blob: e42b67fd35af2443a12887690ff058afbae70151 [file] [log] [blame]
; RUN: llc < %s -O3 -march=x86-64 -mcpu=core2 | FileCheck %s -check-prefix=X64
; RUN: llc < %s -O3 -march=x86 -mcpu=core2 | FileCheck %s -check-prefix=X32
; @simple is the most basic chain of address induction variables. Chaining
; saves at least one register and avoids complex addressing and setup
; code.
;
; X64: @simple
; %x * 4
; X64: shlq $2
; no other address computation in the preheader
; X64-NEXT: xorl
; X64-NEXT: .align
; X64: %loop
; no complex address modes
; X64-NOT: (%{{[^)]+}},%{{[^)]+}},
;
; X32: @simple
; no expensive address computation in the preheader
; X32-NOT: imul
; X32: %loop
; no complex address modes
; X32-NOT: (%{{[^)]+}},%{{[^)]+}},
define i32 @simple(i32* %a, i32* %b, i32 %x) nounwind {
entry:
br label %loop
loop:
%iv = phi i32* [ %a, %entry ], [ %iv4, %loop ]
%s = phi i32 [ 0, %entry ], [ %s4, %loop ]
%v = load i32* %iv
%iv1 = getelementptr inbounds i32* %iv, i32 %x
%v1 = load i32* %iv1
%iv2 = getelementptr inbounds i32* %iv1, i32 %x
%v2 = load i32* %iv2
%iv3 = getelementptr inbounds i32* %iv2, i32 %x
%v3 = load i32* %iv3
%s1 = add i32 %s, %v
%s2 = add i32 %s1, %v1
%s3 = add i32 %s2, %v2
%s4 = add i32 %s3, %v3
%iv4 = getelementptr inbounds i32* %iv3, i32 %x
%cmp = icmp eq i32* %iv4, %b
br i1 %cmp, label %exit, label %loop
exit:
ret i32 %s4
}
; @user is not currently chained because the IV is live across memory ops.
;
; X64: @user
; X64: shlq $4
; X64: lea
; X64: lea
; X64: %loop
; complex address modes
; X64: (%{{[^)]+}},%{{[^)]+}},
;
; X32: @user
; expensive address computation in the preheader
; X32: imul
; X32: %loop
; complex address modes
; X32: (%{{[^)]+}},%{{[^)]+}},
define i32 @user(i32* %a, i32* %b, i32 %x) nounwind {
entry:
br label %loop
loop:
%iv = phi i32* [ %a, %entry ], [ %iv4, %loop ]
%s = phi i32 [ 0, %entry ], [ %s4, %loop ]
%v = load i32* %iv
%iv1 = getelementptr inbounds i32* %iv, i32 %x
%v1 = load i32* %iv1
%iv2 = getelementptr inbounds i32* %iv1, i32 %x
%v2 = load i32* %iv2
%iv3 = getelementptr inbounds i32* %iv2, i32 %x
%v3 = load i32* %iv3
%s1 = add i32 %s, %v
%s2 = add i32 %s1, %v1
%s3 = add i32 %s2, %v2
%s4 = add i32 %s3, %v3
%iv4 = getelementptr inbounds i32* %iv3, i32 %x
store i32 %s4, i32* %iv
%cmp = icmp eq i32* %iv4, %b
br i1 %cmp, label %exit, label %loop
exit:
ret i32 %s4
}
; @extrastride is a slightly more interesting case of a single
; complete chain with multiple strides. The test case IR is what LSR
; used to do, and exactly what we don't want to do. LSR's new IV
; chaining feature should now undo the damage.
;
; X64: extrastride:
; We currently don't handle this on X64 because the sexts cause
; strange increment expressions like this:
; IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
;
; X32: extrastride:
; no spills in the preheader
; X32-NOT: mov{{.*}}(%esp){{$}}
; X32: %for.body{{$}}
; no complex address modes
; X32-NOT: (%{{[^)]+}},%{{[^)]+}},
; no reloads
; X32-NOT: (%esp)
define void @extrastride(i8* nocapture %main, i32 %main_stride, i32* nocapture %res, i32 %x, i32 %y, i32 %z) nounwind {
entry:
%cmp8 = icmp eq i32 %z, 0
br i1 %cmp8, label %for.end, label %for.body.lr.ph
for.body.lr.ph: ; preds = %entry
%add.ptr.sum = shl i32 %main_stride, 1 ; s*2
%add.ptr1.sum = add i32 %add.ptr.sum, %main_stride ; s*3
%add.ptr2.sum = add i32 %x, %main_stride ; s + x
%add.ptr4.sum = shl i32 %main_stride, 2 ; s*4
%add.ptr3.sum = add i32 %add.ptr2.sum, %add.ptr4.sum ; total IV stride = s*5+x
br label %for.body
for.body: ; preds = %for.body.lr.ph, %for.body
%main.addr.011 = phi i8* [ %main, %for.body.lr.ph ], [ %add.ptr6, %for.body ]
%i.010 = phi i32 [ 0, %for.body.lr.ph ], [ %inc, %for.body ]
%res.addr.09 = phi i32* [ %res, %for.body.lr.ph ], [ %add.ptr7, %for.body ]
%0 = bitcast i8* %main.addr.011 to i32*
%1 = load i32* %0, align 4
%add.ptr = getelementptr inbounds i8* %main.addr.011, i32 %main_stride
%2 = bitcast i8* %add.ptr to i32*
%3 = load i32* %2, align 4
%add.ptr1 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr.sum
%4 = bitcast i8* %add.ptr1 to i32*
%5 = load i32* %4, align 4
%add.ptr2 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr1.sum
%6 = bitcast i8* %add.ptr2 to i32*
%7 = load i32* %6, align 4
%add.ptr3 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr4.sum
%8 = bitcast i8* %add.ptr3 to i32*
%9 = load i32* %8, align 4
%add = add i32 %3, %1
%add4 = add i32 %add, %5
%add5 = add i32 %add4, %7
%add6 = add i32 %add5, %9
store i32 %add6, i32* %res.addr.09, align 4
%add.ptr6 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr3.sum
%add.ptr7 = getelementptr inbounds i32* %res.addr.09, i32 %y
%inc = add i32 %i.010, 1
%cmp = icmp eq i32 %inc, %z
br i1 %cmp, label %for.end, label %for.body
for.end: ; preds = %for.body, %entry
ret void
}
; @foldedidx is an unrolled variant of this loop:
; for (unsigned long i = 0; i < len; i += s) {
; c[i] = a[i] + b[i];
; }
; where 's' can be folded into the addressing mode.
; Consequently, we should *not* form any chains.
;
; X64: foldedidx:
; X64: movzbl -3(
;
; X32: foldedidx:
; X32: movzbl -3(
define void @foldedidx(i8* nocapture %a, i8* nocapture %b, i8* nocapture %c) nounwind ssp {
entry:
br label %for.body
for.body: ; preds = %for.body, %entry
%i.07 = phi i32 [ 0, %entry ], [ %inc.3, %for.body ]
%arrayidx = getelementptr inbounds i8* %a, i32 %i.07
%0 = load i8* %arrayidx, align 1
%conv5 = zext i8 %0 to i32
%arrayidx1 = getelementptr inbounds i8* %b, i32 %i.07
%1 = load i8* %arrayidx1, align 1
%conv26 = zext i8 %1 to i32
%add = add nsw i32 %conv26, %conv5
%conv3 = trunc i32 %add to i8
%arrayidx4 = getelementptr inbounds i8* %c, i32 %i.07
store i8 %conv3, i8* %arrayidx4, align 1
%inc1 = or i32 %i.07, 1
%arrayidx.1 = getelementptr inbounds i8* %a, i32 %inc1
%2 = load i8* %arrayidx.1, align 1
%conv5.1 = zext i8 %2 to i32
%arrayidx1.1 = getelementptr inbounds i8* %b, i32 %inc1
%3 = load i8* %arrayidx1.1, align 1
%conv26.1 = zext i8 %3 to i32
%add.1 = add nsw i32 %conv26.1, %conv5.1
%conv3.1 = trunc i32 %add.1 to i8
%arrayidx4.1 = getelementptr inbounds i8* %c, i32 %inc1
store i8 %conv3.1, i8* %arrayidx4.1, align 1
%inc.12 = or i32 %i.07, 2
%arrayidx.2 = getelementptr inbounds i8* %a, i32 %inc.12
%4 = load i8* %arrayidx.2, align 1
%conv5.2 = zext i8 %4 to i32
%arrayidx1.2 = getelementptr inbounds i8* %b, i32 %inc.12
%5 = load i8* %arrayidx1.2, align 1
%conv26.2 = zext i8 %5 to i32
%add.2 = add nsw i32 %conv26.2, %conv5.2
%conv3.2 = trunc i32 %add.2 to i8
%arrayidx4.2 = getelementptr inbounds i8* %c, i32 %inc.12
store i8 %conv3.2, i8* %arrayidx4.2, align 1
%inc.23 = or i32 %i.07, 3
%arrayidx.3 = getelementptr inbounds i8* %a, i32 %inc.23
%6 = load i8* %arrayidx.3, align 1
%conv5.3 = zext i8 %6 to i32
%arrayidx1.3 = getelementptr inbounds i8* %b, i32 %inc.23
%7 = load i8* %arrayidx1.3, align 1
%conv26.3 = zext i8 %7 to i32
%add.3 = add nsw i32 %conv26.3, %conv5.3
%conv3.3 = trunc i32 %add.3 to i8
%arrayidx4.3 = getelementptr inbounds i8* %c, i32 %inc.23
store i8 %conv3.3, i8* %arrayidx4.3, align 1
%inc.3 = add nsw i32 %i.07, 4
%exitcond.3 = icmp eq i32 %inc.3, 400
br i1 %exitcond.3, label %for.end, label %for.body
for.end: ; preds = %for.body
ret void
}
; @multioper tests instructions with multiple IV user operands. We
; should be able to chain them independent of each other.
;
; X64: @multioper
; X64: %for.body
; X64: movl %{{.*}},4)
; X64-NEXT: leal 1(
; X64-NEXT: movl %{{.*}},4)
; X64-NEXT: leal 2(
; X64-NEXT: movl %{{.*}},4)
; X64-NEXT: leal 3(
; X64-NEXT: movl %{{.*}},4)
;
; X32: @multioper
; X32: %for.body
; X32: movl %{{.*}},4)
; X32-NEXT: leal 1(
; X32-NEXT: movl %{{.*}},4)
; X32-NEXT: leal 2(
; X32-NEXT: movl %{{.*}},4)
; X32-NEXT: leal 3(
; X32-NEXT: movl %{{.*}},4)
define void @multioper(i32* %a, i32 %n) nounwind {
entry:
br label %for.body
for.body:
%p = phi i32* [ %p.next, %for.body ], [ %a, %entry ]
%i = phi i32 [ %inc4, %for.body ], [ 0, %entry ]
store i32 %i, i32* %p, align 4
%inc1 = or i32 %i, 1
%add.ptr.i1 = getelementptr inbounds i32* %p, i32 1
store i32 %inc1, i32* %add.ptr.i1, align 4
%inc2 = add nsw i32 %i, 2
%add.ptr.i2 = getelementptr inbounds i32* %p, i32 2
store i32 %inc2, i32* %add.ptr.i2, align 4
%inc3 = add nsw i32 %i, 3
%add.ptr.i3 = getelementptr inbounds i32* %p, i32 3
store i32 %inc3, i32* %add.ptr.i3, align 4
%p.next = getelementptr inbounds i32* %p, i32 4
%inc4 = add nsw i32 %i, 4
%cmp = icmp slt i32 %inc4, %n
br i1 %cmp, label %for.body, label %exit
exit:
ret void
}
; @testCmpZero has a ICmpZero LSR use that should not be hidden from
; LSR. Profitable chains should have more than one nonzero increment
; anyway.
;
; X32: @testCmpZero
; X32: %for.body82.us
; X32: dec
; X32: jne
define void @testCmpZero(i8* %src, i8* %dst, i32 %srcidx, i32 %dstidx, i32 %len) nounwind ssp {
entry:
%dest0 = getelementptr inbounds i8* %src, i32 %srcidx
%source0 = getelementptr inbounds i8* %dst, i32 %dstidx
%add.ptr79.us.sum = add i32 %srcidx, %len
%lftr.limit = getelementptr i8* %src, i32 %add.ptr79.us.sum
br label %for.body82.us
for.body82.us:
%dest = phi i8* [ %dest0, %entry ], [ %incdec.ptr91.us, %for.body82.us ]
%source = phi i8* [ %source0, %entry ], [ %add.ptr83.us, %for.body82.us ]
%0 = bitcast i8* %source to i32*
%1 = load i32* %0, align 4
%trunc = trunc i32 %1 to i8
%add.ptr83.us = getelementptr inbounds i8* %source, i32 4
%incdec.ptr91.us = getelementptr inbounds i8* %dest, i32 1
store i8 %trunc, i8* %dest, align 1
%exitcond = icmp eq i8* %incdec.ptr91.us, %lftr.limit
br i1 %exitcond, label %return, label %for.body82.us
return:
ret void
}