| //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements the SelectionDAGISel class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "isel" |
| #include "llvm/CodeGen/SelectionDAGISel.h" |
| #include "SelectionDAGBuild.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Constants.h" |
| #include "llvm/CallingConv.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Function.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/InlineAsm.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/IntrinsicInst.h" |
| #include "llvm/CodeGen/FastISel.h" |
| #include "llvm/CodeGen/GCStrategy.h" |
| #include "llvm/CodeGen/GCMetadata.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/ScheduleDAGSDNodes.h" |
| #include "llvm/CodeGen/SchedulerRegistry.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Target/TargetFrameInfo.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/Timer.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| static cl::opt<bool> |
| EnableValueProp("enable-value-prop", cl::Hidden); |
| static cl::opt<bool> |
| DisableLegalizeTypes("disable-legalize-types", cl::Hidden); |
| #ifndef NDEBUG |
| static cl::opt<bool> |
| EnableFastISelVerbose("fast-isel-verbose", cl::Hidden, |
| cl::desc("Enable verbose messages in the \"fast\" " |
| "instruction selector")); |
| static cl::opt<bool> |
| EnableFastISelAbort("fast-isel-abort", cl::Hidden, |
| cl::desc("Enable abort calls when \"fast\" instruction fails")); |
| #else |
| static const bool EnableFastISelVerbose = false, |
| EnableFastISelAbort = false; |
| #endif |
| static cl::opt<bool> |
| SchedLiveInCopies("schedule-livein-copies", |
| cl::desc("Schedule copies of livein registers"), |
| cl::init(false)); |
| |
| #ifndef NDEBUG |
| static cl::opt<bool> |
| ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden, |
| cl::desc("Pop up a window to show dags before the first " |
| "dag combine pass")); |
| static cl::opt<bool> |
| ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden, |
| cl::desc("Pop up a window to show dags before legalize types")); |
| static cl::opt<bool> |
| ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, |
| cl::desc("Pop up a window to show dags before legalize")); |
| static cl::opt<bool> |
| ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden, |
| cl::desc("Pop up a window to show dags before the second " |
| "dag combine pass")); |
| static cl::opt<bool> |
| ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden, |
| cl::desc("Pop up a window to show dags before the post legalize types" |
| " dag combine pass")); |
| static cl::opt<bool> |
| ViewISelDAGs("view-isel-dags", cl::Hidden, |
| cl::desc("Pop up a window to show isel dags as they are selected")); |
| static cl::opt<bool> |
| ViewSchedDAGs("view-sched-dags", cl::Hidden, |
| cl::desc("Pop up a window to show sched dags as they are processed")); |
| static cl::opt<bool> |
| ViewSUnitDAGs("view-sunit-dags", cl::Hidden, |
| cl::desc("Pop up a window to show SUnit dags after they are processed")); |
| #else |
| static const bool ViewDAGCombine1 = false, |
| ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false, |
| ViewDAGCombine2 = false, |
| ViewDAGCombineLT = false, |
| ViewISelDAGs = false, ViewSchedDAGs = false, |
| ViewSUnitDAGs = false; |
| #endif |
| |
| //===---------------------------------------------------------------------===// |
| /// |
| /// RegisterScheduler class - Track the registration of instruction schedulers. |
| /// |
| //===---------------------------------------------------------------------===// |
| MachinePassRegistry RegisterScheduler::Registry; |
| |
| //===---------------------------------------------------------------------===// |
| /// |
| /// ISHeuristic command line option for instruction schedulers. |
| /// |
| //===---------------------------------------------------------------------===// |
| static cl::opt<RegisterScheduler::FunctionPassCtor, false, |
| RegisterPassParser<RegisterScheduler> > |
| ISHeuristic("pre-RA-sched", |
| cl::init(&createDefaultScheduler), |
| cl::desc("Instruction schedulers available (before register" |
| " allocation):")); |
| |
| static RegisterScheduler |
| defaultListDAGScheduler("default", "Best scheduler for the target", |
| createDefaultScheduler); |
| |
| namespace llvm { |
| //===--------------------------------------------------------------------===// |
| /// createDefaultScheduler - This creates an instruction scheduler appropriate |
| /// for the target. |
| ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS, |
| SelectionDAG *DAG, |
| const TargetMachine *TM, |
| MachineBasicBlock *BB, |
| bool Fast) { |
| TargetLowering &TLI = IS->getTargetLowering(); |
| |
| if (Fast) |
| return createFastDAGScheduler(IS, DAG, TM, BB, Fast); |
| if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) |
| return createTDListDAGScheduler(IS, DAG, TM, BB, Fast); |
| assert(TLI.getSchedulingPreference() == |
| TargetLowering::SchedulingForRegPressure && "Unknown sched type!"); |
| return createBURRListDAGScheduler(IS, DAG, TM, BB, Fast); |
| } |
| } |
| |
| // EmitInstrWithCustomInserter - This method should be implemented by targets |
| // that mark instructions with the 'usesCustomDAGSchedInserter' flag. These |
| // instructions are special in various ways, which require special support to |
| // insert. The specified MachineInstr is created but not inserted into any |
| // basic blocks, and the scheduler passes ownership of it to this method. |
| MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, |
| MachineBasicBlock *MBB) { |
| cerr << "If a target marks an instruction with " |
| << "'usesCustomDAGSchedInserter', it must implement " |
| << "TargetLowering::EmitInstrWithCustomInserter!\n"; |
| abort(); |
| return 0; |
| } |
| |
| /// EmitLiveInCopy - Emit a copy for a live in physical register. If the |
| /// physical register has only a single copy use, then coalesced the copy |
| /// if possible. |
| static void EmitLiveInCopy(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator &InsertPos, |
| unsigned VirtReg, unsigned PhysReg, |
| const TargetRegisterClass *RC, |
| DenseMap<MachineInstr*, unsigned> &CopyRegMap, |
| const MachineRegisterInfo &MRI, |
| const TargetRegisterInfo &TRI, |
| const TargetInstrInfo &TII) { |
| unsigned NumUses = 0; |
| MachineInstr *UseMI = NULL; |
| for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(VirtReg), |
| UE = MRI.use_end(); UI != UE; ++UI) { |
| UseMI = &*UI; |
| if (++NumUses > 1) |
| break; |
| } |
| |
| // If the number of uses is not one, or the use is not a move instruction, |
| // don't coalesce. Also, only coalesce away a virtual register to virtual |
| // register copy. |
| bool Coalesced = false; |
| unsigned SrcReg, DstReg; |
| if (NumUses == 1 && |
| TII.isMoveInstr(*UseMI, SrcReg, DstReg) && |
| TargetRegisterInfo::isVirtualRegister(DstReg)) { |
| VirtReg = DstReg; |
| Coalesced = true; |
| } |
| |
| // Now find an ideal location to insert the copy. |
| MachineBasicBlock::iterator Pos = InsertPos; |
| while (Pos != MBB->begin()) { |
| MachineInstr *PrevMI = prior(Pos); |
| DenseMap<MachineInstr*, unsigned>::iterator RI = CopyRegMap.find(PrevMI); |
| // copyRegToReg might emit multiple instructions to do a copy. |
| unsigned CopyDstReg = (RI == CopyRegMap.end()) ? 0 : RI->second; |
| if (CopyDstReg && !TRI.regsOverlap(CopyDstReg, PhysReg)) |
| // This is what the BB looks like right now: |
| // r1024 = mov r0 |
| // ... |
| // r1 = mov r1024 |
| // |
| // We want to insert "r1025 = mov r1". Inserting this copy below the |
| // move to r1024 makes it impossible for that move to be coalesced. |
| // |
| // r1025 = mov r1 |
| // r1024 = mov r0 |
| // ... |
| // r1 = mov 1024 |
| // r2 = mov 1025 |
| break; // Woot! Found a good location. |
| --Pos; |
| } |
| |
| TII.copyRegToReg(*MBB, Pos, VirtReg, PhysReg, RC, RC); |
| CopyRegMap.insert(std::make_pair(prior(Pos), VirtReg)); |
| if (Coalesced) { |
| if (&*InsertPos == UseMI) ++InsertPos; |
| MBB->erase(UseMI); |
| } |
| } |
| |
| /// EmitLiveInCopies - If this is the first basic block in the function, |
| /// and if it has live ins that need to be copied into vregs, emit the |
| /// copies into the block. |
| static void EmitLiveInCopies(MachineBasicBlock *EntryMBB, |
| const MachineRegisterInfo &MRI, |
| const TargetRegisterInfo &TRI, |
| const TargetInstrInfo &TII) { |
| if (SchedLiveInCopies) { |
| // Emit the copies at a heuristically-determined location in the block. |
| DenseMap<MachineInstr*, unsigned> CopyRegMap; |
| MachineBasicBlock::iterator InsertPos = EntryMBB->begin(); |
| for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(), |
| E = MRI.livein_end(); LI != E; ++LI) |
| if (LI->second) { |
| const TargetRegisterClass *RC = MRI.getRegClass(LI->second); |
| EmitLiveInCopy(EntryMBB, InsertPos, LI->second, LI->first, |
| RC, CopyRegMap, MRI, TRI, TII); |
| } |
| } else { |
| // Emit the copies into the top of the block. |
| for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(), |
| E = MRI.livein_end(); LI != E; ++LI) |
| if (LI->second) { |
| const TargetRegisterClass *RC = MRI.getRegClass(LI->second); |
| TII.copyRegToReg(*EntryMBB, EntryMBB->begin(), |
| LI->second, LI->first, RC, RC); |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SelectionDAGISel code |
| //===----------------------------------------------------------------------===// |
| |
| SelectionDAGISel::SelectionDAGISel(TargetLowering &tli, bool fast) : |
| FunctionPass(&ID), TLI(tli), |
| FuncInfo(new FunctionLoweringInfo(TLI)), |
| CurDAG(new SelectionDAG(TLI, *FuncInfo)), |
| SDL(new SelectionDAGLowering(*CurDAG, TLI, *FuncInfo)), |
| GFI(), |
| Fast(fast), |
| DAGSize(0) |
| {} |
| |
| SelectionDAGISel::~SelectionDAGISel() { |
| delete SDL; |
| delete CurDAG; |
| delete FuncInfo; |
| } |
| |
| unsigned SelectionDAGISel::MakeReg(MVT VT) { |
| return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT)); |
| } |
| |
| void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<AliasAnalysis>(); |
| AU.addRequired<GCModuleInfo>(); |
| AU.setPreservesAll(); |
| } |
| |
| bool SelectionDAGISel::runOnFunction(Function &Fn) { |
| // Do some sanity-checking on the command-line options. |
| assert((!EnableFastISelVerbose || EnableFastISel) && |
| "-fast-isel-verbose requires -fast-isel"); |
| assert((!EnableFastISelAbort || EnableFastISel) && |
| "-fast-isel-abort requires -fast-isel"); |
| |
| // Get alias analysis for load/store combining. |
| AA = &getAnalysis<AliasAnalysis>(); |
| |
| TargetMachine &TM = TLI.getTargetMachine(); |
| MachineFunction &MF = MachineFunction::construct(&Fn, TM); |
| const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| const TargetInstrInfo &TII = *TM.getInstrInfo(); |
| const TargetRegisterInfo &TRI = *TM.getRegisterInfo(); |
| |
| if (MF.getFunction()->hasGC()) |
| GFI = &getAnalysis<GCModuleInfo>().getFunctionInfo(*MF.getFunction()); |
| else |
| GFI = 0; |
| RegInfo = &MF.getRegInfo(); |
| DOUT << "\n\n\n=== " << Fn.getName() << "\n"; |
| |
| FuncInfo->set(Fn, MF, EnableFastISel); |
| MachineModuleInfo *MMI = getAnalysisToUpdate<MachineModuleInfo>(); |
| CurDAG->init(MF, MMI); |
| SDL->init(GFI, *AA); |
| |
| for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) |
| if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator())) |
| // Mark landing pad. |
| FuncInfo->MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad(); |
| |
| SelectAllBasicBlocks(Fn, MF, MMI, TII); |
| |
| // If the first basic block in the function has live ins that need to be |
| // copied into vregs, emit the copies into the top of the block before |
| // emitting the code for the block. |
| EmitLiveInCopies(MF.begin(), MRI, TRI, TII); |
| |
| // Add function live-ins to entry block live-in set. |
| for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(), |
| E = RegInfo->livein_end(); I != E; ++I) |
| MF.begin()->addLiveIn(I->first); |
| |
| #ifndef NDEBUG |
| assert(FuncInfo->CatchInfoFound.size() == FuncInfo->CatchInfoLost.size() && |
| "Not all catch info was assigned to a landing pad!"); |
| #endif |
| |
| FuncInfo->clear(); |
| |
| return true; |
| } |
| |
| static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB, |
| MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) { |
| for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I) |
| if (EHSelectorInst *EHSel = dyn_cast<EHSelectorInst>(I)) { |
| // Apply the catch info to DestBB. |
| AddCatchInfo(*EHSel, MMI, FLI.MBBMap[DestBB]); |
| #ifndef NDEBUG |
| if (!FLI.MBBMap[SrcBB]->isLandingPad()) |
| FLI.CatchInfoFound.insert(EHSel); |
| #endif |
| } |
| } |
| |
| /// IsFixedFrameObjectWithPosOffset - Check if object is a fixed frame object and |
| /// whether object offset >= 0. |
| static bool |
| IsFixedFrameObjectWithPosOffset(MachineFrameInfo * MFI, SDValue Op) { |
| if (!isa<FrameIndexSDNode>(Op)) return false; |
| |
| FrameIndexSDNode * FrameIdxNode = dyn_cast<FrameIndexSDNode>(Op); |
| int FrameIdx = FrameIdxNode->getIndex(); |
| return MFI->isFixedObjectIndex(FrameIdx) && |
| MFI->getObjectOffset(FrameIdx) >= 0; |
| } |
| |
| /// IsPossiblyOverwrittenArgumentOfTailCall - Check if the operand could |
| /// possibly be overwritten when lowering the outgoing arguments in a tail |
| /// call. Currently the implementation of this call is very conservative and |
| /// assumes all arguments sourcing from FORMAL_ARGUMENTS or a CopyFromReg with |
| /// virtual registers would be overwritten by direct lowering. |
| static bool IsPossiblyOverwrittenArgumentOfTailCall(SDValue Op, |
| MachineFrameInfo * MFI) { |
| RegisterSDNode * OpReg = NULL; |
| if (Op.getOpcode() == ISD::FORMAL_ARGUMENTS || |
| (Op.getOpcode()== ISD::CopyFromReg && |
| (OpReg = dyn_cast<RegisterSDNode>(Op.getOperand(1))) && |
| (OpReg->getReg() >= TargetRegisterInfo::FirstVirtualRegister)) || |
| (Op.getOpcode() == ISD::LOAD && |
| IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(1))) || |
| (Op.getOpcode() == ISD::MERGE_VALUES && |
| Op.getOperand(Op.getResNo()).getOpcode() == ISD::LOAD && |
| IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(Op.getResNo()). |
| getOperand(1)))) |
| return true; |
| return false; |
| } |
| |
| /// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the |
| /// DAG and fixes their tailcall attribute operand. |
| static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG, |
| TargetLowering& TLI) { |
| SDNode * Ret = NULL; |
| SDValue Terminator = DAG.getRoot(); |
| |
| // Find RET node. |
| if (Terminator.getOpcode() == ISD::RET) { |
| Ret = Terminator.getNode(); |
| } |
| |
| // Fix tail call attribute of CALL nodes. |
| for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(), |
| BI = DAG.allnodes_end(); BI != BE; ) { |
| --BI; |
| if (CallSDNode *TheCall = dyn_cast<CallSDNode>(BI)) { |
| SDValue OpRet(Ret, 0); |
| SDValue OpCall(BI, 0); |
| bool isMarkedTailCall = TheCall->isTailCall(); |
| // If CALL node has tail call attribute set to true and the call is not |
| // eligible (no RET or the target rejects) the attribute is fixed to |
| // false. The TargetLowering::IsEligibleForTailCallOptimization function |
| // must correctly identify tail call optimizable calls. |
| if (!isMarkedTailCall) continue; |
| if (Ret==NULL || |
| !TLI.IsEligibleForTailCallOptimization(TheCall, OpRet, DAG)) { |
| // Not eligible. Mark CALL node as non tail call. Note that we |
| // can modify the call node in place since calls are not CSE'd. |
| TheCall->setNotTailCall(); |
| } else { |
| // Look for tail call clobbered arguments. Emit a series of |
| // copyto/copyfrom virtual register nodes to protect them. |
| SmallVector<SDValue, 32> Ops; |
| SDValue Chain = TheCall->getChain(), InFlag; |
| Ops.push_back(Chain); |
| Ops.push_back(TheCall->getCallee()); |
| for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; ++i) { |
| SDValue Arg = TheCall->getArg(i); |
| bool isByVal = TheCall->getArgFlags(i).isByVal(); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| if (!isByVal && |
| IsPossiblyOverwrittenArgumentOfTailCall(Arg, MFI)) { |
| MVT VT = Arg.getValueType(); |
| unsigned VReg = MF.getRegInfo(). |
| createVirtualRegister(TLI.getRegClassFor(VT)); |
| Chain = DAG.getCopyToReg(Chain, VReg, Arg, InFlag); |
| InFlag = Chain.getValue(1); |
| Arg = DAG.getCopyFromReg(Chain, VReg, VT, InFlag); |
| Chain = Arg.getValue(1); |
| InFlag = Arg.getValue(2); |
| } |
| Ops.push_back(Arg); |
| Ops.push_back(TheCall->getArgFlagsVal(i)); |
| } |
| // Link in chain of CopyTo/CopyFromReg. |
| Ops[0] = Chain; |
| DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size()); |
| } |
| } |
| } |
| } |
| |
| void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, |
| BasicBlock::iterator Begin, |
| BasicBlock::iterator End) { |
| SDL->setCurrentBasicBlock(BB); |
| |
| // Lower all of the non-terminator instructions. |
| for (BasicBlock::iterator I = Begin; I != End; ++I) |
| if (!isa<TerminatorInst>(I)) |
| SDL->visit(*I); |
| |
| // Ensure that all instructions which are used outside of their defining |
| // blocks are available as virtual registers. Invoke is handled elsewhere. |
| for (BasicBlock::iterator I = Begin; I != End; ++I) |
| if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) { |
| DenseMap<const Value*,unsigned>::iterator VMI =FuncInfo->ValueMap.find(I); |
| if (VMI != FuncInfo->ValueMap.end()) |
| SDL->CopyValueToVirtualRegister(I, VMI->second); |
| } |
| |
| // Handle PHI nodes in successor blocks. |
| if (End == LLVMBB->end()) { |
| HandlePHINodesInSuccessorBlocks(LLVMBB); |
| |
| // Lower the terminator after the copies are emitted. |
| SDL->visit(*LLVMBB->getTerminator()); |
| } |
| |
| // Make sure the root of the DAG is up-to-date. |
| CurDAG->setRoot(SDL->getControlRoot()); |
| |
| // Check whether calls in this block are real tail calls. Fix up CALL nodes |
| // with correct tailcall attribute so that the target can rely on the tailcall |
| // attribute indicating whether the call is really eligible for tail call |
| // optimization. |
| if (PerformTailCallOpt) |
| CheckDAGForTailCallsAndFixThem(*CurDAG, TLI); |
| |
| // Final step, emit the lowered DAG as machine code. |
| CodeGenAndEmitDAG(); |
| SDL->clear(); |
| } |
| |
| void SelectionDAGISel::ComputeLiveOutVRegInfo() { |
| SmallPtrSet<SDNode*, 128> VisitedNodes; |
| SmallVector<SDNode*, 128> Worklist; |
| |
| Worklist.push_back(CurDAG->getRoot().getNode()); |
| |
| APInt Mask; |
| APInt KnownZero; |
| APInt KnownOne; |
| |
| while (!Worklist.empty()) { |
| SDNode *N = Worklist.back(); |
| Worklist.pop_back(); |
| |
| // If we've already seen this node, ignore it. |
| if (!VisitedNodes.insert(N)) |
| continue; |
| |
| // Otherwise, add all chain operands to the worklist. |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) |
| if (N->getOperand(i).getValueType() == MVT::Other) |
| Worklist.push_back(N->getOperand(i).getNode()); |
| |
| // If this is a CopyToReg with a vreg dest, process it. |
| if (N->getOpcode() != ISD::CopyToReg) |
| continue; |
| |
| unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); |
| if (!TargetRegisterInfo::isVirtualRegister(DestReg)) |
| continue; |
| |
| // Ignore non-scalar or non-integer values. |
| SDValue Src = N->getOperand(2); |
| MVT SrcVT = Src.getValueType(); |
| if (!SrcVT.isInteger() || SrcVT.isVector()) |
| continue; |
| |
| unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src); |
| Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits()); |
| CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne); |
| |
| // Only install this information if it tells us something. |
| if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) { |
| DestReg -= TargetRegisterInfo::FirstVirtualRegister; |
| FunctionLoweringInfo &FLI = CurDAG->getFunctionLoweringInfo(); |
| if (DestReg >= FLI.LiveOutRegInfo.size()) |
| FLI.LiveOutRegInfo.resize(DestReg+1); |
| FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[DestReg]; |
| LOI.NumSignBits = NumSignBits; |
| LOI.KnownOne = NumSignBits; |
| LOI.KnownZero = NumSignBits; |
| } |
| } |
| } |
| |
| void SelectionDAGISel::CodeGenAndEmitDAG() { |
| std::string GroupName; |
| if (TimePassesIsEnabled) |
| GroupName = "Instruction Selection and Scheduling"; |
| std::string BlockName; |
| if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs || |
| ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs || |
| ViewSUnitDAGs) |
| BlockName = CurDAG->getMachineFunction().getFunction()->getName() + ':' + |
| BB->getBasicBlock()->getName(); |
| |
| DOUT << "Initial selection DAG:\n"; |
| DEBUG(CurDAG->dump()); |
| |
| if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName); |
| |
| // Run the DAG combiner in pre-legalize mode. |
| if (TimePassesIsEnabled) { |
| NamedRegionTimer T("DAG Combining 1", GroupName); |
| CurDAG->Combine(Unrestricted, *AA, Fast); |
| } else { |
| CurDAG->Combine(Unrestricted, *AA, Fast); |
| } |
| |
| DOUT << "Optimized lowered selection DAG:\n"; |
| DEBUG(CurDAG->dump()); |
| |
| // Second step, hack on the DAG until it only uses operations and types that |
| // the target supports. |
| if (!DisableLegalizeTypes) { |
| if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " + |
| BlockName); |
| |
| bool Changed; |
| if (TimePassesIsEnabled) { |
| NamedRegionTimer T("Type Legalization", GroupName); |
| Changed = CurDAG->LegalizeTypes(); |
| } else { |
| Changed = CurDAG->LegalizeTypes(); |
| } |
| |
| DOUT << "Type-legalized selection DAG:\n"; |
| DEBUG(CurDAG->dump()); |
| |
| if (Changed) { |
| if (ViewDAGCombineLT) |
| CurDAG->viewGraph("dag-combine-lt input for " + BlockName); |
| |
| // Run the DAG combiner in post-type-legalize mode. |
| if (TimePassesIsEnabled) { |
| NamedRegionTimer T("DAG Combining after legalize types", GroupName); |
| CurDAG->Combine(NoIllegalTypes, *AA, Fast); |
| } else { |
| CurDAG->Combine(NoIllegalTypes, *AA, Fast); |
| } |
| |
| DOUT << "Optimized type-legalized selection DAG:\n"; |
| DEBUG(CurDAG->dump()); |
| } |
| } |
| |
| if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName); |
| |
| if (TimePassesIsEnabled) { |
| NamedRegionTimer T("DAG Legalization", GroupName); |
| CurDAG->Legalize(DisableLegalizeTypes); |
| } else { |
| CurDAG->Legalize(DisableLegalizeTypes); |
| } |
| |
| DOUT << "Legalized selection DAG:\n"; |
| DEBUG(CurDAG->dump()); |
| |
| if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName); |
| |
| // Run the DAG combiner in post-legalize mode. |
| if (TimePassesIsEnabled) { |
| NamedRegionTimer T("DAG Combining 2", GroupName); |
| CurDAG->Combine(NoIllegalOperations, *AA, Fast); |
| } else { |
| CurDAG->Combine(NoIllegalOperations, *AA, Fast); |
| } |
| |
| DOUT << "Optimized legalized selection DAG:\n"; |
| DEBUG(CurDAG->dump()); |
| |
| if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName); |
| |
| if (!Fast && EnableValueProp) |
| ComputeLiveOutVRegInfo(); |
| |
| // Third, instruction select all of the operations to machine code, adding the |
| // code to the MachineBasicBlock. |
| if (TimePassesIsEnabled) { |
| NamedRegionTimer T("Instruction Selection", GroupName); |
| InstructionSelect(); |
| } else { |
| InstructionSelect(); |
| } |
| |
| DOUT << "Selected selection DAG:\n"; |
| DEBUG(CurDAG->dump()); |
| |
| if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName); |
| |
| // Schedule machine code. |
| ScheduleDAG *Scheduler; |
| if (TimePassesIsEnabled) { |
| NamedRegionTimer T("Instruction Scheduling", GroupName); |
| Scheduler = Schedule(); |
| } else { |
| Scheduler = Schedule(); |
| } |
| |
| if (ViewSUnitDAGs) Scheduler->viewGraph(); |
| |
| // Emit machine code to BB. This can change 'BB' to the last block being |
| // inserted into. |
| if (TimePassesIsEnabled) { |
| NamedRegionTimer T("Instruction Creation", GroupName); |
| BB = Scheduler->EmitSchedule(); |
| } else { |
| BB = Scheduler->EmitSchedule(); |
| } |
| |
| // Free the scheduler state. |
| if (TimePassesIsEnabled) { |
| NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName); |
| delete Scheduler; |
| } else { |
| delete Scheduler; |
| } |
| |
| DOUT << "Selected machine code:\n"; |
| DEBUG(BB->dump()); |
| } |
| |
| void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn, MachineFunction &MF, |
| MachineModuleInfo *MMI, |
| const TargetInstrInfo &TII) { |
| // Initialize the Fast-ISel state, if needed. |
| FastISel *FastIS = 0; |
| if (EnableFastISel) |
| FastIS = TLI.createFastISel(*FuncInfo->MF, MMI, |
| FuncInfo->ValueMap, |
| FuncInfo->MBBMap, |
| FuncInfo->StaticAllocaMap |
| #ifndef NDEBUG |
| , FuncInfo->CatchInfoLost |
| #endif |
| ); |
| |
| // Iterate over all basic blocks in the function. |
| for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) { |
| BasicBlock *LLVMBB = &*I; |
| BB = FuncInfo->MBBMap[LLVMBB]; |
| |
| BasicBlock::iterator const Begin = LLVMBB->begin(); |
| BasicBlock::iterator const End = LLVMBB->end(); |
| BasicBlock::iterator BI = Begin; |
| |
| // Lower any arguments needed in this block if this is the entry block. |
| bool SuppressFastISel = false; |
| if (LLVMBB == &Fn.getEntryBlock()) { |
| LowerArguments(LLVMBB); |
| |
| // If any of the arguments has the byval attribute, forgo |
| // fast-isel in the entry block. |
| if (FastIS) { |
| unsigned j = 1; |
| for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(); |
| I != E; ++I, ++j) |
| if (Fn.paramHasAttr(j, Attribute::ByVal)) { |
| if (EnableFastISelVerbose || EnableFastISelAbort) |
| cerr << "FastISel skips entry block due to byval argument\n"; |
| SuppressFastISel = true; |
| break; |
| } |
| } |
| } |
| |
| if (MMI && BB->isLandingPad()) { |
| // Add a label to mark the beginning of the landing pad. Deletion of the |
| // landing pad can thus be detected via the MachineModuleInfo. |
| unsigned LabelID = MMI->addLandingPad(BB); |
| |
| const TargetInstrDesc &II = TII.get(TargetInstrInfo::EH_LABEL); |
| BuildMI(BB, II).addImm(LabelID); |
| |
| // Mark exception register as live in. |
| unsigned Reg = TLI.getExceptionAddressRegister(); |
| if (Reg) BB->addLiveIn(Reg); |
| |
| // Mark exception selector register as live in. |
| Reg = TLI.getExceptionSelectorRegister(); |
| if (Reg) BB->addLiveIn(Reg); |
| |
| // FIXME: Hack around an exception handling flaw (PR1508): the personality |
| // function and list of typeids logically belong to the invoke (or, if you |
| // like, the basic block containing the invoke), and need to be associated |
| // with it in the dwarf exception handling tables. Currently however the |
| // information is provided by an intrinsic (eh.selector) that can be moved |
| // to unexpected places by the optimizers: if the unwind edge is critical, |
| // then breaking it can result in the intrinsics being in the successor of |
| // the landing pad, not the landing pad itself. This results in exceptions |
| // not being caught because no typeids are associated with the invoke. |
| // This may not be the only way things can go wrong, but it is the only way |
| // we try to work around for the moment. |
| BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator()); |
| |
| if (Br && Br->isUnconditional()) { // Critical edge? |
| BasicBlock::iterator I, E; |
| for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I) |
| if (isa<EHSelectorInst>(I)) |
| break; |
| |
| if (I == E) |
| // No catch info found - try to extract some from the successor. |
| copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, *FuncInfo); |
| } |
| } |
| |
| // Before doing SelectionDAG ISel, see if FastISel has been requested. |
| if (FastIS && !SuppressFastISel) { |
| // Emit code for any incoming arguments. This must happen before |
| // beginning FastISel on the entry block. |
| if (LLVMBB == &Fn.getEntryBlock()) { |
| CurDAG->setRoot(SDL->getControlRoot()); |
| CodeGenAndEmitDAG(); |
| SDL->clear(); |
| } |
| FastIS->startNewBlock(BB); |
| // Do FastISel on as many instructions as possible. |
| for (; BI != End; ++BI) { |
| // Just before the terminator instruction, insert instructions to |
| // feed PHI nodes in successor blocks. |
| if (isa<TerminatorInst>(BI)) |
| if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, FastIS)) { |
| if (EnableFastISelVerbose || EnableFastISelAbort) { |
| cerr << "FastISel miss: "; |
| BI->dump(); |
| } |
| if (EnableFastISelAbort) |
| assert(0 && "FastISel didn't handle a PHI in a successor"); |
| break; |
| } |
| |
| // First try normal tablegen-generated "fast" selection. |
| if (FastIS->SelectInstruction(BI)) |
| continue; |
| |
| // Next, try calling the target to attempt to handle the instruction. |
| if (FastIS->TargetSelectInstruction(BI)) |
| continue; |
| |
| // Then handle certain instructions as single-LLVM-Instruction blocks. |
| if (isa<CallInst>(BI)) { |
| if (EnableFastISelVerbose || EnableFastISelAbort) { |
| cerr << "FastISel missed call: "; |
| BI->dump(); |
| } |
| |
| if (BI->getType() != Type::VoidTy) { |
| unsigned &R = FuncInfo->ValueMap[BI]; |
| if (!R) |
| R = FuncInfo->CreateRegForValue(BI); |
| } |
| |
| SelectBasicBlock(LLVMBB, BI, next(BI)); |
| // If the instruction was codegen'd with multiple blocks, |
| // inform the FastISel object where to resume inserting. |
| FastIS->setCurrentBlock(BB); |
| continue; |
| } |
| |
| // Otherwise, give up on FastISel for the rest of the block. |
| // For now, be a little lenient about non-branch terminators. |
| if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) { |
| if (EnableFastISelVerbose || EnableFastISelAbort) { |
| cerr << "FastISel miss: "; |
| BI->dump(); |
| } |
| if (EnableFastISelAbort) |
| // The "fast" selector couldn't handle something and bailed. |
| // For the purpose of debugging, just abort. |
| assert(0 && "FastISel didn't select the entire block"); |
| } |
| break; |
| } |
| } |
| |
| // Run SelectionDAG instruction selection on the remainder of the block |
| // not handled by FastISel. If FastISel is not run, this is the entire |
| // block. |
| if (BI != End) |
| SelectBasicBlock(LLVMBB, BI, End); |
| |
| FinishBasicBlock(); |
| } |
| |
| delete FastIS; |
| } |
| |
| void |
| SelectionDAGISel::FinishBasicBlock() { |
| |
| DOUT << "Target-post-processed machine code:\n"; |
| DEBUG(BB->dump()); |
| |
| DOUT << "Total amount of phi nodes to update: " |
| << SDL->PHINodesToUpdate.size() << "\n"; |
| DEBUG(for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i) |
| DOUT << "Node " << i << " : (" << SDL->PHINodesToUpdate[i].first |
| << ", " << SDL->PHINodesToUpdate[i].second << ")\n";); |
| |
| // Next, now that we know what the last MBB the LLVM BB expanded is, update |
| // PHI nodes in successors. |
| if (SDL->SwitchCases.empty() && |
| SDL->JTCases.empty() && |
| SDL->BitTestCases.empty()) { |
| for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i) { |
| MachineInstr *PHI = SDL->PHINodesToUpdate[i].first; |
| assert(PHI->getOpcode() == TargetInstrInfo::PHI && |
| "This is not a machine PHI node that we are updating!"); |
| PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[i].second, |
| false)); |
| PHI->addOperand(MachineOperand::CreateMBB(BB)); |
| } |
| SDL->PHINodesToUpdate.clear(); |
| return; |
| } |
| |
| for (unsigned i = 0, e = SDL->BitTestCases.size(); i != e; ++i) { |
| // Lower header first, if it wasn't already lowered |
| if (!SDL->BitTestCases[i].Emitted) { |
| // Set the current basic block to the mbb we wish to insert the code into |
| BB = SDL->BitTestCases[i].Parent; |
| SDL->setCurrentBasicBlock(BB); |
| // Emit the code |
| SDL->visitBitTestHeader(SDL->BitTestCases[i]); |
| CurDAG->setRoot(SDL->getRoot()); |
| CodeGenAndEmitDAG(); |
| SDL->clear(); |
| } |
| |
| for (unsigned j = 0, ej = SDL->BitTestCases[i].Cases.size(); j != ej; ++j) { |
| // Set the current basic block to the mbb we wish to insert the code into |
| BB = SDL->BitTestCases[i].Cases[j].ThisBB; |
| SDL->setCurrentBasicBlock(BB); |
| // Emit the code |
| if (j+1 != ej) |
| SDL->visitBitTestCase(SDL->BitTestCases[i].Cases[j+1].ThisBB, |
| SDL->BitTestCases[i].Reg, |
| SDL->BitTestCases[i].Cases[j]); |
| else |
| SDL->visitBitTestCase(SDL->BitTestCases[i].Default, |
| SDL->BitTestCases[i].Reg, |
| SDL->BitTestCases[i].Cases[j]); |
| |
| |
| CurDAG->setRoot(SDL->getRoot()); |
| CodeGenAndEmitDAG(); |
| SDL->clear(); |
| } |
| |
| // Update PHI Nodes |
| for (unsigned pi = 0, pe = SDL->PHINodesToUpdate.size(); pi != pe; ++pi) { |
| MachineInstr *PHI = SDL->PHINodesToUpdate[pi].first; |
| MachineBasicBlock *PHIBB = PHI->getParent(); |
| assert(PHI->getOpcode() == TargetInstrInfo::PHI && |
| "This is not a machine PHI node that we are updating!"); |
| // This is "default" BB. We have two jumps to it. From "header" BB and |
| // from last "case" BB. |
| if (PHIBB == SDL->BitTestCases[i].Default) { |
| PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second, |
| false)); |
| PHI->addOperand(MachineOperand::CreateMBB(SDL->BitTestCases[i].Parent)); |
| PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second, |
| false)); |
| PHI->addOperand(MachineOperand::CreateMBB(SDL->BitTestCases[i].Cases. |
| back().ThisBB)); |
| } |
| // One of "cases" BB. |
| for (unsigned j = 0, ej = SDL->BitTestCases[i].Cases.size(); |
| j != ej; ++j) { |
| MachineBasicBlock* cBB = SDL->BitTestCases[i].Cases[j].ThisBB; |
| if (cBB->succ_end() != |
| std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) { |
| PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second, |
| false)); |
| PHI->addOperand(MachineOperand::CreateMBB(cBB)); |
| } |
| } |
| } |
| } |
| SDL->BitTestCases.clear(); |
| |
| // If the JumpTable record is filled in, then we need to emit a jump table. |
| // Updating the PHI nodes is tricky in this case, since we need to determine |
| // whether the PHI is a successor of the range check MBB or the jump table MBB |
| for (unsigned i = 0, e = SDL->JTCases.size(); i != e; ++i) { |
| // Lower header first, if it wasn't already lowered |
| if (!SDL->JTCases[i].first.Emitted) { |
| // Set the current basic block to the mbb we wish to insert the code into |
| BB = SDL->JTCases[i].first.HeaderBB; |
| SDL->setCurrentBasicBlock(BB); |
| // Emit the code |
| SDL->visitJumpTableHeader(SDL->JTCases[i].second, SDL->JTCases[i].first); |
| CurDAG->setRoot(SDL->getRoot()); |
| CodeGenAndEmitDAG(); |
| SDL->clear(); |
| } |
| |
| // Set the current basic block to the mbb we wish to insert the code into |
| BB = SDL->JTCases[i].second.MBB; |
| SDL->setCurrentBasicBlock(BB); |
| // Emit the code |
| SDL->visitJumpTable(SDL->JTCases[i].second); |
| CurDAG->setRoot(SDL->getRoot()); |
| CodeGenAndEmitDAG(); |
| SDL->clear(); |
| |
| // Update PHI Nodes |
| for (unsigned pi = 0, pe = SDL->PHINodesToUpdate.size(); pi != pe; ++pi) { |
| MachineInstr *PHI = SDL->PHINodesToUpdate[pi].first; |
| MachineBasicBlock *PHIBB = PHI->getParent(); |
| assert(PHI->getOpcode() == TargetInstrInfo::PHI && |
| "This is not a machine PHI node that we are updating!"); |
| // "default" BB. We can go there only from header BB. |
| if (PHIBB == SDL->JTCases[i].second.Default) { |
| PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second, |
| false)); |
| PHI->addOperand(MachineOperand::CreateMBB(SDL->JTCases[i].first.HeaderBB)); |
| } |
| // JT BB. Just iterate over successors here |
| if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) { |
| PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second, |
| false)); |
| PHI->addOperand(MachineOperand::CreateMBB(BB)); |
| } |
| } |
| } |
| SDL->JTCases.clear(); |
| |
| // If the switch block involved a branch to one of the actual successors, we |
| // need to update PHI nodes in that block. |
| for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i) { |
| MachineInstr *PHI = SDL->PHINodesToUpdate[i].first; |
| assert(PHI->getOpcode() == TargetInstrInfo::PHI && |
| "This is not a machine PHI node that we are updating!"); |
| if (BB->isSuccessor(PHI->getParent())) { |
| PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[i].second, |
| false)); |
| PHI->addOperand(MachineOperand::CreateMBB(BB)); |
| } |
| } |
| |
| // If we generated any switch lowering information, build and codegen any |
| // additional DAGs necessary. |
| for (unsigned i = 0, e = SDL->SwitchCases.size(); i != e; ++i) { |
| // Set the current basic block to the mbb we wish to insert the code into |
| BB = SDL->SwitchCases[i].ThisBB; |
| SDL->setCurrentBasicBlock(BB); |
| |
| // Emit the code |
| SDL->visitSwitchCase(SDL->SwitchCases[i]); |
| CurDAG->setRoot(SDL->getRoot()); |
| CodeGenAndEmitDAG(); |
| SDL->clear(); |
| |
| // Handle any PHI nodes in successors of this chunk, as if we were coming |
| // from the original BB before switch expansion. Note that PHI nodes can |
| // occur multiple times in PHINodesToUpdate. We have to be very careful to |
| // handle them the right number of times. |
| while ((BB = SDL->SwitchCases[i].TrueBB)) { // Handle LHS and RHS. |
| for (MachineBasicBlock::iterator Phi = BB->begin(); |
| Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){ |
| // This value for this PHI node is recorded in PHINodesToUpdate, get it. |
| for (unsigned pn = 0; ; ++pn) { |
| assert(pn != SDL->PHINodesToUpdate.size() && |
| "Didn't find PHI entry!"); |
| if (SDL->PHINodesToUpdate[pn].first == Phi) { |
| Phi->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pn]. |
| second, false)); |
| Phi->addOperand(MachineOperand::CreateMBB(SDL->SwitchCases[i].ThisBB)); |
| break; |
| } |
| } |
| } |
| |
| // Don't process RHS if same block as LHS. |
| if (BB == SDL->SwitchCases[i].FalseBB) |
| SDL->SwitchCases[i].FalseBB = 0; |
| |
| // If we haven't handled the RHS, do so now. Otherwise, we're done. |
| SDL->SwitchCases[i].TrueBB = SDL->SwitchCases[i].FalseBB; |
| SDL->SwitchCases[i].FalseBB = 0; |
| } |
| assert(SDL->SwitchCases[i].TrueBB == 0 && SDL->SwitchCases[i].FalseBB == 0); |
| } |
| SDL->SwitchCases.clear(); |
| |
| SDL->PHINodesToUpdate.clear(); |
| } |
| |
| |
| /// Schedule - Pick a safe ordering for instructions for each |
| /// target node in the graph. |
| /// |
| ScheduleDAG *SelectionDAGISel::Schedule() { |
| RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault(); |
| |
| if (!Ctor) { |
| Ctor = ISHeuristic; |
| RegisterScheduler::setDefault(Ctor); |
| } |
| |
| TargetMachine &TM = getTargetLowering().getTargetMachine(); |
| ScheduleDAG *Scheduler = Ctor(this, CurDAG, &TM, BB, Fast); |
| Scheduler->Run(); |
| |
| return Scheduler; |
| } |
| |
| |
| HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() { |
| return new HazardRecognizer(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Helper functions used by the generated instruction selector. |
| //===----------------------------------------------------------------------===// |
| // Calls to these methods are generated by tblgen. |
| |
| /// CheckAndMask - The isel is trying to match something like (and X, 255). If |
| /// the dag combiner simplified the 255, we still want to match. RHS is the |
| /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value |
| /// specified in the .td file (e.g. 255). |
| bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS, |
| int64_t DesiredMaskS) const { |
| const APInt &ActualMask = RHS->getAPIntValue(); |
| const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); |
| |
| // If the actual mask exactly matches, success! |
| if (ActualMask == DesiredMask) |
| return true; |
| |
| // If the actual AND mask is allowing unallowed bits, this doesn't match. |
| if (ActualMask.intersects(~DesiredMask)) |
| return false; |
| |
| // Otherwise, the DAG Combiner may have proven that the value coming in is |
| // either already zero or is not demanded. Check for known zero input bits. |
| APInt NeededMask = DesiredMask & ~ActualMask; |
| if (CurDAG->MaskedValueIsZero(LHS, NeededMask)) |
| return true; |
| |
| // TODO: check to see if missing bits are just not demanded. |
| |
| // Otherwise, this pattern doesn't match. |
| return false; |
| } |
| |
| /// CheckOrMask - The isel is trying to match something like (or X, 255). If |
| /// the dag combiner simplified the 255, we still want to match. RHS is the |
| /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value |
| /// specified in the .td file (e.g. 255). |
| bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS, |
| int64_t DesiredMaskS) const { |
| const APInt &ActualMask = RHS->getAPIntValue(); |
| const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); |
| |
| // If the actual mask exactly matches, success! |
| if (ActualMask == DesiredMask) |
| return true; |
| |
| // If the actual AND mask is allowing unallowed bits, this doesn't match. |
| if (ActualMask.intersects(~DesiredMask)) |
| return false; |
| |
| // Otherwise, the DAG Combiner may have proven that the value coming in is |
| // either already zero or is not demanded. Check for known zero input bits. |
| APInt NeededMask = DesiredMask & ~ActualMask; |
| |
| APInt KnownZero, KnownOne; |
| CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne); |
| |
| // If all the missing bits in the or are already known to be set, match! |
| if ((NeededMask & KnownOne) == NeededMask) |
| return true; |
| |
| // TODO: check to see if missing bits are just not demanded. |
| |
| // Otherwise, this pattern doesn't match. |
| return false; |
| } |
| |
| |
| /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated |
| /// by tblgen. Others should not call it. |
| void SelectionDAGISel:: |
| SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) { |
| std::vector<SDValue> InOps; |
| std::swap(InOps, Ops); |
| |
| Ops.push_back(InOps[0]); // input chain. |
| Ops.push_back(InOps[1]); // input asm string. |
| |
| unsigned i = 2, e = InOps.size(); |
| if (InOps[e-1].getValueType() == MVT::Flag) |
| --e; // Don't process a flag operand if it is here. |
| |
| while (i != e) { |
| unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue(); |
| if ((Flags & 7) != 4 /*MEM*/) { |
| // Just skip over this operand, copying the operands verbatim. |
| Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1); |
| i += (Flags >> 3) + 1; |
| } else { |
| assert((Flags >> 3) == 1 && "Memory operand with multiple values?"); |
| // Otherwise, this is a memory operand. Ask the target to select it. |
| std::vector<SDValue> SelOps; |
| if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) { |
| cerr << "Could not match memory address. Inline asm failure!\n"; |
| exit(1); |
| } |
| |
| // Add this to the output node. |
| MVT IntPtrTy = CurDAG->getTargetLoweringInfo().getPointerTy(); |
| Ops.push_back(CurDAG->getTargetConstant(4/*MEM*/ | (SelOps.size()<< 3), |
| IntPtrTy)); |
| Ops.insert(Ops.end(), SelOps.begin(), SelOps.end()); |
| i += 2; |
| } |
| } |
| |
| // Add the flag input back if present. |
| if (e != InOps.size()) |
| Ops.push_back(InOps.back()); |
| } |
| |
| char SelectionDAGISel::ID = 0; |