| //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines structures to encapsulate information gleaned from the |
| // target register and register class definitions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CodeGenRegisters.h" |
| #include "CodeGenTarget.h" |
| #include "llvm/ADT/IntEqClasses.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/TableGen/Error.h" |
| |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| // CodeGenSubRegIndex |
| //===----------------------------------------------------------------------===// |
| |
| CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum) |
| : TheDef(R), EnumValue(Enum), LaneMask(0) { |
| Name = R->getName(); |
| if (R->getValue("Namespace")) |
| Namespace = R->getValueAsString("Namespace"); |
| } |
| |
| CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace, |
| unsigned Enum) |
| : TheDef(0), Name(N), Namespace(Nspace), EnumValue(Enum), LaneMask(0) { |
| } |
| |
| std::string CodeGenSubRegIndex::getQualifiedName() const { |
| std::string N = getNamespace(); |
| if (!N.empty()) |
| N += "::"; |
| N += getName(); |
| return N; |
| } |
| |
| void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) { |
| if (!TheDef) |
| return; |
| |
| std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf"); |
| if (!Comps.empty()) { |
| if (Comps.size() != 2) |
| PrintFatalError(TheDef->getLoc(), |
| "ComposedOf must have exactly two entries"); |
| CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]); |
| CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]); |
| CodeGenSubRegIndex *X = A->addComposite(B, this); |
| if (X) |
| PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries"); |
| } |
| |
| std::vector<Record*> Parts = |
| TheDef->getValueAsListOfDefs("CoveringSubRegIndices"); |
| if (!Parts.empty()) { |
| if (Parts.size() < 2) |
| PrintFatalError(TheDef->getLoc(), |
| "CoveredBySubRegs must have two or more entries"); |
| SmallVector<CodeGenSubRegIndex*, 8> IdxParts; |
| for (unsigned i = 0, e = Parts.size(); i != e; ++i) |
| IdxParts.push_back(RegBank.getSubRegIdx(Parts[i])); |
| RegBank.addConcatSubRegIndex(IdxParts, this); |
| } |
| } |
| |
| unsigned CodeGenSubRegIndex::computeLaneMask() { |
| // Already computed? |
| if (LaneMask) |
| return LaneMask; |
| |
| // Recursion guard, shouldn't be required. |
| LaneMask = ~0u; |
| |
| // The lane mask is simply the union of all sub-indices. |
| unsigned M = 0; |
| for (CompMap::iterator I = Composed.begin(), E = Composed.end(); I != E; ++I) |
| M |= I->second->computeLaneMask(); |
| assert(M && "Missing lane mask, sub-register cycle?"); |
| LaneMask = M; |
| return LaneMask; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // CodeGenRegister |
| //===----------------------------------------------------------------------===// |
| |
| CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum) |
| : TheDef(R), |
| EnumValue(Enum), |
| CostPerUse(R->getValueAsInt("CostPerUse")), |
| CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")), |
| NumNativeRegUnits(0), |
| SubRegsComplete(false), |
| SuperRegsComplete(false), |
| TopoSig(~0u) |
| {} |
| |
| void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) { |
| std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices"); |
| std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs"); |
| |
| if (SRIs.size() != SRs.size()) |
| PrintFatalError(TheDef->getLoc(), |
| "SubRegs and SubRegIndices must have the same size"); |
| |
| for (unsigned i = 0, e = SRIs.size(); i != e; ++i) { |
| ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i])); |
| ExplicitSubRegs.push_back(RegBank.getReg(SRs[i])); |
| } |
| |
| // Also compute leading super-registers. Each register has a list of |
| // covered-by-subregs super-registers where it appears as the first explicit |
| // sub-register. |
| // |
| // This is used by computeSecondarySubRegs() to find candidates. |
| if (CoveredBySubRegs && !ExplicitSubRegs.empty()) |
| ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this); |
| |
| // Add ad hoc alias links. This is a symmetric relationship between two |
| // registers, so build a symmetric graph by adding links in both ends. |
| std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases"); |
| for (unsigned i = 0, e = Aliases.size(); i != e; ++i) { |
| CodeGenRegister *Reg = RegBank.getReg(Aliases[i]); |
| ExplicitAliases.push_back(Reg); |
| Reg->ExplicitAliases.push_back(this); |
| } |
| } |
| |
| const std::string &CodeGenRegister::getName() const { |
| return TheDef->getName(); |
| } |
| |
| namespace { |
| // Iterate over all register units in a set of registers. |
| class RegUnitIterator { |
| CodeGenRegister::Set::const_iterator RegI, RegE; |
| CodeGenRegister::RegUnitList::const_iterator UnitI, UnitE; |
| |
| public: |
| RegUnitIterator(const CodeGenRegister::Set &Regs): |
| RegI(Regs.begin()), RegE(Regs.end()), UnitI(), UnitE() { |
| |
| if (RegI != RegE) { |
| UnitI = (*RegI)->getRegUnits().begin(); |
| UnitE = (*RegI)->getRegUnits().end(); |
| advance(); |
| } |
| } |
| |
| bool isValid() const { return UnitI != UnitE; } |
| |
| unsigned operator* () const { assert(isValid()); return *UnitI; } |
| |
| const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; } |
| |
| /// Preincrement. Move to the next unit. |
| void operator++() { |
| assert(isValid() && "Cannot advance beyond the last operand"); |
| ++UnitI; |
| advance(); |
| } |
| |
| protected: |
| void advance() { |
| while (UnitI == UnitE) { |
| if (++RegI == RegE) |
| break; |
| UnitI = (*RegI)->getRegUnits().begin(); |
| UnitE = (*RegI)->getRegUnits().end(); |
| } |
| } |
| }; |
| } // namespace |
| |
| // Merge two RegUnitLists maintaining the order and removing duplicates. |
| // Overwrites MergedRU in the process. |
| static void mergeRegUnits(CodeGenRegister::RegUnitList &MergedRU, |
| const CodeGenRegister::RegUnitList &RRU) { |
| CodeGenRegister::RegUnitList LRU = MergedRU; |
| MergedRU.clear(); |
| std::set_union(LRU.begin(), LRU.end(), RRU.begin(), RRU.end(), |
| std::back_inserter(MergedRU)); |
| } |
| |
| // Return true of this unit appears in RegUnits. |
| static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) { |
| return std::count(RegUnits.begin(), RegUnits.end(), Unit); |
| } |
| |
| // Inherit register units from subregisters. |
| // Return true if the RegUnits changed. |
| bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) { |
| unsigned OldNumUnits = RegUnits.size(); |
| for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); |
| I != E; ++I) { |
| CodeGenRegister *SR = I->second; |
| // Merge the subregister's units into this register's RegUnits. |
| mergeRegUnits(RegUnits, SR->RegUnits); |
| } |
| return OldNumUnits != RegUnits.size(); |
| } |
| |
| const CodeGenRegister::SubRegMap & |
| CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) { |
| // Only compute this map once. |
| if (SubRegsComplete) |
| return SubRegs; |
| SubRegsComplete = true; |
| |
| // First insert the explicit subregs and make sure they are fully indexed. |
| for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { |
| CodeGenRegister *SR = ExplicitSubRegs[i]; |
| CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i]; |
| if (!SubRegs.insert(std::make_pair(Idx, SR)).second) |
| PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() + |
| " appears twice in Register " + getName()); |
| // Map explicit sub-registers first, so the names take precedence. |
| // The inherited sub-registers are mapped below. |
| SubReg2Idx.insert(std::make_pair(SR, Idx)); |
| } |
| |
| // Keep track of inherited subregs and how they can be reached. |
| SmallPtrSet<CodeGenRegister*, 8> Orphans; |
| |
| // Clone inherited subregs and place duplicate entries in Orphans. |
| // Here the order is important - earlier subregs take precedence. |
| for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { |
| CodeGenRegister *SR = ExplicitSubRegs[i]; |
| const SubRegMap &Map = SR->computeSubRegs(RegBank); |
| |
| for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE; |
| ++SI) { |
| if (!SubRegs.insert(*SI).second) |
| Orphans.insert(SI->second); |
| } |
| } |
| |
| // Expand any composed subreg indices. |
| // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a |
| // qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process |
| // expanded subreg indices recursively. |
| SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices; |
| for (unsigned i = 0; i != Indices.size(); ++i) { |
| CodeGenSubRegIndex *Idx = Indices[i]; |
| const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites(); |
| CodeGenRegister *SR = SubRegs[Idx]; |
| const SubRegMap &Map = SR->computeSubRegs(RegBank); |
| |
| // Look at the possible compositions of Idx. |
| // They may not all be supported by SR. |
| for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(), |
| E = Comps.end(); I != E; ++I) { |
| SubRegMap::const_iterator SRI = Map.find(I->first); |
| if (SRI == Map.end()) |
| continue; // Idx + I->first doesn't exist in SR. |
| // Add I->second as a name for the subreg SRI->second, assuming it is |
| // orphaned, and the name isn't already used for something else. |
| if (SubRegs.count(I->second) || !Orphans.erase(SRI->second)) |
| continue; |
| // We found a new name for the orphaned sub-register. |
| SubRegs.insert(std::make_pair(I->second, SRI->second)); |
| Indices.push_back(I->second); |
| } |
| } |
| |
| // Now Orphans contains the inherited subregisters without a direct index. |
| // Create inferred indexes for all missing entries. |
| // Work backwards in the Indices vector in order to compose subregs bottom-up. |
| // Consider this subreg sequence: |
| // |
| // qsub_1 -> dsub_0 -> ssub_0 |
| // |
| // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register |
| // can be reached in two different ways: |
| // |
| // qsub_1 -> ssub_0 |
| // dsub_2 -> ssub_0 |
| // |
| // We pick the latter composition because another register may have [dsub_0, |
| // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg. The |
| // dsub_2 -> ssub_0 composition can be shared. |
| while (!Indices.empty() && !Orphans.empty()) { |
| CodeGenSubRegIndex *Idx = Indices.pop_back_val(); |
| CodeGenRegister *SR = SubRegs[Idx]; |
| const SubRegMap &Map = SR->computeSubRegs(RegBank); |
| for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE; |
| ++SI) |
| if (Orphans.erase(SI->second)) |
| SubRegs[RegBank.getCompositeSubRegIndex(Idx, SI->first)] = SI->second; |
| } |
| |
| // Compute the inverse SubReg -> Idx map. |
| for (SubRegMap::const_iterator SI = SubRegs.begin(), SE = SubRegs.end(); |
| SI != SE; ++SI) { |
| if (SI->second == this) { |
| ArrayRef<SMLoc> Loc; |
| if (TheDef) |
| Loc = TheDef->getLoc(); |
| PrintFatalError(Loc, "Register " + getName() + |
| " has itself as a sub-register"); |
| } |
| // Ensure that every sub-register has a unique name. |
| DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins = |
| SubReg2Idx.insert(std::make_pair(SI->second, SI->first)).first; |
| if (Ins->second == SI->first) |
| continue; |
| // Trouble: Two different names for SI->second. |
| ArrayRef<SMLoc> Loc; |
| if (TheDef) |
| Loc = TheDef->getLoc(); |
| PrintFatalError(Loc, "Sub-register can't have two names: " + |
| SI->second->getName() + " available as " + |
| SI->first->getName() + " and " + Ins->second->getName()); |
| } |
| |
| // Derive possible names for sub-register concatenations from any explicit |
| // sub-registers. By doing this before computeSecondarySubRegs(), we ensure |
| // that getConcatSubRegIndex() won't invent any concatenated indices that the |
| // user already specified. |
| for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { |
| CodeGenRegister *SR = ExplicitSubRegs[i]; |
| if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1) |
| continue; |
| |
| // SR is composed of multiple sub-regs. Find their names in this register. |
| SmallVector<CodeGenSubRegIndex*, 8> Parts; |
| for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) |
| Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j])); |
| |
| // Offer this as an existing spelling for the concatenation of Parts. |
| RegBank.addConcatSubRegIndex(Parts, ExplicitSubRegIndices[i]); |
| } |
| |
| // Initialize RegUnitList. Because getSubRegs is called recursively, this |
| // processes the register hierarchy in postorder. |
| // |
| // Inherit all sub-register units. It is good enough to look at the explicit |
| // sub-registers, the other registers won't contribute any more units. |
| for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { |
| CodeGenRegister *SR = ExplicitSubRegs[i]; |
| // Explicit sub-registers are usually disjoint, so this is a good way of |
| // computing the union. We may pick up a few duplicates that will be |
| // eliminated below. |
| unsigned N = RegUnits.size(); |
| RegUnits.append(SR->RegUnits.begin(), SR->RegUnits.end()); |
| std::inplace_merge(RegUnits.begin(), RegUnits.begin() + N, RegUnits.end()); |
| } |
| RegUnits.erase(std::unique(RegUnits.begin(), RegUnits.end()), RegUnits.end()); |
| |
| // Absent any ad hoc aliasing, we create one register unit per leaf register. |
| // These units correspond to the maximal cliques in the register overlap |
| // graph which is optimal. |
| // |
| // When there is ad hoc aliasing, we simply create one unit per edge in the |
| // undirected ad hoc aliasing graph. Technically, we could do better by |
| // identifying maximal cliques in the ad hoc graph, but cliques larger than 2 |
| // are extremely rare anyway (I've never seen one), so we don't bother with |
| // the added complexity. |
| for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) { |
| CodeGenRegister *AR = ExplicitAliases[i]; |
| // Only visit each edge once. |
| if (AR->SubRegsComplete) |
| continue; |
| // Create a RegUnit representing this alias edge, and add it to both |
| // registers. |
| unsigned Unit = RegBank.newRegUnit(this, AR); |
| RegUnits.push_back(Unit); |
| AR->RegUnits.push_back(Unit); |
| } |
| |
| // Finally, create units for leaf registers without ad hoc aliases. Note that |
| // a leaf register with ad hoc aliases doesn't get its own unit - it isn't |
| // necessary. This means the aliasing leaf registers can share a single unit. |
| if (RegUnits.empty()) |
| RegUnits.push_back(RegBank.newRegUnit(this)); |
| |
| // We have now computed the native register units. More may be adopted later |
| // for balancing purposes. |
| NumNativeRegUnits = RegUnits.size(); |
| |
| return SubRegs; |
| } |
| |
| // In a register that is covered by its sub-registers, try to find redundant |
| // sub-registers. For example: |
| // |
| // QQ0 = {Q0, Q1} |
| // Q0 = {D0, D1} |
| // Q1 = {D2, D3} |
| // |
| // We can infer that D1_D2 is also a sub-register, even if it wasn't named in |
| // the register definition. |
| // |
| // The explicitly specified registers form a tree. This function discovers |
| // sub-register relationships that would force a DAG. |
| // |
| void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) { |
| // Collect new sub-registers first, add them later. |
| SmallVector<SubRegMap::value_type, 8> NewSubRegs; |
| |
| // Look at the leading super-registers of each sub-register. Those are the |
| // candidates for new sub-registers, assuming they are fully contained in |
| // this register. |
| for (SubRegMap::iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I){ |
| const CodeGenRegister *SubReg = I->second; |
| const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs; |
| for (unsigned i = 0, e = Leads.size(); i != e; ++i) { |
| CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]); |
| // Already got this sub-register? |
| if (Cand == this || getSubRegIndex(Cand)) |
| continue; |
| // Check if each component of Cand is already a sub-register. |
| // We know that the first component is I->second, and is present with the |
| // name I->first. |
| SmallVector<CodeGenSubRegIndex*, 8> Parts(1, I->first); |
| assert(!Cand->ExplicitSubRegs.empty() && |
| "Super-register has no sub-registers"); |
| for (unsigned j = 1, e = Cand->ExplicitSubRegs.size(); j != e; ++j) { |
| if (CodeGenSubRegIndex *Idx = getSubRegIndex(Cand->ExplicitSubRegs[j])) |
| Parts.push_back(Idx); |
| else { |
| // Sub-register doesn't exist. |
| Parts.clear(); |
| break; |
| } |
| } |
| // If some Cand sub-register is not part of this register, or if Cand only |
| // has one sub-register, there is nothing to do. |
| if (Parts.size() <= 1) |
| continue; |
| |
| // Each part of Cand is a sub-register of this. Make the full Cand also |
| // a sub-register with a concatenated sub-register index. |
| CodeGenSubRegIndex *Concat= RegBank.getConcatSubRegIndex(Parts); |
| NewSubRegs.push_back(std::make_pair(Concat, Cand)); |
| } |
| } |
| |
| // Now add all the new sub-registers. |
| for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) { |
| // Don't add Cand if another sub-register is already using the index. |
| if (!SubRegs.insert(NewSubRegs[i]).second) |
| continue; |
| |
| CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first; |
| CodeGenRegister *NewSubReg = NewSubRegs[i].second; |
| SubReg2Idx.insert(std::make_pair(NewSubReg, NewIdx)); |
| } |
| |
| // Create sub-register index composition maps for the synthesized indices. |
| for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) { |
| CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first; |
| CodeGenRegister *NewSubReg = NewSubRegs[i].second; |
| for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(), |
| SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) { |
| CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second); |
| if (!SubIdx) |
| PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " + |
| SI->second->getName() + " in " + getName()); |
| NewIdx->addComposite(SI->first, SubIdx); |
| } |
| } |
| } |
| |
| void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) { |
| // Only visit each register once. |
| if (SuperRegsComplete) |
| return; |
| SuperRegsComplete = true; |
| |
| // Make sure all sub-registers have been visited first, so the super-reg |
| // lists will be topologically ordered. |
| for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); |
| I != E; ++I) |
| I->second->computeSuperRegs(RegBank); |
| |
| // Now add this as a super-register on all sub-registers. |
| // Also compute the TopoSigId in post-order. |
| TopoSigId Id; |
| for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); |
| I != E; ++I) { |
| // Topological signature computed from SubIdx, TopoId(SubReg). |
| // Loops and idempotent indices have TopoSig = ~0u. |
| Id.push_back(I->first->EnumValue); |
| Id.push_back(I->second->TopoSig); |
| |
| // Don't add duplicate entries. |
| if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this) |
| continue; |
| I->second->SuperRegs.push_back(this); |
| } |
| TopoSig = RegBank.getTopoSig(Id); |
| } |
| |
| void |
| CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet, |
| CodeGenRegBank &RegBank) const { |
| assert(SubRegsComplete && "Must precompute sub-registers"); |
| for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { |
| CodeGenRegister *SR = ExplicitSubRegs[i]; |
| if (OSet.insert(SR)) |
| SR->addSubRegsPreOrder(OSet, RegBank); |
| } |
| // Add any secondary sub-registers that weren't part of the explicit tree. |
| for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); |
| I != E; ++I) |
| OSet.insert(I->second); |
| } |
| |
| // Compute overlapping registers. |
| // |
| // The standard set is all super-registers and all sub-registers, but the |
| // target description can add arbitrary overlapping registers via the 'Aliases' |
| // field. This complicates things, but we can compute overlapping sets using |
| // the following rules: |
| // |
| // 1. The relation overlap(A, B) is reflexive and symmetric but not transitive. |
| // |
| // 2. overlap(A, B) implies overlap(A, S) for all S in supers(B). |
| // |
| // Alternatively: |
| // |
| // overlap(A, B) iff there exists: |
| // A' in { A, subregs(A) } and B' in { B, subregs(B) } such that: |
| // A' = B' or A' in aliases(B') or B' in aliases(A'). |
| // |
| // Here subregs(A) is the full flattened sub-register set returned by |
| // A.getSubRegs() while aliases(A) is simply the special 'Aliases' field in the |
| // description of register A. |
| // |
| // This also implies that registers with a common sub-register are considered |
| // overlapping. This can happen when forming register pairs: |
| // |
| // P0 = (R0, R1) |
| // P1 = (R1, R2) |
| // P2 = (R2, R3) |
| // |
| // In this case, we will infer an overlap between P0 and P1 because of the |
| // shared sub-register R1. There is no overlap between P0 and P2. |
| // |
| void CodeGenRegister::computeOverlaps(CodeGenRegister::Set &Overlaps, |
| const CodeGenRegBank &RegBank) const { |
| assert(!RegUnits.empty() && "Compute register units before overlaps."); |
| |
| // Register units are assigned such that the overlapping registers are the |
| // super-registers of the root registers of the register units. |
| for (unsigned rui = 0, rue = RegUnits.size(); rui != rue; ++rui) { |
| const RegUnit &RU = RegBank.getRegUnit(RegUnits[rui]); |
| ArrayRef<const CodeGenRegister*> Roots = RU.getRoots(); |
| for (unsigned ri = 0, re = Roots.size(); ri != re; ++ri) { |
| const CodeGenRegister *Root = Roots[ri]; |
| Overlaps.insert(Root); |
| ArrayRef<const CodeGenRegister*> Supers = Root->getSuperRegs(); |
| Overlaps.insert(Supers.begin(), Supers.end()); |
| } |
| } |
| } |
| |
| // Get the sum of this register's unit weights. |
| unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const { |
| unsigned Weight = 0; |
| for (RegUnitList::const_iterator I = RegUnits.begin(), E = RegUnits.end(); |
| I != E; ++I) { |
| Weight += RegBank.getRegUnit(*I).Weight; |
| } |
| return Weight; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // RegisterTuples |
| //===----------------------------------------------------------------------===// |
| |
| // A RegisterTuples def is used to generate pseudo-registers from lists of |
| // sub-registers. We provide a SetTheory expander class that returns the new |
| // registers. |
| namespace { |
| struct TupleExpander : SetTheory::Expander { |
| void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) { |
| std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices"); |
| unsigned Dim = Indices.size(); |
| ListInit *SubRegs = Def->getValueAsListInit("SubRegs"); |
| if (Dim != SubRegs->getSize()) |
| PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch"); |
| if (Dim < 2) |
| PrintFatalError(Def->getLoc(), |
| "Tuples must have at least 2 sub-registers"); |
| |
| // Evaluate the sub-register lists to be zipped. |
| unsigned Length = ~0u; |
| SmallVector<SetTheory::RecSet, 4> Lists(Dim); |
| for (unsigned i = 0; i != Dim; ++i) { |
| ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc()); |
| Length = std::min(Length, unsigned(Lists[i].size())); |
| } |
| |
| if (Length == 0) |
| return; |
| |
| // Precompute some types. |
| Record *RegisterCl = Def->getRecords().getClass("Register"); |
| RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl); |
| StringInit *BlankName = StringInit::get(""); |
| |
| // Zip them up. |
| for (unsigned n = 0; n != Length; ++n) { |
| std::string Name; |
| Record *Proto = Lists[0][n]; |
| std::vector<Init*> Tuple; |
| unsigned CostPerUse = 0; |
| for (unsigned i = 0; i != Dim; ++i) { |
| Record *Reg = Lists[i][n]; |
| if (i) Name += '_'; |
| Name += Reg->getName(); |
| Tuple.push_back(DefInit::get(Reg)); |
| CostPerUse = std::max(CostPerUse, |
| unsigned(Reg->getValueAsInt("CostPerUse"))); |
| } |
| |
| // Create a new Record representing the synthesized register. This record |
| // is only for consumption by CodeGenRegister, it is not added to the |
| // RecordKeeper. |
| Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords()); |
| Elts.insert(NewReg); |
| |
| // Copy Proto super-classes. |
| ArrayRef<Record *> Supers = Proto->getSuperClasses(); |
| ArrayRef<SMRange> Ranges = Proto->getSuperClassRanges(); |
| for (unsigned i = 0, e = Supers.size(); i != e; ++i) |
| NewReg->addSuperClass(Supers[i], Ranges[i]); |
| |
| // Copy Proto fields. |
| for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) { |
| RecordVal RV = Proto->getValues()[i]; |
| |
| // Skip existing fields, like NAME. |
| if (NewReg->getValue(RV.getNameInit())) |
| continue; |
| |
| StringRef Field = RV.getName(); |
| |
| // Replace the sub-register list with Tuple. |
| if (Field == "SubRegs") |
| RV.setValue(ListInit::get(Tuple, RegisterRecTy)); |
| |
| // Provide a blank AsmName. MC hacks are required anyway. |
| if (Field == "AsmName") |
| RV.setValue(BlankName); |
| |
| // CostPerUse is aggregated from all Tuple members. |
| if (Field == "CostPerUse") |
| RV.setValue(IntInit::get(CostPerUse)); |
| |
| // Composite registers are always covered by sub-registers. |
| if (Field == "CoveredBySubRegs") |
| RV.setValue(BitInit::get(true)); |
| |
| // Copy fields from the RegisterTuples def. |
| if (Field == "SubRegIndices" || |
| Field == "CompositeIndices") { |
| NewReg->addValue(*Def->getValue(Field)); |
| continue; |
| } |
| |
| // Some fields get their default uninitialized value. |
| if (Field == "DwarfNumbers" || |
| Field == "DwarfAlias" || |
| Field == "Aliases") { |
| if (const RecordVal *DefRV = RegisterCl->getValue(Field)) |
| NewReg->addValue(*DefRV); |
| continue; |
| } |
| |
| // Everything else is copied from Proto. |
| NewReg->addValue(RV); |
| } |
| } |
| } |
| }; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // CodeGenRegisterClass |
| //===----------------------------------------------------------------------===// |
| |
| CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R) |
| : TheDef(R), |
| Name(R->getName()), |
| TopoSigs(RegBank.getNumTopoSigs()), |
| EnumValue(-1) { |
| // Rename anonymous register classes. |
| if (R->getName().size() > 9 && R->getName()[9] == '.') { |
| static unsigned AnonCounter = 0; |
| R->setName("AnonRegClass_" + utostr(AnonCounter)); |
| // MSVC2012 ICEs if AnonCounter++ is directly passed to utostr. |
| ++AnonCounter; |
| } |
| |
| std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes"); |
| for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { |
| Record *Type = TypeList[i]; |
| if (!Type->isSubClassOf("ValueType")) |
| PrintFatalError("RegTypes list member '" + Type->getName() + |
| "' does not derive from the ValueType class!"); |
| VTs.push_back(getValueType(Type)); |
| } |
| assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!"); |
| |
| // Allocation order 0 is the full set. AltOrders provides others. |
| const SetTheory::RecVec *Elements = RegBank.getSets().expand(R); |
| ListInit *AltOrders = R->getValueAsListInit("AltOrders"); |
| Orders.resize(1 + AltOrders->size()); |
| |
| // Default allocation order always contains all registers. |
| for (unsigned i = 0, e = Elements->size(); i != e; ++i) { |
| Orders[0].push_back((*Elements)[i]); |
| const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]); |
| Members.insert(Reg); |
| TopoSigs.set(Reg->getTopoSig()); |
| } |
| |
| // Alternative allocation orders may be subsets. |
| SetTheory::RecSet Order; |
| for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) { |
| RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc()); |
| Orders[1 + i].append(Order.begin(), Order.end()); |
| // Verify that all altorder members are regclass members. |
| while (!Order.empty()) { |
| CodeGenRegister *Reg = RegBank.getReg(Order.back()); |
| Order.pop_back(); |
| if (!contains(Reg)) |
| PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() + |
| " is not a class member"); |
| } |
| } |
| |
| // Allow targets to override the size in bits of the RegisterClass. |
| unsigned Size = R->getValueAsInt("Size"); |
| |
| Namespace = R->getValueAsString("Namespace"); |
| SpillSize = Size ? Size : EVT(VTs[0]).getSizeInBits(); |
| SpillAlignment = R->getValueAsInt("Alignment"); |
| CopyCost = R->getValueAsInt("CopyCost"); |
| Allocatable = R->getValueAsBit("isAllocatable"); |
| AltOrderSelect = R->getValueAsString("AltOrderSelect"); |
| } |
| |
| // Create an inferred register class that was missing from the .td files. |
| // Most properties will be inherited from the closest super-class after the |
| // class structure has been computed. |
| CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, |
| StringRef Name, Key Props) |
| : Members(*Props.Members), |
| TheDef(0), |
| Name(Name), |
| TopoSigs(RegBank.getNumTopoSigs()), |
| EnumValue(-1), |
| SpillSize(Props.SpillSize), |
| SpillAlignment(Props.SpillAlignment), |
| CopyCost(0), |
| Allocatable(true) { |
| for (CodeGenRegister::Set::iterator I = Members.begin(), E = Members.end(); |
| I != E; ++I) |
| TopoSigs.set((*I)->getTopoSig()); |
| } |
| |
| // Compute inherited propertied for a synthesized register class. |
| void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) { |
| assert(!getDef() && "Only synthesized classes can inherit properties"); |
| assert(!SuperClasses.empty() && "Synthesized class without super class"); |
| |
| // The last super-class is the smallest one. |
| CodeGenRegisterClass &Super = *SuperClasses.back(); |
| |
| // Most properties are copied directly. |
| // Exceptions are members, size, and alignment |
| Namespace = Super.Namespace; |
| VTs = Super.VTs; |
| CopyCost = Super.CopyCost; |
| Allocatable = Super.Allocatable; |
| AltOrderSelect = Super.AltOrderSelect; |
| |
| // Copy all allocation orders, filter out foreign registers from the larger |
| // super-class. |
| Orders.resize(Super.Orders.size()); |
| for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i) |
| for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j) |
| if (contains(RegBank.getReg(Super.Orders[i][j]))) |
| Orders[i].push_back(Super.Orders[i][j]); |
| } |
| |
| bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const { |
| return Members.count(Reg); |
| } |
| |
| namespace llvm { |
| raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) { |
| OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment; |
| for (CodeGenRegister::Set::const_iterator I = K.Members->begin(), |
| E = K.Members->end(); I != E; ++I) |
| OS << ", " << (*I)->getName(); |
| return OS << " }"; |
| } |
| } |
| |
| // This is a simple lexicographical order that can be used to search for sets. |
| // It is not the same as the topological order provided by TopoOrderRC. |
| bool CodeGenRegisterClass::Key:: |
| operator<(const CodeGenRegisterClass::Key &B) const { |
| assert(Members && B.Members); |
| if (*Members != *B.Members) |
| return *Members < *B.Members; |
| if (SpillSize != B.SpillSize) |
| return SpillSize < B.SpillSize; |
| return SpillAlignment < B.SpillAlignment; |
| } |
| |
| // Returns true if RC is a strict subclass. |
| // RC is a sub-class of this class if it is a valid replacement for any |
| // instruction operand where a register of this classis required. It must |
| // satisfy these conditions: |
| // |
| // 1. All RC registers are also in this. |
| // 2. The RC spill size must not be smaller than our spill size. |
| // 3. RC spill alignment must be compatible with ours. |
| // |
| static bool testSubClass(const CodeGenRegisterClass *A, |
| const CodeGenRegisterClass *B) { |
| return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 && |
| A->SpillSize <= B->SpillSize && |
| std::includes(A->getMembers().begin(), A->getMembers().end(), |
| B->getMembers().begin(), B->getMembers().end(), |
| CodeGenRegister::Less()); |
| } |
| |
| /// Sorting predicate for register classes. This provides a topological |
| /// ordering that arranges all register classes before their sub-classes. |
| /// |
| /// Register classes with the same registers, spill size, and alignment form a |
| /// clique. They will be ordered alphabetically. |
| /// |
| static int TopoOrderRC(const void *PA, const void *PB) { |
| const CodeGenRegisterClass *A = *(const CodeGenRegisterClass* const*)PA; |
| const CodeGenRegisterClass *B = *(const CodeGenRegisterClass* const*)PB; |
| if (A == B) |
| return 0; |
| |
| // Order by ascending spill size. |
| if (A->SpillSize < B->SpillSize) |
| return -1; |
| if (A->SpillSize > B->SpillSize) |
| return 1; |
| |
| // Order by ascending spill alignment. |
| if (A->SpillAlignment < B->SpillAlignment) |
| return -1; |
| if (A->SpillAlignment > B->SpillAlignment) |
| return 1; |
| |
| // Order by descending set size. Note that the classes' allocation order may |
| // not have been computed yet. The Members set is always vaild. |
| if (A->getMembers().size() > B->getMembers().size()) |
| return -1; |
| if (A->getMembers().size() < B->getMembers().size()) |
| return 1; |
| |
| // Finally order by name as a tie breaker. |
| return StringRef(A->getName()).compare(B->getName()); |
| } |
| |
| std::string CodeGenRegisterClass::getQualifiedName() const { |
| if (Namespace.empty()) |
| return getName(); |
| else |
| return Namespace + "::" + getName(); |
| } |
| |
| // Compute sub-classes of all register classes. |
| // Assume the classes are ordered topologically. |
| void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) { |
| ArrayRef<CodeGenRegisterClass*> RegClasses = RegBank.getRegClasses(); |
| |
| // Visit backwards so sub-classes are seen first. |
| for (unsigned rci = RegClasses.size(); rci; --rci) { |
| CodeGenRegisterClass &RC = *RegClasses[rci - 1]; |
| RC.SubClasses.resize(RegClasses.size()); |
| RC.SubClasses.set(RC.EnumValue); |
| |
| // Normally, all subclasses have IDs >= rci, unless RC is part of a clique. |
| for (unsigned s = rci; s != RegClasses.size(); ++s) { |
| if (RC.SubClasses.test(s)) |
| continue; |
| CodeGenRegisterClass *SubRC = RegClasses[s]; |
| if (!testSubClass(&RC, SubRC)) |
| continue; |
| // SubRC is a sub-class. Grap all its sub-classes so we won't have to |
| // check them again. |
| RC.SubClasses |= SubRC->SubClasses; |
| } |
| |
| // Sweep up missed clique members. They will be immediately preceding RC. |
| for (unsigned s = rci - 1; s && testSubClass(&RC, RegClasses[s - 1]); --s) |
| RC.SubClasses.set(s - 1); |
| } |
| |
| // Compute the SuperClasses lists from the SubClasses vectors. |
| for (unsigned rci = 0; rci != RegClasses.size(); ++rci) { |
| const BitVector &SC = RegClasses[rci]->getSubClasses(); |
| for (int s = SC.find_first(); s >= 0; s = SC.find_next(s)) { |
| if (unsigned(s) == rci) |
| continue; |
| RegClasses[s]->SuperClasses.push_back(RegClasses[rci]); |
| } |
| } |
| |
| // With the class hierarchy in place, let synthesized register classes inherit |
| // properties from their closest super-class. The iteration order here can |
| // propagate properties down multiple levels. |
| for (unsigned rci = 0; rci != RegClasses.size(); ++rci) |
| if (!RegClasses[rci]->getDef()) |
| RegClasses[rci]->inheritProperties(RegBank); |
| } |
| |
| void |
| CodeGenRegisterClass::getSuperRegClasses(CodeGenSubRegIndex *SubIdx, |
| BitVector &Out) const { |
| DenseMap<CodeGenSubRegIndex*, |
| SmallPtrSet<CodeGenRegisterClass*, 8> >::const_iterator |
| FindI = SuperRegClasses.find(SubIdx); |
| if (FindI == SuperRegClasses.end()) |
| return; |
| for (SmallPtrSet<CodeGenRegisterClass*, 8>::const_iterator I = |
| FindI->second.begin(), E = FindI->second.end(); I != E; ++I) |
| Out.set((*I)->EnumValue); |
| } |
| |
| // Populate a unique sorted list of units from a register set. |
| void CodeGenRegisterClass::buildRegUnitSet( |
| std::vector<unsigned> &RegUnits) const { |
| std::vector<unsigned> TmpUnits; |
| for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) |
| TmpUnits.push_back(*UnitI); |
| std::sort(TmpUnits.begin(), TmpUnits.end()); |
| std::unique_copy(TmpUnits.begin(), TmpUnits.end(), |
| std::back_inserter(RegUnits)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // CodeGenRegBank |
| //===----------------------------------------------------------------------===// |
| |
| CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) { |
| // Configure register Sets to understand register classes and tuples. |
| Sets.addFieldExpander("RegisterClass", "MemberList"); |
| Sets.addFieldExpander("CalleeSavedRegs", "SaveList"); |
| Sets.addExpander("RegisterTuples", new TupleExpander()); |
| |
| // Read in the user-defined (named) sub-register indices. |
| // More indices will be synthesized later. |
| std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex"); |
| std::sort(SRIs.begin(), SRIs.end(), LessRecord()); |
| for (unsigned i = 0, e = SRIs.size(); i != e; ++i) |
| getSubRegIdx(SRIs[i]); |
| // Build composite maps from ComposedOf fields. |
| for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) |
| SubRegIndices[i]->updateComponents(*this); |
| |
| // Read in the register definitions. |
| std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register"); |
| std::sort(Regs.begin(), Regs.end(), LessRecord()); |
| Registers.reserve(Regs.size()); |
| // Assign the enumeration values. |
| for (unsigned i = 0, e = Regs.size(); i != e; ++i) |
| getReg(Regs[i]); |
| |
| // Expand tuples and number the new registers. |
| std::vector<Record*> Tups = |
| Records.getAllDerivedDefinitions("RegisterTuples"); |
| for (unsigned i = 0, e = Tups.size(); i != e; ++i) { |
| const std::vector<Record*> *TupRegs = Sets.expand(Tups[i]); |
| for (unsigned j = 0, je = TupRegs->size(); j != je; ++j) |
| getReg((*TupRegs)[j]); |
| } |
| |
| // Now all the registers are known. Build the object graph of explicit |
| // register-register references. |
| for (unsigned i = 0, e = Registers.size(); i != e; ++i) |
| Registers[i]->buildObjectGraph(*this); |
| |
| // Compute register name map. |
| for (unsigned i = 0, e = Registers.size(); i != e; ++i) |
| RegistersByName.GetOrCreateValue( |
| Registers[i]->TheDef->getValueAsString("AsmName"), |
| Registers[i]); |
| |
| // Precompute all sub-register maps. |
| // This will create Composite entries for all inferred sub-register indices. |
| for (unsigned i = 0, e = Registers.size(); i != e; ++i) |
| Registers[i]->computeSubRegs(*this); |
| |
| // Infer even more sub-registers by combining leading super-registers. |
| for (unsigned i = 0, e = Registers.size(); i != e; ++i) |
| if (Registers[i]->CoveredBySubRegs) |
| Registers[i]->computeSecondarySubRegs(*this); |
| |
| // After the sub-register graph is complete, compute the topologically |
| // ordered SuperRegs list. |
| for (unsigned i = 0, e = Registers.size(); i != e; ++i) |
| Registers[i]->computeSuperRegs(*this); |
| |
| // Native register units are associated with a leaf register. They've all been |
| // discovered now. |
| NumNativeRegUnits = RegUnits.size(); |
| |
| // Read in register class definitions. |
| std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass"); |
| if (RCs.empty()) |
| PrintFatalError(std::string("No 'RegisterClass' subclasses defined!")); |
| |
| // Allocate user-defined register classes. |
| RegClasses.reserve(RCs.size()); |
| for (unsigned i = 0, e = RCs.size(); i != e; ++i) |
| addToMaps(new CodeGenRegisterClass(*this, RCs[i])); |
| |
| // Infer missing classes to create a full algebra. |
| computeInferredRegisterClasses(); |
| |
| // Order register classes topologically and assign enum values. |
| array_pod_sort(RegClasses.begin(), RegClasses.end(), TopoOrderRC); |
| for (unsigned i = 0, e = RegClasses.size(); i != e; ++i) |
| RegClasses[i]->EnumValue = i; |
| CodeGenRegisterClass::computeSubClasses(*this); |
| } |
| |
| // Create a synthetic CodeGenSubRegIndex without a corresponding Record. |
| CodeGenSubRegIndex* |
| CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) { |
| CodeGenSubRegIndex *Idx = new CodeGenSubRegIndex(Name, Namespace, |
| SubRegIndices.size() + 1); |
| SubRegIndices.push_back(Idx); |
| return Idx; |
| } |
| |
| CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) { |
| CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def]; |
| if (Idx) |
| return Idx; |
| Idx = new CodeGenSubRegIndex(Def, SubRegIndices.size() + 1); |
| SubRegIndices.push_back(Idx); |
| return Idx; |
| } |
| |
| CodeGenRegister *CodeGenRegBank::getReg(Record *Def) { |
| CodeGenRegister *&Reg = Def2Reg[Def]; |
| if (Reg) |
| return Reg; |
| Reg = new CodeGenRegister(Def, Registers.size() + 1); |
| Registers.push_back(Reg); |
| return Reg; |
| } |
| |
| void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) { |
| RegClasses.push_back(RC); |
| |
| if (Record *Def = RC->getDef()) |
| Def2RC.insert(std::make_pair(Def, RC)); |
| |
| // Duplicate classes are rejected by insert(). |
| // That's OK, we only care about the properties handled by CGRC::Key. |
| CodeGenRegisterClass::Key K(*RC); |
| Key2RC.insert(std::make_pair(K, RC)); |
| } |
| |
| // Create a synthetic sub-class if it is missing. |
| CodeGenRegisterClass* |
| CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC, |
| const CodeGenRegister::Set *Members, |
| StringRef Name) { |
| // Synthetic sub-class has the same size and alignment as RC. |
| CodeGenRegisterClass::Key K(Members, RC->SpillSize, RC->SpillAlignment); |
| RCKeyMap::const_iterator FoundI = Key2RC.find(K); |
| if (FoundI != Key2RC.end()) |
| return FoundI->second; |
| |
| // Sub-class doesn't exist, create a new one. |
| CodeGenRegisterClass *NewRC = new CodeGenRegisterClass(*this, Name, K); |
| addToMaps(NewRC); |
| return NewRC; |
| } |
| |
| CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) { |
| if (CodeGenRegisterClass *RC = Def2RC[Def]) |
| return RC; |
| |
| PrintFatalError(Def->getLoc(), "Not a known RegisterClass!"); |
| } |
| |
| CodeGenSubRegIndex* |
| CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A, |
| CodeGenSubRegIndex *B) { |
| // Look for an existing entry. |
| CodeGenSubRegIndex *Comp = A->compose(B); |
| if (Comp) |
| return Comp; |
| |
| // None exists, synthesize one. |
| std::string Name = A->getName() + "_then_" + B->getName(); |
| Comp = createSubRegIndex(Name, A->getNamespace()); |
| A->addComposite(B, Comp); |
| return Comp; |
| } |
| |
| CodeGenSubRegIndex *CodeGenRegBank:: |
| getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex*, 8> &Parts) { |
| assert(Parts.size() > 1 && "Need two parts to concatenate"); |
| |
| // Look for an existing entry. |
| CodeGenSubRegIndex *&Idx = ConcatIdx[Parts]; |
| if (Idx) |
| return Idx; |
| |
| // None exists, synthesize one. |
| std::string Name = Parts.front()->getName(); |
| for (unsigned i = 1, e = Parts.size(); i != e; ++i) { |
| Name += '_'; |
| Name += Parts[i]->getName(); |
| } |
| return Idx = createSubRegIndex(Name, Parts.front()->getNamespace()); |
| } |
| |
| void CodeGenRegBank::computeComposites() { |
| // Keep track of TopoSigs visited. We only need to visit each TopoSig once, |
| // and many registers will share TopoSigs on regular architectures. |
| BitVector TopoSigs(getNumTopoSigs()); |
| |
| for (unsigned i = 0, e = Registers.size(); i != e; ++i) { |
| CodeGenRegister *Reg1 = Registers[i]; |
| |
| // Skip identical subreg structures already processed. |
| if (TopoSigs.test(Reg1->getTopoSig())) |
| continue; |
| TopoSigs.set(Reg1->getTopoSig()); |
| |
| const CodeGenRegister::SubRegMap &SRM1 = Reg1->getSubRegs(); |
| for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(), |
| e1 = SRM1.end(); i1 != e1; ++i1) { |
| CodeGenSubRegIndex *Idx1 = i1->first; |
| CodeGenRegister *Reg2 = i1->second; |
| // Ignore identity compositions. |
| if (Reg1 == Reg2) |
| continue; |
| const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs(); |
| // Try composing Idx1 with another SubRegIndex. |
| for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(), |
| e2 = SRM2.end(); i2 != e2; ++i2) { |
| CodeGenSubRegIndex *Idx2 = i2->first; |
| CodeGenRegister *Reg3 = i2->second; |
| // Ignore identity compositions. |
| if (Reg2 == Reg3) |
| continue; |
| // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3. |
| CodeGenSubRegIndex *Idx3 = Reg1->getSubRegIndex(Reg3); |
| assert(Idx3 && "Sub-register doesn't have an index"); |
| |
| // Conflicting composition? Emit a warning but allow it. |
| if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) |
| PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() + |
| " and " + Idx2->getQualifiedName() + |
| " compose ambiguously as " + Prev->getQualifiedName() + |
| " or " + Idx3->getQualifiedName()); |
| } |
| } |
| } |
| } |
| |
| // Compute lane masks. This is similar to register units, but at the |
| // sub-register index level. Each bit in the lane mask is like a register unit |
| // class, and two lane masks will have a bit in common if two sub-register |
| // indices overlap in some register. |
| // |
| // Conservatively share a lane mask bit if two sub-register indices overlap in |
| // some registers, but not in others. That shouldn't happen a lot. |
| void CodeGenRegBank::computeSubRegIndexLaneMasks() { |
| // First assign individual bits to all the leaf indices. |
| unsigned Bit = 0; |
| for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) { |
| CodeGenSubRegIndex *Idx = SubRegIndices[i]; |
| if (Idx->getComposites().empty()) { |
| Idx->LaneMask = 1u << Bit; |
| // Share bit 31 in the unlikely case there are more than 32 leafs. |
| // |
| // Sharing bits is harmless; it allows graceful degradation in targets |
| // with more than 32 vector lanes. They simply get a limited resolution |
| // view of lanes beyond the 32nd. |
| // |
| // See also the comment for getSubRegIndexLaneMask(). |
| if (Bit < 31) ++Bit; |
| } else { |
| Idx->LaneMask = 0; |
| } |
| } |
| |
| // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented |
| // by the sub-register graph? This doesn't occur in any known targets. |
| |
| // Inherit lanes from composites. |
| for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) |
| SubRegIndices[i]->computeLaneMask(); |
| } |
| |
| namespace { |
| // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is |
| // the transitive closure of the union of overlapping register |
| // classes. Together, the UberRegSets form a partition of the registers. If we |
| // consider overlapping register classes to be connected, then each UberRegSet |
| // is a set of connected components. |
| // |
| // An UberRegSet will likely be a horizontal slice of register names of |
| // the same width. Nontrivial subregisters should then be in a separate |
| // UberRegSet. But this property isn't required for valid computation of |
| // register unit weights. |
| // |
| // A Weight field caches the max per-register unit weight in each UberRegSet. |
| // |
| // A set of SingularDeterminants flags single units of some register in this set |
| // for which the unit weight equals the set weight. These units should not have |
| // their weight increased. |
| struct UberRegSet { |
| CodeGenRegister::Set Regs; |
| unsigned Weight; |
| CodeGenRegister::RegUnitList SingularDeterminants; |
| |
| UberRegSet(): Weight(0) {} |
| }; |
| } // namespace |
| |
| // Partition registers into UberRegSets, where each set is the transitive |
| // closure of the union of overlapping register classes. |
| // |
| // UberRegSets[0] is a special non-allocatable set. |
| static void computeUberSets(std::vector<UberRegSet> &UberSets, |
| std::vector<UberRegSet*> &RegSets, |
| CodeGenRegBank &RegBank) { |
| |
| const std::vector<CodeGenRegister*> &Registers = RegBank.getRegisters(); |
| |
| // The Register EnumValue is one greater than its index into Registers. |
| assert(Registers.size() == Registers[Registers.size()-1]->EnumValue && |
| "register enum value mismatch"); |
| |
| // For simplicitly make the SetID the same as EnumValue. |
| IntEqClasses UberSetIDs(Registers.size()+1); |
| std::set<unsigned> AllocatableRegs; |
| for (unsigned i = 0, e = RegBank.getRegClasses().size(); i != e; ++i) { |
| |
| CodeGenRegisterClass *RegClass = RegBank.getRegClasses()[i]; |
| if (!RegClass->Allocatable) |
| continue; |
| |
| const CodeGenRegister::Set &Regs = RegClass->getMembers(); |
| if (Regs.empty()) |
| continue; |
| |
| unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue); |
| assert(USetID && "register number 0 is invalid"); |
| |
| AllocatableRegs.insert((*Regs.begin())->EnumValue); |
| for (CodeGenRegister::Set::const_iterator I = llvm::next(Regs.begin()), |
| E = Regs.end(); I != E; ++I) { |
| AllocatableRegs.insert((*I)->EnumValue); |
| UberSetIDs.join(USetID, (*I)->EnumValue); |
| } |
| } |
| // Combine non-allocatable regs. |
| for (unsigned i = 0, e = Registers.size(); i != e; ++i) { |
| unsigned RegNum = Registers[i]->EnumValue; |
| if (AllocatableRegs.count(RegNum)) |
| continue; |
| |
| UberSetIDs.join(0, RegNum); |
| } |
| UberSetIDs.compress(); |
| |
| // Make the first UberSet a special unallocatable set. |
| unsigned ZeroID = UberSetIDs[0]; |
| |
| // Insert Registers into the UberSets formed by union-find. |
| // Do not resize after this. |
| UberSets.resize(UberSetIDs.getNumClasses()); |
| for (unsigned i = 0, e = Registers.size(); i != e; ++i) { |
| const CodeGenRegister *Reg = Registers[i]; |
| unsigned USetID = UberSetIDs[Reg->EnumValue]; |
| if (!USetID) |
| USetID = ZeroID; |
| else if (USetID == ZeroID) |
| USetID = 0; |
| |
| UberRegSet *USet = &UberSets[USetID]; |
| USet->Regs.insert(Reg); |
| RegSets[i] = USet; |
| } |
| } |
| |
| // Recompute each UberSet weight after changing unit weights. |
| static void computeUberWeights(std::vector<UberRegSet> &UberSets, |
| CodeGenRegBank &RegBank) { |
| // Skip the first unallocatable set. |
| for (std::vector<UberRegSet>::iterator I = llvm::next(UberSets.begin()), |
| E = UberSets.end(); I != E; ++I) { |
| |
| // Initialize all unit weights in this set, and remember the max units/reg. |
| const CodeGenRegister *Reg = 0; |
| unsigned MaxWeight = 0, Weight = 0; |
| for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) { |
| if (Reg != UnitI.getReg()) { |
| if (Weight > MaxWeight) |
| MaxWeight = Weight; |
| Reg = UnitI.getReg(); |
| Weight = 0; |
| } |
| unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight; |
| if (!UWeight) { |
| UWeight = 1; |
| RegBank.increaseRegUnitWeight(*UnitI, UWeight); |
| } |
| Weight += UWeight; |
| } |
| if (Weight > MaxWeight) |
| MaxWeight = Weight; |
| |
| // Update the set weight. |
| I->Weight = MaxWeight; |
| |
| // Find singular determinants. |
| for (CodeGenRegister::Set::iterator RegI = I->Regs.begin(), |
| RegE = I->Regs.end(); RegI != RegE; ++RegI) { |
| if ((*RegI)->getRegUnits().size() == 1 |
| && (*RegI)->getWeight(RegBank) == I->Weight) |
| mergeRegUnits(I->SingularDeterminants, (*RegI)->getRegUnits()); |
| } |
| } |
| } |
| |
| // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of |
| // a register and its subregisters so that they have the same weight as their |
| // UberSet. Self-recursion processes the subregister tree in postorder so |
| // subregisters are normalized first. |
| // |
| // Side effects: |
| // - creates new adopted register units |
| // - causes superregisters to inherit adopted units |
| // - increases the weight of "singular" units |
| // - induces recomputation of UberWeights. |
| static bool normalizeWeight(CodeGenRegister *Reg, |
| std::vector<UberRegSet> &UberSets, |
| std::vector<UberRegSet*> &RegSets, |
| std::set<unsigned> &NormalRegs, |
| CodeGenRegister::RegUnitList &NormalUnits, |
| CodeGenRegBank &RegBank) { |
| bool Changed = false; |
| if (!NormalRegs.insert(Reg->EnumValue).second) |
| return Changed; |
| |
| const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs(); |
| for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(), |
| SRE = SRM.end(); SRI != SRE; ++SRI) { |
| if (SRI->second == Reg) |
| continue; // self-cycles happen |
| |
| Changed |= normalizeWeight(SRI->second, UberSets, RegSets, |
| NormalRegs, NormalUnits, RegBank); |
| } |
| // Postorder register normalization. |
| |
| // Inherit register units newly adopted by subregisters. |
| if (Reg->inheritRegUnits(RegBank)) |
| computeUberWeights(UberSets, RegBank); |
| |
| // Check if this register is too skinny for its UberRegSet. |
| UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)]; |
| |
| unsigned RegWeight = Reg->getWeight(RegBank); |
| if (UberSet->Weight > RegWeight) { |
| // A register unit's weight can be adjusted only if it is the singular unit |
| // for this register, has not been used to normalize a subregister's set, |
| // and has not already been used to singularly determine this UberRegSet. |
| unsigned AdjustUnit = Reg->getRegUnits().front(); |
| if (Reg->getRegUnits().size() != 1 |
| || hasRegUnit(NormalUnits, AdjustUnit) |
| || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) { |
| // We don't have an adjustable unit, so adopt a new one. |
| AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight); |
| Reg->adoptRegUnit(AdjustUnit); |
| // Adopting a unit does not immediately require recomputing set weights. |
| } |
| else { |
| // Adjust the existing single unit. |
| RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight); |
| // The unit may be shared among sets and registers within this set. |
| computeUberWeights(UberSets, RegBank); |
| } |
| Changed = true; |
| } |
| |
| // Mark these units normalized so superregisters can't change their weights. |
| mergeRegUnits(NormalUnits, Reg->getRegUnits()); |
| |
| return Changed; |
| } |
| |
| // Compute a weight for each register unit created during getSubRegs. |
| // |
| // The goal is that two registers in the same class will have the same weight, |
| // where each register's weight is defined as sum of its units' weights. |
| void CodeGenRegBank::computeRegUnitWeights() { |
| std::vector<UberRegSet> UberSets; |
| std::vector<UberRegSet*> RegSets(Registers.size()); |
| computeUberSets(UberSets, RegSets, *this); |
| // UberSets and RegSets are now immutable. |
| |
| computeUberWeights(UberSets, *this); |
| |
| // Iterate over each Register, normalizing the unit weights until reaching |
| // a fix point. |
| unsigned NumIters = 0; |
| for (bool Changed = true; Changed; ++NumIters) { |
| assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights"); |
| Changed = false; |
| for (unsigned i = 0, e = Registers.size(); i != e; ++i) { |
| CodeGenRegister::RegUnitList NormalUnits; |
| std::set<unsigned> NormalRegs; |
| Changed |= normalizeWeight(Registers[i], UberSets, RegSets, |
| NormalRegs, NormalUnits, *this); |
| } |
| } |
| } |
| |
| // Find a set in UniqueSets with the same elements as Set. |
| // Return an iterator into UniqueSets. |
| static std::vector<RegUnitSet>::const_iterator |
| findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets, |
| const RegUnitSet &Set) { |
| std::vector<RegUnitSet>::const_iterator |
| I = UniqueSets.begin(), E = UniqueSets.end(); |
| for(;I != E; ++I) { |
| if (I->Units == Set.Units) |
| break; |
| } |
| return I; |
| } |
| |
| // Return true if the RUSubSet is a subset of RUSuperSet. |
| static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet, |
| const std::vector<unsigned> &RUSuperSet) { |
| return std::includes(RUSuperSet.begin(), RUSuperSet.end(), |
| RUSubSet.begin(), RUSubSet.end()); |
| } |
| |
| // Iteratively prune unit sets. |
| void CodeGenRegBank::pruneUnitSets() { |
| assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets"); |
| |
| // Form an equivalence class of UnitSets with no significant difference. |
| std::vector<unsigned> SuperSetIDs; |
| for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size(); |
| SubIdx != EndIdx; ++SubIdx) { |
| const RegUnitSet &SubSet = RegUnitSets[SubIdx]; |
| unsigned SuperIdx = 0; |
| for (; SuperIdx != EndIdx; ++SuperIdx) { |
| if (SuperIdx == SubIdx) |
| continue; |
| |
| const RegUnitSet &SuperSet = RegUnitSets[SuperIdx]; |
| if (isRegUnitSubSet(SubSet.Units, SuperSet.Units) |
| && (SubSet.Units.size() + 3 > SuperSet.Units.size())) { |
| break; |
| } |
| } |
| if (SuperIdx == EndIdx) |
| SuperSetIDs.push_back(SubIdx); |
| } |
| // Populate PrunedUnitSets with each equivalence class's superset. |
| std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size()); |
| for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) { |
| unsigned SuperIdx = SuperSetIDs[i]; |
| PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name; |
| PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units); |
| } |
| RegUnitSets.swap(PrunedUnitSets); |
| } |
| |
| // Create a RegUnitSet for each RegClass that contains all units in the class |
| // including adopted units that are necessary to model register pressure. Then |
| // iteratively compute RegUnitSets such that the union of any two overlapping |
| // RegUnitSets is repreresented. |
| // |
| // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any |
| // RegUnitSet that is a superset of that RegUnitClass. |
| void CodeGenRegBank::computeRegUnitSets() { |
| |
| // Compute a unique RegUnitSet for each RegClass. |
| const ArrayRef<CodeGenRegisterClass*> &RegClasses = getRegClasses(); |
| unsigned NumRegClasses = RegClasses.size(); |
| for (unsigned RCIdx = 0, RCEnd = NumRegClasses; RCIdx != RCEnd; ++RCIdx) { |
| if (!RegClasses[RCIdx]->Allocatable) |
| continue; |
| |
| // Speculatively grow the RegUnitSets to hold the new set. |
| RegUnitSets.resize(RegUnitSets.size() + 1); |
| RegUnitSets.back().Name = RegClasses[RCIdx]->getName(); |
| |
| // Compute a sorted list of units in this class. |
| RegClasses[RCIdx]->buildRegUnitSet(RegUnitSets.back().Units); |
| |
| // Find an existing RegUnitSet. |
| std::vector<RegUnitSet>::const_iterator SetI = |
| findRegUnitSet(RegUnitSets, RegUnitSets.back()); |
| if (SetI != llvm::prior(RegUnitSets.end())) |
| RegUnitSets.pop_back(); |
| } |
| |
| // Iteratively prune unit sets. |
| pruneUnitSets(); |
| |
| // Iterate over all unit sets, including new ones added by this loop. |
| unsigned NumRegUnitSubSets = RegUnitSets.size(); |
| for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { |
| // In theory, this is combinatorial. In practice, it needs to be bounded |
| // by a small number of sets for regpressure to be efficient. |
| // If the assert is hit, we need to implement pruning. |
| assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference"); |
| |
| // Compare new sets with all original classes. |
| for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1; |
| SearchIdx != EndIdx; ++SearchIdx) { |
| std::set<unsigned> Intersection; |
| std::set_intersection(RegUnitSets[Idx].Units.begin(), |
| RegUnitSets[Idx].Units.end(), |
| RegUnitSets[SearchIdx].Units.begin(), |
| RegUnitSets[SearchIdx].Units.end(), |
| std::inserter(Intersection, Intersection.begin())); |
| if (Intersection.empty()) |
| continue; |
| |
| // Speculatively grow the RegUnitSets to hold the new set. |
| RegUnitSets.resize(RegUnitSets.size() + 1); |
| RegUnitSets.back().Name = |
| RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name; |
| |
| std::set_union(RegUnitSets[Idx].Units.begin(), |
| RegUnitSets[Idx].Units.end(), |
| RegUnitSets[SearchIdx].Units.begin(), |
| RegUnitSets[SearchIdx].Units.end(), |
| std::inserter(RegUnitSets.back().Units, |
| RegUnitSets.back().Units.begin())); |
| |
| // Find an existing RegUnitSet, or add the union to the unique sets. |
| std::vector<RegUnitSet>::const_iterator SetI = |
| findRegUnitSet(RegUnitSets, RegUnitSets.back()); |
| if (SetI != llvm::prior(RegUnitSets.end())) |
| RegUnitSets.pop_back(); |
| } |
| } |
| |
| // Iteratively prune unit sets after inferring supersets. |
| pruneUnitSets(); |
| |
| // For each register class, list the UnitSets that are supersets. |
| RegClassUnitSets.resize(NumRegClasses); |
| for (unsigned RCIdx = 0, RCEnd = NumRegClasses; RCIdx != RCEnd; ++RCIdx) { |
| if (!RegClasses[RCIdx]->Allocatable) |
| continue; |
| |
| // Recompute the sorted list of units in this class. |
| std::vector<unsigned> RegUnits; |
| RegClasses[RCIdx]->buildRegUnitSet(RegUnits); |
| |
| // Don't increase pressure for unallocatable regclasses. |
| if (RegUnits.empty()) |
| continue; |
| |
| // Find all supersets. |
| for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); |
| USIdx != USEnd; ++USIdx) { |
| if (isRegUnitSubSet(RegUnits, RegUnitSets[USIdx].Units)) |
| RegClassUnitSets[RCIdx].push_back(USIdx); |
| } |
| assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass"); |
| } |
| |
| // For each register unit, ensure that we have the list of UnitSets that |
| // contain the unit. Normally, this matches an existing list of UnitSets for a |
| // register class. If not, we create a new entry in RegClassUnitSets as a |
| // "fake" register class. |
| for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits; |
| UnitIdx < UnitEnd; ++UnitIdx) { |
| std::vector<unsigned> RUSets; |
| for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) { |
| RegUnitSet &RUSet = RegUnitSets[i]; |
| if (std::find(RUSet.Units.begin(), RUSet.Units.end(), UnitIdx) |
| == RUSet.Units.end()) |
| continue; |
| RUSets.push_back(i); |
| } |
| unsigned RCUnitSetsIdx = 0; |
| for (unsigned e = RegClassUnitSets.size(); |
| RCUnitSetsIdx != e; ++RCUnitSetsIdx) { |
| if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) { |
| break; |
| } |
| } |
| RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx; |
| if (RCUnitSetsIdx == RegClassUnitSets.size()) { |
| // Create a new list of UnitSets as a "fake" register class. |
| RegClassUnitSets.resize(RCUnitSetsIdx + 1); |
| RegClassUnitSets[RCUnitSetsIdx].swap(RUSets); |
| } |
| } |
| } |
| |
| void CodeGenRegBank::computeDerivedInfo() { |
| computeComposites(); |
| computeSubRegIndexLaneMasks(); |
| |
| // Compute a weight for each register unit created during getSubRegs. |
| // This may create adopted register units (with unit # >= NumNativeRegUnits). |
| computeRegUnitWeights(); |
| |
| // Compute a unique set of RegUnitSets. One for each RegClass and inferred |
| // supersets for the union of overlapping sets. |
| computeRegUnitSets(); |
| } |
| |
| // |
| // Synthesize missing register class intersections. |
| // |
| // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X) |
| // returns a maximal register class for all X. |
| // |
| void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) { |
| for (unsigned rci = 0, rce = RegClasses.size(); rci != rce; ++rci) { |
| CodeGenRegisterClass *RC1 = RC; |
| CodeGenRegisterClass *RC2 = RegClasses[rci]; |
| if (RC1 == RC2) |
| continue; |
| |
| // Compute the set intersection of RC1 and RC2. |
| const CodeGenRegister::Set &Memb1 = RC1->getMembers(); |
| const CodeGenRegister::Set &Memb2 = RC2->getMembers(); |
| CodeGenRegister::Set Intersection; |
| std::set_intersection(Memb1.begin(), Memb1.end(), |
| Memb2.begin(), Memb2.end(), |
| std::inserter(Intersection, Intersection.begin()), |
| CodeGenRegister::Less()); |
| |
| // Skip disjoint class pairs. |
| if (Intersection.empty()) |
| continue; |
| |
| // If RC1 and RC2 have different spill sizes or alignments, use the |
| // larger size for sub-classing. If they are equal, prefer RC1. |
| if (RC2->SpillSize > RC1->SpillSize || |
| (RC2->SpillSize == RC1->SpillSize && |
| RC2->SpillAlignment > RC1->SpillAlignment)) |
| std::swap(RC1, RC2); |
| |
| getOrCreateSubClass(RC1, &Intersection, |
| RC1->getName() + "_and_" + RC2->getName()); |
| } |
| } |
| |
| // |
| // Synthesize missing sub-classes for getSubClassWithSubReg(). |
| // |
| // Make sure that the set of registers in RC with a given SubIdx sub-register |
| // form a register class. Update RC->SubClassWithSubReg. |
| // |
| void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) { |
| // Map SubRegIndex to set of registers in RC supporting that SubRegIndex. |
| typedef std::map<CodeGenSubRegIndex*, CodeGenRegister::Set, |
| CodeGenSubRegIndex::Less> SubReg2SetMap; |
| |
| // Compute the set of registers supporting each SubRegIndex. |
| SubReg2SetMap SRSets; |
| for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(), |
| RE = RC->getMembers().end(); RI != RE; ++RI) { |
| const CodeGenRegister::SubRegMap &SRM = (*RI)->getSubRegs(); |
| for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(), |
| E = SRM.end(); I != E; ++I) |
| SRSets[I->first].insert(*RI); |
| } |
| |
| // Find matching classes for all SRSets entries. Iterate in SubRegIndex |
| // numerical order to visit synthetic indices last. |
| for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) { |
| CodeGenSubRegIndex *SubIdx = SubRegIndices[sri]; |
| SubReg2SetMap::const_iterator I = SRSets.find(SubIdx); |
| // Unsupported SubRegIndex. Skip it. |
| if (I == SRSets.end()) |
| continue; |
| // In most cases, all RC registers support the SubRegIndex. |
| if (I->second.size() == RC->getMembers().size()) { |
| RC->setSubClassWithSubReg(SubIdx, RC); |
| continue; |
| } |
| // This is a real subset. See if we have a matching class. |
| CodeGenRegisterClass *SubRC = |
| getOrCreateSubClass(RC, &I->second, |
| RC->getName() + "_with_" + I->first->getName()); |
| RC->setSubClassWithSubReg(SubIdx, SubRC); |
| } |
| } |
| |
| // |
| // Synthesize missing sub-classes of RC for getMatchingSuperRegClass(). |
| // |
| // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X) |
| // has a maximal result for any SubIdx and any X >= FirstSubRegRC. |
| // |
| |
| void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC, |
| unsigned FirstSubRegRC) { |
| SmallVector<std::pair<const CodeGenRegister*, |
| const CodeGenRegister*>, 16> SSPairs; |
| BitVector TopoSigs(getNumTopoSigs()); |
| |
| // Iterate in SubRegIndex numerical order to visit synthetic indices last. |
| for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) { |
| CodeGenSubRegIndex *SubIdx = SubRegIndices[sri]; |
| // Skip indexes that aren't fully supported by RC's registers. This was |
| // computed by inferSubClassWithSubReg() above which should have been |
| // called first. |
| if (RC->getSubClassWithSubReg(SubIdx) != RC) |
| continue; |
| |
| // Build list of (Super, Sub) pairs for this SubIdx. |
| SSPairs.clear(); |
| TopoSigs.reset(); |
| for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(), |
| RE = RC->getMembers().end(); RI != RE; ++RI) { |
| const CodeGenRegister *Super = *RI; |
| const CodeGenRegister *Sub = Super->getSubRegs().find(SubIdx)->second; |
| assert(Sub && "Missing sub-register"); |
| SSPairs.push_back(std::make_pair(Super, Sub)); |
| TopoSigs.set(Sub->getTopoSig()); |
| } |
| |
| // Iterate over sub-register class candidates. Ignore classes created by |
| // this loop. They will never be useful. |
| for (unsigned rci = FirstSubRegRC, rce = RegClasses.size(); rci != rce; |
| ++rci) { |
| CodeGenRegisterClass *SubRC = RegClasses[rci]; |
| // Topological shortcut: SubRC members have the wrong shape. |
| if (!TopoSigs.anyCommon(SubRC->getTopoSigs())) |
| continue; |
| // Compute the subset of RC that maps into SubRC. |
| CodeGenRegister::Set SubSet; |
| for (unsigned i = 0, e = SSPairs.size(); i != e; ++i) |
| if (SubRC->contains(SSPairs[i].second)) |
| SubSet.insert(SSPairs[i].first); |
| if (SubSet.empty()) |
| continue; |
| // RC injects completely into SubRC. |
| if (SubSet.size() == SSPairs.size()) { |
| SubRC->addSuperRegClass(SubIdx, RC); |
| continue; |
| } |
| // Only a subset of RC maps into SubRC. Make sure it is represented by a |
| // class. |
| getOrCreateSubClass(RC, &SubSet, RC->getName() + |
| "_with_" + SubIdx->getName() + |
| "_in_" + SubRC->getName()); |
| } |
| } |
| } |
| |
| |
| // |
| // Infer missing register classes. |
| // |
| void CodeGenRegBank::computeInferredRegisterClasses() { |
| // When this function is called, the register classes have not been sorted |
| // and assigned EnumValues yet. That means getSubClasses(), |
| // getSuperClasses(), and hasSubClass() functions are defunct. |
| unsigned FirstNewRC = RegClasses.size(); |
| |
| // Visit all register classes, including the ones being added by the loop. |
| for (unsigned rci = 0; rci != RegClasses.size(); ++rci) { |
| CodeGenRegisterClass *RC = RegClasses[rci]; |
| |
| // Synthesize answers for getSubClassWithSubReg(). |
| inferSubClassWithSubReg(RC); |
| |
| // Synthesize answers for getCommonSubClass(). |
| inferCommonSubClass(RC); |
| |
| // Synthesize answers for getMatchingSuperRegClass(). |
| inferMatchingSuperRegClass(RC); |
| |
| // New register classes are created while this loop is running, and we need |
| // to visit all of them. I particular, inferMatchingSuperRegClass needs |
| // to match old super-register classes with sub-register classes created |
| // after inferMatchingSuperRegClass was called. At this point, |
| // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC = |
| // [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci]. |
| if (rci + 1 == FirstNewRC) { |
| unsigned NextNewRC = RegClasses.size(); |
| for (unsigned rci2 = 0; rci2 != FirstNewRC; ++rci2) |
| inferMatchingSuperRegClass(RegClasses[rci2], FirstNewRC); |
| FirstNewRC = NextNewRC; |
| } |
| } |
| } |
| |
| /// getRegisterClassForRegister - Find the register class that contains the |
| /// specified physical register. If the register is not in a register class, |
| /// return null. If the register is in multiple classes, and the classes have a |
| /// superset-subset relationship and the same set of types, return the |
| /// superclass. Otherwise return null. |
| const CodeGenRegisterClass* |
| CodeGenRegBank::getRegClassForRegister(Record *R) { |
| const CodeGenRegister *Reg = getReg(R); |
| ArrayRef<CodeGenRegisterClass*> RCs = getRegClasses(); |
| const CodeGenRegisterClass *FoundRC = 0; |
| for (unsigned i = 0, e = RCs.size(); i != e; ++i) { |
| const CodeGenRegisterClass &RC = *RCs[i]; |
| if (!RC.contains(Reg)) |
| continue; |
| |
| // If this is the first class that contains the register, |
| // make a note of it and go on to the next class. |
| if (!FoundRC) { |
| FoundRC = &RC; |
| continue; |
| } |
| |
| // If a register's classes have different types, return null. |
| if (RC.getValueTypes() != FoundRC->getValueTypes()) |
| return 0; |
| |
| // Check to see if the previously found class that contains |
| // the register is a subclass of the current class. If so, |
| // prefer the superclass. |
| if (RC.hasSubClass(FoundRC)) { |
| FoundRC = &RC; |
| continue; |
| } |
| |
| // Check to see if the previously found class that contains |
| // the register is a superclass of the current class. If so, |
| // prefer the superclass. |
| if (FoundRC->hasSubClass(&RC)) |
| continue; |
| |
| // Multiple classes, and neither is a superclass of the other. |
| // Return null. |
| return 0; |
| } |
| return FoundRC; |
| } |
| |
| BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) { |
| SetVector<const CodeGenRegister*> Set; |
| |
| // First add Regs with all sub-registers. |
| for (unsigned i = 0, e = Regs.size(); i != e; ++i) { |
| CodeGenRegister *Reg = getReg(Regs[i]); |
| if (Set.insert(Reg)) |
| // Reg is new, add all sub-registers. |
| // The pre-ordering is not important here. |
| Reg->addSubRegsPreOrder(Set, *this); |
| } |
| |
| // Second, find all super-registers that are completely covered by the set. |
| for (unsigned i = 0; i != Set.size(); ++i) { |
| const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs(); |
| for (unsigned j = 0, e = SR.size(); j != e; ++j) { |
| const CodeGenRegister *Super = SR[j]; |
| if (!Super->CoveredBySubRegs || Set.count(Super)) |
| continue; |
| // This new super-register is covered by its sub-registers. |
| bool AllSubsInSet = true; |
| const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs(); |
| for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(), |
| E = SRM.end(); I != E; ++I) |
| if (!Set.count(I->second)) { |
| AllSubsInSet = false; |
| break; |
| } |
| // All sub-registers in Set, add Super as well. |
| // We will visit Super later to recheck its super-registers. |
| if (AllSubsInSet) |
| Set.insert(Super); |
| } |
| } |
| |
| // Convert to BitVector. |
| BitVector BV(Registers.size() + 1); |
| for (unsigned i = 0, e = Set.size(); i != e; ++i) |
| BV.set(Set[i]->EnumValue); |
| return BV; |
| } |