| /*===- X86DisassemblerDecoder.c - Disassembler decoder -------------*- C -*-==* |
| * |
| * The LLVM Compiler Infrastructure |
| * |
| * This file is distributed under the University of Illinois Open Source |
| * License. See LICENSE.TXT for details. |
| * |
| *===----------------------------------------------------------------------===* |
| * |
| * This file is part of the X86 Disassembler. |
| * It contains the implementation of the instruction decoder. |
| * Documentation for the disassembler can be found in X86Disassembler.h. |
| * |
| *===----------------------------------------------------------------------===*/ |
| |
| #include <stdarg.h> /* for va_*() */ |
| #include <stdio.h> /* for vsnprintf() */ |
| #include <stdlib.h> /* for exit() */ |
| #include <string.h> /* for memset() */ |
| |
| #include "X86DisassemblerDecoder.h" |
| |
| #include "X86GenDisassemblerTables.inc" |
| |
| #define TRUE 1 |
| #define FALSE 0 |
| |
| typedef int8_t bool; |
| |
| #ifndef NDEBUG |
| #define debug(s) do { x86DisassemblerDebug(__FILE__, __LINE__, s); } while (0) |
| #else |
| #define debug(s) do { } while (0) |
| #endif |
| |
| |
| /* |
| * contextForAttrs - Client for the instruction context table. Takes a set of |
| * attributes and returns the appropriate decode context. |
| * |
| * @param attrMask - Attributes, from the enumeration attributeBits. |
| * @return - The InstructionContext to use when looking up an |
| * an instruction with these attributes. |
| */ |
| static InstructionContext contextForAttrs(uint8_t attrMask) { |
| return CONTEXTS_SYM[attrMask]; |
| } |
| |
| /* |
| * modRMRequired - Reads the appropriate instruction table to determine whether |
| * the ModR/M byte is required to decode a particular instruction. |
| * |
| * @param type - The opcode type (i.e., how many bytes it has). |
| * @param insnContext - The context for the instruction, as returned by |
| * contextForAttrs. |
| * @param opcode - The last byte of the instruction's opcode, not counting |
| * ModR/M extensions and escapes. |
| * @return - TRUE if the ModR/M byte is required, FALSE otherwise. |
| */ |
| static int modRMRequired(OpcodeType type, |
| InstructionContext insnContext, |
| uint8_t opcode) { |
| const struct ContextDecision* decision = 0; |
| |
| switch (type) { |
| case ONEBYTE: |
| decision = &ONEBYTE_SYM; |
| break; |
| case TWOBYTE: |
| decision = &TWOBYTE_SYM; |
| break; |
| case THREEBYTE_38: |
| decision = &THREEBYTE38_SYM; |
| break; |
| case THREEBYTE_3A: |
| decision = &THREEBYTE3A_SYM; |
| break; |
| case THREEBYTE_A6: |
| decision = &THREEBYTEA6_SYM; |
| break; |
| case THREEBYTE_A7: |
| decision = &THREEBYTEA7_SYM; |
| break; |
| } |
| |
| return decision->opcodeDecisions[insnContext].modRMDecisions[opcode]. |
| modrm_type != MODRM_ONEENTRY; |
| |
| return 0; |
| } |
| |
| /* |
| * decode - Reads the appropriate instruction table to obtain the unique ID of |
| * an instruction. |
| * |
| * @param type - See modRMRequired(). |
| * @param insnContext - See modRMRequired(). |
| * @param opcode - See modRMRequired(). |
| * @param modRM - The ModR/M byte if required, or any value if not. |
| * @return - The UID of the instruction, or 0 on failure. |
| */ |
| static InstrUID decode(OpcodeType type, |
| InstructionContext insnContext, |
| uint8_t opcode, |
| uint8_t modRM) { |
| const struct ModRMDecision* dec; |
| |
| switch (type) { |
| default: |
| debug("Unknown opcode type"); |
| return 0; |
| case ONEBYTE: |
| dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
| break; |
| case TWOBYTE: |
| dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
| break; |
| case THREEBYTE_38: |
| dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
| break; |
| case THREEBYTE_3A: |
| dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
| break; |
| case THREEBYTE_A6: |
| dec = &THREEBYTEA6_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
| break; |
| case THREEBYTE_A7: |
| dec = &THREEBYTEA7_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
| break; |
| } |
| |
| switch (dec->modrm_type) { |
| default: |
| debug("Corrupt table! Unknown modrm_type"); |
| return 0; |
| case MODRM_ONEENTRY: |
| return dec->instructionIDs[0]; |
| case MODRM_SPLITRM: |
| if (modFromModRM(modRM) == 0x3) |
| return dec->instructionIDs[1]; |
| else |
| return dec->instructionIDs[0]; |
| case MODRM_FULL: |
| return dec->instructionIDs[modRM]; |
| } |
| } |
| |
| /* |
| * specifierForUID - Given a UID, returns the name and operand specification for |
| * that instruction. |
| * |
| * @param uid - The unique ID for the instruction. This should be returned by |
| * decode(); specifierForUID will not check bounds. |
| * @return - A pointer to the specification for that instruction. |
| */ |
| static const struct InstructionSpecifier *specifierForUID(InstrUID uid) { |
| return &INSTRUCTIONS_SYM[uid]; |
| } |
| |
| /* |
| * consumeByte - Uses the reader function provided by the user to consume one |
| * byte from the instruction's memory and advance the cursor. |
| * |
| * @param insn - The instruction with the reader function to use. The cursor |
| * for this instruction is advanced. |
| * @param byte - A pointer to a pre-allocated memory buffer to be populated |
| * with the data read. |
| * @return - 0 if the read was successful; nonzero otherwise. |
| */ |
| static int consumeByte(struct InternalInstruction* insn, uint8_t* byte) { |
| int ret = insn->reader(insn->readerArg, byte, insn->readerCursor); |
| |
| if (!ret) |
| ++(insn->readerCursor); |
| |
| return ret; |
| } |
| |
| /* |
| * lookAtByte - Like consumeByte, but does not advance the cursor. |
| * |
| * @param insn - See consumeByte(). |
| * @param byte - See consumeByte(). |
| * @return - See consumeByte(). |
| */ |
| static int lookAtByte(struct InternalInstruction* insn, uint8_t* byte) { |
| return insn->reader(insn->readerArg, byte, insn->readerCursor); |
| } |
| |
| static void unconsumeByte(struct InternalInstruction* insn) { |
| insn->readerCursor--; |
| } |
| |
| #define CONSUME_FUNC(name, type) \ |
| static int name(struct InternalInstruction* insn, type* ptr) { \ |
| type combined = 0; \ |
| unsigned offset; \ |
| for (offset = 0; offset < sizeof(type); ++offset) { \ |
| uint8_t byte; \ |
| int ret = insn->reader(insn->readerArg, \ |
| &byte, \ |
| insn->readerCursor + offset); \ |
| if (ret) \ |
| return ret; \ |
| combined = combined | ((type)byte << ((type)offset * 8)); \ |
| } \ |
| *ptr = combined; \ |
| insn->readerCursor += sizeof(type); \ |
| return 0; \ |
| } |
| |
| /* |
| * consume* - Use the reader function provided by the user to consume data |
| * values of various sizes from the instruction's memory and advance the |
| * cursor appropriately. These readers perform endian conversion. |
| * |
| * @param insn - See consumeByte(). |
| * @param ptr - A pointer to a pre-allocated memory of appropriate size to |
| * be populated with the data read. |
| * @return - See consumeByte(). |
| */ |
| CONSUME_FUNC(consumeInt8, int8_t) |
| CONSUME_FUNC(consumeInt16, int16_t) |
| CONSUME_FUNC(consumeInt32, int32_t) |
| CONSUME_FUNC(consumeUInt16, uint16_t) |
| CONSUME_FUNC(consumeUInt32, uint32_t) |
| CONSUME_FUNC(consumeUInt64, uint64_t) |
| |
| /* |
| * dbgprintf - Uses the logging function provided by the user to log a single |
| * message, typically without a carriage-return. |
| * |
| * @param insn - The instruction containing the logging function. |
| * @param format - See printf(). |
| * @param ... - See printf(). |
| */ |
| static void dbgprintf(struct InternalInstruction* insn, |
| const char* format, |
| ...) { |
| char buffer[256]; |
| va_list ap; |
| |
| if (!insn->dlog) |
| return; |
| |
| va_start(ap, format); |
| (void)vsnprintf(buffer, sizeof(buffer), format, ap); |
| va_end(ap); |
| |
| insn->dlog(insn->dlogArg, buffer); |
| |
| return; |
| } |
| |
| /* |
| * setPrefixPresent - Marks that a particular prefix is present at a particular |
| * location. |
| * |
| * @param insn - The instruction to be marked as having the prefix. |
| * @param prefix - The prefix that is present. |
| * @param location - The location where the prefix is located (in the address |
| * space of the instruction's reader). |
| */ |
| static void setPrefixPresent(struct InternalInstruction* insn, |
| uint8_t prefix, |
| uint64_t location) |
| { |
| insn->prefixPresent[prefix] = 1; |
| insn->prefixLocations[prefix] = location; |
| } |
| |
| /* |
| * isPrefixAtLocation - Queries an instruction to determine whether a prefix is |
| * present at a given location. |
| * |
| * @param insn - The instruction to be queried. |
| * @param prefix - The prefix. |
| * @param location - The location to query. |
| * @return - Whether the prefix is at that location. |
| */ |
| static BOOL isPrefixAtLocation(struct InternalInstruction* insn, |
| uint8_t prefix, |
| uint64_t location) |
| { |
| if (insn->prefixPresent[prefix] == 1 && |
| insn->prefixLocations[prefix] == location) |
| return TRUE; |
| else |
| return FALSE; |
| } |
| |
| /* |
| * readPrefixes - Consumes all of an instruction's prefix bytes, and marks the |
| * instruction as having them. Also sets the instruction's default operand, |
| * address, and other relevant data sizes to report operands correctly. |
| * |
| * @param insn - The instruction whose prefixes are to be read. |
| * @return - 0 if the instruction could be read until the end of the prefix |
| * bytes, and no prefixes conflicted; nonzero otherwise. |
| */ |
| static int readPrefixes(struct InternalInstruction* insn) { |
| BOOL isPrefix = TRUE; |
| BOOL prefixGroups[4] = { FALSE }; |
| uint64_t prefixLocation; |
| uint8_t byte = 0; |
| |
| BOOL hasAdSize = FALSE; |
| BOOL hasOpSize = FALSE; |
| |
| dbgprintf(insn, "readPrefixes()"); |
| |
| while (isPrefix) { |
| prefixLocation = insn->readerCursor; |
| |
| if (consumeByte(insn, &byte)) |
| return -1; |
| |
| switch (byte) { |
| case 0xf0: /* LOCK */ |
| case 0xf2: /* REPNE/REPNZ */ |
| case 0xf3: /* REP or REPE/REPZ */ |
| if (prefixGroups[0]) |
| dbgprintf(insn, "Redundant Group 1 prefix"); |
| prefixGroups[0] = TRUE; |
| setPrefixPresent(insn, byte, prefixLocation); |
| break; |
| case 0x2e: /* CS segment override -OR- Branch not taken */ |
| case 0x36: /* SS segment override -OR- Branch taken */ |
| case 0x3e: /* DS segment override */ |
| case 0x26: /* ES segment override */ |
| case 0x64: /* FS segment override */ |
| case 0x65: /* GS segment override */ |
| switch (byte) { |
| case 0x2e: |
| insn->segmentOverride = SEG_OVERRIDE_CS; |
| break; |
| case 0x36: |
| insn->segmentOverride = SEG_OVERRIDE_SS; |
| break; |
| case 0x3e: |
| insn->segmentOverride = SEG_OVERRIDE_DS; |
| break; |
| case 0x26: |
| insn->segmentOverride = SEG_OVERRIDE_ES; |
| break; |
| case 0x64: |
| insn->segmentOverride = SEG_OVERRIDE_FS; |
| break; |
| case 0x65: |
| insn->segmentOverride = SEG_OVERRIDE_GS; |
| break; |
| default: |
| debug("Unhandled override"); |
| return -1; |
| } |
| if (prefixGroups[1]) |
| dbgprintf(insn, "Redundant Group 2 prefix"); |
| prefixGroups[1] = TRUE; |
| setPrefixPresent(insn, byte, prefixLocation); |
| break; |
| case 0x66: /* Operand-size override */ |
| if (prefixGroups[2]) |
| dbgprintf(insn, "Redundant Group 3 prefix"); |
| prefixGroups[2] = TRUE; |
| hasOpSize = TRUE; |
| setPrefixPresent(insn, byte, prefixLocation); |
| break; |
| case 0x67: /* Address-size override */ |
| if (prefixGroups[3]) |
| dbgprintf(insn, "Redundant Group 4 prefix"); |
| prefixGroups[3] = TRUE; |
| hasAdSize = TRUE; |
| setPrefixPresent(insn, byte, prefixLocation); |
| break; |
| default: /* Not a prefix byte */ |
| isPrefix = FALSE; |
| break; |
| } |
| |
| if (isPrefix) |
| dbgprintf(insn, "Found prefix 0x%hhx", byte); |
| } |
| |
| insn->vexSize = 0; |
| |
| if (byte == 0xc4) { |
| uint8_t byte1; |
| |
| if (lookAtByte(insn, &byte1)) { |
| dbgprintf(insn, "Couldn't read second byte of VEX"); |
| return -1; |
| } |
| |
| if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) { |
| insn->vexSize = 3; |
| insn->necessaryPrefixLocation = insn->readerCursor - 1; |
| } |
| else { |
| unconsumeByte(insn); |
| insn->necessaryPrefixLocation = insn->readerCursor - 1; |
| } |
| |
| if (insn->vexSize == 3) { |
| insn->vexPrefix[0] = byte; |
| consumeByte(insn, &insn->vexPrefix[1]); |
| consumeByte(insn, &insn->vexPrefix[2]); |
| |
| /* We simulate the REX prefix for simplicity's sake */ |
| |
| if (insn->mode == MODE_64BIT) { |
| insn->rexPrefix = 0x40 |
| | (wFromVEX3of3(insn->vexPrefix[2]) << 3) |
| | (rFromVEX2of3(insn->vexPrefix[1]) << 2) |
| | (xFromVEX2of3(insn->vexPrefix[1]) << 1) |
| | (bFromVEX2of3(insn->vexPrefix[1]) << 0); |
| } |
| |
| switch (ppFromVEX3of3(insn->vexPrefix[2])) |
| { |
| default: |
| break; |
| case VEX_PREFIX_66: |
| hasOpSize = TRUE; |
| break; |
| } |
| |
| dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx 0x%hhx", insn->vexPrefix[0], insn->vexPrefix[1], insn->vexPrefix[2]); |
| } |
| } |
| else if (byte == 0xc5) { |
| uint8_t byte1; |
| |
| if (lookAtByte(insn, &byte1)) { |
| dbgprintf(insn, "Couldn't read second byte of VEX"); |
| return -1; |
| } |
| |
| if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) { |
| insn->vexSize = 2; |
| } |
| else { |
| unconsumeByte(insn); |
| } |
| |
| if (insn->vexSize == 2) { |
| insn->vexPrefix[0] = byte; |
| consumeByte(insn, &insn->vexPrefix[1]); |
| |
| if (insn->mode == MODE_64BIT) { |
| insn->rexPrefix = 0x40 |
| | (rFromVEX2of2(insn->vexPrefix[1]) << 2); |
| } |
| |
| switch (ppFromVEX2of2(insn->vexPrefix[1])) |
| { |
| default: |
| break; |
| case VEX_PREFIX_66: |
| hasOpSize = TRUE; |
| break; |
| } |
| |
| dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx", insn->vexPrefix[0], insn->vexPrefix[1]); |
| } |
| } |
| else { |
| if (insn->mode == MODE_64BIT) { |
| if ((byte & 0xf0) == 0x40) { |
| uint8_t opcodeByte; |
| |
| if (lookAtByte(insn, &opcodeByte) || ((opcodeByte & 0xf0) == 0x40)) { |
| dbgprintf(insn, "Redundant REX prefix"); |
| return -1; |
| } |
| |
| insn->rexPrefix = byte; |
| insn->necessaryPrefixLocation = insn->readerCursor - 2; |
| |
| dbgprintf(insn, "Found REX prefix 0x%hhx", byte); |
| } else { |
| unconsumeByte(insn); |
| insn->necessaryPrefixLocation = insn->readerCursor - 1; |
| } |
| } else { |
| unconsumeByte(insn); |
| insn->necessaryPrefixLocation = insn->readerCursor - 1; |
| } |
| } |
| |
| if (insn->mode == MODE_16BIT) { |
| insn->registerSize = (hasOpSize ? 4 : 2); |
| insn->addressSize = (hasAdSize ? 4 : 2); |
| insn->displacementSize = (hasAdSize ? 4 : 2); |
| insn->immediateSize = (hasOpSize ? 4 : 2); |
| } else if (insn->mode == MODE_32BIT) { |
| insn->registerSize = (hasOpSize ? 2 : 4); |
| insn->addressSize = (hasAdSize ? 2 : 4); |
| insn->displacementSize = (hasAdSize ? 2 : 4); |
| insn->immediateSize = (hasOpSize ? 2 : 4); |
| } else if (insn->mode == MODE_64BIT) { |
| if (insn->rexPrefix && wFromREX(insn->rexPrefix)) { |
| insn->registerSize = 8; |
| insn->addressSize = (hasAdSize ? 4 : 8); |
| insn->displacementSize = 4; |
| insn->immediateSize = 4; |
| } else if (insn->rexPrefix) { |
| insn->registerSize = (hasOpSize ? 2 : 4); |
| insn->addressSize = (hasAdSize ? 4 : 8); |
| insn->displacementSize = (hasOpSize ? 2 : 4); |
| insn->immediateSize = (hasOpSize ? 2 : 4); |
| } else { |
| insn->registerSize = (hasOpSize ? 2 : 4); |
| insn->addressSize = (hasAdSize ? 4 : 8); |
| insn->displacementSize = (hasOpSize ? 2 : 4); |
| insn->immediateSize = (hasOpSize ? 2 : 4); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * readOpcode - Reads the opcode (excepting the ModR/M byte in the case of |
| * extended or escape opcodes). |
| * |
| * @param insn - The instruction whose opcode is to be read. |
| * @return - 0 if the opcode could be read successfully; nonzero otherwise. |
| */ |
| static int readOpcode(struct InternalInstruction* insn) { |
| /* Determine the length of the primary opcode */ |
| |
| uint8_t current; |
| |
| dbgprintf(insn, "readOpcode()"); |
| |
| insn->opcodeType = ONEBYTE; |
| |
| if (insn->vexSize == 3) |
| { |
| switch (mmmmmFromVEX2of3(insn->vexPrefix[1])) |
| { |
| default: |
| dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)", mmmmmFromVEX2of3(insn->vexPrefix[1])); |
| return -1; |
| case 0: |
| break; |
| case VEX_LOB_0F: |
| insn->twoByteEscape = 0x0f; |
| insn->opcodeType = TWOBYTE; |
| return consumeByte(insn, &insn->opcode); |
| case VEX_LOB_0F38: |
| insn->twoByteEscape = 0x0f; |
| insn->threeByteEscape = 0x38; |
| insn->opcodeType = THREEBYTE_38; |
| return consumeByte(insn, &insn->opcode); |
| case VEX_LOB_0F3A: |
| insn->twoByteEscape = 0x0f; |
| insn->threeByteEscape = 0x3a; |
| insn->opcodeType = THREEBYTE_3A; |
| return consumeByte(insn, &insn->opcode); |
| } |
| } |
| else if (insn->vexSize == 2) |
| { |
| insn->twoByteEscape = 0x0f; |
| insn->opcodeType = TWOBYTE; |
| return consumeByte(insn, &insn->opcode); |
| } |
| |
| if (consumeByte(insn, ¤t)) |
| return -1; |
| |
| if (current == 0x0f) { |
| dbgprintf(insn, "Found a two-byte escape prefix (0x%hhx)", current); |
| |
| insn->twoByteEscape = current; |
| |
| if (consumeByte(insn, ¤t)) |
| return -1; |
| |
| if (current == 0x38) { |
| dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current); |
| |
| insn->threeByteEscape = current; |
| |
| if (consumeByte(insn, ¤t)) |
| return -1; |
| |
| insn->opcodeType = THREEBYTE_38; |
| } else if (current == 0x3a) { |
| dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current); |
| |
| insn->threeByteEscape = current; |
| |
| if (consumeByte(insn, ¤t)) |
| return -1; |
| |
| insn->opcodeType = THREEBYTE_3A; |
| } else if (current == 0xa6) { |
| dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current); |
| |
| insn->threeByteEscape = current; |
| |
| if (consumeByte(insn, ¤t)) |
| return -1; |
| |
| insn->opcodeType = THREEBYTE_A6; |
| } else if (current == 0xa7) { |
| dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current); |
| |
| insn->threeByteEscape = current; |
| |
| if (consumeByte(insn, ¤t)) |
| return -1; |
| |
| insn->opcodeType = THREEBYTE_A7; |
| } else { |
| dbgprintf(insn, "Didn't find a three-byte escape prefix"); |
| |
| insn->opcodeType = TWOBYTE; |
| } |
| } |
| |
| /* |
| * At this point we have consumed the full opcode. |
| * Anything we consume from here on must be unconsumed. |
| */ |
| |
| insn->opcode = current; |
| |
| return 0; |
| } |
| |
| static int readModRM(struct InternalInstruction* insn); |
| |
| /* |
| * getIDWithAttrMask - Determines the ID of an instruction, consuming |
| * the ModR/M byte as appropriate for extended and escape opcodes, |
| * and using a supplied attribute mask. |
| * |
| * @param instructionID - A pointer whose target is filled in with the ID of the |
| * instruction. |
| * @param insn - The instruction whose ID is to be determined. |
| * @param attrMask - The attribute mask to search. |
| * @return - 0 if the ModR/M could be read when needed or was not |
| * needed; nonzero otherwise. |
| */ |
| static int getIDWithAttrMask(uint16_t* instructionID, |
| struct InternalInstruction* insn, |
| uint8_t attrMask) { |
| BOOL hasModRMExtension; |
| |
| uint8_t instructionClass; |
| |
| instructionClass = contextForAttrs(attrMask); |
| |
| hasModRMExtension = modRMRequired(insn->opcodeType, |
| instructionClass, |
| insn->opcode); |
| |
| if (hasModRMExtension) { |
| if (readModRM(insn)) |
| return -1; |
| |
| *instructionID = decode(insn->opcodeType, |
| instructionClass, |
| insn->opcode, |
| insn->modRM); |
| } else { |
| *instructionID = decode(insn->opcodeType, |
| instructionClass, |
| insn->opcode, |
| 0); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * is16BitEquivalent - Determines whether two instruction names refer to |
| * equivalent instructions but one is 16-bit whereas the other is not. |
| * |
| * @param orig - The instruction that is not 16-bit |
| * @param equiv - The instruction that is 16-bit |
| */ |
| static BOOL is16BitEquvalent(const char* orig, const char* equiv) { |
| off_t i; |
| |
| for (i = 0;; i++) { |
| if (orig[i] == '\0' && equiv[i] == '\0') |
| return TRUE; |
| if (orig[i] == '\0' || equiv[i] == '\0') |
| return FALSE; |
| if (orig[i] != equiv[i]) { |
| if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W') |
| continue; |
| if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1') |
| continue; |
| if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6') |
| continue; |
| return FALSE; |
| } |
| } |
| } |
| |
| /* |
| * getID - Determines the ID of an instruction, consuming the ModR/M byte as |
| * appropriate for extended and escape opcodes. Determines the attributes and |
| * context for the instruction before doing so. |
| * |
| * @param insn - The instruction whose ID is to be determined. |
| * @return - 0 if the ModR/M could be read when needed or was not needed; |
| * nonzero otherwise. |
| */ |
| static int getID(struct InternalInstruction* insn) { |
| uint8_t attrMask; |
| uint16_t instructionID; |
| |
| dbgprintf(insn, "getID()"); |
| |
| attrMask = ATTR_NONE; |
| |
| if (insn->mode == MODE_64BIT) |
| attrMask |= ATTR_64BIT; |
| |
| if (insn->vexSize) { |
| attrMask |= ATTR_VEX; |
| |
| if (insn->vexSize == 3) { |
| switch (ppFromVEX3of3(insn->vexPrefix[2])) { |
| case VEX_PREFIX_66: |
| attrMask |= ATTR_OPSIZE; |
| break; |
| case VEX_PREFIX_F3: |
| attrMask |= ATTR_XS; |
| break; |
| case VEX_PREFIX_F2: |
| attrMask |= ATTR_XD; |
| break; |
| } |
| |
| if (lFromVEX3of3(insn->vexPrefix[2])) |
| attrMask |= ATTR_VEXL; |
| } |
| else if (insn->vexSize == 2) { |
| switch (ppFromVEX2of2(insn->vexPrefix[1])) { |
| case VEX_PREFIX_66: |
| attrMask |= ATTR_OPSIZE; |
| break; |
| case VEX_PREFIX_F3: |
| attrMask |= ATTR_XS; |
| break; |
| case VEX_PREFIX_F2: |
| attrMask |= ATTR_XD; |
| break; |
| } |
| |
| if (lFromVEX2of2(insn->vexPrefix[1])) |
| attrMask |= ATTR_VEXL; |
| } |
| else { |
| return -1; |
| } |
| } |
| else { |
| if (isPrefixAtLocation(insn, 0x66, insn->necessaryPrefixLocation)) |
| attrMask |= ATTR_OPSIZE; |
| else if (isPrefixAtLocation(insn, 0xf3, insn->necessaryPrefixLocation)) |
| attrMask |= ATTR_XS; |
| else if (isPrefixAtLocation(insn, 0xf2, insn->necessaryPrefixLocation)) |
| attrMask |= ATTR_XD; |
| } |
| |
| if (insn->rexPrefix & 0x08) |
| attrMask |= ATTR_REXW; |
| |
| if (getIDWithAttrMask(&instructionID, insn, attrMask)) |
| return -1; |
| |
| /* The following clauses compensate for limitations of the tables. */ |
| |
| if ((attrMask & ATTR_VEXL) && (attrMask & ATTR_REXW) && |
| !(attrMask & ATTR_OPSIZE)) { |
| /* |
| * Some VEX instructions ignore the L-bit, but use the W-bit. Normally L-bit |
| * has precedence since there are no L-bit with W-bit entries in the tables. |
| * So if the L-bit isn't significant we should use the W-bit instead. |
| * We only need to do this if the instruction doesn't specify OpSize since |
| * there is a VEX_L_W_OPSIZE table. |
| */ |
| |
| const struct InstructionSpecifier *spec; |
| uint16_t instructionIDWithWBit; |
| const struct InstructionSpecifier *specWithWBit; |
| |
| spec = specifierForUID(instructionID); |
| |
| if (getIDWithAttrMask(&instructionIDWithWBit, |
| insn, |
| (attrMask & (~ATTR_VEXL)) | ATTR_REXW)) { |
| insn->instructionID = instructionID; |
| insn->spec = spec; |
| return 0; |
| } |
| |
| specWithWBit = specifierForUID(instructionIDWithWBit); |
| |
| if (instructionID != instructionIDWithWBit) { |
| insn->instructionID = instructionIDWithWBit; |
| insn->spec = specWithWBit; |
| } else { |
| insn->instructionID = instructionID; |
| insn->spec = spec; |
| } |
| return 0; |
| } |
| |
| if (insn->prefixPresent[0x66] && !(attrMask & ATTR_OPSIZE)) { |
| /* |
| * The instruction tables make no distinction between instructions that |
| * allow OpSize anywhere (i.e., 16-bit operations) and that need it in a |
| * particular spot (i.e., many MMX operations). In general we're |
| * conservative, but in the specific case where OpSize is present but not |
| * in the right place we check if there's a 16-bit operation. |
| */ |
| |
| const struct InstructionSpecifier *spec; |
| uint16_t instructionIDWithOpsize; |
| const struct InstructionSpecifier *specWithOpsize; |
| |
| spec = specifierForUID(instructionID); |
| |
| if (getIDWithAttrMask(&instructionIDWithOpsize, |
| insn, |
| attrMask | ATTR_OPSIZE)) { |
| /* |
| * ModRM required with OpSize but not present; give up and return version |
| * without OpSize set |
| */ |
| |
| insn->instructionID = instructionID; |
| insn->spec = spec; |
| return 0; |
| } |
| |
| specWithOpsize = specifierForUID(instructionIDWithOpsize); |
| |
| if (is16BitEquvalent(spec->name, specWithOpsize->name)) { |
| insn->instructionID = instructionIDWithOpsize; |
| insn->spec = specWithOpsize; |
| } else { |
| insn->instructionID = instructionID; |
| insn->spec = spec; |
| } |
| return 0; |
| } |
| |
| if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 && |
| insn->rexPrefix & 0x01) { |
| /* |
| * NOOP shouldn't decode as NOOP if REX.b is set. Instead |
| * it should decode as XCHG %r8, %eax. |
| */ |
| |
| const struct InstructionSpecifier *spec; |
| uint16_t instructionIDWithNewOpcode; |
| const struct InstructionSpecifier *specWithNewOpcode; |
| |
| spec = specifierForUID(instructionID); |
| |
| /* Borrow opcode from one of the other XCHGar opcodes */ |
| insn->opcode = 0x91; |
| |
| if (getIDWithAttrMask(&instructionIDWithNewOpcode, |
| insn, |
| attrMask)) { |
| insn->opcode = 0x90; |
| |
| insn->instructionID = instructionID; |
| insn->spec = spec; |
| return 0; |
| } |
| |
| specWithNewOpcode = specifierForUID(instructionIDWithNewOpcode); |
| |
| /* Change back */ |
| insn->opcode = 0x90; |
| |
| insn->instructionID = instructionIDWithNewOpcode; |
| insn->spec = specWithNewOpcode; |
| |
| return 0; |
| } |
| |
| insn->instructionID = instructionID; |
| insn->spec = specifierForUID(insn->instructionID); |
| |
| return 0; |
| } |
| |
| /* |
| * readSIB - Consumes the SIB byte to determine addressing information for an |
| * instruction. |
| * |
| * @param insn - The instruction whose SIB byte is to be read. |
| * @return - 0 if the SIB byte was successfully read; nonzero otherwise. |
| */ |
| static int readSIB(struct InternalInstruction* insn) { |
| SIBIndex sibIndexBase = 0; |
| SIBBase sibBaseBase = 0; |
| uint8_t index, base; |
| |
| dbgprintf(insn, "readSIB()"); |
| |
| if (insn->consumedSIB) |
| return 0; |
| |
| insn->consumedSIB = TRUE; |
| |
| switch (insn->addressSize) { |
| case 2: |
| dbgprintf(insn, "SIB-based addressing doesn't work in 16-bit mode"); |
| return -1; |
| break; |
| case 4: |
| sibIndexBase = SIB_INDEX_EAX; |
| sibBaseBase = SIB_BASE_EAX; |
| break; |
| case 8: |
| sibIndexBase = SIB_INDEX_RAX; |
| sibBaseBase = SIB_BASE_RAX; |
| break; |
| } |
| |
| if (consumeByte(insn, &insn->sib)) |
| return -1; |
| |
| index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3); |
| |
| switch (index) { |
| case 0x4: |
| insn->sibIndex = SIB_INDEX_NONE; |
| break; |
| default: |
| insn->sibIndex = (SIBIndex)(sibIndexBase + index); |
| if (insn->sibIndex == SIB_INDEX_sib || |
| insn->sibIndex == SIB_INDEX_sib64) |
| insn->sibIndex = SIB_INDEX_NONE; |
| break; |
| } |
| |
| switch (scaleFromSIB(insn->sib)) { |
| case 0: |
| insn->sibScale = 1; |
| break; |
| case 1: |
| insn->sibScale = 2; |
| break; |
| case 2: |
| insn->sibScale = 4; |
| break; |
| case 3: |
| insn->sibScale = 8; |
| break; |
| } |
| |
| base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3); |
| |
| switch (base) { |
| case 0x5: |
| switch (modFromModRM(insn->modRM)) { |
| case 0x0: |
| insn->eaDisplacement = EA_DISP_32; |
| insn->sibBase = SIB_BASE_NONE; |
| break; |
| case 0x1: |
| insn->eaDisplacement = EA_DISP_8; |
| insn->sibBase = (insn->addressSize == 4 ? |
| SIB_BASE_EBP : SIB_BASE_RBP); |
| break; |
| case 0x2: |
| insn->eaDisplacement = EA_DISP_32; |
| insn->sibBase = (insn->addressSize == 4 ? |
| SIB_BASE_EBP : SIB_BASE_RBP); |
| break; |
| case 0x3: |
| debug("Cannot have Mod = 0b11 and a SIB byte"); |
| return -1; |
| } |
| break; |
| default: |
| insn->sibBase = (SIBBase)(sibBaseBase + base); |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * readDisplacement - Consumes the displacement of an instruction. |
| * |
| * @param insn - The instruction whose displacement is to be read. |
| * @return - 0 if the displacement byte was successfully read; nonzero |
| * otherwise. |
| */ |
| static int readDisplacement(struct InternalInstruction* insn) { |
| int8_t d8; |
| int16_t d16; |
| int32_t d32; |
| |
| dbgprintf(insn, "readDisplacement()"); |
| |
| if (insn->consumedDisplacement) |
| return 0; |
| |
| insn->consumedDisplacement = TRUE; |
| |
| switch (insn->eaDisplacement) { |
| case EA_DISP_NONE: |
| insn->consumedDisplacement = FALSE; |
| break; |
| case EA_DISP_8: |
| if (consumeInt8(insn, &d8)) |
| return -1; |
| insn->displacement = d8; |
| break; |
| case EA_DISP_16: |
| if (consumeInt16(insn, &d16)) |
| return -1; |
| insn->displacement = d16; |
| break; |
| case EA_DISP_32: |
| if (consumeInt32(insn, &d32)) |
| return -1; |
| insn->displacement = d32; |
| break; |
| } |
| |
| insn->consumedDisplacement = TRUE; |
| return 0; |
| } |
| |
| /* |
| * readModRM - Consumes all addressing information (ModR/M byte, SIB byte, and |
| * displacement) for an instruction and interprets it. |
| * |
| * @param insn - The instruction whose addressing information is to be read. |
| * @return - 0 if the information was successfully read; nonzero otherwise. |
| */ |
| static int readModRM(struct InternalInstruction* insn) { |
| uint8_t mod, rm, reg; |
| |
| dbgprintf(insn, "readModRM()"); |
| |
| if (insn->consumedModRM) |
| return 0; |
| |
| if (consumeByte(insn, &insn->modRM)) |
| return -1; |
| insn->consumedModRM = TRUE; |
| |
| mod = modFromModRM(insn->modRM); |
| rm = rmFromModRM(insn->modRM); |
| reg = regFromModRM(insn->modRM); |
| |
| /* |
| * This goes by insn->registerSize to pick the correct register, which messes |
| * up if we're using (say) XMM or 8-bit register operands. That gets fixed in |
| * fixupReg(). |
| */ |
| switch (insn->registerSize) { |
| case 2: |
| insn->regBase = MODRM_REG_AX; |
| insn->eaRegBase = EA_REG_AX; |
| break; |
| case 4: |
| insn->regBase = MODRM_REG_EAX; |
| insn->eaRegBase = EA_REG_EAX; |
| break; |
| case 8: |
| insn->regBase = MODRM_REG_RAX; |
| insn->eaRegBase = EA_REG_RAX; |
| break; |
| } |
| |
| reg |= rFromREX(insn->rexPrefix) << 3; |
| rm |= bFromREX(insn->rexPrefix) << 3; |
| |
| insn->reg = (Reg)(insn->regBase + reg); |
| |
| switch (insn->addressSize) { |
| case 2: |
| insn->eaBaseBase = EA_BASE_BX_SI; |
| |
| switch (mod) { |
| case 0x0: |
| if (rm == 0x6) { |
| insn->eaBase = EA_BASE_NONE; |
| insn->eaDisplacement = EA_DISP_16; |
| if (readDisplacement(insn)) |
| return -1; |
| } else { |
| insn->eaBase = (EABase)(insn->eaBaseBase + rm); |
| insn->eaDisplacement = EA_DISP_NONE; |
| } |
| break; |
| case 0x1: |
| insn->eaBase = (EABase)(insn->eaBaseBase + rm); |
| insn->eaDisplacement = EA_DISP_8; |
| if (readDisplacement(insn)) |
| return -1; |
| break; |
| case 0x2: |
| insn->eaBase = (EABase)(insn->eaBaseBase + rm); |
| insn->eaDisplacement = EA_DISP_16; |
| if (readDisplacement(insn)) |
| return -1; |
| break; |
| case 0x3: |
| insn->eaBase = (EABase)(insn->eaRegBase + rm); |
| if (readDisplacement(insn)) |
| return -1; |
| break; |
| } |
| break; |
| case 4: |
| case 8: |
| insn->eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX); |
| |
| switch (mod) { |
| case 0x0: |
| insn->eaDisplacement = EA_DISP_NONE; /* readSIB may override this */ |
| switch (rm) { |
| case 0x4: |
| case 0xc: /* in case REXW.b is set */ |
| insn->eaBase = (insn->addressSize == 4 ? |
| EA_BASE_sib : EA_BASE_sib64); |
| readSIB(insn); |
| if (readDisplacement(insn)) |
| return -1; |
| break; |
| case 0x5: |
| insn->eaBase = EA_BASE_NONE; |
| insn->eaDisplacement = EA_DISP_32; |
| if (readDisplacement(insn)) |
| return -1; |
| break; |
| default: |
| insn->eaBase = (EABase)(insn->eaBaseBase + rm); |
| break; |
| } |
| break; |
| case 0x1: |
| case 0x2: |
| insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32); |
| switch (rm) { |
| case 0x4: |
| case 0xc: /* in case REXW.b is set */ |
| insn->eaBase = EA_BASE_sib; |
| readSIB(insn); |
| if (readDisplacement(insn)) |
| return -1; |
| break; |
| default: |
| insn->eaBase = (EABase)(insn->eaBaseBase + rm); |
| if (readDisplacement(insn)) |
| return -1; |
| break; |
| } |
| break; |
| case 0x3: |
| insn->eaDisplacement = EA_DISP_NONE; |
| insn->eaBase = (EABase)(insn->eaRegBase + rm); |
| break; |
| } |
| break; |
| } /* switch (insn->addressSize) */ |
| |
| return 0; |
| } |
| |
| #define GENERIC_FIXUP_FUNC(name, base, prefix) \ |
| static uint8_t name(struct InternalInstruction *insn, \ |
| OperandType type, \ |
| uint8_t index, \ |
| uint8_t *valid) { \ |
| *valid = 1; \ |
| switch (type) { \ |
| default: \ |
| debug("Unhandled register type"); \ |
| *valid = 0; \ |
| return 0; \ |
| case TYPE_Rv: \ |
| return base + index; \ |
| case TYPE_R8: \ |
| if (insn->rexPrefix && \ |
| index >= 4 && index <= 7) { \ |
| return prefix##_SPL + (index - 4); \ |
| } else { \ |
| return prefix##_AL + index; \ |
| } \ |
| case TYPE_R16: \ |
| return prefix##_AX + index; \ |
| case TYPE_R32: \ |
| return prefix##_EAX + index; \ |
| case TYPE_R64: \ |
| return prefix##_RAX + index; \ |
| case TYPE_XMM256: \ |
| return prefix##_YMM0 + index; \ |
| case TYPE_XMM128: \ |
| case TYPE_XMM64: \ |
| case TYPE_XMM32: \ |
| case TYPE_XMM: \ |
| return prefix##_XMM0 + index; \ |
| case TYPE_MM64: \ |
| case TYPE_MM32: \ |
| case TYPE_MM: \ |
| if (index > 7) \ |
| *valid = 0; \ |
| return prefix##_MM0 + index; \ |
| case TYPE_SEGMENTREG: \ |
| if (index > 5) \ |
| *valid = 0; \ |
| return prefix##_ES + index; \ |
| case TYPE_DEBUGREG: \ |
| if (index > 7) \ |
| *valid = 0; \ |
| return prefix##_DR0 + index; \ |
| case TYPE_CONTROLREG: \ |
| if (index > 8) \ |
| *valid = 0; \ |
| return prefix##_CR0 + index; \ |
| } \ |
| } |
| |
| /* |
| * fixup*Value - Consults an operand type to determine the meaning of the |
| * reg or R/M field. If the operand is an XMM operand, for example, an |
| * operand would be XMM0 instead of AX, which readModRM() would otherwise |
| * misinterpret it as. |
| * |
| * @param insn - The instruction containing the operand. |
| * @param type - The operand type. |
| * @param index - The existing value of the field as reported by readModRM(). |
| * @param valid - The address of a uint8_t. The target is set to 1 if the |
| * field is valid for the register class; 0 if not. |
| * @return - The proper value. |
| */ |
| GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG) |
| GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG) |
| |
| /* |
| * fixupReg - Consults an operand specifier to determine which of the |
| * fixup*Value functions to use in correcting readModRM()'ss interpretation. |
| * |
| * @param insn - See fixup*Value(). |
| * @param op - The operand specifier. |
| * @return - 0 if fixup was successful; -1 if the register returned was |
| * invalid for its class. |
| */ |
| static int fixupReg(struct InternalInstruction *insn, |
| const struct OperandSpecifier *op) { |
| uint8_t valid; |
| |
| dbgprintf(insn, "fixupReg()"); |
| |
| switch ((OperandEncoding)op->encoding) { |
| default: |
| debug("Expected a REG or R/M encoding in fixupReg"); |
| return -1; |
| case ENCODING_VVVV: |
| insn->vvvv = (Reg)fixupRegValue(insn, |
| (OperandType)op->type, |
| insn->vvvv, |
| &valid); |
| if (!valid) |
| return -1; |
| break; |
| case ENCODING_REG: |
| insn->reg = (Reg)fixupRegValue(insn, |
| (OperandType)op->type, |
| insn->reg - insn->regBase, |
| &valid); |
| if (!valid) |
| return -1; |
| break; |
| case ENCODING_RM: |
| if (insn->eaBase >= insn->eaRegBase) { |
| insn->eaBase = (EABase)fixupRMValue(insn, |
| (OperandType)op->type, |
| insn->eaBase - insn->eaRegBase, |
| &valid); |
| if (!valid) |
| return -1; |
| } |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * readOpcodeModifier - Reads an operand from the opcode field of an |
| * instruction. Handles AddRegFrm instructions. |
| * |
| * @param insn - The instruction whose opcode field is to be read. |
| * @param inModRM - Indicates that the opcode field is to be read from the |
| * ModR/M extension; useful for escape opcodes |
| * @return - 0 on success; nonzero otherwise. |
| */ |
| static int readOpcodeModifier(struct InternalInstruction* insn) { |
| dbgprintf(insn, "readOpcodeModifier()"); |
| |
| if (insn->consumedOpcodeModifier) |
| return 0; |
| |
| insn->consumedOpcodeModifier = TRUE; |
| |
| switch (insn->spec->modifierType) { |
| default: |
| debug("Unknown modifier type."); |
| return -1; |
| case MODIFIER_NONE: |
| debug("No modifier but an operand expects one."); |
| return -1; |
| case MODIFIER_OPCODE: |
| insn->opcodeModifier = insn->opcode - insn->spec->modifierBase; |
| return 0; |
| case MODIFIER_MODRM: |
| insn->opcodeModifier = insn->modRM - insn->spec->modifierBase; |
| return 0; |
| } |
| } |
| |
| /* |
| * readOpcodeRegister - Reads an operand from the opcode field of an |
| * instruction and interprets it appropriately given the operand width. |
| * Handles AddRegFrm instructions. |
| * |
| * @param insn - See readOpcodeModifier(). |
| * @param size - The width (in bytes) of the register being specified. |
| * 1 means AL and friends, 2 means AX, 4 means EAX, and 8 means |
| * RAX. |
| * @return - 0 on success; nonzero otherwise. |
| */ |
| static int readOpcodeRegister(struct InternalInstruction* insn, uint8_t size) { |
| dbgprintf(insn, "readOpcodeRegister()"); |
| |
| if (readOpcodeModifier(insn)) |
| return -1; |
| |
| if (size == 0) |
| size = insn->registerSize; |
| |
| switch (size) { |
| case 1: |
| insn->opcodeRegister = (Reg)(MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3) |
| | insn->opcodeModifier)); |
| if (insn->rexPrefix && |
| insn->opcodeRegister >= MODRM_REG_AL + 0x4 && |
| insn->opcodeRegister < MODRM_REG_AL + 0x8) { |
| insn->opcodeRegister = (Reg)(MODRM_REG_SPL |
| + (insn->opcodeRegister - MODRM_REG_AL - 4)); |
| } |
| |
| break; |
| case 2: |
| insn->opcodeRegister = (Reg)(MODRM_REG_AX |
| + ((bFromREX(insn->rexPrefix) << 3) |
| | insn->opcodeModifier)); |
| break; |
| case 4: |
| insn->opcodeRegister = (Reg)(MODRM_REG_EAX |
| + ((bFromREX(insn->rexPrefix) << 3) |
| | insn->opcodeModifier)); |
| break; |
| case 8: |
| insn->opcodeRegister = (Reg)(MODRM_REG_RAX |
| + ((bFromREX(insn->rexPrefix) << 3) |
| | insn->opcodeModifier)); |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * readImmediate - Consumes an immediate operand from an instruction, given the |
| * desired operand size. |
| * |
| * @param insn - The instruction whose operand is to be read. |
| * @param size - The width (in bytes) of the operand. |
| * @return - 0 if the immediate was successfully consumed; nonzero |
| * otherwise. |
| */ |
| static int readImmediate(struct InternalInstruction* insn, uint8_t size) { |
| uint8_t imm8; |
| uint16_t imm16; |
| uint32_t imm32; |
| uint64_t imm64; |
| |
| dbgprintf(insn, "readImmediate()"); |
| |
| if (insn->numImmediatesConsumed == 2) { |
| debug("Already consumed two immediates"); |
| return -1; |
| } |
| |
| if (size == 0) |
| size = insn->immediateSize; |
| else |
| insn->immediateSize = size; |
| |
| switch (size) { |
| case 1: |
| if (consumeByte(insn, &imm8)) |
| return -1; |
| insn->immediates[insn->numImmediatesConsumed] = imm8; |
| break; |
| case 2: |
| if (consumeUInt16(insn, &imm16)) |
| return -1; |
| insn->immediates[insn->numImmediatesConsumed] = imm16; |
| break; |
| case 4: |
| if (consumeUInt32(insn, &imm32)) |
| return -1; |
| insn->immediates[insn->numImmediatesConsumed] = imm32; |
| break; |
| case 8: |
| if (consumeUInt64(insn, &imm64)) |
| return -1; |
| insn->immediates[insn->numImmediatesConsumed] = imm64; |
| break; |
| } |
| |
| insn->numImmediatesConsumed++; |
| |
| return 0; |
| } |
| |
| /* |
| * readVVVV - Consumes vvvv from an instruction if it has a VEX prefix. |
| * |
| * @param insn - The instruction whose operand is to be read. |
| * @return - 0 if the vvvv was successfully consumed; nonzero |
| * otherwise. |
| */ |
| static int readVVVV(struct InternalInstruction* insn) { |
| dbgprintf(insn, "readVVVV()"); |
| |
| if (insn->vexSize == 3) |
| insn->vvvv = vvvvFromVEX3of3(insn->vexPrefix[2]); |
| else if (insn->vexSize == 2) |
| insn->vvvv = vvvvFromVEX2of2(insn->vexPrefix[1]); |
| else |
| return -1; |
| |
| if (insn->mode != MODE_64BIT) |
| insn->vvvv &= 0x7; |
| |
| return 0; |
| } |
| |
| /* |
| * readOperands - Consults the specifier for an instruction and consumes all |
| * operands for that instruction, interpreting them as it goes. |
| * |
| * @param insn - The instruction whose operands are to be read and interpreted. |
| * @return - 0 if all operands could be read; nonzero otherwise. |
| */ |
| static int readOperands(struct InternalInstruction* insn) { |
| int index; |
| int hasVVVV, needVVVV; |
| |
| dbgprintf(insn, "readOperands()"); |
| |
| /* If non-zero vvvv specified, need to make sure one of the operands |
| uses it. */ |
| hasVVVV = !readVVVV(insn); |
| needVVVV = hasVVVV && (insn->vvvv != 0); |
| |
| for (index = 0; index < X86_MAX_OPERANDS; ++index) { |
| switch (insn->spec->operands[index].encoding) { |
| case ENCODING_NONE: |
| break; |
| case ENCODING_REG: |
| case ENCODING_RM: |
| if (readModRM(insn)) |
| return -1; |
| if (fixupReg(insn, &insn->spec->operands[index])) |
| return -1; |
| break; |
| case ENCODING_CB: |
| case ENCODING_CW: |
| case ENCODING_CD: |
| case ENCODING_CP: |
| case ENCODING_CO: |
| case ENCODING_CT: |
| dbgprintf(insn, "We currently don't hande code-offset encodings"); |
| return -1; |
| case ENCODING_IB: |
| if (readImmediate(insn, 1)) |
| return -1; |
| if (insn->spec->operands[index].type == TYPE_IMM3 && |
| insn->immediates[insn->numImmediatesConsumed - 1] > 7) |
| return -1; |
| break; |
| case ENCODING_IW: |
| if (readImmediate(insn, 2)) |
| return -1; |
| break; |
| case ENCODING_ID: |
| if (readImmediate(insn, 4)) |
| return -1; |
| break; |
| case ENCODING_IO: |
| if (readImmediate(insn, 8)) |
| return -1; |
| break; |
| case ENCODING_Iv: |
| if (readImmediate(insn, insn->immediateSize)) |
| return -1; |
| break; |
| case ENCODING_Ia: |
| if (readImmediate(insn, insn->addressSize)) |
| return -1; |
| break; |
| case ENCODING_RB: |
| if (readOpcodeRegister(insn, 1)) |
| return -1; |
| break; |
| case ENCODING_RW: |
| if (readOpcodeRegister(insn, 2)) |
| return -1; |
| break; |
| case ENCODING_RD: |
| if (readOpcodeRegister(insn, 4)) |
| return -1; |
| break; |
| case ENCODING_RO: |
| if (readOpcodeRegister(insn, 8)) |
| return -1; |
| break; |
| case ENCODING_Rv: |
| if (readOpcodeRegister(insn, 0)) |
| return -1; |
| break; |
| case ENCODING_I: |
| if (readOpcodeModifier(insn)) |
| return -1; |
| break; |
| case ENCODING_VVVV: |
| needVVVV = 0; /* Mark that we have found a VVVV operand. */ |
| if (!hasVVVV) |
| return -1; |
| if (fixupReg(insn, &insn->spec->operands[index])) |
| return -1; |
| break; |
| case ENCODING_DUP: |
| break; |
| default: |
| dbgprintf(insn, "Encountered an operand with an unknown encoding."); |
| return -1; |
| } |
| } |
| |
| /* If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail */ |
| if (needVVVV) return -1; |
| |
| return 0; |
| } |
| |
| /* |
| * decodeInstruction - Reads and interprets a full instruction provided by the |
| * user. |
| * |
| * @param insn - A pointer to the instruction to be populated. Must be |
| * pre-allocated. |
| * @param reader - The function to be used to read the instruction's bytes. |
| * @param readerArg - A generic argument to be passed to the reader to store |
| * any internal state. |
| * @param logger - If non-NULL, the function to be used to write log messages |
| * and warnings. |
| * @param loggerArg - A generic argument to be passed to the logger to store |
| * any internal state. |
| * @param startLoc - The address (in the reader's address space) of the first |
| * byte in the instruction. |
| * @param mode - The mode (real mode, IA-32e, or IA-32e in 64-bit mode) to |
| * decode the instruction in. |
| * @return - 0 if the instruction's memory could be read; nonzero if |
| * not. |
| */ |
| int decodeInstruction(struct InternalInstruction* insn, |
| byteReader_t reader, |
| void* readerArg, |
| dlog_t logger, |
| void* loggerArg, |
| uint64_t startLoc, |
| DisassemblerMode mode) { |
| memset(insn, 0, sizeof(struct InternalInstruction)); |
| |
| insn->reader = reader; |
| insn->readerArg = readerArg; |
| insn->dlog = logger; |
| insn->dlogArg = loggerArg; |
| insn->startLocation = startLoc; |
| insn->readerCursor = startLoc; |
| insn->mode = mode; |
| insn->numImmediatesConsumed = 0; |
| |
| if (readPrefixes(insn) || |
| readOpcode(insn) || |
| getID(insn) || |
| insn->instructionID == 0 || |
| readOperands(insn)) |
| return -1; |
| |
| insn->length = insn->readerCursor - insn->startLocation; |
| |
| dbgprintf(insn, "Read from 0x%llx to 0x%llx: length %zu", |
| startLoc, insn->readerCursor, insn->length); |
| |
| if (insn->length > 15) |
| dbgprintf(insn, "Instruction exceeds 15-byte limit"); |
| |
| return 0; |
| } |