAdds << " base add" |
| << (NumBaseAdds == 1 ? "" : "s"); |
| if (ImmCost != 0) |
| OS << ", plus " << ImmCost << " imm cost"; |
| if (SetupCost != 0) |
| OS << ", plus " << SetupCost << " setup cost"; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| void Cost::dump() const { |
| print(errs()); errs() << '\n'; |
| } |
| #endif |
| |
| namespace { |
| |
| /// LSRFixup - An operand value in an instruction which is to be replaced |
| /// with some equivalent, possibly strength-reduced, replacement. |
| struct LSRFixup { |
| /// UserInst - The instruction which will be updated. |
| Instruction *UserInst; |
| |
| /// OperandValToReplace - The operand of the instruction which will |
| /// be replaced. The operand may be used more than once; every instance |
| /// will be replaced. |
| Value *OperandValToReplace; |
| |
| /// PostIncLoops - If this user is to use the post-incremented value of an |
| /// induction variable, this variable is non-null and holds the loop |
| /// associated with the induction variable. |
| PostIncLoopSet PostIncLoops; |
| |
| /// LUIdx - The index of the LSRUse describing the expression which |
| /// this fixup needs, minus an offset (below). |
| size_t LUIdx; |
| |
| /// Offset - A constant offset to be added to the LSRUse expression. |
| /// This allows multiple fixups to share the same LSRUse with different |
| /// offsets, for example in an unrolled loop. |
| int64_t Offset; |
| |
| bool isUseFullyOutsideLoop(const Loop *L) const; |
| |
| LSRFixup(); |
| |
| void print(raw_ostream &OS) const; |
| void dump() const; |
| }; |
| |
| } |
| |
| LSRFixup::LSRFixup() |
| : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {} |
| |
| /// isUseFullyOutsideLoop - Test whether this fixup always uses its |
| /// value outside of the given loop. |
| bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { |
| // PHI nodes use their value in their incoming blocks. |
| if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) |
| if (PN->getIncomingValue(i) == OperandValToReplace && |
| L->contains(PN->getIncomingBlock(i))) |
| return false; |
| return true; |
| } |
| |
| return !L->contains(UserInst); |
| } |
| |
| void LSRFixup::print(raw_ostream &OS) const { |
| OS << "UserInst="; |
| // Store is common and interesting enough to be worth special-casing. |
| if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { |
| OS << "store "; |
| WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false); |
| } else if (UserInst->getType()->isVoidTy()) |
| OS << UserInst->getOpcodeName(); |
| else |
| WriteAsOperand(OS, UserInst, /*PrintType=*/false); |
| |
| OS << ", OperandValToReplace="; |
| WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false); |
| |
| for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(), |
| E = PostIncLoops.end(); I != E; ++I) { |
| OS << ", PostIncLoop="; |
| WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false); |
| } |
| |
| if (LUIdx != ~size_t(0)) |
| OS << ", LUIdx=" << LUIdx; |
| |
| if (Offset != 0) |
| OS << ", Offset=" << Offset; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| void LSRFixup::dump() const { |
| print(errs()); errs() << '\n'; |
| } |
| #endif |
| |
| namespace { |
| |
| /// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding |
| /// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*. |
| struct UniquifierDenseMapInfo { |
| static SmallVector<const SCEV *, 4> getEmptyKey() { |
| SmallVector<const SCEV *, 4> V; |
| V.push_back(reinterpret_cast<const SCEV *>(-1)); |
| return V; |
| } |
| |
| static SmallVector<const SCEV *, 4> getTombstoneKey() { |
| SmallVector<const SCEV *, 4> V; |
| V.push_back(reinterpret_cast<const SCEV *>(-2)); |
| return V; |
| } |
| |
| static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { |
| unsigned Result = 0; |
| for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(), |
| E = V.end(); I != E; ++I) |
| Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I); |
| return Result; |
| } |
| |
| static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, |
| const SmallVector<const SCEV *, 4> &RHS) { |
| return LHS == RHS; |
| } |
| }; |
| |
| /// LSRUse - This class holds the state that LSR keeps for each use in |
| /// IVUsers, as well as uses invented by LSR itself. It includes information |
| /// about what kinds of things can be folded into the user, information about |
| /// the user itself, and information about how the use may be satisfied. |
| /// TODO: Represent multiple users of the same expression in common? |
| class LSRUse { |
| DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; |
| |
| public: |
| /// KindType - An enum for a kind of use, indicating what types of |
| /// scaled and immediate operands it might support. |
| enum KindType { |
| Basic, ///< A normal use, with no folding. |
| Special, ///< A special case of basic, allowing -1 scales. |
| Address, ///< An address use; folding according to TargetLowering |
| ICmpZero ///< An equality icmp with both operands folded into one. |
| // TODO: Add a generic icmp too? |
| }; |
| |
| KindType Kind; |
| Type *AccessTy; |
| |
| SmallVector<int64_t, 8> Offsets; |
| int64_t MinOffset; |
| int64_t MaxOffset; |
| |
| /// AllFixupsOutsideLoop - This records whether all of the fixups using this |
| /// LSRUse are outside of the loop, in which case some special-case heuristics |
| /// may be used. |
| bool AllFixupsOutsideLoop; |
| |
| /// WidestFixupType - This records the widest use type for any fixup using |
| /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different |
| /// max fixup widths to be equivalent, because the narrower one may be relying |
| /// on the implicit truncation to truncate away bogus bits. |
| Type *WidestFixupType; |
| |
| /// Formulae - A list of ways to build a value that can satisfy this user. |
| /// After the list is populated, one of these is selected heuristically and |
| /// used to formulate a replacement for OperandValToReplace in UserInst. |
| SmallVector<Formula, 12> Formulae; |
| |
| /// Regs - The set of register candidates used by all formulae in this LSRUse. |
| SmallPtrSet<const SCEV *, 4> Regs; |
| |
| LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T), |
| MinOffset(INT64_MAX), |
| MaxOffset(INT64_MIN), |
| AllFixupsOutsideLoop(true), |
| WidestFixupType(0) {} |
| |
| bool HasFormulaWithSameRegs(const Formula &F) const; |
| bool InsertFormula(const Formula &F); |
| void DeleteFormula(Formula &F); |
| void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); |
| |
| void print(raw_ostream &OS) const; |
| void dump() const; |
| }; |
| |
| } |
| |
| /// HasFormula - Test whether this use as a formula which has the same |
| /// registers as the given formula. |
| bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { |
| SmallVector<const SCEV *, 4> Key = F.BaseRegs; |
| if (F.ScaledReg) Key.push_back(F.ScaledReg); |
| // Unstable sort by host order ok, because this is only used for uniquifying. |
| std::sort(Key.begin(), Key.end()); |
| return Uniquifier.count(Key); |
| } |
| |
| /// InsertFormula - If the given formula has not yet been inserted, add it to |
| /// the list, and return true. Return false otherwise. |
| bool LSRUse::InsertFormula(const Formula &F) { |
| SmallVector<const SCEV *, 4> Key = F.BaseRegs; |
| if (F.ScaledReg) Key.push_back(F.ScaledReg); |
| // Unstable sort by host order ok, because this is only used for uniquifying. |
| std::sort(Key.begin(), Key.end()); |
| |
| if (!Uniquifier.insert(Key).second) |
| return false; |
| |
| // Using a register to hold the value of 0 is not profitable. |
| assert((!F.ScaledReg || !F.ScaledReg->isZero()) && |
| "Zero allocated in a scaled register!"); |
| #ifndef NDEBUG |
| for (SmallVectorImpl<const SCEV *>::const_iterator I = |
| F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) |
| assert(!(*I)->isZero() && "Zero allocated in a base register!"); |
| #endif |
| |
| // Add the formula to the list. |
| Formulae.push_back(F); |
| |
| // Record registers now being used by this use. |
| Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); |
| |
| return true; |
| } |
| |
| /// DeleteFormula - Remove the given formula from this use's list. |
| void LSRUse::DeleteFormula(Formula &F) { |
| if (&F != &Formulae.back()) |
| std::swap(F, Formulae.back()); |
| Formulae.pop_back(); |
| } |
| |
| /// RecomputeRegs - Recompute the Regs field, and update RegUses. |
| void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { |
| // Now that we've filtered out some formulae, recompute the Regs set. |
| SmallPtrSet<const SCEV *, 4> OldRegs = Regs; |
| Regs.clear(); |
| for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(), |
| E = Formulae.end(); I != E; ++I) { |
| const Formula &F = *I; |
| if (F.ScaledReg) Regs.insert(F.ScaledReg); |
| Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); |
| } |
| |
| // Update the RegTracker. |
| for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(), |
| E = OldRegs.end(); I != E; ++I) |
| if (!Regs.count(*I)) |
| RegUses.DropRegister(*I, LUIdx); |
| } |
| |
| void LSRUse::print(raw_ostream &OS) const { |
| OS << "LSR Use: Kind="; |
| switch (Kind) { |
| case Basic: OS << "Basic"; break; |
| case Special: OS << "Special"; break; |
| case ICmpZero: OS << "ICmpZero"; break; |
| case Address: |
| OS << "Address of "; |
| if (AccessTy->isPointerTy()) |
| OS << "pointer"; // the full pointer type could be really verbose |
| else |
| OS << *AccessTy; |
| } |
| |
| OS << ", Offsets={"; |
| for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), |
| E = Offsets.end(); I != E; ++I) { |
| OS << *I; |
| if (llvm::next(I) != E) |
| OS << ','; |
| } |
| OS << '}'; |
| |
| if (AllFixupsOutsideLoop) |
| OS << ", all-fixups-outside-loop"; |
| |
| if (WidestFixupType) |
| OS << ", widest fixup type: " << *WidestFixupType; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| void LSRUse::dump() const { |
| print(errs()); errs() << '\n'; |
| } |
| #endif |
| |
| /// isLegalUse - Test whether the use described by AM is "legal", meaning it can |
| /// be completely folded into the user instruction at isel time. This includes |
| /// address-mode folding and special icmp tricks. |
| static bool isLegalUse(const TargetTransformInfo &TTI, LSRUse::KindType Kind, |
| Type *AccessTy, GlobalValue *BaseGV, int64_t BaseOffset, |
| bool HasBaseReg, int64_t Scale) { |
| switch (Kind) { |
| case LSRUse::Address: |
| return TTI.isLegalAddressingMode(AccessTy, BaseGV, BaseOffset, HasBaseReg, Scale); |
| |
| // Otherwise, just guess that reg+reg addressing is legal. |
| //return ; |
| |
| case LSRUse::ICmpZero: |
| // There's not even a target hook for querying whether it would be legal to |
| // fold a GV into an ICmp. |
| if (BaseGV) |
| return false; |
| |
| // ICmp only has two operands; don't allow more than two non-trivial parts. |
| if (Scale != 0 && HasBaseReg && BaseOffset != 0) |
| return false; |
| |
| // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by |
| // putting the scaled register in the other operand of the icmp. |
| if (Scale != 0 && Scale != -1) |
| return false; |
| |
| // If we have low-level target information, ask the target if it can fold an |
| // integer immediate on an icmp. |
| if (BaseOffset != 0) { |
| // We have one of: |
| // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset |
| // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset |
| // Offs is the ICmp immediate. |
| if (Scale == 0) |
| // The cast does the right thing with INT64_MIN. |
| BaseOffset = -(uint64_t)BaseOffset; |
| return TTI.isLegalICmpImmediate(BaseOffset); |
| } |
| |
| // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg |
| return true; |
| |
| case LSRUse::Basic: |
| // Only handle single-register values. |
| return !BaseGV && Scale == 0 && BaseOffset == 0; |
| |
| case LSRUse::Special: |
| // Special case Basic to handle -1 scales. |
| return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; |
| } |
| |
| llvm_unreachable("Invalid LSRUse Kind!"); |
| } |
| |
| static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, |
| int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy, |
| GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, |
| int64_t Scale) { |
| // Check for overflow. |
| if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != |
| (MinOffset > 0)) |
| return false; |
| MinOffset = (uint64_t)BaseOffset + MinOffset; |
| if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != |
| (MaxOffset > 0)) |
| return false; |
| MaxOffset = (uint64_t)BaseOffset + MaxOffset; |
| |
| return isLegalUse(TTI, Kind, AccessTy, BaseGV, MinOffset, HasBaseReg, |
| Scale) && |
| isLegalUse(TTI, Kind, AccessTy, BaseGV, MaxOffset, HasBaseReg, Scale); |
| } |
| |
| static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, |
| int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy, |
| const Formula &F) { |
| return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, |
| F.BaseOffset, F.HasBaseReg, F.Scale); |
| } |
| |
| static bool isAlwaysFoldable(const TargetTransformInfo &TTI, |
| LSRUse::KindType Kind, Type *AccessTy, |
| GlobalValue *BaseGV, int64_t BaseOffset, |
| bool HasBaseReg) { |
| // Fast-path: zero is always foldable. |
| if (BaseOffset == 0 && !BaseGV) return true; |
| |
| // Conservatively, create an address with an immediate and a |
| // base and a scale. |
| int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; |
| |
| // Canonicalize a scale of 1 to a base register if the formula doesn't |
| // already have a base register. |
| if (!HasBaseReg && Scale == 1) { |
| Scale = 0; |
| HasBaseReg = true; |
| } |
| |
| return isLegalUse(TTI, Kind, AccessTy, BaseGV, BaseOffset, HasBaseReg, Scale); |
| } |
| |
| static bool isAlwaysFoldable(const TargetTransformInfo &TTI, |
| ScalarEvolution &SE, int64_t MinOffset, |
| int64_t MaxOffset, LSRUse::KindType Kind, |
| Type *AccessTy, const SCEV *S, bool HasBaseReg) { |
| // Fast-path: zero is always foldable. |
| if (S->isZero()) return true; |
| |
| // Conservatively, create an address with an immediate and a |
| // base and a scale. |
| int64_t BaseOffset = ExtractImmediate(S, SE); |
| GlobalValue *BaseGV = ExtractSymbol(S, SE); |
| |
| // If there's anything else involved, it's not foldable. |
| if (!S->isZero()) return false; |
| |
| // Fast-path: zero is always foldable. |
| if (BaseOffset == 0 && !BaseGV) return true; |
| |
| // Conservatively, create an address with an immediate and a |
| // base and a scale. |
| int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; |
| |
| return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, |
| BaseOffset, HasBaseReg, Scale); |
| } |
| |
| namespace { |
| |
| /// UseMapDenseMapInfo - A DenseMapInfo implementation for holding |
| /// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind. |
| struct UseMapDenseMapInfo { |
| static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() { |
| return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic); |
| } |
| |
| static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() { |
| return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic); |
| } |
| |
| static unsigned |
| getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) { |
| unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first); |
| Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second)); |
| return Result; |
| } |
| |
| static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS, |
| const std::pair<const SCEV *, LSRUse::KindType> &RHS) { |
| return LHS == RHS; |
| } |
| }; |
| |
| /// IVInc - An individual increment in a Chain of IV increments. |
| /// Relate an IV user to an expression that computes the IV it uses from the IV |
| /// used by the previous link in the Chain. |
| /// |
| /// For the head of a chain, IncExpr holds the absolute SCEV expression for the |
| /// original IVOperand. The head of the chain's IVOperand is only valid during |
| /// chain collection, before LSR replaces IV users. During chain generation, |
| /// IncExpr can be used to find the new IVOperand that computes the same |
| /// expression. |
| struct IVInc { |
| Instruction *UserInst; |
| Value* IVOperand; |
| const SCEV *IncExpr; |
| |
| IVInc(Instruction *U, Value *O, const SCEV *E): |
| UserInst(U), IVOperand(O), IncExpr(E) {} |
| }; |
| |
| // IVChain - The list of IV increments in program order. |
| // We typically add the head of a chain without finding subsequent links. |
| struct IVChain { |
| SmallVector<IVInc,1> Incs; |
| const SCEV *ExprBase; |
| |
| IVChain() : ExprBase(0) {} |
| |
| IVChain(const IVInc &Head, const SCEV *Base) |
| : Incs(1, Head), ExprBase(Base) {} |
| |
| typedef SmallVectorImpl<IVInc>::const_iterator const_iterator; |
| |
| // begin - return the first increment in the chain. |
| const_iterator begin() const { |
| assert(!Incs.empty()); |
| return llvm::next(Incs.begin()); |
| } |
| const_iterator end() const { |
| return Incs.end(); |
| } |
| |
| // hasIncs - Returns true if this chain contains any increments. |
| bool hasIncs() const { return Incs.size() >= 2; } |
| |
| // add - Add an IVInc to the end of this chain. |
| void add(const IVInc &X) { Incs.push_back(X); } |
| |
| // tailUserInst - Returns the last UserInst in the chain. |
| Instruction *tailUserInst() const { return Incs.back().UserInst; } |
| |
| // isProfitableIncrement - Returns true if IncExpr can be profitably added to |
| // this chain. |
| bool isProfitableIncrement(const SCEV *OperExpr, |
| const SCEV *IncExpr, |
| ScalarEvolution&); |
| }; |
| |
| /// ChainUsers - Helper for CollectChains to track multiple IV increment uses. |
| /// Distinguish between FarUsers that definitely cross IV increments and |
| /// NearUsers that may be used between IV increments. |
| struct ChainUsers { |
| SmallPtrSet<Instruction*, 4> FarUsers; |
| SmallPtrSet<Instruction*, 4> NearUsers; |
| }; |
| |
| /// LSRInstance - This class holds state for the main loop strength reduction |
| /// logic. |
| class LSRInstance { |
| IVUsers &IU; |
| ScalarEvolution &SE; |
| DominatorTree &DT; |
| LoopInfo &LI; |
| const TargetTransformInfo &TTI; |
| Loop *const L; |
| bool Changed; |
| |
| /// IVIncInsertPos - This is the insert position that the current loop's |
| /// induction variable increment should be placed. In simple loops, this is |
| /// the latch block's terminator. But in more complicated cases, this is a |
| /// position which will dominate all the in-loop post-increment users. |
| Instruction *IVIncInsertPos; |
| |
| /// Factors - Interesting factors between use strides. |
| SmallSetVector<int64_t, 8> Factors; |
| |
| /// Types - Interesting use types, to facilitate truncation reuse. |
| SmallSetVector<Type *, 4> Types; |
| |
| /// Fixups - The list of operands which are to be replaced. |
| SmallVector<LSRFixup, 16> Fixups; |
| |
| /// Uses - The list of interesting uses. |
| SmallVector<LSRUse, 16> Uses; |
| |
| /// RegUses - Track which uses use which register candidates. |
| RegUseTracker RegUses; |
| |
| // Limit the number of chains to avoid quadratic behavior. We don't expect to |
| // have more than a few IV increment chains in a loop. Missing a Chain falls |
| // back to normal LSR behavior for those uses. |
| static const unsigned MaxChains = 8; |
| |
| /// IVChainVec - IV users can form a chain of IV increments. |
| SmallVector<IVChain, MaxChains> IVChainVec; |
| |
| /// IVIncSet - IV users that belong to profitable IVChains. |
| SmallPtrSet<Use*, MaxChains> IVIncSet; |
| |
| void OptimizeShadowIV(); |
| bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); |
| ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); |
| void OptimizeLoopTermCond(); |
| |
| void ChainInstruction(Instruction *UserInst, Instruction *IVOper, |
| SmallVectorImpl<ChainUsers> &ChainUsersVec); |
| void FinalizeChain(IVChain &Chain); |
| void CollectChains(); |
| void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, |
| SmallVectorImpl<WeakVH> &DeadInsts); |
| |
| void CollectInterestingTypesAndFactors(); |
| void CollectFixupsAndInitialFormulae(); |
| |
| LSRFixup &getNewFixup() { |
| Fixups.push_back(LSRFixup()); |
| return Fixups.back(); |
| } |
| |
| // Support for sharing of LSRUses between LSRFixups. |
| typedef DenseMap<std::pair<const SCEV *, LSRUse::KindType>, |
| size_t, |
| UseMapDenseMapInfo> UseMapTy; |
| UseMapTy UseMap; |
| |
| bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, |
| LSRUse::KindType Kind, Type *AccessTy); |
| |
| std::pair<size_t, int64_t> getUse(const SCEV *&Expr, |
| LSRUse::KindType Kind, |
| Type *AccessTy); |
| |
| void DeleteUse(LSRUse &LU, size_t LUIdx); |
| |
| LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); |
| |
| void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); |
| void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); |
| void CountRegisters(const Formula &F, size_t LUIdx); |
| bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); |
| |
| void CollectLoopInvariantFixupsAndFormulae(); |
| |
| void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, |
| unsigned Depth = 0); |
| void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); |
| void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); |
| void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); |
| void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); |
| void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); |
| void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); |
| void GenerateCrossUseConstantOffsets(); |
| void GenerateAllReuseFormulae(); |
| |
| void FilterOutUndesirableDedicatedRegisters(); |
| |
| size_t EstimateSearchSpaceComplexity() const; |
| void NarrowSearchSpaceByDetectingSupersets(); |
| void NarrowSearchSpaceByCollapsingUnrolledCode(); |
| void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); |
| void NarrowSearchSpaceByPickingWinnerRegs(); |
| void NarrowSearchSpaceUsingHeuristics(); |
| |
| void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, |
| Cost &SolutionCost, |
| SmallVectorImpl<const Formula *> &Workspace, |
| const Cost &CurCost, |
| const SmallPtrSet<const SCEV *, 16> &CurRegs, |
| DenseSet<const SCEV *> &VisitedRegs) const; |
| void Solve(SmallVectorImpl<const Formula *> &Solution) const; |
| |
| BasicBlock::iterator |
| HoistInsertPosition(BasicBlock::iterator IP, |
| const SmallVectorImpl<Instruction *> &Inputs) const; |
| BasicBlock::iterator |
| AdjustInsertPositionForExpand(BasicBlock::iterator IP, |
| const LSRFixup &LF, |
| const LSRUse &LU, |
| SCEVExpander &Rewriter) const; |
| |
| Value *Expand(const LSRFixup &LF, |
| const Formula &F, |
| BasicBlock::iterator IP, |
| SCEVExpander &Rewriter, |
| SmallVectorImpl<WeakVH> &DeadInsts) const; |
| void RewriteForPHI(PHINode *PN, const LSRFixup &LF, |
| const Formula &F, |
| SCEVExpander &Rewriter, |
| SmallVectorImpl<WeakVH> &DeadInsts, |
| Pass *P) const; |
| void Rewrite(const LSRFixup &LF, |
| const Formula &F, |
| SCEVExpander &Rewriter, |
| SmallVectorImpl<WeakVH> &DeadInsts, |
| Pass *P) const; |
| void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, |
| Pass *P); |
| |
| public: |
| LSRInstance(Loop *L, Pass *P); |
| |
| bool getChanged() const { return Changed; } |
| |
| void print_factors_and_types(raw_ostream &OS) const; |
| void print_fixups(raw_ostream &OS) const; |
| void print_uses(raw_ostream &OS) const; |
| void print(raw_ostream &OS) const; |
| void dump() const; |
| }; |
| |
| } |
| |
| /// OptimizeShadowIV - If IV is used in a int-to-float cast |
| /// inside the loop then try to eliminate the cast operation. |
| void LSRInstance::OptimizeShadowIV() { |
| const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); |
| if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) |
| return; |
| |
| for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); |
| UI != E; /* empty */) { |
| IVUsers::const_iterator CandidateUI = UI; |
| ++UI; |
| Instruction *ShadowUse = CandidateUI->getUser(); |
| Type *DestTy = NULL; |
| bool IsSigned = false; |
| |
| /* If shadow use is a int->float cast then insert a second IV |
| to eliminate this cast. |
| |
| for (unsigned i = 0; i < n; ++i) |
| foo((double)i); |
| |
| is transformed into |
| |
| double d = 0.0; |
| for (unsigned i = 0; i < n; ++i, ++d) |
| foo(d); |
| */ |
| if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { |
| IsSigned = false; |
| DestTy = UCast->getDestTy(); |
| } |
| else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { |
| IsSigned = true; |
| DestTy = SCast->getDestTy(); |
| } |
| if (!DestTy) continue; |
| |
| // If target does not support DestTy natively then do not apply |
| // this transformation. |
| if (!TTI.isTypeLegal(DestTy)) continue; |
| |
| PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); |
| if (!PH) continue; |
| if (PH->getNumIncomingValues() != 2) continue; |
| |
| Type *SrcTy = PH->getType(); |
| int Mantissa = DestTy->getFPMantissaWidth(); |
| if (Mantissa == -1) continue; |
| if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) |
| continue; |
| |
| unsigned Entry, Latch; |
| if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { |
| Entry = 0; |
| Latch = 1; |
| } else { |
| Entry = 1; |
| Latch = 0; |
| } |
| |
| ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); |
| if (!Init) continue; |
| Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? |
| (double)Init->getSExtValue() : |
| (double)Init->getZExtValue()); |
| |
| BinaryOperator *Incr = |
| dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); |
| if (!Incr) continue; |
| if (Incr->getOpcode() != Instruction::Add |
| && Incr->getOpcode() != Instruction::Sub) |
| continue; |
| |
| /* Initialize new IV, double d = 0.0 in above example. */ |
| ConstantInt *C = NULL; |
| if (Incr->getOperand(0) == PH) |
| C = dyn_cast<ConstantInt>(Incr->getOperand(1)); |
| else if (Incr->getOperand(1) == PH) |
| C = dyn_cast<ConstantInt>(Incr->getOperand(0)); |
| else |
| continue; |
| |
| if (!C) continue; |
| |
| // Ignore negative constants, as the code below doesn't handle them |
| // correctly. TODO: Remove this restriction. |
| if (!C->getValue().isStrictlyPositive()) continue; |
| |
| /* Add new PHINode. */ |
| PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); |
| |
| /* create new increment. '++d' in above example. */ |
| Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); |
| BinaryOperator *NewIncr = |
| BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? |
| Instruction::FAdd : Instruction::FSub, |
| NewPH, CFP, "IV.S.next.", Incr); |
| |
| NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); |
| NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); |
| |
| /* Remove cast operation */ |
| ShadowUse->replaceAllUsesWith(NewPH); |
| ShadowUse->eraseFromParent(); |
| Changed = true; |
| break; |
| } |
| } |
| |
| /// FindIVUserForCond - If Cond has an operand that is an expression of an IV, |
| /// set the IV user and stride information and return true, otherwise return |
| /// false. |
| bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { |
| for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) |
| if (UI->getUser() == Cond) { |
| // NOTE: we could handle setcc instructions with multiple uses here, but |
| // InstCombine does it as well for simple uses, it's not clear that it |
| // occurs enough in real life to handle. |
| CondUse = UI; |
| return true; |
| } |
| return false; |
| } |
| |
| /// OptimizeMax - Rewrite the loop's terminating condition if it uses |
| /// a max computation. |
| /// |
| /// This is a narrow solution to a specific, but acute, problem. For loops |
| /// like this: |
| /// |
| /// i = 0; |
| /// do { |
| /// p[i] = 0.0; |
| /// } while (++i < n); |
| /// |
| /// the trip count isn't just 'n', because 'n' might not be positive. And |
| /// unfortunately this can come up even for loops where the user didn't use |
| /// a C do-while loop. For example, seemingly well-behaved top-test loops |
| /// will commonly be lowered like this: |
| // |
| /// if (n > 0) { |
| /// i = 0; |
| /// do { |
| /// p[i] = 0.0; |
| /// } while (++i < n); |
| /// } |
| /// |
| /// and then it's possible for subsequent optimization to obscure the if |
| /// test in such a way that indvars can't find it. |
| /// |
| /// When indvars can't find the if test in loops like this, it creates a |
| /// max expression, which allows it to give the loop a canonical |
| /// induction variable: |
| /// |
| /// i = 0; |
| /// max = n < 1 ? 1 : n; |
| /// do { |
| /// p[i] = 0.0; |
| /// } while (++i != max); |
| /// |
| /// Canonical induction variables are necessary because the loop passes |
| /// are designed around them. The most obvious example of this is the |
| /// LoopInfo analysis, which doesn't remember trip count values. It |
| /// expects to be able to rediscover the trip count each time it is |
| /// needed, and it does this using a simple analysis that only succeeds if |
| /// the loop has a canonical induction variable. |
| /// |
| /// However, when it comes time to generate code, the maximum operation |
| /// can be quite costly, especially if it's inside of an outer loop. |
| /// |
| /// This function solves this problem by detecting this type of loop and |
| /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting |
| /// the instructions for the maximum computation. |
| /// |
| ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { |
| // Check that the loop matches the pattern we're looking for. |
| if (Cond->getPredicate() != CmpInst::ICMP_EQ && |
| Cond->getPredicate() != CmpInst::ICMP_NE) |
| return Cond; |
| |
| SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); |
| if (!Sel || !Sel->hasOneUse()) return Cond; |
| |
| const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); |
| if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) |
| return Cond; |
| const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); |
| |
| // Add one to the backedge-taken count to get the trip count. |
| const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); |
| if (IterationCount != SE.getSCEV(Sel)) return Cond; |
| |
| // Check for a max calculation that matches the pattern. There's no check |
| // for ICMP_ULE here because the comparison would be with zero, which |
| // isn't interesting. |
| CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; |
| const SCEVNAryExpr *Max = 0; |
| if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { |
| Pred = ICmpInst::ICMP_SLE; |
| Max = S; |
| } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { |
| Pred = ICmpInst::ICMP_SLT; |
| Max = S; |
| } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { |
| Pred = ICmpInst::ICMP_ULT; |
| Max = U; |
| } else { |
| // No match; bail. |
| return Cond; |
| } |
| |
| // To handle a max with more than two operands, this optimization would |
| // require additional checking and setup. |
| if (Max->getNumOperands() != 2) |
| return Cond; |
| |
| const SCEV *MaxLHS = Max->getOperand(0); |
| const SCEV *MaxRHS = Max->getOperand(1); |
| |
| // ScalarEvolution canonicalizes constants to the left. For < and >, look |
| // for a comparison with 1. For <= and >=, a comparison with zero. |
| if (!MaxLHS || |
| (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) |
| return Cond; |
| |
| // Check the relevant induction variable for conformance to |
| // the pattern. |
| const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); |
| const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); |
| if (!AR || !AR->isAffine() || |
| AR->getStart() != One || |
| AR->getStepRecurrence(SE) != One) |
| return Cond; |
| |
| assert(AR->getLoop() == L && |
| "Loop condition operand is an addrec in a different loop!"); |
| |
| // Check the right operand of the select, and remember it, as it will |
| // be used in the new comparison instruction. |
| Value *NewRHS = 0; |
| if (ICmpInst::isTrueWhenEqual(Pred)) { |
| // Look for n+1, and grab n. |
| if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) |
| if (isa<ConstantInt>(BO->getOperand(1)) && |
| cast<ConstantInt>(BO->getOperand(1))->isOne() && |
| SE.getSCEV(BO->getOperand(0)) == MaxRHS) |
| NewRHS = BO->getOperand(0); |
| if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) |
| if (isa<ConstantInt>(BO->getOperand(1)) && |
| cast<ConstantInt>(BO->getOperand(1))->isOne() && |
| SE.getSCEV(BO->getOperand(0)) == MaxRHS) |
| NewRHS = BO->getOperand(0); |
| if (!NewRHS) |
| return Cond; |
| } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) |
| NewRHS = Sel->getOperand(1); |
| else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) |
| NewRHS = Sel->getOperand(2); |
| else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) |
| NewRHS = SU->getValue(); |
| else |
| // Max doesn't match expected pattern. |
| return Cond; |
| |
| // Determine the new comparison opcode. It may be signed or unsigned, |
| // and the original comparison may be either equality or inequality. |
| if (Cond->getPredicate() == CmpInst::ICMP_EQ) |
| Pred = CmpInst::getInversePredicate(Pred); |
| |
| // Ok, everything looks ok to change the condition into an SLT or SGE and |
| // delete the max calculation. |
| ICmpInst *NewCond = |
| new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); |
| |
| // Delete the max calculation instructions. |
| Cond->replaceAllUsesWith(NewCond); |
| CondUse->setUser(NewCond); |
| Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); |
| Cond->eraseFromParent(); |
| Sel->eraseFromParent(); |
| if (Cmp->use_empty()) |
| Cmp->eraseFromParent(); |
| return NewCond; |
| } |
| |
| /// OptimizeLoopTermCond - Change loop terminating condition to use the |
| /// postinc iv when possible. |
| void |
| LSRInstance::OptimizeLoopTermCond() { |
| SmallPtrSet<Instruction *, 4> PostIncs; |
| |
| BasicBlock *LatchBlock = L->getLoopLatch(); |
| SmallVector<BasicBlock*, 8> ExitingBlocks; |
| L->getExitingBlocks(ExitingBlocks); |
| |
| for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { |
| BasicBlock *ExitingBlock = ExitingBlocks[i]; |
| |
| // Get the terminating condition for the loop if possible. If we |
| // can, we want to change it to use a post-incremented version of its |
| // induction variable, to allow coalescing the live ranges for the IV into |
| // one register value. |
| |
| BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); |
| if (!TermBr) |
| continue; |
| // FIXME: Overly conservative, termination condition could be an 'or' etc.. |
| if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) |
| continue; |
| |
| // Search IVUsesByStride to find Cond's IVUse if there is one. |
| IVStrideUse *CondUse = 0; |
| ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); |
| if (!FindIVUserForCond(Cond, CondUse)) |
| continue; |
| |
| // If the trip count is computed in terms of a max (due to ScalarEvolution |
| // being unable to find a sufficient guard, for example), change the loop |
| // comparison to use SLT or ULT instead of NE. |
| // One consequence of doing this now is that it disrupts the count-down |
| // optimization. That's not always a bad thing though, because in such |
| // cases it may still be worthwhile to avoid a max. |
| Cond = OptimizeMax(Cond, CondUse); |
| |
| // If this exiting block dominates the latch block, it may also use |
| // the post-inc value if it won't be shared with other uses. |
| // Check for dominance. |
| if (!DT.dominates(ExitingBlock, LatchBlock)) |
| continue; |
| |
| // Conservatively avoid trying to use the post-inc value in non-latch |
| // exits if there may be pre-inc users in intervening blocks. |
| if (LatchBlock != ExitingBlock) |
| for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) |
| // Test if the use is reachable from the exiting block. This dominator |
| // query is a conservative approximation of reachability. |
| if (&*UI != CondUse && |
| !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { |
| // Conservatively assume there may be reuse if the quotient of their |
| // strides could be a legal scale. |
| const SCEV *A = IU.getStride(*CondUse, L); |
| const SCEV *B = IU.getStride(*UI, L); |
| if (!A || !B) continue; |
| if (SE.getTypeSizeInBits(A->getType()) != |
| SE.getTypeSizeInBits(B->getType())) { |
| if (SE.getTypeSizeInBits(A->getType()) > |
| SE.getTypeSizeInBits(B->getType())) |
| B = SE.getSignExtendExpr(B, A->getType()); |
| else |
| A = SE.getSignExtendExpr(A, B->getType()); |
| } |
| if (const SCEVConstant *D = |
| dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { |
| const ConstantInt *C = D->getValue(); |
| // Stride of one or negative one can have reuse with non-addresses. |
| if (C->isOne() || C->isAllOnesValue()) |
| goto decline_post_inc; |
| // Avoid weird situations. |
| if (C->getValue().getMinSignedBits() >= 64 || |
| C->getValue().isMinSignedValue()) |
| goto decline_post_inc; |
| // Check for possible scaled-address reuse. |
| Type *AccessTy = getAccessType(UI->getUser()); |
| int64_t Scale = C->getSExtValue(); |
| if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ 0, |
| /*BaseOffset=*/ 0, |
| /*HasBaseReg=*/ false, Scale)) |
| goto decline_post_inc; |
| Scale = -Scale; |
| if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ 0, |
| /*BaseOffset=*/ 0, |
| /*HasBaseReg=*/ false, Scale)) |
| goto decline_post_inc; |
| } |
| } |
| |
| DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " |
| << *Cond << '\n'); |
| |
| // It's possible for the setcc instruction to be anywhere in the loop, and |
| // possible for it to have multiple users. If it is not immediately before |
| // the exiting block branch, move it. |
| if (&*++BasicBlock::iterator(Cond) != TermBr) { |
| if (Cond->hasOneUse()) { |
| Cond->moveBefore(TermBr); |
| } else { |
| // Clone the terminating condition and insert into the loopend. |
| ICmpInst *OldCond = Cond; |
| Cond = cast<ICmpInst>(Cond->clone()); |
| Cond->setName(L->getHeader()->getName() + ".termcond"); |
| ExitingBlock->getInstList().insert(TermBr, Cond); |
| |
| // Clone the IVUse, as the old use still exists! |
| CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); |
| TermBr->replaceUsesOfWith(OldCond, Cond); |
| } |
| } |
| |
| // If we get to here, we know that we can transform the setcc instruction to |
| // use the post-incremented version of the IV, allowing us to coalesce the |
| // live ranges for the IV correctly. |
| CondUse->transformToPostInc(L); |
| Changed = true; |
| |
| PostIncs.insert(Cond); |
| decline_post_inc:; |
| } |
| |
| // Determine an insertion point for the loop induction variable increment. It |
| // must dominate all the post-inc comparisons we just set up, and it must |
| // dominate the loop latch edge. |
| IVIncInsertPos = L->getLoopLatch()->getTerminator(); |
| for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(), |
| E = PostIncs.end(); I != E; ++I) { |
| BasicBlock *BB = |
| DT.findNearestCommonDominator(IVIncInsertPos->getParent(), |
| (*I)->getParent()); |
| if (BB == (*I)->getParent()) |
| IVIncInsertPos = *I; |
| else if (BB != IVIncInsertPos->getParent()) |
| IVIncInsertPos = BB->getTerminator(); |
| } |
| } |
| |
| /// reconcileNewOffset - Determine if the given use can accommodate a fixup |
| /// at the given offset and other details. If so, update the use and |
| /// return true. |
| bool |
| LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, |
| LSRUse::KindType Kind, Type *AccessTy) { |
| int64_t NewMinOffset = LU.MinOffset; |
| int64_t NewMaxOffset = LU.MaxOffset; |
| Type *NewAccessTy = AccessTy; |
| |
| // Check for a mismatched kind. It's tempting to collapse mismatched kinds to |
| // something conservative, however this can pessimize in the case that one of |
| // the uses will have all its uses outside the loop, for example. |
| if (LU.Kind != Kind) |
| return false; |
| // Conservatively assume HasBaseReg is true for now. |
| if (NewOffset < LU.MinOffset) { |
| if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ 0, |
| LU.MaxOffset - NewOffset, HasBaseReg)) |
| return false; |
| NewMinOffset = NewOffset; |
| } else if (NewOffset > LU.MaxOffset) { |
| if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ 0, |
| NewOffset - LU.MinOffset, HasBaseReg)) |
| return false; |
| NewMaxOffset = NewOffset; |
| } |
| // Check for a mismatched access type, and fall back conservatively as needed. |
| // TODO: Be less conservative when the type is similar and can use the same |
| // addressing modes. |
| if (Kind == LSRUse::Address && AccessTy != LU.AccessTy) |
| NewAccessTy = Type::getVoidTy(AccessTy->getContext()); |
| |
| // Update the use. |
| LU.MinOffset = NewMinOffset; |
| LU.MaxOffset = NewMaxOffset; |
| LU.AccessTy = NewAccessTy; |
| if (NewOffset != LU.Offsets.back()) |
| LU.Offsets.push_back(NewOffset); |
| return true; |
| } |
| |
| /// getUse - Return an LSRUse index and an offset value for a fixup which |
| /// needs the given expression, with the given kind and optional access type. |
| /// Either reuse an existing use or create a new one, as needed. |
| std::pair<size_t, int64_t> |
| LSRInstance::getUse(const SCEV *&Expr, |
| LSRUse::KindType Kind, Type *AccessTy) { |
| const SCEV *Copy = Expr; |
| int64_t Offset = ExtractImmediate(Expr, SE); |
| |
| // Basic uses can't accept any offset, for example. |
| if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ 0, |
| Offset, /*HasBaseReg=*/ true)) { |
| Expr = Copy; |
| Offset = 0; |
| } |
| |
| std::pair<UseMapTy::iterator, bool> P = |
| UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0)); |
| if (!P.second) { |
| // A use already existed with this base. |
| size_t LUIdx = P.first->second; |
| LSRUse &LU = Uses[LUIdx]; |
| if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) |
| // Reuse this use. |
| return std::make_pair(LUIdx, Offset); |
| } |
| |
| // Create a new use. |
| size_t LUIdx = Uses.size(); |
| P.first->second = LUIdx; |
| Uses.push_back(LSRUse(Kind, AccessTy)); |
| LSRUse &LU = Uses[LUIdx]; |
| |
| // We don't need to track redundant offsets, but we don't need to go out |
| // of our way here to avoid them. |
| if (LU.Offsets.empty() || Offset != LU.Offsets.back()) |
| LU.Offsets.push_back(Offset); |
| |
| LU.MinOffset = Offset; |
| LU.MaxOffset = Offset; |
| return std::make_pair(LUIdx, Offset); |
| } |
| |
| /// DeleteUse - Delete the given use from the Uses list. |
| void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { |
| if (&LU != &Uses.back()) |
| std::swap(LU, Uses.back()); |
| Uses.pop_back(); |
| |
| // Update RegUses. |
| RegUses.SwapAndDropUse(LUIdx, Uses.size()); |
| } |
| |
| /// FindUseWithFormula - Look for a use distinct from OrigLU which is has |
| /// a formula that has the same registers as the given formula. |
| LSRUse * |
| LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, |
| const LSRUse &OrigLU) { |
| // Search all uses for the formula. This could be more clever. |
| for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { |
| LSRUse &LU = Uses[LUIdx]; |
| // Check whether this use is close enough to OrigLU, to see whether it's |
| // worthwhile looking through its formulae. |
| // Ignore ICmpZero uses because they may contain formulae generated by |
| // GenerateICmpZeroScales, in which case adding fixup offsets may |
| // be invalid. |
| if (&LU != &OrigLU && |
| LU.Kind != LSRUse::ICmpZero && |
| LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && |
| LU.WidestFixupType == OrigLU.WidestFixupType && |
| LU.HasFormulaWithSameRegs(OrigF)) { |
| // Scan through this use's formulae. |
| for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), |
| E = LU.Formulae.end(); I != E; ++I) { |
| const Formula &F = *I; |
| // Check to see if this formula has the same registers and symbols |
| // as OrigF. |
| if (F.BaseRegs == OrigF.BaseRegs && |
| F.ScaledReg == OrigF.ScaledReg && |
| F.BaseGV == OrigF.BaseGV && |
| F.Scale == OrigF.Scale && |
| F.UnfoldedOffset == OrigF.UnfoldedOffset) { |
| if (F.BaseOffset == 0) |
| return &LU; |
| // This is the formula where all the registers and symbols matched; |
| // there aren't going to be any others. Since we declined it, we |
| // can skip the rest of the formulae and proceed to the next LSRUse. |
| break; |
| } |
| } |
| } |
| } |
| |
| // Nothing looked good. |
| return 0; |
| } |
| |
| void LSRInstance::CollectInterestingTypesAndFactors() { |
| SmallSetVector<const SCEV *, 4> Strides; |
| |
| // Collect interesting types and strides. |
| SmallVector<const SCEV *, 4> Worklist; |
| for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { |
| const SCEV *Expr = IU.getExpr(*UI); |
| |
| // Collect interesting types. |
| Types.insert(SE.getEffectiveSCEVType(Expr->getType())); |
| |
| // Add strides for mentioned loops. |
| Worklist.push_back(Expr); |
| do { |
| const SCEV *S = Worklist.pop_back_val(); |
| if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { |
| if (AR->getLoop() == L) |
| Strides.insert(AR->getStepRecurrence(SE)); |
| Worklist.push_back(AR->getStart()); |
| } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { |
| Worklist.append(Add->op_begin(), Add->op_end()); |
| } |
| } while (!Worklist.empty()); |
| } |
| |
| // Compute interesting factors from the set of interesting strides. |
| for (SmallSetVector<const SCEV *, 4>::const_iterator |
| I = Strides.begin(), E = Strides.end(); I != E; ++I) |
| for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = |
| llvm::next(I); NewStrideIter != E; ++NewStrideIter) { |
| const SCEV *OldStride = *I; |
| const SCEV *NewStride = *NewStrideIter; |
| |
| if (SE.getTypeSizeInBits(OldStride->getType()) != |
| SE.getTypeSizeInBits(NewStride->getType())) { |
| if (SE.getTypeSizeInBits(OldStride->getType()) > |
| SE.getTypeSizeInBits(NewStride->getType())) |
| NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); |
| else |
| OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); |
| } |
| if (const SCEVConstant *Factor = |
| dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, |
| SE, true))) { |
| if (Factor->getValue()->getValue().getMinSignedBits() <= 64) |
| Factors.insert(Factor->getValue()->getValue().getSExtValue()); |
| } else if (const SCEVConstant *Factor = |
| dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, |
| NewStride, |
| SE, true))) { |
| if (Factor->getValue()->getValue().getMinSignedBits() <= 64) |
| Factors.insert(Factor->getValue()->getValue().getSExtValue()); |
| } |
| } |
| |
| // If all uses use the same type, don't bother looking for truncation-based |
| // reuse. |
| if (Types.size() == 1) |
| Types.clear(); |
| |
| DEBUG(print_factors_and_types(dbgs())); |
| } |
| |
| /// findIVOperand - Helper for CollectChains that finds an IV operand (computed |
| /// by an AddRec in this loop) within [OI,OE) or returns OE. If IVUsers mapped |
| /// Instructions to IVStrideUses, we could partially skip this. |
| static User::op_iterator |
| findIVOperand(User::op_iterator OI, User::op_iterator OE, |
| Loop *L, ScalarEvolution &SE) { |
| for(; OI != OE; ++OI) { |
| if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { |
| if (!SE.isSCEVable(Oper->getType())) |
| continue; |
| |
| if (const SCEVAddRecExpr *AR = |
| dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { |
| if (AR->getLoop() == L) |
| break; |
| } |
| } |
| } |
| return OI; |
| } |
| |
| /// getWideOperand - IVChain logic must consistenctly peek base TruncInst |
| /// operands, so wrap it in a convenient helper. |
| static Value *getWideOperand(Value *Oper) { |
| if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) |
| return Trunc->getOperand(0); |
| return Oper; |
| } |
| |
| /// isCompatibleIVType - Return true if we allow an IV chain to include both |
| /// types. |
| static bool isCompatibleIVType(Value *LVal, Value *RVal) { |
| Type *LType = LVal->getType(); |
| Type *RType = RVal->getType(); |
| return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy()); |
| } |
| |
| /// getExprBase - Return an approximation of this SCEV expression's "base", or |
| /// NULL for any constant. Returning the expression itself is |
| /// conservative. Returning a deeper subexpression is more precise and valid as |
| /// long as it isn't less complex than another subexpression. For expressions |
| /// involving multiple unscaled values, we need to return the pointer-type |
| /// SCEVUnknown. This avoids forming chains across objects, such as: |
| /// PrevOper==a[i], IVOper==b[i], IVInc==b-a. |
| /// |
| /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost |
| /// SCEVUnknown, we simply return the rightmost SCEV operand. |
| static const SCEV *getExprBase(const SCEV *S) { |
| switch (S->getSCEVType()) { |
| default: // uncluding scUnknown. |
| return S; |
| case scConstant: |
| return 0; |
| case scTruncate: |
| return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); |
| case scZeroExtend: |
| return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); |
| case scSignExtend: |
| return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); |
| case scAddExpr: { |
| // Skip over scaled operands (scMulExpr) to follow add operands as long as |
| // there's nothing more complex. |
| // FIXME: not sure if we want to recognize negation. |
| const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); |
| for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), |
| E(Add->op_begin()); I != E; ++I) { |
| const SCEV *SubExpr = *I; |
| if (SubExpr->getSCEVType() == scAddExpr) |
| return getExprBase(SubExpr); |
| |
| if (SubExpr->getSCEVType() != scMulExpr) |
| return SubExpr; |
| } |
| return S; // all operands are scaled, be conservative. |
| } |
| case scAddRecExpr: |
| return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); |
| } |
| } |
| |
| /// Return true if the chain increment is profitable to expand into a loop |
| /// invariant value, which may require its own register. A profitable chain |
| /// increment will be an offset relative to the same base. We allow such offsets |
| /// to potentially be used as chain increment as long as it's not obviously |
| /// expensive to expand using real instructions. |
| bool IVChain::isProfitableIncrement(const SCEV *OperExpr, |
| const SCEV *IncExpr, |
| ScalarEvolution &SE) { |
| // Aggressively form chains when -stress-ivchain. |
| if (StressIVChain) |
| return true; |
| |
| // Do not replace a constant offset from IV head with a nonconstant IV |
| // increment. |
| if (!isa<SCEVConstant>(IncExpr)) { |
| const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); |
| if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) |
| return 0; |
| } |
| |
| SmallPtrSet<const SCEV*, 8> Processed; |
| return !isHighCostExpansion(IncExpr, Processed, SE); |
| } |
| |
| /// Return true if the number of registers needed for the chain is estimated to |
| /// be less than the number required for the individual IV users. First prohibit |
| /// any IV users that keep the IV live across increments (the Users set should |
| /// be empty). Next count the number and type of increments in the chain. |
| /// |
| /// Chaining IVs can lead to considerable code bloat if ISEL doesn't |
| /// effectively use postinc addressing modes. Only consider it profitable it the |
| /// increments can be computed in fewer registers when chained. |
| /// |
| /// TODO: Consider IVInc free if it's already used in another chains. |
| static bool |
| isProfitableChain(IVChain &Chain, SmallPtrSet<Instruction*, 4> &Users, |
| ScalarEvolution &SE, const TargetTransformInfo &TTI) { |
| if (StressIVChain) |
| return true; |
| |
| if (!Chain.hasIncs()) |
| return false; |
| |
| if (!Users.empty()) { |
| DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; |
| for (SmallPtrSet<Instruction*, 4>::const_iterator I = Users.begin(), |
| E = Users.end(); I != E; ++I) { |
| dbgs() << " " << **I << "\n"; |
| }); |
| return false; |
| } |
| assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); |
| |
| // The chain itself may require a register, so intialize cost to 1. |
| int cost = 1; |
| |
| // A complete chain likely eliminates the need for keeping the original IV in |
| // a register. LSR does not currently know how to form a complete chain unless |
| // the header phi already exists. |
| if (isa<PHINode>(Chain.tailUserInst()) |
| && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { |
| --cost; |
| } |
| const SCEV *LastIncExpr = 0; |
| unsigned NumConstIncrements = 0; |
| unsigned NumVarIncrements = 0; |
| unsigned NumReusedIncrements = 0; |
| for (IVChain::const_iterator I = Chain.begin(), E = Chain.end(); |
| I != E; ++I) { |
| |
| if (I->IncExpr->isZero()) |
| continue; |
| |
| // Incrementing by zero or some constant is neutral. We assume constants can |
| // be folded into an addressing mode or an add's immediate operand. |
| if (isa<SCEVConstant>(I->IncExpr)) { |
| ++NumConstIncrements; |
| continue; |
| } |
| |
| if (I->IncExpr == LastIncExpr) |
| ++NumReusedIncrements; |
| else |
| ++NumVarIncrements; |
| |
| LastIncExpr = I->IncExpr; |
| } |
| // An IV chain with a single increment is handled by LSR's postinc |
| // uses. However, a chain with multiple increments requires keeping the IV's |
| // value live longer than it needs to be if chained. |
| if (NumConstIncrements > 1) |
| --cost; |
| |
| // Materializing increment expressions in the preheader that didn't exist in |
| // the original code may cost a register. For example, sign-extended array |
| // indices can produce ridiculous increments like this: |
| // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) |
| cost += NumVarIncrements; |
| |
| // Reusing variable increments likely saves a register to hold the multiple of |
| // the stride. |
| cost -= NumReusedIncrements; |
| |
| DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost |
| << "\n"); |
| |
| return cost < 0; |
| } |
| |
| /// ChainInstruction - Add this IV user to an existing chain or make it the head |
| /// of a new chain. |
| void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, |
| SmallVectorImpl<ChainUsers> &ChainUsersVec) { |
| // When IVs are used as types of varying widths, they are generally converted |
| // to a wider type with some uses remaining narrow under a (free) trunc. |
| Value *const NextIV = getWideOperand(IVOper); |
| const SCEV *const OperExpr = SE.getSCEV(NextIV); |
| const SCEV *const OperExprBase = getExprBase(OperExpr); |
| |
| // Visit all existing chains. Check if its IVOper can be computed as a |
| // profitable loop invariant increment from the last link in the Chain. |
| unsigned ChainIdx = 0, NChains = IVChainVec.size(); |
| const SCEV *LastIncExpr = 0; |
| for (; ChainIdx < NChains; ++ChainIdx) { |
| IVChain &Chain = IVChainVec[ChainIdx]; |
| |
| // Prune the solution space aggressively by checking that both IV operands |
| // are expressions that operate on the same unscaled SCEVUnknown. This |
| // "base" will be canceled by the subsequent getMinusSCEV call. Checking |
| // first avoids creating extra SCEV expressions. |
| if (!StressIVChain && Chain.ExprBase != OperExprBase) |
| continue; |
| |
| Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); |
| if (!isCompatibleIVType(PrevIV, NextIV)) |
| continue; |
| |
| // A phi node terminates a chain. |
| if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) |
| continue; |
| |
| // The increment must be loop-invariant so it can be kept in a register. |
| const SCEV *PrevExpr = SE.getSCEV(PrevIV); |
| const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); |
| if (!SE.isLoopInvariant(IncExpr, L)) |
| continue; |
| |
| if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { |
| LastIncExpr = IncExpr; |
| break; |
| } |
| } |
| // If we haven't found a chain, create a new one, unless we hit the max. Don't |
| // bother for phi nodes, because they must be last in the chain. |
| if (ChainIdx == NChains) { |
| if (isa<PHINode>(UserInst)) |
| return; |
| if (NChains >= MaxChains && !StressIVChain) { |
| DEBUG(dbgs() << "IV Chain Limit\n"); |
| return; |
| } |
| LastIncExpr = OperExpr; |
| // IVUsers may have skipped over sign/zero extensions. We don't currently |
| // attempt to form chains involving extensions unless they can be hoisted |
| // into this loop's AddRec. |
| if (!isa<SCEVAddRecExpr>(LastIncExpr)) |
| return; |
| ++NChains; |
| IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), |
| OperExprBase)); |
| ChainUsersVec.resize(NChains); |
| DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst |
| << ") IV=" << *LastIncExpr << "\n"); |
| } else { |
| DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst |
| << ") IV+" << *LastIncExpr << "\n"); |
| // Add this IV user to the end of the chain. |
| IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); |
| } |
| IVChain &Chain = IVChainVec[ChainIdx]; |
| |
| SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; |
| // This chain's NearUsers become FarUsers. |
| if (!LastIncExpr->isZero()) { |
| ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), |
| NearUsers.end()); |
| NearUsers.clear(); |
| } |
| |
| // All other uses of IVOperand become near uses of the chain. |
| // We currently ignore intermediate values within SCEV expressions, assuming |
| // they will eventually be used be the current chain, or can be computed |
| // from one of the chain increments. To be more precise we could |
| // transitively follow its user and only add leaf IV users to the set. |
| for (Value::use_iterator UseIter = IVOper->use_begin(), |
| UseEnd = IVOper->use_end(); UseIter != UseEnd; ++UseIter) { |
| Instruction *OtherUse = dyn_cast<Instruction>(*UseIter); |
| if (!OtherUse) |
| continue; |
| // Uses in the chain will no longer be uses if the chain is formed. |
| // Include the head of the chain in this iteration (not Chain.begin()). |
| IVChain::const_iterator IncIter = Chain.Incs.begin(); |
| IVChain::const_iterator IncEnd = Chain.Incs.end(); |
| for( ; IncIter != IncEnd; ++IncIter) { |
| if (IncIter->UserInst == OtherUse) |
| break; |
| } |
| if (IncIter != IncEnd) |
| continue; |
| |
| if (SE.isSCEVable(OtherUse->getType()) |
| && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) |
| && IU.isIVUserOrOperand(OtherUse)) { |
| continue; |
| } |
| NearUsers.insert(OtherUse); |
| } |
| |
| // Since this user is part of the chain, it's no longer considered a use |
| // of the chain. |
| ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); |
| } |
| |
| /// CollectChains - Populate the vector of Chains. |
| /// |
| /// This decreases ILP at the architecture level. Targets with ample registers, |
| /// multiple memory ports, and no register renaming probably don't want |
| /// this. However, such targets should probably disable LSR altogether. |
| /// |
| /// The job of LSR is to make a reasonable choice of induction variables across |
| /// the loop. Subsequent passes can easily "unchain" computation exposing more |
| /// ILP *within the loop* if the target wants it. |
| /// |
| /// Finding the best IV chain is potentially a scheduling problem. Since LSR |
| /// will not reorder memory operations, it will recognize this as a chain, but |
| /// will generate redundant IV increments. Ideally this would be corrected later |
| /// by a smart scheduler: |
| /// = A[i] |
| /// = A[i+x] |
| /// A[i] = |
| /// A[i+x] = |
| /// |
| /// TODO: Walk the entire domtree within this loop, not just the path to the |
| /// loop latch. This will discover chains on side paths, but requires |
| /// maintaining multiple copies of the Chains state. |
| void LSRInstance::CollectChains() { |
| DEBUG(dbgs() << "Collecting IV Chains.\n"); |
| SmallVector<ChainUsers, 8> ChainUsersVec; |
| |
| SmallVector<BasicBlock *,8> LatchPath; |
| BasicBlock *LoopHeader = L->getHeader(); |
| for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); |
| Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { |
| LatchPath.push_back(Rung->getBlock()); |
| } |
| LatchPath.push_back(LoopHeader); |
| |
| // Walk the instruction stream from the loop header to the loop latch. |
| for (SmallVectorImpl<BasicBlock *>::reverse_iterator |
| BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend(); |
| BBIter != BBEnd; ++BBIter) { |
| for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end(); |
| I != E; ++I) { |
| // Skip instructions that weren't seen by IVUsers analysis. |
| if (isa<PHINode>(I) || !IU.isIVUserOrOperand(I)) |
| continue; |
| |
| // Ignore users that are part of a SCEV expression. This way we only |
| // consider leaf IV Users. This effectively rediscovers a portion of |
| // IVUsers analysis but in program order this time. |
| if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(I))) |
| continue; |
| |
| // Remove this instruction from any NearUsers set it may be in. |
| for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); |
| ChainIdx < NChains; ++ChainIdx) { |
| ChainUsersVec[ChainIdx].NearUsers.erase(I); |
| } |
| // Search for operands that can be chained. |
| SmallPtrSet<Instruction*, 4> UniqueOperands; |
| User::op_iterator IVOpEnd = I->op_end(); |
| User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE); |
| while (IVOpIter != IVOpEnd) { |
| Instruction *IVOpInst = cast<Instruction>(*IVOpIter); |
| if (UniqueOperands.insert(IVOpInst)) |
| ChainInstruction(I, IVOpInst, ChainUsersVec); |
| IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE); |
| } |
| } // Continue walking down the instructions. |
| } // Continue walking down the domtree. |
| // Visit phi backedges to determine if the chain can generate the IV postinc. |
| for (BasicBlock::iterator I = L->getHeader()->begin(); |
| PHINode *PN = dyn_cast<PHINode>(I); ++I) { |
| if (!SE.isSCEVable(PN->getType())) |
| continue; |
| |
| Instruction *IncV = |
| dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); |
| if (IncV) |
| ChainInstruction(PN, IncV, ChainUsersVec); |
| } |
| // Remove any unprofitable chains. |
| unsigned ChainIdx = 0; |
| for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); |
| UsersIdx < NChains; ++UsersIdx) { |
| if (!isProfitableChain(IVChainVec[UsersIdx], |
| ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) |
| continue; |
| // Preserve the chain at UsesIdx. |
| if (ChainIdx != UsersIdx) |
| IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; |
| FinalizeChain(IVChainVec[ChainIdx]); |
| ++ChainIdx; |
| } |
| IVChainVec.resize(ChainIdx); |
| } |
| |
| void LSRInstance::FinalizeChain(IVChain &Chain) { |
| assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); |
| DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); |
| |
| for (IVChain::const_iterator I = Chain.begin(), E = Chain.end(); |
| I != E; ++I) { |
| DEBUG(dbgs() << " Inc: " << *I->UserInst << "\n"); |
| User::op_iterator UseI = |
| std::find(I->UserInst->op_begin(), I->UserInst->op_end(), I->IVOperand); |
| assert(UseI != I->UserInst->op_end() && "cannot find IV operand"); |
| IVIncSet.insert(UseI); |
| } |
| } |
| |
| /// Return true if the IVInc can be folded into an addressing mode. |
| static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, |
| Value *Operand, const TargetTransformInfo &TTI) { |
| const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); |
| if (!IncConst || !isAddressUse(UserInst, Operand)) |
| return false; |
| |
| if (IncConst->getValue()->getValue().getMinSignedBits() > 64) |
| return false; |
| |
| int64_t IncOffset = IncConst->getValue()->getSExtValue(); |
| if (!isAlwaysFoldable(TTI, LSRUse::Address, |
| getAccessType(UserInst), /*BaseGV=*/ 0, |
| IncOffset, /*HaseBaseReg=*/ false)) |
| return false; |
| |
| return true; |
| } |
| |
| /// GenerateIVChains - Generate an add or subtract for each IVInc in a chain to |
| /// materialize the IV user's operand from the previous IV user's operand. |
| void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, |
| SmallVectorImpl<WeakVH> &DeadInsts) { |
| // Find the new IVOperand for the head of the chain. It may have been replaced |
| // by LSR. |
| const IVInc &Head = Chain.Incs[0]; |
| User::op_iterator IVOpEnd = Head.UserInst->op_end(); |
| User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), |
| IVOpEnd, L, SE); |
| Value *IVSrc = 0; |
| while (IVOpIter != IVOpEnd) { |
| IVSrc = getWideOperand(*IVOpIter); |
| |
| // If this operand computes the expression that the chain needs, we may use |
| // it. (Check this after setting IVSrc which is used below.) |
| // |
| // Note that if Head.IncExpr is wider than IVSrc, then this phi is too |
| // narrow for the chain, so we can no longer use it. We do allow using a |
| // wider phi, assuming the LSR checked for free truncation. In that case we |
| // should already have a truncate on this operand such that |
| // getSCEV(IVSrc) == IncExpr. |
| if (SE.getSCEV(*IVOpIter) == Head.IncExpr |
| || SE.getSCEV(IVSrc) == Head.IncExpr) { |
| break; |
| } |
| IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE); |
| } |
| if (IVOpIter == IVOpEnd) { |
| // Gracefully give up on this chain. |
| DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); |
| return; |
| } |
| |
| DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); |
| Type *IVTy = IVSrc->getType(); |
| Type *IntTy = SE.getEffectiveSCEVType(IVTy); |
| const SCEV *LeftOverExpr = 0; |
| for (IVChain::const_iterator IncI = Chain.begin(), |
| IncE = Chain.end(); IncI != IncE; ++IncI) { |
| |
| Instruction *InsertPt = IncI->UserInst; |
| if (isa<PHINode>(InsertPt)) |
| InsertPt = L->getLoopLatch()->getTerminator(); |
| |
| // IVOper will replace the current IV User's operand. IVSrc is the IV |
| // value currently held in a register. |
| Value *IVOper = IVSrc; |
| if (!IncI->IncExpr->isZero()) { |
| // IncExpr was the result of subtraction of two narrow values, so must |
| // be signed. |
| const SCEV *IncExpr = SE.getNoopOrSignExtend(IncI->IncExpr, IntTy); |
| LeftOverExpr = LeftOverExpr ? |
| SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; |
| } |
| if (LeftOverExpr && !LeftOverExpr->isZero()) { |
| // Expand the IV increment. |
| Rewriter.clearPostInc(); |
| Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); |
| const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), |
| SE.getUnknown(IncV)); |
| IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); |
| |
| // If an IV increment can't be folded, use it as the next IV value. |
| if (!canFoldIVIncExpr(LeftOverExpr, IncI->UserInst, IncI->IVOperand, |
| TTI)) { |
| assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); |
| IVSrc = IVOper; |
| LeftOverExpr = 0; |
| } |
| } |
| Type *OperTy = IncI->IVOperand->getType(); |
| if (IVTy != OperTy) { |
| assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && |
| "cannot extend a chained IV"); |
| IRBuilder<> Builder(InsertPt); |
| IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); |
| } |
| IncI->UserInst->replaceUsesOfWith(IncI->IVOperand, IVOper); |
| DeadInsts.push_back(IncI->IVOperand); |
| } |
| // If LSR created a new, wider phi, we may also replace its postinc. We only |
| // do this if we also found a wide value for the head of the chain. |
| if (isa<PHINode>(Chain.tailUserInst())) { |
| for (BasicBlock::iterator I = L->getHeader()->begin(); |
| PHINode *Phi = dyn_cast<PHINode>(I); ++I) { |
| if (!isCompatibleIVType(Phi, IVSrc)) |
| continue; |
| Instruction *PostIncV = dyn_cast<Instruction>( |
| Phi->getIncomingValueForBlock(L->getLoopLatch())); |
| if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) |
| continue; |
| Value *IVOper = IVSrc; |
| Type *PostIncTy = PostIncV->getType(); |
| if (IVTy != PostIncTy) { |
| assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); |
| IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); |
| Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); |
| IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); |
| } |
| Phi->replaceUsesOfWith(PostIncV, IVOper); |
| DeadInsts.push_back(PostIncV); |
| } |
| } |
| } |
| |
| void LSRInstance::CollectFixupsAndInitialFormulae() { |
| for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { |
| Instruction *UserInst = UI->getUser(); |
| // Skip IV users that are part of profitable IV Chains. |
| User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(), |
| UI->getOperandValToReplace()); |
| assert(UseI != UserInst->op_end() && "cannot find IV operand"); |
| if (IVIncSet.count(UseI)) |
| continue; |
| |
| // Record the uses. |
| LSRFixup &LF = getNewFixup(); |
| LF.UserInst = UserInst; |
| LF.OperandValToReplace = UI->getOperandValToReplace(); |
| LF.PostIncLoops = UI->getPostIncLoops(); |
| |
| LSRUse::KindType Kind = LSRUse::Basic; |
| Type *AccessTy = 0; |
| if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) { |
| Kind = LSRUse::Address; |
| AccessTy = getAccessType(LF.UserInst); |
| } |
| |
| const SCEV *S = IU.getExpr(*UI); |
| |
| // Equality (== and !=) ICmps are special. We can rewrite (i == N) as |
| // (N - i == 0), and this allows (N - i) to be the expression that we work |
| // with rather than just N or i, so we can consider the register |
| // requirements for both N and i at the same time. Limiting this code to |
| // equality icmps is not a problem because all interesting loops use |
| // equality icmps, thanks to IndVarSimplify. |
| if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst)) |
| if (CI->isEquality()) { |
| // Swap the operands if needed to put the OperandValToReplace on the |
| // left, for consistency. |
| Value *NV = CI->getOperand(1); |
| if (NV == LF.OperandValToReplace) { |
| CI->setOperand(1, CI->getOperand(0)); |
| CI->setOperand(0, NV); |
| NV = CI->getOperand(1); |
| Changed = true; |
| } |
| |
| // x == y --> x - y == 0 |
| const SCEV *N = SE.getSCEV(NV); |
| if (SE.isLoopInvariant(N, L) && isSafeToExpand(N)) { |
| // S is normalized, so normalize N before folding it into S |
| // to keep the result normalized. |
| N = TransformForPostIncUse(Normalize, N, CI, 0, |
| LF.PostIncLoops, SE, DT); |
| Kind = LSRUse::ICmpZero; |
| S = SE.getMinusSCEV(N, S); |
| } |
| |
| // -1 and the negations of all interesting strides (except the negation |
| // of -1) are now also interesting. |
| for (size_t i = 0, e = Factors.size(); i != e; ++i) |
| if (Factors[i] != -1) |
| Factors.insert(-(uint64_t)Factors[i]); |
| Factors.insert(-1); |
| } |
| |
| // Set up the initial formula for this use. |
| std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); |
| LF.LUIdx = P.first; |
| LF.Offset = P.second; |
| LSRUse &LU = Uses[LF.LUIdx]; |
| LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); |
| if (!LU.WidestFixupType || |
| SE.getTypeSizeInBits(LU.WidestFixupType) < |
| SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) |
| LU.WidestFixupType = LF.OperandValToReplace->getType(); |
| |
| // If this is the first use of this LSRUse, give it a formula. |
| if (LU.Formulae.empty()) { |
| InsertInitialFormula(S, LU, LF.LUIdx); |
| CountRegisters(LU.Formulae.back(), LF.LUIdx); |
| } |
| } |
| |
| DEBUG(print_fixups(dbgs())); |
| } |
| |
| /// InsertInitialFormula - Insert a formula for the given expression into |
| /// the given use, separating out loop-variant portions from loop-invariant |
| /// and loop-computable portions. |
| void |
| LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { |
| Formula F; |
| F.InitialMatch(S, L, SE); |
| bool Inserted = InsertFormula(LU, LUIdx, F); |
| assert(Inserted && "Initial formula already exists!"); (void)Inserted; |
| } |
| |
| /// InsertSupplementalFormula - Insert a simple single-register formula for |
| /// the given expression into the given use. |
| void |
| LSRInstance::InsertSupplementalFormula(const SCEV *S, |
| LSRUse &LU, size_t LUIdx) { |
| Formula F; |
| F.BaseRegs.push_back(S); |
| F.HasBaseReg = true; |
| bool Inserted = InsertFormula(LU, LUIdx, F); |
| assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; |
| } |
| |
| /// CountRegisters - Note which registers are used by the given formula, |
| /// updating RegUses. |
| void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { |
| if (F.ScaledReg) |
| RegUses.CountRegister(F.ScaledReg, LUIdx); |
| for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), |
| E = F.BaseRegs.end(); I != E; ++I) |
| RegUses.CountRegister(*I, LUIdx); |
| } |
| |
| /// InsertFormula - If the given formula has not yet been inserted, add it to |
| /// the list, and return true. Return false otherwise. |
| bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { |
| if (!LU.InsertFormula(F)) |
| return false; |
| |
| CountRegisters(F, LUIdx); |
| return true; |
| } |
| |
| /// CollectLoopInvariantFixupsAndFormulae - Check for other uses of |
| /// loop-invariant values which we're tracking. These other uses will pin these |
| /// values in registers, making them less profitable for elimination. |
| /// TODO: This currently misses non-constant addrec step registers. |
| /// TODO: Should this give more weight to users inside the loop? |
| void |
| LSRInstance::CollectLoopInvariantFixupsAndFormulae() { |
| SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); |
| SmallPtrSet<const SCEV *, 8> Inserted; |
| |
| while (!Worklist.empty()) { |
| const SCEV *S = Worklist.pop_back_val(); |
| |
| if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) |
| Worklist.append(N->op_begin(), N->op_end()); |
| else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) |
| Worklist.push_back(C->getOperand()); |
| else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { |
| Worklist.push_back(D->getLHS()); |
| Worklist.push_back(D->getRHS()); |
| } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { |
| if (!Inserted.insert(U)) continue; |
| const Value *V = U->getValue(); |
| if (const Instruction *Inst = dyn_cast<Instruction>(V)) { |
| // Look for instructions defined outside the loop. |
| if (L->contains(Inst)) continue; |
| } else if (isa<UndefValue>(V)) |
| // Undef doesn't have a live range, so it doesn't matter. |
| continue; |
| for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end(); |
| UI != UE; ++UI) { |
| const Instruction *UserInst = dyn_cast<Instruction>(*UI); |
| // Ignore non-instructions. |
| if (!UserInst) |
| continue; |
| // Ignore instructions in other functions (as can happen with |
| // Constants). |
| if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) |
| continue; |
| // Ignore instructions not dominated by the loop. |
| const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? |
| UserInst->getParent() : |
| cast<PHINode>(UserInst)->getIncomingBlock( |
| PHINode::getIncomingValueNumForOperand(UI.getOperandNo())); |
| if (!DT.dominates(L->getHeader(), UseBB)) |
| continue; |
| // Ignore uses which are part of other SCEV expressions, to avoid |
| // analyzing them multiple times. |
| if (SE.isSCEVable(UserInst->getType())) { |
| const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); |
| // If the user is a no-op, look through to its uses. |
| if (!isa<SCEVUnknown>(UserS)) |
| continue; |
| if (UserS == U) { |
| Worklist.push_back( |
| SE.getUnknown(const_cast<Instruction *>(UserInst))); |
| continue; |
| } |
| } |
| // Ignore icmp instructions which are already being analyzed. |
| if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { |
| unsigned OtherIdx = !UI.getOperandNo(); |
| Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); |
| if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) |
| continue; |
| } |
| |
| LSRFixup &LF = getNewFixup(); |
| LF.UserInst = const_cast<Instruction *>(UserInst); |
| LF.OperandValToReplace = UI.getUse(); |
| std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0); |
| LF.LUIdx = P.first; |
| LF.Offset = P.second; |
| LSRUse &LU = Uses[LF.LUIdx]; |
| LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); |
| if (!LU.WidestFixupType || |
| SE.getTypeSizeInBits(LU.WidestFixupType) < |
| SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) |
| LU.WidestFixupType = LF.OperandValToReplace->getType(); |
| InsertSupplementalFormula(U, LU, LF.LUIdx); |
| CountRegisters(LU.Formulae.back(), Uses.size() - 1); |
| break; |
| } |
| } |
| } |
| } |
| |
| /// CollectSubexprs - Split S into subexpressions which can be pulled out into |
| /// separate registers. If C is non-null, multiply each subexpression by C. |
| /// |
| /// Return remainder expression after factoring the subexpressions captured by |
| /// Ops. If Ops is complete, return NULL. |
| static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, |
| SmallVectorImpl<const SCEV *> &Ops, |
| const Loop *L, |
| ScalarEvolution &SE, |
| unsigned Depth = 0) { |
| // Arbitrarily cap recursion to protect compile time. |
| if (Depth >= 3) |
| return S; |
| |
| if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { |
| // Break out add operands. |
| for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); |
| I != E; ++I) { |
| const SCEV *Remainder = CollectSubexprs(*I, C, Ops, L, SE, Depth+1); |
| if (Remainder) |
| Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); |
| } |
| return NULL; |
| } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { |
| // Split a non-zero base out of an addrec. |
| if (AR->getStart()->isZero()) |
| return S; |
| |
| const SCEV *Remainder = CollectSubexprs(AR->getStart(), |
| C, Ops, L, SE, Depth+1); |
| // Split the non-zero AddRec unless it is part of a nested recurrence that |
| // does not pertain to this loop. |
| if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { |
| Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); |
| Remainder = NULL; |
| } |
| if (Remainder != AR->getStart()) { |
| if (!Remainder) |
| Remainder = SE.getConstant(AR->getType(), 0); |
| return SE.getAddRecExpr(Remainder, |
| AR->getStepRecurrence(SE), |
| AR->getLoop(), |
| //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) |
| SCEV::FlagAnyWrap); |
| } |
| } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { |
| // Break (C * (a + b + c)) into C*a + C*b + C*c. |
| if (Mul->getNumOperands() != 2) |
| return S; |
| if (const SCEVConstant *Op0 = |
| dyn_cast<SCEVConstant>(Mul->getOperand(0))) { |
| C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; |
| const SCEV *Remainder = |
| CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); |
| if (Remainder) |
| Ops.push_back(SE.getMulExpr(C, Remainder)); |
| return NULL; |
| } |
| } |
| return S; |
| } |
| |
| /// GenerateReassociations - Split out subexpressions from adds and the bases of |
| /// addrecs. |
| void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, |
| Formula Base, |
| unsigned Depth) { |
| // Arbitrarily cap recursion to protect compile time. |
| if (Depth >= 3) return; |
| |
| for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { |
| const SCEV *BaseReg = Base.BaseRegs[i]; |
| |
| SmallVector<const SCEV *, 8> AddOps; |
| const SCEV *Remainder = CollectSubexprs(BaseReg, 0, AddOps, L, SE); |
| if (Remainder) |
| AddOps.push_back(Remainder); |
| |
| if (AddOps.size() == 1) continue; |
| |
| for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), |
| JE = AddOps.end(); J != JE; ++J) { |
| |
| // Loop-variant "unknown" values are uninteresting; we won't be able to |
| // do anything meaningful with them. |
| if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) |
| continue; |
| |
| // Don't pull a constant into a register if the constant could be folded |
| // into an immediate field. |
| if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, |
| LU.AccessTy, *J, Base.getNumRegs() > 1)) |
| continue; |
| |
| // Collect all operands except *J. |
| SmallVector<const SCEV *, 8> InnerAddOps |
| (((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); |
| InnerAddOps.append |
| (llvm::next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end()); |
| |
| // Don't leave just a constant behind in a register if the constant could |
| // be folded into an immediate field. |
| if (InnerAddOps.size() == 1 && |
| isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, |
| LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) |
| continue; |
| |
| const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); |
| if (InnerSum->isZero()) |
| continue; |
| Formula F = Base; |
| |
| // Add the remaining pieces of the add back into the new formula. |
| const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); |
| if (InnerSumSC && |
| SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && |
| TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + |
| InnerSumSC->getValue()->getZExtValue())) { |
| F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset + |
| InnerSumSC->getValue()->getZExtValue(); |
| F.BaseRegs.erase(F.BaseRegs.begin() + i); |
| } else |
| F.BaseRegs[i] = InnerSum; |
| |
| // Add J as its own register, or an unfolded immediate. |
| const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); |
| if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && |
| TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + |
| SC->getValue()->getZExtValue())) |
| F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset + |
| SC->getValue()->getZExtValue(); |
| else |
| F.BaseRegs.push_back(*J); |
| |
| if (InsertFormula(LU, LUIdx, F)) |
| // If that formula hadn't been seen before, recurse to find more like |
| // it. |
| GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1); |
| } |
| } |
| } |
| |
| /// GenerateCombinations - Generate a formula consisting of all of the |
| /// loop-dominating registers added into a single register. |
| void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, |
| Formula Base) { |
| // This method is only interesting on a plurality of registers. |
| if (Base.BaseRegs.size() <= 1) return; |
| |
| Formula F = Base; |
| F.BaseRegs.clear(); |
| SmallVector<const SCEV *, 4> Ops; |
| for (SmallVectorImpl<const SCEV *>::const_iterator |
| I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) { |
| const SCEV *BaseReg = *I; |
| if (SE.properlyDominates(BaseReg, L->getHeader()) && |
| !SE.hasComputableLoopEvolution(BaseReg, L)) |
| Ops.push_back(BaseReg); |
| else |
| F.BaseRegs.push_back(BaseReg); |
| } |
| if (Ops.size() > 1) { |
| const SCEV *Sum = SE.getAddExpr(Ops); |
| // TODO: If Sum is zero, it probably means ScalarEvolution missed an |
| // opportunity to fold something. For now, just ignore such cases |
| // rather than proceed with zero in a register. |
| if (!Sum->isZero()) { |
| F.BaseRegs.push_back(Sum); |
| (void)InsertFormula(LU, LUIdx, F); |
| } |
| } |
| } |
| |
| /// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets. |
| void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, |
| Formula Base) { |
| // We can't add a symbolic offset if the address already contains one. |
| if (Base.BaseGV) return; |
| |
| for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { |
| const SCEV *G = Base.BaseRegs[i]; |
| GlobalValue *GV = ExtractSymbol(G, SE); |
| if (G->isZero() || !GV) |
| continue; |
| Formula F = Base; |
| F.BaseGV = GV; |
| if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) |
| continue; |
| F.BaseRegs[i] = G; |
| (void)InsertFormula(LU, LUIdx, F); |
| } |
| } |
| |
| /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. |
| void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, |
| Formula Base) { |
| // TODO: For now, just add the min and max offset, because it usually isn't |
| // worthwhile looking at everything inbetween. |
| SmallVector<int64_t, 2> Worklist; |
| Worklist.push_back(LU.MinOffset); |
| if (LU.MaxOffset != LU.MinOffset) |
| Worklist.push_back(LU.MaxOffset); |
| |
| for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { |
| const SCEV *G = Base.BaseRegs[i]; |
| |
| for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(), |
| E = Worklist.end(); I != E; ++I) { |
| Formula F = Base; |
| F.BaseOffset = (uint64_t)Base.BaseOffset - *I; |
| if (isLegalUse(TTI, LU.MinOffset - *I, LU.MaxOffset - *I, LU.Kind, |
| LU.AccessTy, F)) { |
| // Add the offset to the base register. |
| const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G); |
| // If it cancelled out, drop the base register, otherwise update it. |
| if (NewG->isZero()) { |
| std::swap(F.BaseRegs[i], F.BaseRegs.back()); |
| F.BaseRegs.pop_back(); |
| } else |
| F.BaseRegs[i] = NewG; |
| |
| (void)InsertFormula(LU, LUIdx, F); |
| } |
| } |
| |
| int64_t Imm = ExtractImmediate(G, SE); |
| if (G->isZero() || Imm == 0) |
| continue; |
| Formula F = Base; |
| F.BaseOffset = (uint64_t)F.BaseOffset + Imm; |
| if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) |
| continue; |
| F.BaseRegs[i] = G; |
| (void)InsertFormula(LU, LUIdx, F); |
| } |
| } |
| |
| /// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up |
| /// the comparison. For example, x == y -> x*c == y*c. |
| void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, |
| Formula Base) { |
| if (LU.Kind != LSRUse::ICmpZero) return; |
| |
| // Determine the integer type for the base formula. |
| Type *IntTy = Base.getType(); |
| if (!IntTy) return; |
| if (SE.getTypeSizeInBits(IntTy) > 64) return; |
| |
| // Don't do this if there is more than one offset. |
| if (LU.MinOffset != LU.MaxOffset) return; |
| |
| assert(!Base.BaseGV && "ICmpZero use is not legal!"); |
| |
| // Check each interesting stride. |
| for (SmallSetVector<int64_t, 8>::const_iterator |
| I = Factors.begin(), E = Factors.end(); I != E; ++I) { |
| int64_t Factor = *I; |
| |
| // Check that the multiplication doesn't overflow. |
| if (Base.BaseOffset == INT64_MIN && Factor == -1) |
| continue; |
| int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; |
| if (NewBaseOffset / Factor != Base.BaseOffset) |
| continue; |
| |
| // Check that multiplying with the use offset doesn't overflow. |
| int64_t Offset = LU.MinOffset; |
| if (Offset == INT64_MIN && Factor == -1) |
| continue; |
| Offset = (uint64_t)Offset * Factor; |
| if (Offset / Factor != LU.MinOffset) |
| continue; |
| |
| Formula F = Base; |
| F.BaseOffset = NewBaseOffset; |
| |
| // Check that this scale is legal. |
| if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) |
| continue; |
| |
| // Compensate for the use having MinOffset built into it. |
| F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; |
| |
| const SCEV *FactorS = SE.getConstant(IntTy, Factor); |
| |
| // Check that multiplying with each base register doesn't overflow. |
| for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { |
| F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); |
| if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) |
| goto next; |
| } |
| |
| // Check that multiplying with the scaled register doesn't overflow. |
| if (F.ScaledReg) { |
| F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); |
| if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) |
| continue; |
| } |
| |
| // Check that multiplying with the unfolded offset doesn't overflow. |
| if (F.UnfoldedOffset != 0) { |
| if (F.UnfoldedOffset == INT64_MIN && Factor == -1) |
| continue; |
| F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; |
| if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) |
| continue; |
| } |
| |
| // If we make it here and it's legal, add it. |
| (void)InsertFormula(LU, LUIdx, F); |
| next:; |
| } |
| } |
| |
| /// GenerateScales - Generate stride factor reuse formulae by making use of |
| /// scaled-offset address modes, for example. |
| void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { |
| // Determine the integer type for the base formula. |
| Type *IntTy = Base.getType(); |
| if (!IntTy) return; |
| |
| // If this Formula already has a scaled register, we can't add another one. |
| if (Base.Scale != 0) return; |
| |
| // Check each interesting stride. |
| for (SmallSetVector<int64_t, 8>::const_iterator |
| I = Factors.begin(), E = Factors.end(); I != E; ++I) { |
| int64_t Factor = *I; |
| |
| Base.Scale = Factor; |
| Base.HasBaseReg = Base.BaseRegs.size() > 1; |
| // Check whether this scale is going to be legal. |
| if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, |
| Base)) { |
| // As a special-case, handle special out-of-loop Basic users specially. |
| // TODO: Reconsider this special case. |
| if (LU.Kind == LSRUse::Basic && |
| isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, |
| LU.AccessTy, Base) && |
| LU.AllFixupsOutsideLoop) |
| LU.Kind = LSRUse::Special; |
| else |
| continue; |
| } |
| // For an ICmpZero, negating a solitary base register won't lead to |
| // new solutions. |
| if (LU.Kind == LSRUse::ICmpZero && |
| !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) |
| continue; |
| // For each addrec base reg, apply the scale, if possible. |
| for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) |
| if (const SCEVAddRecExpr *AR = |
| dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) { |
| const SCEV *FactorS = SE.getConstant(IntTy, Factor); |
| if (FactorS->isZero()) |
| continue; |
| // Divide out the factor, ignoring high bits, since we'll be |
| // scaling the value back up in the end. |
| if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { |
| // TODO: This could be optimized to avoid all the copying. |
| Formula F = Base; |
| F.ScaledReg = Quotient; |
| F.DeleteBaseReg(F.BaseRegs[i]); |
| (void)InsertFormula(LU, LUIdx, F); |
| } |
| } |
| } |
| } |
| |
| /// GenerateTruncates - Generate reuse formulae from different IV types. |
| void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { |
| // Don't bother truncating symbolic values. |
| if (Base.BaseGV) return; |
| |
| // Determine the integer type for the base formula. |
| Type *DstTy = Base.getType(); |
| if (!DstTy) return; |
| DstTy = SE.getEffectiveSCEVType(DstTy); |
| |
| for (SmallSetVector<Type *, 4>::const_iterator |
| I = Types.begin(), E = Types.end(); I != E; ++I) { |
| Type *SrcTy = *I; |
| if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { |
| Formula F = Base; |
| |
| if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I); |
| for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(), |
| JE = F.BaseRegs.end(); J != JE; ++J) |
| *J = SE.getAnyExtendExpr(*J, SrcTy); |
| |
| // TODO: This assumes we've done basic processing on all uses and |
| // have an idea what the register usage is. |
| if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) |
| continue; |
| |
| (void)InsertFormula(LU, LUIdx, F); |
| } |
| } |
| } |
| |
| namespace { |
| |
| /// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to |
| /// defer modifications so that the search phase doesn't have to worry about |
| /// the data structures moving underneath it. |
| struct WorkItem { |
| size_t LUIdx; |
| int64_t Imm; |
| const SCEV *OrigReg; |
| |
| WorkItem(size_t LI, int64_t I, const SCEV *R) |
| : LUIdx(LI), Imm(I), OrigReg(R) {} |
| |
| void print(raw_ostream &OS) const; |
| void dump() const; |
| }; |
| |
| } |
| |
| void WorkItem::print(raw_ostream &OS) const { |
| OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx |
| << " , add offset " << Imm; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| void WorkItem::dump() const { |
| print(errs()); errs() << '\n'; |
| } |
| #endif |
| |
| /// GenerateCrossUseConstantOffsets - Look for registers which are a constant |
| /// distance apart and try to form reuse opportunities between them. |
| void LSRInstance::GenerateCrossUseConstantOffsets() { |
| // Group the registers by their value without any added constant offset. |
| typedef std::map<int64_t, const SCEV *> ImmMapTy; |
| typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy; |
| RegMapTy Map; |
| DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; |
| SmallVector<const SCEV *, 8> Sequence; |
| for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); |
| I != E; ++I) { |
| const SCEV *Reg = *I; |
| int64_t Imm = ExtractImmediate(Reg, SE); |
| std::pair<RegMapTy::iterator, bool> Pair = |
| Map.insert(std::make_pair(Reg, ImmMapTy())); |
| if (Pair.second) |
| Sequence.push_back(Reg); |
| Pair.first->second.insert(std::make_pair(Imm, *I)); |
| UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I); |
| } |
| |
| // Now examine each set of registers with the same base value. Build up |
| // a list of work to do and do the work in a separate step so that we're |
| // not adding formulae and register counts while we're searching. |
| SmallVector<WorkItem, 32> WorkItems; |
| SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; |
| for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(), |
| E = Sequence.end(); I != E; ++I) { |
| const SCEV *Reg = *I; |
| const ImmMapTy &Imms = Map.find(Reg)->second; |
| |
| // It's not worthwhile looking for reuse if there's only one offset. |
| if (Imms.size() == 1) |
| continue; |
| |
| DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; |
| for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); |
| J != JE; ++J) |
| dbgs() << ' ' << J->first; |
| dbgs() << '\n'); |
| |
| // Examine each offset. |
| for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); |
| J != JE; ++J) { |
| const SCEV *OrigReg = J->second; |
| |
| int64_t JImm = J->first; |
| const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); |
| |
| if (!isa<SCEVConstant>(OrigReg) && |
| UsedByIndicesMap[Reg].count() == 1) { |
| DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); |
| continue; |
| } |
| |
| // Conservatively examine offsets between this orig reg a few selected |
| // other orig regs. |
| ImmMapTy::const_iterator OtherImms[] = { |
| Imms.begin(), prior(Imms.end()), |
| Imms.lower_bound((Imms.begin()->first + prior(Imms.end())->first) / 2) |
| }; |
| for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { |
| ImmMapTy::const_iterator M = OtherImms[i]; |
| if (M == J || M == JE) continue; |
| |
| // Compute the difference between the two. |
| int64_t Imm = (uint64_t)JImm - M->first; |
| for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1; |
| LUIdx = UsedByIndices.find_next(LUIdx)) |
| // Make a memo of this use, offset, and register tuple. |
| if (UniqueItems.insert(std::make_pair(LUIdx, Imm))) |
| WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); |
| } |
| } |
| } |
| |
| Map.clear(); |
| Sequence.clear(); |
| UsedByIndicesMap.clear(); |
| UniqueItems.clear(); |
| |
| // Now iterate through the worklist and add new formulae. |
| for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(), |
| E = WorkItems.end(); I != E; ++I) { |
| const WorkItem &WI = *I; |
| size_t LUIdx = WI.LUIdx; |
| LSRUse &LU = Uses[LUIdx]; |
| int64_t Imm = WI.Imm; |
| const SCEV *OrigReg = WI.OrigReg; |
| |
| Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); |
| const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); |
| unsigned BitWidth = SE.getTypeSizeInBits(IntTy); |
| |
| // TODO: Use a more targeted data structure. |
| for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { |
| const Formula &F = LU.Formulae[L]; |
| // Use the immediate in the scaled register. |
| if (F.ScaledReg == OrigReg) { |
| int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; |
| // Don't create 50 + reg(-50). |
| if (F.referencesReg(SE.getSCEV( |
| ConstantInt::get(IntTy, -(uint64_t)Offset)))) |
| continue; |
| Formula NewF = F; |
| NewF.BaseOffset = Offset; |
| if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, |
| NewF)) |
| continue; |
| NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); |
| |
| // If the new scale is a constant in a register, and adding the constant |
| // value to the immediate would produce a value closer to zero than the |
| // immediate itself, then the formula isn't worthwhile. |
| if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) |
| if (C->getValue()->isNegative() != |
| (NewF.BaseOffset < 0) && |
| (C->getValue()->getValue().abs() * APInt(BitWidth, F.Scale)) |
| .ule(abs64(NewF.BaseOffset))) |
| continue; |
| |
| // OK, looks good. |
| (void)InsertFormula(LU, LUIdx, NewF); |
| } else { |
| // Use the immediate in a base register. |
| for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { |
| const SCEV *BaseReg = F.BaseRegs[N]; |
| if (BaseReg != OrigReg) |
| continue; |
| Formula NewF = F; |
| NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; |
| if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, |
| LU.Kind, LU.AccessTy, NewF)) { |
| if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) |
| continue; |
| NewF = F; |
| NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; |
| } |
| NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); |
| |
| // If the new formula has a constant in a register, and adding the |
| // constant value to the immediate would produce a value closer to |
| // zero than the immediate itself, then the formula isn't worthwhile. |
| for (SmallVectorImpl<const SCEV *>::const_iterator |
| J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end(); |
| J != JE; ++J) |
| if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J)) |
| if ((C->getValue()->getValue() + NewF.BaseOffset).abs().slt( |
| abs64(NewF.BaseOffset)) && |
| (C->getValue()->getValue() + |
| NewF.BaseOffset).countTrailingZeros() >= |
| CountTrailingZeros_64(NewF.BaseOffset)) |
| goto skip_formula; |
| |
| // Ok, looks good. |
| (void)InsertFormula(LU, LUIdx, NewF); |
| break; |
| skip_formula:; |
| } |
| } |
| } |
| } |
| } |
| |
| /// GenerateAllReuseFormulae - Generate formulae for each use. |
| void |
| LSRInstance::GenerateAllReuseFormulae() { |
| // This is split into multiple loops so that hasRegsUsedByUsesOtherThan |
| // queries are more precise. |
| for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { |
| LSRUse &LU = Uses[LUIdx]; |
| for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) |
| GenerateReassociations(LU, LUIdx, LU.Formulae[i]); |
| for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) |
| GenerateCombinations(LU, LUIdx, LU.Formulae[i]); |
| } |
| for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { |
| LSRUse &LU = Uses[LUIdx]; |
| for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) |
| GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); |
| for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) |
| GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); |
| for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) |
| GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); |
| for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) |
| GenerateScales(LU, LUIdx, LU.Formulae[i]); |
| } |
| for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { |
| LSRUse &LU = Uses[LUIdx]; |
| for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) |
| GenerateTruncates(LU, LUIdx, LU.Formulae[i]); |
| } |
| |
| GenerateCrossUseConstantOffsets(); |
| |
| DEBUG(dbgs() << "\n" |
| "After generating reuse formulae:\n"; |
| print_uses(dbgs())); |
| } |
| |
| /// If there are multiple formulae with the same set of registers used |
| /// by other uses, pick the best one and delete the others. |
| void LSRInstance::FilterOutUndesirableDedicatedRegisters() { |
| DenseSet<const SCEV *> VisitedRegs; |
| SmallPtrSet<const SCEV *, 16> Regs; |
| SmallPtrSet<const SCEV *, 16> LoserRegs; |
| #ifndef NDEBUG |
| bool ChangedFormulae = false; |
| #endif |
| |
| // Collect the best formula for each unique set of shared registers. This |
| // is reset for each use. |
| typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo> |
| BestFormulaeTy; |
| BestFormulaeTy BestFormulae; |
| |
| for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { |
| LSRUse &LU = Uses[LUIdx]; |
| DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); |
| |
| bool Any = false; |
| for (size_t FIdx = 0, NumForms = LU.Formulae.size(); |
| FIdx != NumForms; ++FIdx) { |
| Formula &F = LU.Formulae[FIdx]; |
| |
| // Some formulas are instant losers. For example, they may depend on |
| // nonexistent AddRecs from other loops. These need to be filtered |
| // immediately, otherwise heuristics could choose them over others leading |
| // to an unsatisfactory solution. Passing LoserRegs into RateFormula here |
| // avoids the need to recompute this information across formulae using the |
| // same bad AddRec. Passing LoserRegs is also essential unless we remove |
| // the corresponding bad register from the Regs set. |
| Cost CostF; |
| Regs.clear(); |
| CostF.RateFormula(F, Regs, VisitedRegs, L, LU.Offsets, SE, DT, |
| &LoserRegs); |
| if (CostF.isLoser()) { |
| // During initial formula generation, undesirable formulae are generated |
| // by uses within other loops that have some non-trivial address mode or |
| // use the postinc form of the IV. LSR needs to provide these formulae |
| // as the basis of rediscovering the desired formula that uses an AddRec |
| // corresponding to the existing phi. Once all formulae have been |
| // generated, these initial losers may be pruned. |
| DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); |
| dbgs() << "\n"); |
| } |
| else { |
| SmallVector<const SCEV *, 4> Key; |
| for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(), |
| JE = F.BaseRegs.end(); J != JE; ++J) { |
| const SCEV *Reg = *J; |
| if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) |
| Key.push_back(Reg); |
| } |
| if (F.ScaledReg && |
| RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) |
| Key.push_back(F.ScaledReg); |
| // Unstable sort by host order ok, because this is only used for |
| // uniquifying. |
| std::sort(Key.begin(), Key.end()); |
| |
| std::pair<BestFormulaeTy::const_iterator, bool> P = |
| BestFormulae.insert(std::make_pair(Key, FIdx)); |
| if (P.second) |
| continue; |
| |
| Formula &Best = LU.Formulae[P.first->second]; |
| |
| Cost CostBest; |
| Regs.clear(); |
| CostBest.RateFormula(Best, Regs, VisitedRegs, L, LU.Offsets, SE, DT); |
| if (CostF < CostBest) |
| std::swap(F, Best); |
| DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); |
| dbgs() << "\n" |
| " in favor of formula "; Best.print(dbgs()); |
| dbgs() << '\n'); |
| } |
| #ifndef NDEBUG |
| ChangedFormulae = true; |
| #endif |
| LU.DeleteFormula(F); |
| --FIdx; |
| --NumForms; |
| Any = true; |
| } |
| |
| // Now that we've filtered out some formulae, recompute the Regs set. |
| if (Any) |
| LU.RecomputeRegs(LUIdx, RegUses); |
| |
| // Reset this to prepare for the next use. |
| BestFormulae.clear(); |
| } |
| |
| DEBUG(if (ChangedFormulae) { |
| dbgs() << "\n" |
| "After filtering out undesirable candidates:\n"; |
| print_uses(dbgs()); |
| }); |
| } |
| |
| // This is a rough guess that seems to work fairly well. |
| static const size_t ComplexityLimit = UINT16_MAX; |
| |
| /// EstimateSearchSpaceComplexity - Estimate the worst-case number of |
| /// solutions the solver might have to consider. It almost never considers |
| /// this many solutions because it prune the search space, but the pruning |
| /// isn't always sufficient. |
| size_t LSRInstance::EstimateSearchSpaceComplexity() const { |
| size_t Power = 1; |
| for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), |
| E = Uses.end(); I != E; ++I) { |
| size_t FSize = I->Formulae.size(); |
| if (FSize >= ComplexityLimit) { |
| Power = ComplexityLimit; |
| break; |
| } |
| Power *= FSize; |
| if (Power >= ComplexityLimit) |
| break; |
| } |
| return Power; |
| } |
| |
| /// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset |
| /// of the registers of another formula, it won't help reduce register |
| /// pressure (though it may not necessarily hurt register pressure); remove |
| /// it to simplify the system. |
| void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { |
| if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { |
| DEBUG(dbgs() << "The search space is too complex.\n"); |
| |
| DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " |
| "which use a superset of registers used by other " |
| "formulae.\n"); |
| |
| for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { |
| LSRUse &LU = Uses[LUIdx]; |
| bool Any = false; |
| for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { |
| Formula &F = LU.Formulae[i]; |
| // Look for a formula with a constant or GV in a register. If the use |
| // also has a formula with that same value in an immediate field, |
| // delete the one that uses a register. |
| for (SmallVectorImpl<const SCEV *>::const_iterator |
| I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { |
| if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { |
| Formula NewF = F; |
| NewF.BaseOffset += C->getValue()->getSExtValue(); |
| NewF.BaseRegs.erase(NewF.BaseRegs.begin() + |
| (I - F.BaseRegs.begin())); |
| if (LU.HasFormulaWithSameRegs(NewF)) { |
| DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); |
| LU.DeleteFormula(F); |
| --i; |
| --e; |
| Any = true; |
| break; |
| } |
| } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { |
| if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) |
| if (!F.BaseGV) { |
| Formula NewF = F; |
| NewF.BaseGV = GV; |
| NewF.BaseRegs.erase(NewF.BaseRegs.begin() + |
| (I - F.BaseRegs.begin())); |
| if (LU.HasFormulaWithSameRegs(NewF)) { |
| DEBUG(dbgs() << " Deleting "; F.print(dbgs()); |
| dbgs() << '\n'); |
| LU.DeleteFormula(F); |
| --i; |
| --e; |
| Any = true; |
| break; |
| } |
| } |
| } |
| } |
| } |
| if (Any) |
| LU.RecomputeRegs(LUIdx, RegUses); |
| } |
| |
| DEBUG(dbgs() << "After pre-selection:\n"; |
| print_uses(dbgs())); |
| } |
| } |
| |
| /// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers |
| /// for expressions like A, A+1, A+2, etc., allocate a single register for |
| /// them. |
| void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { |
| if (EstimateSearchSpaceComplexity() < ComplexityLimit) |
| return; |
| |
| DEBUG(dbgs() << "The search space is too complex.\n" |
| "Narrowing the search space by assuming that uses separated " |
| "by a constant offset will use the same registers.\n"); |
| |
| // This is especially useful for unrolled loops. |
| |
| for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { |
| LSRUse &LU = Uses[LUIdx]; |
| for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), |
| E = LU.Formulae.end(); I != E; ++I) { |
| const Formula &F = *I; |
| if (F.BaseOffset == 0 || F.Scale != 0) |
| continue; |
| |
| LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); |
| if (!LUThatHas) |
| continue; |
| |
| if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, |
| LU.Kind, LU.AccessTy)) |
| continue; |
| |
| DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); |
| |
| LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; |
| |
| // Update the relocs to reference the new use. |
| for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(), |
| E = Fixups.end(); I != E; ++I) { |
| LSRFixup &Fixup = *I; |
| if (Fixup.LUIdx == LUIdx) { |
| Fixup.LUIdx = LUThatHas - &Uses.front(); |
| Fixup.Offset += F.BaseOffset; |
| // Add the new offset to LUThatHas' offset list. |
| if (LUThatHas->Offsets.back() != Fixup.Offset) { |
| LUThatHas->Offsets.push_back(Fixup.Offset); |
| if (Fixup.Offset > LUThatHas->MaxOffset) |
| LUThatHas->MaxOffset = Fixup.Offset; |
| if (Fixup.Offset < LUThatHas->MinOffset) |
| LUThatHas->MinOffset = Fixup.Offset; |
| } |
| DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); |
| } |
| if (Fixup.LUIdx == NumUses-1) |
| Fixup.LUIdx = LUIdx; |
| } |
| |
| // Delete formulae from the new use which are no longer legal. |
| bool Any = false; |
| for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { |
| Formula &F = LUThatHas->Formulae[i]; |
| if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, |
| LUThatHas->Kind, LUThatHas->AccessTy, F)) { |
| DEBUG(dbgs() << " Deleting "; F.print(dbgs()); |
| dbgs() << '\n'); |
| LUThatHas->DeleteFormula(F); |
| --i; |
| --e; |
| Any = true; |
| } |
| } |
| |
| if (Any) |
| LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); |
| |
| // Delete the old use. |
| DeleteUse(LU, LUIdx); |
| --LUIdx; |
| --NumUses; |
| break; |
| } |
| } |
| |
| DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); |
| } |
| |
| /// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call |
| /// FilterOutUndesirableDedicatedRegisters again, if necessary, now that |
| /// we've done more filtering, as it may be able to find more formulae to |
| /// eliminate. |
| void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ |
| if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { |
| DEBUG(dbgs() << "The search space is too complex.\n"); |
| |
| DEBUG(dbgs() << "Narrowing the search space by re-filtering out " |
| "undesirable dedicated registers.\n"); |
| |
| FilterOutUndesirableDedicatedRegisters(); |
| |
| DEBUG(dbgs() << "After pre-selection:\n"; |
| print_uses(dbgs())); |
| } |
| } |
| |
| /// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely |
| /// to be profitable, and then in any use which has any reference to that |
| /// register, delete all formulae which do not reference that register. |
| void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { |
| // With all other options exhausted, loop until the system is simple |
| // enough to handle. |
| SmallPtrSet<const SCEV *, 4> Taken; |
| while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { |
| // Ok, we have too many of formulae on our hands to conveniently handle. |
| // Use a rough heuristic to thin out the list. |
| DEBUG(dbgs() << "The search space is too complex.\n"); |
| |
| // Pick the register which is used by the most LSRUses, which is likely |
| // to be a good reuse register candidate. |
| const SCEV *Best = 0; |
| unsigned BestNum = 0; |
| for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); |
| I != E; ++I) { |
| const SCEV *Reg = *I; |
| if (Taken.count(Reg)) |
| continue; |
| if (!Best) |
| Best = Reg; |
| else { |
| unsigned Count = RegUses.getUsedByIndices(Reg).count(); |
| if (Count > BestNum) { |
| Best = Reg; |
| BestNum = Count; |
| } |
| } |
| } |
| |
| DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best |
| << " will yield profitable reuse.\n"); |
| Taken.insert(Best); |
| |
| // In any use with formulae which references this register, delete formulae |
| // which don't reference it. |
| for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { |
| LSRUse &LU = Uses[LUIdx]; |
| if (!LU.Regs.count(Best)) continue; |
| |
| bool Any = false; |
| for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { |
| Formula &F = LU.Formulae[i]; |
| if (!F.referencesReg(Best)) { |
| DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); |
| LU.DeleteFormula(F); |
| --e; |
| --i; |
| Any = true; |
| assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); |
| continue; |
| } |
| } |
| |
| if (Any) |
| LU.RecomputeRegs(LUIdx, RegUses); |
| } |
| |
| DEBUG(dbgs() << "After pre-selection:\n"; |
| print_uses(dbgs())); |
| } |
| } |
| |
| /// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of |
| /// formulae to choose from, use some rough heuristics to prune down the number |
| /// of formulae. This keeps the main solver from taking an extraordinary amount |
| /// of time in some worst-case scenarios. |
| void LSRInstance::NarrowSearchSpaceUsingHeuristics() { |
| NarrowSearchSpaceByDetectingSupersets(); |
| NarrowSearchSpaceByCollapsingUnrolledCode(); |
| NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); |
| NarrowSearchSpaceByPickingWinnerRegs(); |
| } |
| |
| /// SolveRecurse - This is the recursive solver. |
| void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, |
| Cost &SolutionCost, |
| SmallVectorImpl<const Formula *> &Workspace, |
| const Cost &CurCost, |
| const SmallPtrSet<const SCEV *, 16> &CurRegs, |
| DenseSet<const SCEV *> &VisitedRegs) const { |
| // Some ideas: |
| // - prune more: |
| // - use more aggressive filtering |
| // - sort the formula so that the most profitable solutions are found first |
| // - sort the uses too |
| // - search faster: |
| // - don't compute a cost, and then compare. compare while computing a cost |
| // and bail early. |
| // - track register sets with SmallBitVector |
| |
| const LSRUse &LU = Uses[Workspace.size()]; |
| |
| // If this use references any register that's already a part of the |
| // in-progress solution, consider it a requirement that a formula must |
| // reference that register in order to be considered. This prunes out |
| // unprofitable searching. |
| SmallSetVector<const SCEV *, 4> ReqRegs; |
| for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(), |
| E = CurRegs.end(); I != E; ++I) |
| if (LU.Regs.count(*I)) |
| ReqRegs.insert(*I); |
| |
| SmallPtrSet<const SCEV *, 16> NewRegs; |
| Cost NewCost; |
| for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), |
| E = LU.Formulae.end(); I != E; ++I) { |
| const Formula &F = *I; |
| |
| // Ignore formulae which do not use any of the required registers. |
| bool SatisfiedReqReg = true; |
| for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(), |
| JE = ReqRegs.end(); J != JE; ++J) { |
| const SCEV *Reg = *J; |
| if ((!F.ScaledReg || F.ScaledReg != Reg) && |
| std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) == |
| F.BaseRegs.end()) { |
| SatisfiedReqReg = false; |
| break; |
| } |
| } |
| if (!SatisfiedReqReg) { |
| // If none of the formulae satisfied the required registers, then we could |
| // clear ReqRegs and try again. Currently, we simply give up in this case. |
| continue; |
| } |
| |
| // Evaluate the cost of the current formula. If it's already worse than |
| // the current best, prune the search at that point. |
| NewCost = CurCost; |
| NewRegs = CurRegs; |
| NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT); |
| if (NewCost < SolutionCost) { |
| Workspace.push_back(&F); |
| if (Workspace.size() != Uses.size()) { |
| SolveRecurse(Solution, SolutionCost, Workspace, NewCost, |
| NewRegs, VisitedRegs); |
| if (F.getNumRegs() == 1 && Workspace.size() == 1) |
| VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); |
| } else { |
| DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); |
| dbgs() << ".\n Regs:"; |
| for (SmallPtrSet<const SCEV *, 16>::const_iterator |
| I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I) |
| dbgs() << ' ' << **I; |
| dbgs() << '\n'); |
| |
| SolutionCost = NewCost; |
| Solution = Workspace; |
| } |
| Workspace.pop_back(); |
| } |
| } |
| } |
| |
| /// Solve - Choose one formula from each use. Return the results in the given |
| /// Solution vector. |
| void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { |
| SmallVector<const Formula *, 8> Workspace; |
| Cost SolutionCost; |
| SolutionCost.Loose(); |
| Cost CurCost; |
| SmallPtrSet<const SCEV *, 16> CurRegs; |
| DenseSet<const SCEV *> VisitedRegs; |
| Workspace.reserve(Uses.size()); |
| |
| // SolveRecurse does all the work. |
| SolveRecurse(Solution, SolutionCost, Workspace, CurCost, |
| CurRegs, VisitedRegs); |
| if (Solution.empty()) { |
| DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); |
| return; |
| } |
| |
| // Ok, we've now made all our decisions. |
| DEBUG(dbgs() << "\n" |
| "The chosen solution requires "; SolutionCost.print(dbgs()); |
| dbgs() << ":\n"; |
| for (size_t i = 0, e = Uses.size(); i != e; ++i) { |
| dbgs() << " "; |
| Uses[i].print(dbgs()); |
| dbgs() << "\n" |
| " "; |
| Solution[i]->print(dbgs()); |
| dbgs() << '\n'; |
| }); |
| |
| assert(Solution.size() == Uses.size() && "Malformed solution!"); |
| } |
| |
| /// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up |
| /// the dominator tree far as we can go while still being dominated by the |
| /// input positions. This helps canonicalize the insert position, which |
| /// encourages sharing. |
| BasicBlock::iterator |
| LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, |
| const SmallVectorImpl<Instruction *> &Inputs) |
| const { |
| for (;;) { |
| const Loop *IPLoop = LI.getLoopFor(IP->getParent()); |
| unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; |
| |
| BasicBlock *IDom; |
| for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { |
| if (!Rung) return IP; |
| Rung = Rung->getIDom(); |
| if (!Rung) return IP; |
| IDom = Rung->getBlock(); |
| |
| // Don't climb into a loop though. |
| const Loop *IDomLoop = LI.getLoopFor(IDom); |
| unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; |
| if (IDomDepth <= IPLoopDepth && |
| (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) |
| break; |
| } |
| |
| bool AllDominate = true; |
| Instruction *BetterPos = 0; |
| Instruction *Tentative = IDom->getTerminator(); |
| for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(), |
| E = Inputs.end(); I != E; ++I) { |
| Instruction *Inst = *I; |
| if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { |
| AllDominate = false; |
| break; |
| } |
| // Attempt to find an insert position in the middle of the block, |
| // instead of at the end, so that it can be used for other expansions. |
| if (IDom == Inst->getParent() && |
| (!BetterPos || !DT.dominates(Inst, BetterPos))) |
| BetterPos = llvm::next(BasicBlock::iterator(Inst)); |
| } |
| if (!AllDominate) |
| break; |
| if (BetterPos) |
| IP = BetterPos; |
| else |
| IP = Tentative; |
| } |
| |
| return IP; |
| } |
| |
| /// AdjustInsertPositionForExpand - Determine an input position which will be |
| /// dominated by the operands and which will dominate the result. |
| BasicBlock::iterator |
| LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, |
| const LSRFixup &LF, |
| const LSRUse &LU, |
| SCEVExpander &Rewriter) const { |
| // Collect some instructions which must be dominated by the |
| // expanding replacement. These must be dominated by any operands that |
| // will be required in the expansion. |
| SmallVector<Instruction *, 4> Inputs; |
| if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) |
| Inputs.push_back(I); |
| if (LU.Kind == LSRUse::ICmpZero) |
| if (Instruction *I = |
| dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) |
| Inputs.push_back(I); |
| if (LF.PostIncLoops.count(L)) { |
| if (LF.isUseFullyOutsideLoop(L)) |
| Inputs.push_back(L->getLoopLatch()->getTerminator()); |
| else |
| Inputs.push_back(IVIncInsertPos); |
| } |
| // The expansion must also be dominated by the increment positions of any |
| // loops it for which it is using post-inc mode. |
| for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(), |
| E = LF.PostIncLoops.end(); I != E; ++I) { |
| const Loop *PIL = *I; |
| if (PIL == L) continue; |
| |
| // Be dominated by the loop exit. |
| SmallVector<BasicBlock *, 4> ExitingBlocks; |
| PIL->getExitingBlocks(ExitingBlocks); |
| if (!ExitingBlocks.empty()) { |
| BasicBlock *BB = ExitingBlocks[0]; |
| for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) |
| BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); |
| Inputs.push_back(BB->getTerminator()); |
| } |
| } |
| |
| assert(!isa<PHINode>(LowestIP) && !isa<LandingPadInst>(LowestIP) |
| && !isa<DbgInfoIntrinsic>(LowestIP) && |
| "Insertion point must be a normal instruction"); |
| |
| // Then, climb up the immediate dominator tree as far as we can go while |
| // still being dominated by the input positions. |
| BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); |
| |
| // Don't insert instructions before PHI nodes. |
| while (isa<PHINode>(IP)) ++IP; |
| |
| // Ignore landingpad instructions. |
| while (isa<LandingPadInst>(IP)) ++IP; |
| |
| // Ignore debug intrinsics. |
| while (isa<DbgInfoIntrinsic>(IP)) ++IP; |
| |
| // Set IP below instructions recently inserted by SCEVExpander. This keeps the |
| // IP consistent across expansions and allows the previously inserted |
| // instructions to be reused by subsequent expansion. |
| while (Rewriter.isInsertedInstruction(IP) && IP != LowestIP) ++IP; |
| |
| return IP; |
| } |
| |
| /// Expand - Emit instructions for the leading candidate expression for this |
| /// LSRUse (this is called "expanding"). |
| Value *LSRInstance::Expand(const LSRFixup &LF, |
| const Formula &F, |
| BasicBlock::iterator IP, |
| SCEVExpander &Rewriter, |
| SmallVectorImpl<WeakVH> &DeadInsts) const { |
| const LSRUse &LU = Uses[LF.LUIdx]; |
| |
| // Determine an input position which will be dominated by the operands and |
| // which will dominate the result. |
| IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); |
| |
| // Inform the Rewriter if we have a post-increment use, so that it can |
| // perform an advantageous expansion. |
| Rewriter.setPostInc(LF.PostIncLoops); |
| |
| // This is the type that the user actually needs. |
| Type *OpTy = LF.OperandValToReplace->getType(); |
| // This will be the type that we'll initially expand to. |
| Type *Ty = F.getType(); |
| if (!Ty) |
| // No type known; just expand directly to the ultimate type. |
| Ty = OpTy; |
| else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) |
| // Expand directly to the ultimate type if it's the right size. |
| Ty = OpTy; |
| // This is the type to do integer arithmetic in. |
| Type *IntTy = SE.getEffectiveSCEVType(Ty); |
| |
| // Build up a list of operands to add together to form the full base. |
| SmallVector<const SCEV *, 8> Ops; |
| |
| // Expand the BaseRegs portion. |
| for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), |
| E = F.BaseRegs.end(); I != E; ++I) { |
| const SCEV *Reg = *I; |
| assert(!Reg->isZero() && "Zero allocated in a base register!"); |
| |
| // If we're expanding for a post-inc user, make the post-inc adjustment. |
| PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); |
| Reg = TransformForPostIncUse(Denormalize, Reg, |
| LF.UserInst, LF.OperandValToReplace, |
| Loops, SE, DT); |
| |
| Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP))); |
| } |
| |
| // Expand the ScaledReg portion. |
| Value *ICmpScaledV = 0; |
| if (F.Scale != 0) { |
| const SCEV *ScaledS = F.ScaledReg; |
| |
| // If we're expanding for a post-inc user, make the post-inc adjustment. |
| PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); |
| ScaledS = TransformForPostIncUse(Denormalize, ScaledS, |
| LF.UserInst, LF.OperandValToReplace, |
| Loops, SE, DT); |
| |
| if (LU.Kind == LSRUse::ICmpZero) { |
| // An interesting way of "folding" with an icmp is to use a negated |
| // scale, which we'll implement by inserting it into the other operand |
| // of the icmp. |
| assert(F.Scale == -1 && |
| "The only scale supported by ICmpZero uses is -1!"); |
| ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP); |
| } else { |
| // Otherwise just expand the scaled register and an explicit scale, |
| // which is expected to be matched as part of the address. |
| |
| // Flush the operand list to suppress SCEVExpander hoisting address modes. |
| if (!Ops.empty() && LU.Kind == LSRUse::Address) { |
| Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); |
| Ops.clear(); |
| Ops.push_back(SE.getUnknown(FullV)); |
| } |
| ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP)); |
| ScaledS = SE.getMulExpr(ScaledS, |
| SE.getConstant(ScaledS->getType(), F.Scale)); |
| Ops.push_back(ScaledS); |
| } |
| } |
| |
| // Expand the GV portion. |
| if (F.BaseGV) { |
| // Flush the operand list to suppress SCEVExpander hoisting. |
| if (!Ops.empty()) { |
| Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); |
| Ops.clear(); |
| Ops.push_back(SE.getUnknown(FullV)); |
| } |
| Ops.push_back(SE.getUnknown(F.BaseGV)); |
| } |
| |
| // Flush the operand list to suppress SCEVExpander hoisting of both folded and |
| // unfolded offsets. LSR assumes they both live next to their uses. |
| if (!Ops.empty()) { |
| Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); |
| Ops.clear(); |
| Ops.push_back(SE.getUnknown(FullV)); |
| } |
| |
| // Expand the immediate portion. |
| int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; |
| if (Offset != 0) { |
| if (LU.Kind == LSRUse::ICmpZero) { |
| // The other interesting way of "folding" with an ICmpZero is to use a |
| // negated immediate. |
| if (!ICmpScaledV) |
| ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); |
| else { |
| Ops.push_back(SE.getUnknown(ICmpScaledV)); |
| ICmpScaledV = ConstantInt::get(IntTy, Offset); |
| } |
| } else { |
| // Just add the immediate values. These again are expected to be matched |
| // as part of the address. |
| Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); |
| } |
| } |
| |
| // Expand the unfolded offset portion. |
| int64_t UnfoldedOffset = F.UnfoldedOffset; |
| if (UnfoldedOffset != 0) { |
| // Just add the immediate values. |
| Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, |
| UnfoldedOffset))); |
| } |
| |
| // Emit instructions summing all the operands. |
| const SCEV *FullS = Ops.empty() ? |
| SE.getConstant(IntTy, 0) : |
| SE.getAddExpr(Ops); |
| Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP); |
| |
| // We're done expanding now, so reset the rewriter. |
| Rewriter.clearPostInc(); |
| |
| // An ICmpZero Formula represents an ICmp which we're handling as a |
| // comparison against zero. Now that we've expanded an expression for that |
| // form, update the ICmp's other operand. |
| if (LU.Kind == LSRUse::ICmpZero) { |
| ICmpInst *CI = cast<ICmpInst>(LF.UserInst); |
| DeadInsts.push_back(CI->getOperand(1)); |
| assert(!F.BaseGV && "ICmp does not support folding a global value and " |
| "a scale at the same time!"); |
| if (F.Scale == -1) { |
| if (ICmpScaledV->getType() != OpTy) { |
| Instruction *Cast = |
| CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, |
| OpTy, false), |
| ICmpScaledV, OpTy, "tmp", CI); |
| ICmpScaledV = Cast; |
| } |
| CI->setOperand(1, ICmpScaledV); |
| } else { |
| assert(F.Scale == 0 && |
| "ICmp does not support folding a global value and " |
| "a scale at the same time!"); |
| Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), |
| -(uint64_t)Offset); |
| if (C->getType() != OpTy) |
| C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, |
| OpTy, false), |
| C, OpTy); |
| |
| CI->setOperand(1, C); |
| } |
| } |
| |
| return FullV; |
| } |
| |
| /// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use |
| /// of their operands effectively happens in their predecessor blocks, so the |
| /// expression may need to be expanded in multiple places. |
| void LSRInstance::RewriteForPHI(PHINode *PN, |
| const LSRFixup &LF, |
| const Formula &F, |
| SCEVExpander &Rewriter, |
| SmallVectorImpl<WeakVH> &DeadInsts, |
| Pass *P) const { |
| DenseMap<BasicBlock *, Value *> Inserted; |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) |
| if (PN->getIncomingValue(i) == LF.OperandValToReplace) { |
| BasicBlock *BB = PN->getIncomingBlock(i); |
| |
| // If this is a critical edge, split the edge so that we do not insert |
| // the code on all predecessor/successor paths. We do this unless this |
| // is the canonical backedge for this loop, which complicates post-inc |
| // users. |
| if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && |
| !isa<IndirectBrInst>(BB->getTerminator())) { |
| BasicBlock *Parent = PN->getParent(); |
| Loop *PNLoop = LI.getLoopFor(Parent); |
| if (!PNLoop || Parent != PNLoop->getHeader()) { |
| // Split the critical edge. |
| BasicBlock *NewBB = 0; |
| if (!Parent->isLandingPad()) { |
| NewBB = SplitCriticalEdge(BB, Parent, P, |
| /*MergeIdenticalEdges=*/true, |
| /*DontDeleteUselessPhis=*/true); |
| } else { |
| SmallVector<BasicBlock*, 2> NewBBs; |
| SplitLandingPadPredecessors(Parent, BB, "", "", P, NewBBs); |
| NewBB = NewBBs[0]; |
| } |
| // If NewBB==NULL, then SplitCriticalEdge refused to split because all |
| // phi predecessors are identical. The simple thing to do is skip |
| // splitting in this case rather than complicate the API. |
| if (NewBB) { |
| // If PN is outside of the loop and BB is in the loop, we want to |
| // move the block to be immediately before the PHI block, not |
| // immediately after BB. |
| if (L->contains(BB) && !L->contains(PN)) |
| NewBB->moveBefore(PN->getParent()); |
| |
| // Splitting the edge can reduce the number of PHI entries we have. |
| e = PN->getNumIncomingValues(); |
| BB = NewBB; |
| i = PN->getBasicBlockIndex(BB); |
| } |
| } |
| } |
| |
| std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = |
| Inserted.insert(std::make_pair(BB, static_cast<Value *>(0))); |
| if (!Pair.second) |
| PN->setIncomingValue(i, Pair.first->second); |
| else { |
| Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts); |
| |
| // If this is reuse-by-noop-cast, insert the noop cast. |
| Type *OpTy = LF.OperandValToReplace->getType(); |
| if (FullV->getType() != OpTy) |
| FullV = |
| CastInst::Create(CastInst::getCastOpcode(FullV, false, |
| OpTy, false), |
| FullV, LF.OperandValToReplace->getType(), |
| "tmp", BB->getTerminator()); |
| |
| PN->setIncomingValue(i, FullV); |
| Pair.first->second = FullV; |
| } |
| } |
| } |
| |
| /// Rewrite - Emit instructions for the leading candidate expression for this |
| /// LSRUse (this is called "expanding"), and update the UserInst to reference |
| /// the newly expanded value. |
| void LSRInstance::Rewrite(const LSRFixup &LF, |
| const Formula &F, |
| SCEVExpander &Rewriter, |
| SmallVectorImpl<WeakVH> &DeadInsts, |
| Pass *P) const { |
| // First, find an insertion point that dominates UserInst. For PHI nodes, |
| // find the nearest block which dominates all the relevant uses. |
| if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { |
| RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P); |
| } else { |
| Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts); |
| |
| // If this is reuse-by-noop-cast, insert the noop cast. |
| Type *OpTy = LF.OperandValToReplace->getType(); |
| if (FullV->getType() != OpTy) { |
| Instruction *Cast = |
| CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), |
| FullV, OpTy, "tmp", LF.UserInst); |
| FullV = Cast; |
| } |
| |
| // Update the user. ICmpZero is handled specially here (for now) because |
| // Expand may have updated one of the operands of the icmp already, and |
| // its new value may happen to be equal to LF.OperandValToReplace, in |
| // which case doing replaceUsesOfWith leads to replacing both operands |
| // with the same value. TODO: Reorganize this. |
| if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero) |
| LF.UserInst->setOperand(0, FullV); |
| else |
| LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); |
| } |
| |
| DeadInsts.push_back(LF.OperandValToReplace); |
| } |
| |
| /// ImplementSolution - Rewrite all the fixup locations with new values, |
| /// following the chosen solution. |
| void |
| LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, |
| Pass *P) { |
| // Keep track of instructions we may have made dead, so that |
| // we can remove them after we are done working. |
| SmallVector<WeakVH, 16> DeadInsts; |
| |
| SCEVExpander Rewriter(SE, "lsr"); |
| #ifndef NDEBUG |
| Rewriter.setDebugType(DEBUG_TYPE); |
| #endif |
| Rewriter.disableCanonicalMode(); |
| Rewriter.enableLSRMode(); |
| Rewriter.setIVIncInsertPos(L, IVIncInsertPos); |
| |
| // Mark phi nodes that terminate chains so the expander tries to reuse them. |
| for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(), |
| ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) { |
| if (PHINode *PN = dyn_cast<PHINode>(ChainI->tailUserInst())) |
| Rewriter.setChainedPhi(PN); |
| } |
| |
| // Expand the new value definitions and update the users. |
| for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), |
| E = Fixups.end(); I != E; ++I) { |
| const LSRFixup &Fixup = *I; |
| |
| Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P); |
| |
| Changed = true; |
| } |
| |
| for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(), |
| ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) { |
| GenerateIVChain(*ChainI, Rewriter, DeadInsts); |
| Changed = true; |
| } |
| // Clean up after ourselves. This must be done before deleting any |
| // instructions. |
| Rewriter.clear(); |
| |
| Changed |= DeleteTriviallyDeadInstructions(DeadInsts); |
| } |
| |
| LSRInstance::LSRInstance(Loop *L, Pass *P) |
| : IU(P->getAnalysis<IVUsers>()), SE(P->getAnalysis<ScalarEvolution>()), |
| DT(P->getAnalysis<DominatorTree>()), LI(P->getAnalysis<LoopInfo>()), |
| TTI(P->getAnalysis<TargetTransformInfo>()), L(L), Changed(false), |
| IVIncInsertPos(0) { |
| // If LoopSimplify form is not available, stay out of trouble. |
| if (!L->isLoopSimplifyForm()) |
| return; |
| |
| // If there's no interesting work to be done, bail early. |
| if (IU.empty()) return; |
| |
| // If there's too much analysis to be done, bail early. We won't be able to |
| // model the problem anyway. |
| unsigned NumUsers = 0; |
| for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { |
| if (++NumUsers > MaxIVUsers) { |
| DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << *L |
| << "\n"); |
| return; |
| } |
| } |
| |
| #ifndef NDEBUG |
| // All dominating loops must have preheaders, or SCEVExpander may not be able |
| // to materialize an AddRecExpr whose Start is an outer AddRecExpr. |
| // |
| // IVUsers analysis should only create users that are dominated by simple loop |
| // headers. Since this loop should dominate all of its users, its user list |
| // should be empty if this loop itself is not within a simple loop nest. |
| for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); |
| Rung; Rung = Rung->getIDom()) { |
| BasicBlock *BB = Rung->getBlock(); |
| const Loop *DomLoop = LI.getLoopFor(BB); |
| if (DomLoop && DomLoop->getHeader() == BB) { |
| assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); |
| } |
| } |
| #endif // DEBUG |
| |
| DEBUG(dbgs() << "\nLSR on loop "; |
| WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false); |
| dbgs() << ":\n"); |
| |
| // First, perform some low-level loop optimizations. |
| OptimizeShadowIV(); |
| OptimizeLoopTermCond(); |
| |
| // If loop preparation eliminates all interesting IV users, bail. |
| if (IU.empty()) return; |
| |
| // Skip nested loops until we can model them better with formulae. |
| if (!L->empty()) { |
| DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); |
| return; |
| } |
| |
| // Start collecting data and preparing for the solver. |
| CollectChains(); |
| CollectInterestingTypesAndFactors(); |
| CollectFixupsAndInitialFormulae(); |
| CollectLoopInvariantFixupsAndFormulae(); |
| |
| assert(!Uses.empty() && "IVUsers reported at least one use"); |
| DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; |
| print_uses(dbgs())); |
| |
| // Now use the reuse data to generate a bunch of interesting ways |
| // to formulate the values needed for the uses. |
| GenerateAllReuseFormulae(); |
| |
| FilterOutUndesirableDedicatedRegisters(); |
| NarrowSearchSpaceUsingHeuristics(); |
| |
| SmallVector<const Formula *, 8> Solution; |
| Solve(Solution); |
| |
| // Release memory that is no longer needed. |
| Factors.clear(); |
| Types.clear(); |
| RegUses.clear(); |
| |
| if (Solution.empty()) |
| return; |
| |
| #ifndef NDEBUG |
| // Formulae should be legal. |
| for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), E = Uses.end(); |
| I != E; ++I) { |
| const LSRUse &LU = *I; |
| for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), |
| JE = LU.Formulae.end(); |
| J != JE; ++J) |
| assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, |
| *J) && "Illegal formula generated!"); |
| }; |
| #endif |
| |
| // Now that we've decided what we want, make it so. |
| ImplementSolution(Solution, P); |
| } |
| |
| void LSRInstance::print_factors_and_types(raw_ostream &OS) const { |
| if (Factors.empty() && Types.empty()) return; |
| |
| OS << "LSR has identified the following interesting factors and types: "; |
| bool First = true; |
| |
| for (SmallSetVector<int64_t, 8>::const_iterator |
| I = Factors.begin(), E = Factors.end(); I != E; ++I) { |
| if (!First) OS << ", "; |
| First = false; |
| OS << '*' << *I; |
| } |
| |
| for (SmallSetVector<Type *, 4>::const_iterator |
| I = Types.begin(), E = Types.end(); I != E; ++I) { |
| if (!First) OS << ", "; |
| First = false; |
| OS << '(' << **I << ')'; |
| } |
| OS << '\n'; |
| } |
| |
| void LSRInstance::print_fixups(raw_ostream &OS) const { |
| OS << "LSR is examining the following fixup sites:\n"; |
| for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), |
| E = Fixups.end(); I != E; ++I) { |
| dbgs() << " "; |
| I->print(OS); |
| OS << '\n'; |
| } |
| } |
| |
| void LSRInstance::print_uses(raw_ostream &OS) const { |
| OS << "LSR is examining the following uses:\n"; |
| for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), |
| E = Uses.end(); I != E; ++I) { |
| const LSRUse &LU = *I; |
| dbgs() << " "; |
| LU.print(OS); |
| OS << '\n'; |
| for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), |
| JE = LU.Formulae.end(); J != JE; ++J) { |
| OS << " "; |
| J->print(OS); |
| OS << '\n'; |
| } |
| } |
| } |
| |
| void LSRInstance::print(raw_ostream &OS) const { |
| print_factors_and_types(OS); |
| print_fixups(OS); |
| print_uses(OS); |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| void LSRInstance::dump() const { |
| print(errs()); errs() << '\n'; |
| } |
| #endif |
| |
| namespace { |
| |
| class LoopStrengthReduce : public LoopPass { |
| public: |
| static char ID; // Pass ID, replacement for typeid |
| LoopStrengthReduce(); |
| |
| private: |
| bool runOnLoop(Loop *L, LPPassManager &LPM); |
| void getAnalysisUsage(AnalysisUsage &AU) const; |
| }; |
| |
| } |
| |
| char LoopStrengthReduce::ID = 0; |
| INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", |
| "Loop Strength Reduction", false, false) |
| INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTree) |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) |
| INITIALIZE_PASS_DEPENDENCY(IVUsers) |
| INITIALIZE_PASS_DEPENDENCY(LoopInfo) |
| INITIALIZE_PASS_DEPENDENCY(LoopSimplify) |
| INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", |
| "Loop Strength Reduction", false, false) |
| |
| |
| Pass *llvm::createLoopStrengthReducePass() { |
| return new LoopStrengthReduce(); |
| } |
| |
| LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { |
| initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); |
| } |
| |
| void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { |
| // We split critical edges, so we change the CFG. However, we do update |
| // many analyses if they are around. |
| AU.addPreservedID(LoopSimplifyID); |
| |
| AU.addRequired<LoopInfo>(); |
| AU.addPreserved<LoopInfo>(); |
| AU.addRequiredID(LoopSimplifyID); |
| AU.addRequired<DominatorTree>(); |
| AU.addPreserved<DominatorTree>(); |
| AU.addRequired<ScalarEvolution>(); |
| AU.addPreserved<ScalarEvolution>(); |
| // Requiring LoopSimplify a second time here prevents IVUsers from running |
| // twice, since LoopSimplify was invalidated by running ScalarEvolution. |
| AU.addRequiredID(LoopSimplifyID); |
| AU.addRequired<IVUsers>(); |
| AU.addPreserved<IVUsers>(); |
| AU.addRequired<TargetTransformInfo>(); |
| } |
| |
| bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { |
| bool Changed = false; |
| |
| // Run the main LSR transformation. |
| Changed |= LSRInstance(L, this).getChanged(); |
| |
| // Remove any extra phis created by processing inner loops. |
| Changed |= DeleteDeadPHIs(L->getHeader()); |
| if (EnablePhiElim && L->isLoopSimplifyForm()) { |
| SmallVector<WeakVH, 16> DeadInsts; |
| SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), "lsr"); |
| #ifndef NDEBUG |
| Rewriter.setDebugType(DEBUG_TYPE); |
| #endif |
| unsigned numFolded = |
| Rewriter.replaceCongruentIVs(L, &getAnalysis<DominatorTree>(), |
| DeadInsts, |
| &getAnalysis<TargetTransformInfo>()); |
| if (numFolded) { |
| Changed = true; |
| DeleteTriviallyDeadInstructions(DeadInsts); |
| DeleteDeadPHIs(L->getHeader()); |
| } |
| } |
| return Changed; |
| } |