| //===-- ConstantRange.cpp - ConstantRange implementation ------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Represent a range of possible values that may occur when the program is run |
| // for an integral value. This keeps track of a lower and upper bound for the |
| // constant, which MAY wrap around the end of the numeric range. To do this, it |
| // keeps track of a [lower, upper) bound, which specifies an interval just like |
| // STL iterators. When used with boolean values, the following are important |
| // ranges (other integral ranges use min/max values for special range values): |
| // |
| // [F, F) = {} = Empty set |
| // [T, F) = {T} |
| // [F, T) = {F} |
| // [T, T) = {F, T} = Full set |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/Support/ConstantRange.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| using namespace llvm; |
| |
| /// Initialize a full (the default) or empty set for the specified type. |
| /// |
| ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) { |
| if (Full) |
| Lower = Upper = APInt::getMaxValue(BitWidth); |
| else |
| Lower = Upper = APInt::getMinValue(BitWidth); |
| } |
| |
| /// Initialize a range to hold the single specified value. |
| /// |
| ConstantRange::ConstantRange(const APInt &V) : Lower(V), Upper(V + 1) {} |
| |
| ConstantRange::ConstantRange(const APInt &L, const APInt &U) : |
| Lower(L), Upper(U) { |
| assert(L.getBitWidth() == U.getBitWidth() && |
| "ConstantRange with unequal bit widths"); |
| assert((L != U || (L.isMaxValue() || L.isMinValue())) && |
| "Lower == Upper, but they aren't min or max value!"); |
| } |
| |
| ConstantRange ConstantRange::makeICmpRegion(unsigned Pred, |
| const ConstantRange &CR) { |
| if (CR.isEmptySet()) |
| return CR; |
| |
| uint32_t W = CR.getBitWidth(); |
| switch (Pred) { |
| default: llvm_unreachable("Invalid ICmp predicate to makeICmpRegion()"); |
| case CmpInst::ICMP_EQ: |
| return CR; |
| case CmpInst::ICMP_NE: |
| if (CR.isSingleElement()) |
| return ConstantRange(CR.getUpper(), CR.getLower()); |
| return ConstantRange(W); |
| case CmpInst::ICMP_ULT: { |
| APInt UMax(CR.getUnsignedMax()); |
| if (UMax.isMinValue()) |
| return ConstantRange(W, /* empty */ false); |
| return ConstantRange(APInt::getMinValue(W), UMax); |
| } |
| case CmpInst::ICMP_SLT: { |
| APInt SMax(CR.getSignedMax()); |
| if (SMax.isMinSignedValue()) |
| return ConstantRange(W, /* empty */ false); |
| return ConstantRange(APInt::getSignedMinValue(W), SMax); |
| } |
| case CmpInst::ICMP_ULE: { |
| APInt UMax(CR.getUnsignedMax()); |
| if (UMax.isMaxValue()) |
| return ConstantRange(W); |
| return ConstantRange(APInt::getMinValue(W), UMax + 1); |
| } |
| case CmpInst::ICMP_SLE: { |
| APInt SMax(CR.getSignedMax()); |
| if (SMax.isMaxSignedValue()) |
| return ConstantRange(W); |
| return ConstantRange(APInt::getSignedMinValue(W), SMax + 1); |
| } |
| case CmpInst::ICMP_UGT: { |
| APInt UMin(CR.getUnsignedMin()); |
| if (UMin.isMaxValue()) |
| return ConstantRange(W, /* empty */ false); |
| return ConstantRange(UMin + 1, APInt::getNullValue(W)); |
| } |
| case CmpInst::ICMP_SGT: { |
| APInt SMin(CR.getSignedMin()); |
| if (SMin.isMaxSignedValue()) |
| return ConstantRange(W, /* empty */ false); |
| return ConstantRange(SMin + 1, APInt::getSignedMinValue(W)); |
| } |
| case CmpInst::ICMP_UGE: { |
| APInt UMin(CR.getUnsignedMin()); |
| if (UMin.isMinValue()) |
| return ConstantRange(W); |
| return ConstantRange(UMin, APInt::getNullValue(W)); |
| } |
| case CmpInst::ICMP_SGE: { |
| APInt SMin(CR.getSignedMin()); |
| if (SMin.isMinSignedValue()) |
| return ConstantRange(W); |
| return ConstantRange(SMin, APInt::getSignedMinValue(W)); |
| } |
| } |
| } |
| |
| /// isFullSet - Return true if this set contains all of the elements possible |
| /// for this data-type |
| bool ConstantRange::isFullSet() const { |
| return Lower == Upper && Lower.isMaxValue(); |
| } |
| |
| /// isEmptySet - Return true if this set contains no members. |
| /// |
| bool ConstantRange::isEmptySet() const { |
| return Lower == Upper && Lower.isMinValue(); |
| } |
| |
| /// isWrappedSet - Return true if this set wraps around the top of the range, |
| /// for example: [100, 8) |
| /// |
| bool ConstantRange::isWrappedSet() const { |
| return Lower.ugt(Upper); |
| } |
| |
| /// isSignWrappedSet - Return true if this set wraps around the INT_MIN of |
| /// its bitwidth, for example: i8 [120, 140). |
| /// |
| bool ConstantRange::isSignWrappedSet() const { |
| return contains(APInt::getSignedMaxValue(getBitWidth())) && |
| contains(APInt::getSignedMinValue(getBitWidth())); |
| } |
| |
| /// getSetSize - Return the number of elements in this set. |
| /// |
| APInt ConstantRange::getSetSize() const { |
| if (isEmptySet()) |
| return APInt(getBitWidth()+1, 0); |
| |
| if (isFullSet()) { |
| APInt Size(getBitWidth()+1, 0); |
| Size.setBit(getBitWidth()); |
| return Size; |
| } |
| |
| // This is also correct for wrapped sets. |
| return (Upper - Lower).zext(getBitWidth()+1); |
| } |
| |
| /// getUnsignedMax - Return the largest unsigned value contained in the |
| /// ConstantRange. |
| /// |
| APInt ConstantRange::getUnsignedMax() const { |
| if (isFullSet() || isWrappedSet()) |
| return APInt::getMaxValue(getBitWidth()); |
| return getUpper() - 1; |
| } |
| |
| /// getUnsignedMin - Return the smallest unsigned value contained in the |
| /// ConstantRange. |
| /// |
| APInt ConstantRange::getUnsignedMin() const { |
| if (isFullSet() || (isWrappedSet() && getUpper() != 0)) |
| return APInt::getMinValue(getBitWidth()); |
| return getLower(); |
| } |
| |
| /// getSignedMax - Return the largest signed value contained in the |
| /// ConstantRange. |
| /// |
| APInt ConstantRange::getSignedMax() const { |
| APInt SignedMax(APInt::getSignedMaxValue(getBitWidth())); |
| if (!isWrappedSet()) { |
| if (getLower().sle(getUpper() - 1)) |
| return getUpper() - 1; |
| return SignedMax; |
| } |
| if (getLower().isNegative() == getUpper().isNegative()) |
| return SignedMax; |
| return getUpper() - 1; |
| } |
| |
| /// getSignedMin - Return the smallest signed value contained in the |
| /// ConstantRange. |
| /// |
| APInt ConstantRange::getSignedMin() const { |
| APInt SignedMin(APInt::getSignedMinValue(getBitWidth())); |
| if (!isWrappedSet()) { |
| if (getLower().sle(getUpper() - 1)) |
| return getLower(); |
| return SignedMin; |
| } |
| if ((getUpper() - 1).slt(getLower())) { |
| if (getUpper() != SignedMin) |
| return SignedMin; |
| } |
| return getLower(); |
| } |
| |
| /// contains - Return true if the specified value is in the set. |
| /// |
| bool ConstantRange::contains(const APInt &V) const { |
| if (Lower == Upper) |
| return isFullSet(); |
| |
| if (!isWrappedSet()) |
| return Lower.ule(V) && V.ult(Upper); |
| return Lower.ule(V) || V.ult(Upper); |
| } |
| |
| /// contains - Return true if the argument is a subset of this range. |
| /// Two equal sets contain each other. The empty set contained by all other |
| /// sets. |
| /// |
| bool ConstantRange::contains(const ConstantRange &Other) const { |
| if (isFullSet() || Other.isEmptySet()) return true; |
| if (isEmptySet() || Other.isFullSet()) return false; |
| |
| if (!isWrappedSet()) { |
| if (Other.isWrappedSet()) |
| return false; |
| |
| return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper); |
| } |
| |
| if (!Other.isWrappedSet()) |
| return Other.getUpper().ule(Upper) || |
| Lower.ule(Other.getLower()); |
| |
| return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower()); |
| } |
| |
| /// subtract - Subtract the specified constant from the endpoints of this |
| /// constant range. |
| ConstantRange ConstantRange::subtract(const APInt &Val) const { |
| assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width"); |
| // If the set is empty or full, don't modify the endpoints. |
| if (Lower == Upper) |
| return *this; |
| return ConstantRange(Lower - Val, Upper - Val); |
| } |
| |
| /// \brief Subtract the specified range from this range (aka relative complement |
| /// of the sets). |
| ConstantRange ConstantRange::difference(const ConstantRange &CR) const { |
| return intersectWith(CR.inverse()); |
| } |
| |
| /// intersectWith - Return the range that results from the intersection of this |
| /// range with another range. The resultant range is guaranteed to include all |
| /// elements contained in both input ranges, and to have the smallest possible |
| /// set size that does so. Because there may be two intersections with the |
| /// same set size, A.intersectWith(B) might not be equal to B.intersectWith(A). |
| ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const { |
| assert(getBitWidth() == CR.getBitWidth() && |
| "ConstantRange types don't agree!"); |
| |
| // Handle common cases. |
| if ( isEmptySet() || CR.isFullSet()) return *this; |
| if (CR.isEmptySet() || isFullSet()) return CR; |
| |
| if (!isWrappedSet() && CR.isWrappedSet()) |
| return CR.intersectWith(*this); |
| |
| if (!isWrappedSet() && !CR.isWrappedSet()) { |
| if (Lower.ult(CR.Lower)) { |
| if (Upper.ule(CR.Lower)) |
| return ConstantRange(getBitWidth(), false); |
| |
| if (Upper.ult(CR.Upper)) |
| return ConstantRange(CR.Lower, Upper); |
| |
| return CR; |
| } |
| if (Upper.ult(CR.Upper)) |
| return *this; |
| |
| if (Lower.ult(CR.Upper)) |
| return ConstantRange(Lower, CR.Upper); |
| |
| return ConstantRange(getBitWidth(), false); |
| } |
| |
| if (isWrappedSet() && !CR.isWrappedSet()) { |
| if (CR.Lower.ult(Upper)) { |
| if (CR.Upper.ult(Upper)) |
| return CR; |
| |
| if (CR.Upper.ule(Lower)) |
| return ConstantRange(CR.Lower, Upper); |
| |
| if (getSetSize().ult(CR.getSetSize())) |
| return *this; |
| return CR; |
| } |
| if (CR.Lower.ult(Lower)) { |
| if (CR.Upper.ule(Lower)) |
| return ConstantRange(getBitWidth(), false); |
| |
| return ConstantRange(Lower, CR.Upper); |
| } |
| return CR; |
| } |
| |
| if (CR.Upper.ult(Upper)) { |
| if (CR.Lower.ult(Upper)) { |
| if (getSetSize().ult(CR.getSetSize())) |
| return *this; |
| return CR; |
| } |
| |
| if (CR.Lower.ult(Lower)) |
| return ConstantRange(Lower, CR.Upper); |
| |
| return CR; |
| } |
| if (CR.Upper.ule(Lower)) { |
| if (CR.Lower.ult(Lower)) |
| return *this; |
| |
| return ConstantRange(CR.Lower, Upper); |
| } |
| if (getSetSize().ult(CR.getSetSize())) |
| return *this; |
| return CR; |
| } |
| |
| |
| /// unionWith - Return the range that results from the union of this range with |
| /// another range. The resultant range is guaranteed to include the elements of |
| /// both sets, but may contain more. For example, [3, 9) union [12,15) is |
| /// [3, 15), which includes 9, 10, and 11, which were not included in either |
| /// set before. |
| /// |
| ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const { |
| assert(getBitWidth() == CR.getBitWidth() && |
| "ConstantRange types don't agree!"); |
| |
| if ( isFullSet() || CR.isEmptySet()) return *this; |
| if (CR.isFullSet() || isEmptySet()) return CR; |
| |
| if (!isWrappedSet() && CR.isWrappedSet()) return CR.unionWith(*this); |
| |
| if (!isWrappedSet() && !CR.isWrappedSet()) { |
| if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower)) { |
| // If the two ranges are disjoint, find the smaller gap and bridge it. |
| APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper; |
| if (d1.ult(d2)) |
| return ConstantRange(Lower, CR.Upper); |
| return ConstantRange(CR.Lower, Upper); |
| } |
| |
| APInt L = Lower, U = Upper; |
| if (CR.Lower.ult(L)) |
| L = CR.Lower; |
| if ((CR.Upper - 1).ugt(U - 1)) |
| U = CR.Upper; |
| |
| if (L == 0 && U == 0) |
| return ConstantRange(getBitWidth()); |
| |
| return ConstantRange(L, U); |
| } |
| |
| if (!CR.isWrappedSet()) { |
| // ------U L----- and ------U L----- : this |
| // L--U L--U : CR |
| if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower)) |
| return *this; |
| |
| // ------U L----- : this |
| // L---------U : CR |
| if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper)) |
| return ConstantRange(getBitWidth()); |
| |
| // ----U L---- : this |
| // L---U : CR |
| // <d1> <d2> |
| if (Upper.ule(CR.Lower) && CR.Upper.ule(Lower)) { |
| APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper; |
| if (d1.ult(d2)) |
| return ConstantRange(Lower, CR.Upper); |
| return ConstantRange(CR.Lower, Upper); |
| } |
| |
| // ----U L----- : this |
| // L----U : CR |
| if (Upper.ult(CR.Lower) && Lower.ult(CR.Upper)) |
| return ConstantRange(CR.Lower, Upper); |
| |
| // ------U L---- : this |
| // L-----U : CR |
| assert(CR.Lower.ult(Upper) && CR.Upper.ult(Lower) && |
| "ConstantRange::unionWith missed a case with one range wrapped"); |
| return ConstantRange(Lower, CR.Upper); |
| } |
| |
| // ------U L---- and ------U L---- : this |
| // -U L----------- and ------------U L : CR |
| if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper)) |
| return ConstantRange(getBitWidth()); |
| |
| APInt L = Lower, U = Upper; |
| if (CR.Upper.ugt(U)) |
| U = CR.Upper; |
| if (CR.Lower.ult(L)) |
| L = CR.Lower; |
| |
| return ConstantRange(L, U); |
| } |
| |
| /// zeroExtend - Return a new range in the specified integer type, which must |
| /// be strictly larger than the current type. The returned range will |
| /// correspond to the possible range of values as if the source range had been |
| /// zero extended. |
| ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const { |
| if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false); |
| |
| unsigned SrcTySize = getBitWidth(); |
| assert(SrcTySize < DstTySize && "Not a value extension"); |
| if (isFullSet() || isWrappedSet()) { |
| // Change into [0, 1 << src bit width) |
| APInt LowerExt(DstTySize, 0); |
| if (!Upper) // special case: [X, 0) -- not really wrapping around |
| LowerExt = Lower.zext(DstTySize); |
| return ConstantRange(LowerExt, APInt(DstTySize, 1).shl(SrcTySize)); |
| } |
| |
| return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize)); |
| } |
| |
| /// signExtend - Return a new range in the specified integer type, which must |
| /// be strictly larger than the current type. The returned range will |
| /// correspond to the possible range of values as if the source range had been |
| /// sign extended. |
| ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const { |
| if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false); |
| |
| unsigned SrcTySize = getBitWidth(); |
| assert(SrcTySize < DstTySize && "Not a value extension"); |
| if (isFullSet() || isSignWrappedSet()) { |
| return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1), |
| APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1); |
| } |
| |
| return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize)); |
| } |
| |
| /// truncate - Return a new range in the specified integer type, which must be |
| /// strictly smaller than the current type. The returned range will |
| /// correspond to the possible range of values as if the source range had been |
| /// truncated to the specified type. |
| ConstantRange ConstantRange::truncate(uint32_t DstTySize) const { |
| assert(getBitWidth() > DstTySize && "Not a value truncation"); |
| if (isEmptySet()) |
| return ConstantRange(DstTySize, /*isFullSet=*/false); |
| if (isFullSet()) |
| return ConstantRange(DstTySize, /*isFullSet=*/true); |
| |
| APInt MaxValue = APInt::getMaxValue(DstTySize).zext(getBitWidth()); |
| APInt MaxBitValue(getBitWidth(), 0); |
| MaxBitValue.setBit(DstTySize); |
| |
| APInt LowerDiv(Lower), UpperDiv(Upper); |
| ConstantRange Union(DstTySize, /*isFullSet=*/false); |
| |
| // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue] |
| // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and |
| // then we do the union with [MaxValue, Upper) |
| if (isWrappedSet()) { |
| // if Upper is greater than Max Value, it covers the whole truncated range. |
| if (Upper.uge(MaxValue)) |
| return ConstantRange(DstTySize, /*isFullSet=*/true); |
| |
| Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize)); |
| UpperDiv = APInt::getMaxValue(getBitWidth()); |
| |
| // Union covers the MaxValue case, so return if the remaining range is just |
| // MaxValue. |
| if (LowerDiv == UpperDiv) |
| return Union; |
| } |
| |
| // Chop off the most significant bits that are past the destination bitwidth. |
| if (LowerDiv.uge(MaxValue)) { |
| APInt Div(getBitWidth(), 0); |
| APInt::udivrem(LowerDiv, MaxBitValue, Div, LowerDiv); |
| UpperDiv = UpperDiv - MaxBitValue * Div; |
| } |
| |
| if (UpperDiv.ule(MaxValue)) |
| return ConstantRange(LowerDiv.trunc(DstTySize), |
| UpperDiv.trunc(DstTySize)).unionWith(Union); |
| |
| // The truncated value wrapps around. Check if we can do better than fullset. |
| APInt UpperModulo = UpperDiv - MaxBitValue; |
| if (UpperModulo.ult(LowerDiv)) |
| return ConstantRange(LowerDiv.trunc(DstTySize), |
| UpperModulo.trunc(DstTySize)).unionWith(Union); |
| |
| return ConstantRange(DstTySize, /*isFullSet=*/true); |
| } |
| |
| /// zextOrTrunc - make this range have the bit width given by \p DstTySize. The |
| /// value is zero extended, truncated, or left alone to make it that width. |
| ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const { |
| unsigned SrcTySize = getBitWidth(); |
| if (SrcTySize > DstTySize) |
| return truncate(DstTySize); |
| if (SrcTySize < DstTySize) |
| return zeroExtend(DstTySize); |
| return *this; |
| } |
| |
| /// sextOrTrunc - make this range have the bit width given by \p DstTySize. The |
| /// value is sign extended, truncated, or left alone to make it that width. |
| ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const { |
| unsigned SrcTySize = getBitWidth(); |
| if (SrcTySize > DstTySize) |
| return truncate(DstTySize); |
| if (SrcTySize < DstTySize) |
| return signExtend(DstTySize); |
| return *this; |
| } |
| |
| ConstantRange |
| ConstantRange::add(const ConstantRange &Other) const { |
| if (isEmptySet() || Other.isEmptySet()) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/false); |
| if (isFullSet() || Other.isFullSet()) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/true); |
| |
| APInt Spread_X = getSetSize(), Spread_Y = Other.getSetSize(); |
| APInt NewLower = getLower() + Other.getLower(); |
| APInt NewUpper = getUpper() + Other.getUpper() - 1; |
| if (NewLower == NewUpper) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/true); |
| |
| ConstantRange X = ConstantRange(NewLower, NewUpper); |
| if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y)) |
| // We've wrapped, therefore, full set. |
| return ConstantRange(getBitWidth(), /*isFullSet=*/true); |
| |
| return X; |
| } |
| |
| ConstantRange |
| ConstantRange::sub(const ConstantRange &Other) const { |
| if (isEmptySet() || Other.isEmptySet()) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/false); |
| if (isFullSet() || Other.isFullSet()) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/true); |
| |
| APInt Spread_X = getSetSize(), Spread_Y = Other.getSetSize(); |
| APInt NewLower = getLower() - Other.getUpper() + 1; |
| APInt NewUpper = getUpper() - Other.getLower(); |
| if (NewLower == NewUpper) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/true); |
| |
| ConstantRange X = ConstantRange(NewLower, NewUpper); |
| if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y)) |
| // We've wrapped, therefore, full set. |
| return ConstantRange(getBitWidth(), /*isFullSet=*/true); |
| |
| return X; |
| } |
| |
| ConstantRange |
| ConstantRange::multiply(const ConstantRange &Other) const { |
| // TODO: If either operand is a single element and the multiply is known to |
| // be non-wrapping, round the result min and max value to the appropriate |
| // multiple of that element. If wrapping is possible, at least adjust the |
| // range according to the greatest power-of-two factor of the single element. |
| |
| if (isEmptySet() || Other.isEmptySet()) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/false); |
| |
| APInt this_min = getUnsignedMin().zext(getBitWidth() * 2); |
| APInt this_max = getUnsignedMax().zext(getBitWidth() * 2); |
| APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2); |
| APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2); |
| |
| ConstantRange Result_zext = ConstantRange(this_min * Other_min, |
| this_max * Other_max + 1); |
| return Result_zext.truncate(getBitWidth()); |
| } |
| |
| ConstantRange |
| ConstantRange::smax(const ConstantRange &Other) const { |
| // X smax Y is: range(smax(X_smin, Y_smin), |
| // smax(X_smax, Y_smax)) |
| if (isEmptySet() || Other.isEmptySet()) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/false); |
| APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin()); |
| APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1; |
| if (NewU == NewL) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/true); |
| return ConstantRange(NewL, NewU); |
| } |
| |
| ConstantRange |
| ConstantRange::umax(const ConstantRange &Other) const { |
| // X umax Y is: range(umax(X_umin, Y_umin), |
| // umax(X_umax, Y_umax)) |
| if (isEmptySet() || Other.isEmptySet()) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/false); |
| APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin()); |
| APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1; |
| if (NewU == NewL) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/true); |
| return ConstantRange(NewL, NewU); |
| } |
| |
| ConstantRange |
| ConstantRange::udiv(const ConstantRange &RHS) const { |
| if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax() == 0) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/false); |
| if (RHS.isFullSet()) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/true); |
| |
| APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax()); |
| |
| APInt RHS_umin = RHS.getUnsignedMin(); |
| if (RHS_umin == 0) { |
| // We want the lowest value in RHS excluding zero. Usually that would be 1 |
| // except for a range in the form of [X, 1) in which case it would be X. |
| if (RHS.getUpper() == 1) |
| RHS_umin = RHS.getLower(); |
| else |
| RHS_umin = APInt(getBitWidth(), 1); |
| } |
| |
| APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1; |
| |
| // If the LHS is Full and the RHS is a wrapped interval containing 1 then |
| // this could occur. |
| if (Lower == Upper) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/true); |
| |
| return ConstantRange(Lower, Upper); |
| } |
| |
| ConstantRange |
| ConstantRange::binaryAnd(const ConstantRange &Other) const { |
| if (isEmptySet() || Other.isEmptySet()) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/false); |
| |
| // TODO: replace this with something less conservative |
| |
| APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax()); |
| if (umin.isAllOnesValue()) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/true); |
| return ConstantRange(APInt::getNullValue(getBitWidth()), umin + 1); |
| } |
| |
| ConstantRange |
| ConstantRange::binaryOr(const ConstantRange &Other) const { |
| if (isEmptySet() || Other.isEmptySet()) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/false); |
| |
| // TODO: replace this with something less conservative |
| |
| APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin()); |
| if (umax.isMinValue()) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/true); |
| return ConstantRange(umax, APInt::getNullValue(getBitWidth())); |
| } |
| |
| ConstantRange |
| ConstantRange::shl(const ConstantRange &Other) const { |
| if (isEmptySet() || Other.isEmptySet()) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/false); |
| |
| APInt min = getUnsignedMin().shl(Other.getUnsignedMin()); |
| APInt max = getUnsignedMax().shl(Other.getUnsignedMax()); |
| |
| // there's no overflow! |
| APInt Zeros(getBitWidth(), getUnsignedMax().countLeadingZeros()); |
| if (Zeros.ugt(Other.getUnsignedMax())) |
| return ConstantRange(min, max + 1); |
| |
| // FIXME: implement the other tricky cases |
| return ConstantRange(getBitWidth(), /*isFullSet=*/true); |
| } |
| |
| ConstantRange |
| ConstantRange::lshr(const ConstantRange &Other) const { |
| if (isEmptySet() || Other.isEmptySet()) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/false); |
| |
| APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()); |
| APInt min = getUnsignedMin().lshr(Other.getUnsignedMax()); |
| if (min == max + 1) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/true); |
| |
| return ConstantRange(min, max + 1); |
| } |
| |
| ConstantRange ConstantRange::inverse() const { |
| if (isFullSet()) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/false); |
| if (isEmptySet()) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/true); |
| return ConstantRange(Upper, Lower); |
| } |
| |
| /// print - Print out the bounds to a stream... |
| /// |
| void ConstantRange::print(raw_ostream &OS) const { |
| if (isFullSet()) |
| OS << "full-set"; |
| else if (isEmptySet()) |
| OS << "empty-set"; |
| else |
| OS << "[" << Lower << "," << Upper << ")"; |
| } |
| |
| /// dump - Allow printing from a debugger easily... |
| /// |
| void ConstantRange::dump() const { |
| print(dbgs()); |
| } |