| //===- llvm/ADT/SmallPtrSet.cpp - 'Normally small' pointer set ------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the SmallPtrSet class. See SmallPtrSet.h for an |
| // overview of the algorithm. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/DenseMapInfo.h" |
| #include "llvm/Support/MathExtras.h" |
| #include <algorithm> |
| #include <cstdlib> |
| |
| using namespace llvm; |
| |
| void SmallPtrSetImpl::shrink_and_clear() { |
| assert(!isSmall() && "Can't shrink a small set!"); |
| free(CurArray); |
| |
| // Reduce the number of buckets. |
| CurArraySize = NumElements > 16 ? 1 << (Log2_32_Ceil(NumElements) + 1) : 32; |
| NumElements = NumTombstones = 0; |
| |
| // Install the new array. Clear all the buckets to empty. |
| CurArray = (const void**)malloc(sizeof(void*) * (CurArraySize+1)); |
| assert(CurArray && "Failed to allocate memory?"); |
| memset(CurArray, -1, CurArraySize*sizeof(void*)); |
| |
| // The end pointer, always valid, is set to a valid element to help the |
| // iterator. |
| CurArray[CurArraySize] = 0; |
| } |
| |
| bool SmallPtrSetImpl::insert_imp(const void * Ptr) { |
| if (isSmall()) { |
| // Check to see if it is already in the set. |
| for (const void **APtr = SmallArray, **E = SmallArray+NumElements; |
| APtr != E; ++APtr) |
| if (*APtr == Ptr) |
| return false; |
| |
| // Nope, there isn't. If we stay small, just 'pushback' now. |
| if (NumElements < CurArraySize-1) { |
| SmallArray[NumElements++] = Ptr; |
| return true; |
| } |
| // Otherwise, hit the big set case, which will call grow. |
| } |
| |
| if (NumElements*4 >= CurArraySize*3) { |
| // If more than 3/4 of the array is full, grow. |
| Grow(CurArraySize < 64 ? 128 : CurArraySize*2); |
| } else if (CurArraySize-(NumElements+NumTombstones) < CurArraySize/8) { |
| // If fewer of 1/8 of the array is empty (meaning that many are filled with |
| // tombstones), rehash. |
| Grow(CurArraySize); |
| } |
| |
| // Okay, we know we have space. Find a hash bucket. |
| const void **Bucket = const_cast<const void**>(FindBucketFor(Ptr)); |
| if (*Bucket == Ptr) return false; // Already inserted, good. |
| |
| // Otherwise, insert it! |
| if (*Bucket == getTombstoneMarker()) |
| --NumTombstones; |
| *Bucket = Ptr; |
| ++NumElements; // Track density. |
| return true; |
| } |
| |
| bool SmallPtrSetImpl::erase_imp(const void * Ptr) { |
| if (isSmall()) { |
| // Check to see if it is in the set. |
| for (const void **APtr = SmallArray, **E = SmallArray+NumElements; |
| APtr != E; ++APtr) |
| if (*APtr == Ptr) { |
| // If it is in the set, replace this element. |
| *APtr = E[-1]; |
| E[-1] = getEmptyMarker(); |
| --NumElements; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // Okay, we know we have space. Find a hash bucket. |
| void **Bucket = const_cast<void**>(FindBucketFor(Ptr)); |
| if (*Bucket != Ptr) return false; // Not in the set? |
| |
| // Set this as a tombstone. |
| *Bucket = getTombstoneMarker(); |
| --NumElements; |
| ++NumTombstones; |
| return true; |
| } |
| |
| const void * const *SmallPtrSetImpl::FindBucketFor(const void *Ptr) const { |
| unsigned Bucket = DenseMapInfo<void *>::getHashValue(Ptr) & (CurArraySize-1); |
| unsigned ArraySize = CurArraySize; |
| unsigned ProbeAmt = 1; |
| const void *const *Array = CurArray; |
| const void *const *Tombstone = 0; |
| while (1) { |
| // Found Ptr's bucket? |
| if (Array[Bucket] == Ptr) |
| return Array+Bucket; |
| |
| // If we found an empty bucket, the pointer doesn't exist in the set. |
| // Return a tombstone if we've seen one so far, or the empty bucket if |
| // not. |
| if (Array[Bucket] == getEmptyMarker()) |
| return Tombstone ? Tombstone : Array+Bucket; |
| |
| // If this is a tombstone, remember it. If Ptr ends up not in the set, we |
| // prefer to return it than something that would require more probing. |
| if (Array[Bucket] == getTombstoneMarker() && !Tombstone) |
| Tombstone = Array+Bucket; // Remember the first tombstone found. |
| |
| // It's a hash collision or a tombstone. Reprobe. |
| Bucket = (Bucket + ProbeAmt++) & (ArraySize-1); |
| } |
| } |
| |
| /// Grow - Allocate a larger backing store for the buckets and move it over. |
| /// |
| void SmallPtrSetImpl::Grow(unsigned NewSize) { |
| // Allocate at twice as many buckets, but at least 128. |
| unsigned OldSize = CurArraySize; |
| |
| const void **OldBuckets = CurArray; |
| bool WasSmall = isSmall(); |
| |
| // Install the new array. Clear all the buckets to empty. |
| CurArray = (const void**)malloc(sizeof(void*) * (NewSize+1)); |
| assert(CurArray && "Failed to allocate memory?"); |
| CurArraySize = NewSize; |
| memset(CurArray, -1, NewSize*sizeof(void*)); |
| |
| // The end pointer, always valid, is set to a valid element to help the |
| // iterator. |
| CurArray[NewSize] = 0; |
| |
| // Copy over all the elements. |
| if (WasSmall) { |
| // Small sets store their elements in order. |
| for (const void **BucketPtr = OldBuckets, **E = OldBuckets+NumElements; |
| BucketPtr != E; ++BucketPtr) { |
| const void *Elt = *BucketPtr; |
| *const_cast<void**>(FindBucketFor(Elt)) = const_cast<void*>(Elt); |
| } |
| } else { |
| // Copy over all valid entries. |
| for (const void **BucketPtr = OldBuckets, **E = OldBuckets+OldSize; |
| BucketPtr != E; ++BucketPtr) { |
| // Copy over the element if it is valid. |
| const void *Elt = *BucketPtr; |
| if (Elt != getTombstoneMarker() && Elt != getEmptyMarker()) |
| *const_cast<void**>(FindBucketFor(Elt)) = const_cast<void*>(Elt); |
| } |
| |
| free(OldBuckets); |
| NumTombstones = 0; |
| } |
| } |
| |
| SmallPtrSetImpl::SmallPtrSetImpl(const void **SmallStorage, |
| const SmallPtrSetImpl& that) { |
| SmallArray = SmallStorage; |
| |
| // If we're becoming small, prepare to insert into our stack space |
| if (that.isSmall()) { |
| CurArray = SmallArray; |
| // Otherwise, allocate new heap space (unless we were the same size) |
| } else { |
| CurArray = (const void**)malloc(sizeof(void*) * (that.CurArraySize+1)); |
| assert(CurArray && "Failed to allocate memory?"); |
| } |
| |
| // Copy over the new array size |
| CurArraySize = that.CurArraySize; |
| |
| // Copy over the contents from the other set |
| memcpy(CurArray, that.CurArray, sizeof(void*)*(CurArraySize+1)); |
| |
| NumElements = that.NumElements; |
| NumTombstones = that.NumTombstones; |
| } |
| |
| /// CopyFrom - implement operator= from a smallptrset that has the same pointer |
| /// type, but may have a different small size. |
| void SmallPtrSetImpl::CopyFrom(const SmallPtrSetImpl &RHS) { |
| if (isSmall() && RHS.isSmall()) |
| assert(CurArraySize == RHS.CurArraySize && |
| "Cannot assign sets with different small sizes"); |
| |
| // If we're becoming small, prepare to insert into our stack space |
| if (RHS.isSmall()) { |
| if (!isSmall()) |
| free(CurArray); |
| CurArray = SmallArray; |
| // Otherwise, allocate new heap space (unless we were the same size) |
| } else if (CurArraySize != RHS.CurArraySize) { |
| if (isSmall()) |
| CurArray = (const void**)malloc(sizeof(void*) * (RHS.CurArraySize+1)); |
| else |
| CurArray = (const void**)realloc(CurArray, sizeof(void*)*(RHS.CurArraySize+1)); |
| assert(CurArray && "Failed to allocate memory?"); |
| } |
| |
| // Copy over the new array size |
| CurArraySize = RHS.CurArraySize; |
| |
| // Copy over the contents from the other set |
| memcpy(CurArray, RHS.CurArray, sizeof(void*)*(CurArraySize+1)); |
| |
| NumElements = RHS.NumElements; |
| NumTombstones = RHS.NumTombstones; |
| } |
| |
| void SmallPtrSetImpl::swap(SmallPtrSetImpl &RHS) { |
| if (this == &RHS) return; |
| |
| // We can only avoid copying elements if neither set is small. |
| if (!this->isSmall() && !RHS.isSmall()) { |
| std::swap(this->CurArray, RHS.CurArray); |
| std::swap(this->CurArraySize, RHS.CurArraySize); |
| std::swap(this->NumElements, RHS.NumElements); |
| std::swap(this->NumTombstones, RHS.NumTombstones); |
| return; |
| } |
| |
| // FIXME: From here on we assume that both sets have the same small size. |
| |
| // If only RHS is small, copy the small elements into LHS and move the pointer |
| // from LHS to RHS. |
| if (!this->isSmall() && RHS.isSmall()) { |
| std::copy(RHS.SmallArray, RHS.SmallArray+RHS.CurArraySize, |
| this->SmallArray); |
| std::swap(this->NumElements, RHS.NumElements); |
| std::swap(this->CurArraySize, RHS.CurArraySize); |
| RHS.CurArray = this->CurArray; |
| RHS.NumTombstones = this->NumTombstones; |
| this->CurArray = this->SmallArray; |
| this->NumTombstones = 0; |
| return; |
| } |
| |
| // If only LHS is small, copy the small elements into RHS and move the pointer |
| // from RHS to LHS. |
| if (this->isSmall() && !RHS.isSmall()) { |
| std::copy(this->SmallArray, this->SmallArray+this->CurArraySize, |
| RHS.SmallArray); |
| std::swap(RHS.NumElements, this->NumElements); |
| std::swap(RHS.CurArraySize, this->CurArraySize); |
| this->CurArray = RHS.CurArray; |
| this->NumTombstones = RHS.NumTombstones; |
| RHS.CurArray = RHS.SmallArray; |
| RHS.NumTombstones = 0; |
| return; |
| } |
| |
| // Both a small, just swap the small elements. |
| assert(this->isSmall() && RHS.isSmall()); |
| assert(this->CurArraySize == RHS.CurArraySize); |
| std::swap_ranges(this->SmallArray, this->SmallArray+this->CurArraySize, |
| RHS.SmallArray); |
| std::swap(this->NumElements, RHS.NumElements); |
| } |
| |
| SmallPtrSetImpl::~SmallPtrSetImpl() { |
| if (!isSmall()) |
| free(CurArray); |
| } |