| //===-- llvm-stress.cpp - Generate random LL files to stress-test LLVM ----===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This program is a utility that generates random .ll files to stress-test |
| // different components in LLVM. |
| // |
| //===----------------------------------------------------------------------===// |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/ADT/OwningPtr.h" |
| #include "llvm/Analysis/CallGraphSCCPass.h" |
| #include "llvm/Analysis/Verifier.h" |
| #include "llvm/Assembly/PrintModulePass.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/PassManager.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ManagedStatic.h" |
| #include "llvm/Support/PassNameParser.h" |
| #include "llvm/Support/PluginLoader.h" |
| #include "llvm/Support/PrettyStackTrace.h" |
| #include "llvm/Support/ToolOutputFile.h" |
| #include <algorithm> |
| #include <set> |
| #include <sstream> |
| #include <vector> |
| using namespace llvm; |
| |
| static cl::opt<unsigned> SeedCL("seed", |
| cl::desc("Seed used for randomness"), cl::init(0)); |
| static cl::opt<unsigned> SizeCL("size", |
| cl::desc("The estimated size of the generated function (# of instrs)"), |
| cl::init(100)); |
| static cl::opt<std::string> |
| OutputFilename("o", cl::desc("Override output filename"), |
| cl::value_desc("filename")); |
| |
| static cl::opt<bool> GenHalfFloat("generate-half-float", |
| cl::desc("Generate half-length floating-point values"), cl::init(false)); |
| static cl::opt<bool> GenX86FP80("generate-x86-fp80", |
| cl::desc("Generate 80-bit X86 floating-point values"), cl::init(false)); |
| static cl::opt<bool> GenFP128("generate-fp128", |
| cl::desc("Generate 128-bit floating-point values"), cl::init(false)); |
| static cl::opt<bool> GenPPCFP128("generate-ppc-fp128", |
| cl::desc("Generate 128-bit PPC floating-point values"), cl::init(false)); |
| static cl::opt<bool> GenX86MMX("generate-x86-mmx", |
| cl::desc("Generate X86 MMX floating-point values"), cl::init(false)); |
| |
| /// A utility class to provide a pseudo-random number generator which is |
| /// the same across all platforms. This is somewhat close to the libc |
| /// implementation. Note: This is not a cryptographically secure pseudorandom |
| /// number generator. |
| class Random { |
| public: |
| /// C'tor |
| Random(unsigned _seed):Seed(_seed) {} |
| |
| /// Return a random integer, up to a |
| /// maximum of 2**19 - 1. |
| uint32_t Rand() { |
| uint32_t Val = Seed + 0x000b07a1; |
| Seed = (Val * 0x3c7c0ac1); |
| // Only lowest 19 bits are random-ish. |
| return Seed & 0x7ffff; |
| } |
| |
| /// Return a random 32 bit integer. |
| uint32_t Rand32() { |
| uint32_t Val = Rand(); |
| Val &= 0xffff; |
| return Val | (Rand() << 16); |
| } |
| |
| /// Return a random 64 bit integer. |
| uint64_t Rand64() { |
| uint64_t Val = Rand32(); |
| return Val | (uint64_t(Rand32()) << 32); |
| } |
| |
| /// Rand operator for STL algorithms. |
| ptrdiff_t operator()(ptrdiff_t y) { |
| return Rand64() % y; |
| } |
| |
| private: |
| unsigned Seed; |
| }; |
| |
| /// Generate an empty function with a default argument list. |
| Function *GenEmptyFunction(Module *M) { |
| // Type Definitions |
| std::vector<Type*> ArgsTy; |
| // Define a few arguments |
| LLVMContext &Context = M->getContext(); |
| ArgsTy.push_back(PointerType::get(IntegerType::getInt8Ty(Context), 0)); |
| ArgsTy.push_back(PointerType::get(IntegerType::getInt32Ty(Context), 0)); |
| ArgsTy.push_back(PointerType::get(IntegerType::getInt64Ty(Context), 0)); |
| ArgsTy.push_back(IntegerType::getInt32Ty(Context)); |
| ArgsTy.push_back(IntegerType::getInt64Ty(Context)); |
| ArgsTy.push_back(IntegerType::getInt8Ty(Context)); |
| |
| FunctionType *FuncTy = FunctionType::get(Type::getVoidTy(Context), ArgsTy, 0); |
| // Pick a unique name to describe the input parameters |
| std::stringstream ss; |
| ss<<"autogen_SD"<<SeedCL; |
| Function *Func = Function::Create(FuncTy, GlobalValue::ExternalLinkage, |
| ss.str(), M); |
| |
| Func->setCallingConv(CallingConv::C); |
| return Func; |
| } |
| |
| /// A base class, implementing utilities needed for |
| /// modifying and adding new random instructions. |
| struct Modifier { |
| /// Used to store the randomly generated values. |
| typedef std::vector<Value*> PieceTable; |
| |
| public: |
| /// C'tor |
| Modifier(BasicBlock *Block, PieceTable *PT, Random *R): |
| BB(Block),PT(PT),Ran(R),Context(BB->getContext()) {} |
| |
| /// virtual D'tor to silence warnings. |
| virtual ~Modifier() {} |
| |
| /// Add a new instruction. |
| virtual void Act() = 0; |
| /// Add N new instructions, |
| virtual void ActN(unsigned n) { |
| for (unsigned i=0; i<n; ++i) |
| Act(); |
| } |
| |
| protected: |
| /// Return a random value from the list of known values. |
| Value *getRandomVal() { |
| assert(PT->size()); |
| return PT->at(Ran->Rand() % PT->size()); |
| } |
| |
| Constant *getRandomConstant(Type *Tp) { |
| if (Tp->isIntegerTy()) { |
| if (Ran->Rand() & 1) |
| return ConstantInt::getAllOnesValue(Tp); |
| return ConstantInt::getNullValue(Tp); |
| } else if (Tp->isFloatingPointTy()) { |
| if (Ran->Rand() & 1) |
| return ConstantFP::getAllOnesValue(Tp); |
| return ConstantFP::getNullValue(Tp); |
| } |
| return UndefValue::get(Tp); |
| } |
| |
| /// Return a random value with a known type. |
| Value *getRandomValue(Type *Tp) { |
| unsigned index = Ran->Rand(); |
| for (unsigned i=0; i<PT->size(); ++i) { |
| Value *V = PT->at((index + i) % PT->size()); |
| if (V->getType() == Tp) |
| return V; |
| } |
| |
| // If the requested type was not found, generate a constant value. |
| if (Tp->isIntegerTy()) { |
| if (Ran->Rand() & 1) |
| return ConstantInt::getAllOnesValue(Tp); |
| return ConstantInt::getNullValue(Tp); |
| } else if (Tp->isFloatingPointTy()) { |
| if (Ran->Rand() & 1) |
| return ConstantFP::getAllOnesValue(Tp); |
| return ConstantFP::getNullValue(Tp); |
| } else if (Tp->isVectorTy()) { |
| VectorType *VTp = cast<VectorType>(Tp); |
| |
| std::vector<Constant*> TempValues; |
| TempValues.reserve(VTp->getNumElements()); |
| for (unsigned i = 0; i < VTp->getNumElements(); ++i) |
| TempValues.push_back(getRandomConstant(VTp->getScalarType())); |
| |
| ArrayRef<Constant*> VectorValue(TempValues); |
| return ConstantVector::get(VectorValue); |
| } |
| |
| return UndefValue::get(Tp); |
| } |
| |
| /// Return a random value of any pointer type. |
| Value *getRandomPointerValue() { |
| unsigned index = Ran->Rand(); |
| for (unsigned i=0; i<PT->size(); ++i) { |
| Value *V = PT->at((index + i) % PT->size()); |
| if (V->getType()->isPointerTy()) |
| return V; |
| } |
| return UndefValue::get(pickPointerType()); |
| } |
| |
| /// Return a random value of any vector type. |
| Value *getRandomVectorValue() { |
| unsigned index = Ran->Rand(); |
| for (unsigned i=0; i<PT->size(); ++i) { |
| Value *V = PT->at((index + i) % PT->size()); |
| if (V->getType()->isVectorTy()) |
| return V; |
| } |
| return UndefValue::get(pickVectorType()); |
| } |
| |
| /// Pick a random type. |
| Type *pickType() { |
| return (Ran->Rand() & 1 ? pickVectorType() : pickScalarType()); |
| } |
| |
| /// Pick a random pointer type. |
| Type *pickPointerType() { |
| Type *Ty = pickType(); |
| return PointerType::get(Ty, 0); |
| } |
| |
| /// Pick a random vector type. |
| Type *pickVectorType(unsigned len = (unsigned)-1) { |
| // Pick a random vector width in the range 2**0 to 2**4. |
| // by adding two randoms we are generating a normal-like distribution |
| // around 2**3. |
| unsigned width = 1<<((Ran->Rand() % 3) + (Ran->Rand() % 3)); |
| Type *Ty; |
| |
| // Vectors of x86mmx are illegal; keep trying till we get something else. |
| do { |
| Ty = pickScalarType(); |
| } while (Ty->isX86_MMXTy()); |
| |
| if (len != (unsigned)-1) |
| width = len; |
| return VectorType::get(Ty, width); |
| } |
| |
| /// Pick a random scalar type. |
| Type *pickScalarType() { |
| Type *t = 0; |
| do { |
| switch (Ran->Rand() % 30) { |
| case 0: t = Type::getInt1Ty(Context); break; |
| case 1: t = Type::getInt8Ty(Context); break; |
| case 2: t = Type::getInt16Ty(Context); break; |
| case 3: case 4: |
| case 5: t = Type::getFloatTy(Context); break; |
| case 6: case 7: |
| case 8: t = Type::getDoubleTy(Context); break; |
| case 9: case 10: |
| case 11: t = Type::getInt32Ty(Context); break; |
| case 12: case 13: |
| case 14: t = Type::getInt64Ty(Context); break; |
| case 15: case 16: |
| case 17: if (GenHalfFloat) t = Type::getHalfTy(Context); break; |
| case 18: case 19: |
| case 20: if (GenX86FP80) t = Type::getX86_FP80Ty(Context); break; |
| case 21: case 22: |
| case 23: if (GenFP128) t = Type::getFP128Ty(Context); break; |
| case 24: case 25: |
| case 26: if (GenPPCFP128) t = Type::getPPC_FP128Ty(Context); break; |
| case 27: case 28: |
| case 29: if (GenX86MMX) t = Type::getX86_MMXTy(Context); break; |
| default: llvm_unreachable("Invalid scalar value"); |
| } |
| } while (t == 0); |
| |
| return t; |
| } |
| |
| /// Basic block to populate |
| BasicBlock *BB; |
| /// Value table |
| PieceTable *PT; |
| /// Random number generator |
| Random *Ran; |
| /// Context |
| LLVMContext &Context; |
| }; |
| |
| struct LoadModifier: public Modifier { |
| LoadModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {} |
| virtual void Act() { |
| // Try to use predefined pointers. If non exist, use undef pointer value; |
| Value *Ptr = getRandomPointerValue(); |
| Value *V = new LoadInst(Ptr, "L", BB->getTerminator()); |
| PT->push_back(V); |
| } |
| }; |
| |
| struct StoreModifier: public Modifier { |
| StoreModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {} |
| virtual void Act() { |
| // Try to use predefined pointers. If non exist, use undef pointer value; |
| Value *Ptr = getRandomPointerValue(); |
| Type *Tp = Ptr->getType(); |
| Value *Val = getRandomValue(Tp->getContainedType(0)); |
| Type *ValTy = Val->getType(); |
| |
| // Do not store vectors of i1s because they are unsupported |
| // by the codegen. |
| if (ValTy->isVectorTy() && ValTy->getScalarSizeInBits() == 1) |
| return; |
| |
| new StoreInst(Val, Ptr, BB->getTerminator()); |
| } |
| }; |
| |
| struct BinModifier: public Modifier { |
| BinModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {} |
| |
| virtual void Act() { |
| Value *Val0 = getRandomVal(); |
| Value *Val1 = getRandomValue(Val0->getType()); |
| |
| // Don't handle pointer types. |
| if (Val0->getType()->isPointerTy() || |
| Val1->getType()->isPointerTy()) |
| return; |
| |
| // Don't handle i1 types. |
| if (Val0->getType()->getScalarSizeInBits() == 1) |
| return; |
| |
| |
| bool isFloat = Val0->getType()->getScalarType()->isFloatingPointTy(); |
| Instruction* Term = BB->getTerminator(); |
| unsigned R = Ran->Rand() % (isFloat ? 7 : 13); |
| Instruction::BinaryOps Op; |
| |
| switch (R) { |
| default: llvm_unreachable("Invalid BinOp"); |
| case 0:{Op = (isFloat?Instruction::FAdd : Instruction::Add); break; } |
| case 1:{Op = (isFloat?Instruction::FSub : Instruction::Sub); break; } |
| case 2:{Op = (isFloat?Instruction::FMul : Instruction::Mul); break; } |
| case 3:{Op = (isFloat?Instruction::FDiv : Instruction::SDiv); break; } |
| case 4:{Op = (isFloat?Instruction::FDiv : Instruction::UDiv); break; } |
| case 5:{Op = (isFloat?Instruction::FRem : Instruction::SRem); break; } |
| case 6:{Op = (isFloat?Instruction::FRem : Instruction::URem); break; } |
| case 7: {Op = Instruction::Shl; break; } |
| case 8: {Op = Instruction::LShr; break; } |
| case 9: {Op = Instruction::AShr; break; } |
| case 10:{Op = Instruction::And; break; } |
| case 11:{Op = Instruction::Or; break; } |
| case 12:{Op = Instruction::Xor; break; } |
| } |
| |
| PT->push_back(BinaryOperator::Create(Op, Val0, Val1, "B", Term)); |
| } |
| }; |
| |
| /// Generate constant values. |
| struct ConstModifier: public Modifier { |
| ConstModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {} |
| virtual void Act() { |
| Type *Ty = pickType(); |
| |
| if (Ty->isVectorTy()) { |
| switch (Ran->Rand() % 2) { |
| case 0: if (Ty->getScalarType()->isIntegerTy()) |
| return PT->push_back(ConstantVector::getAllOnesValue(Ty)); |
| case 1: if (Ty->getScalarType()->isIntegerTy()) |
| return PT->push_back(ConstantVector::getNullValue(Ty)); |
| } |
| } |
| |
| if (Ty->isFloatingPointTy()) { |
| // Generate 128 random bits, the size of the (currently) |
| // largest floating-point types. |
| uint64_t RandomBits[2]; |
| for (unsigned i = 0; i < 2; ++i) |
| RandomBits[i] = Ran->Rand64(); |
| |
| APInt RandomInt(Ty->getPrimitiveSizeInBits(), makeArrayRef(RandomBits)); |
| APFloat RandomFloat(Ty->getFltSemantics(), RandomInt); |
| |
| if (Ran->Rand() & 1) |
| return PT->push_back(ConstantFP::getNullValue(Ty)); |
| return PT->push_back(ConstantFP::get(Ty->getContext(), RandomFloat)); |
| } |
| |
| if (Ty->isIntegerTy()) { |
| switch (Ran->Rand() % 7) { |
| case 0: if (Ty->isIntegerTy()) |
| return PT->push_back(ConstantInt::get(Ty, |
| APInt::getAllOnesValue(Ty->getPrimitiveSizeInBits()))); |
| case 1: if (Ty->isIntegerTy()) |
| return PT->push_back(ConstantInt::get(Ty, |
| APInt::getNullValue(Ty->getPrimitiveSizeInBits()))); |
| case 2: case 3: case 4: case 5: |
| case 6: if (Ty->isIntegerTy()) |
| PT->push_back(ConstantInt::get(Ty, Ran->Rand())); |
| } |
| } |
| |
| } |
| }; |
| |
| struct AllocaModifier: public Modifier { |
| AllocaModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R){} |
| |
| virtual void Act() { |
| Type *Tp = pickType(); |
| PT->push_back(new AllocaInst(Tp, "A", BB->getFirstNonPHI())); |
| } |
| }; |
| |
| struct ExtractElementModifier: public Modifier { |
| ExtractElementModifier(BasicBlock *BB, PieceTable *PT, Random *R): |
| Modifier(BB, PT, R) {} |
| |
| virtual void Act() { |
| Value *Val0 = getRandomVectorValue(); |
| Value *V = ExtractElementInst::Create(Val0, |
| ConstantInt::get(Type::getInt32Ty(BB->getContext()), |
| Ran->Rand() % cast<VectorType>(Val0->getType())->getNumElements()), |
| "E", BB->getTerminator()); |
| return PT->push_back(V); |
| } |
| }; |
| |
| struct ShuffModifier: public Modifier { |
| ShuffModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {} |
| virtual void Act() { |
| |
| Value *Val0 = getRandomVectorValue(); |
| Value *Val1 = getRandomValue(Val0->getType()); |
| |
| unsigned Width = cast<VectorType>(Val0->getType())->getNumElements(); |
| std::vector<Constant*> Idxs; |
| |
| Type *I32 = Type::getInt32Ty(BB->getContext()); |
| for (unsigned i=0; i<Width; ++i) { |
| Constant *CI = ConstantInt::get(I32, Ran->Rand() % (Width*2)); |
| // Pick some undef values. |
| if (!(Ran->Rand() % 5)) |
| CI = UndefValue::get(I32); |
| Idxs.push_back(CI); |
| } |
| |
| Constant *Mask = ConstantVector::get(Idxs); |
| |
| Value *V = new ShuffleVectorInst(Val0, Val1, Mask, "Shuff", |
| BB->getTerminator()); |
| PT->push_back(V); |
| } |
| }; |
| |
| struct InsertElementModifier: public Modifier { |
| InsertElementModifier(BasicBlock *BB, PieceTable *PT, Random *R): |
| Modifier(BB, PT, R) {} |
| |
| virtual void Act() { |
| Value *Val0 = getRandomVectorValue(); |
| Value *Val1 = getRandomValue(Val0->getType()->getScalarType()); |
| |
| Value *V = InsertElementInst::Create(Val0, Val1, |
| ConstantInt::get(Type::getInt32Ty(BB->getContext()), |
| Ran->Rand() % cast<VectorType>(Val0->getType())->getNumElements()), |
| "I", BB->getTerminator()); |
| return PT->push_back(V); |
| } |
| |
| }; |
| |
| struct CastModifier: public Modifier { |
| CastModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {} |
| virtual void Act() { |
| |
| Value *V = getRandomVal(); |
| Type *VTy = V->getType(); |
| Type *DestTy = pickScalarType(); |
| |
| // Handle vector casts vectors. |
| if (VTy->isVectorTy()) { |
| VectorType *VecTy = cast<VectorType>(VTy); |
| DestTy = pickVectorType(VecTy->getNumElements()); |
| } |
| |
| // no need to cast. |
| if (VTy == DestTy) return; |
| |
| // Pointers: |
| if (VTy->isPointerTy()) { |
| if (!DestTy->isPointerTy()) |
| DestTy = PointerType::get(DestTy, 0); |
| return PT->push_back( |
| new BitCastInst(V, DestTy, "PC", BB->getTerminator())); |
| } |
| |
| unsigned VSize = VTy->getScalarType()->getPrimitiveSizeInBits(); |
| unsigned DestSize = DestTy->getScalarType()->getPrimitiveSizeInBits(); |
| |
| // Generate lots of bitcasts. |
| if ((Ran->Rand() & 1) && VSize == DestSize) { |
| return PT->push_back( |
| new BitCastInst(V, DestTy, "BC", BB->getTerminator())); |
| } |
| |
| // Both types are integers: |
| if (VTy->getScalarType()->isIntegerTy() && |
| DestTy->getScalarType()->isIntegerTy()) { |
| if (VSize > DestSize) { |
| return PT->push_back( |
| new TruncInst(V, DestTy, "Tr", BB->getTerminator())); |
| } else { |
| assert(VSize < DestSize && "Different int types with the same size?"); |
| if (Ran->Rand() & 1) |
| return PT->push_back( |
| new ZExtInst(V, DestTy, "ZE", BB->getTerminator())); |
| return PT->push_back(new SExtInst(V, DestTy, "Se", BB->getTerminator())); |
| } |
| } |
| |
| // Fp to int. |
| if (VTy->getScalarType()->isFloatingPointTy() && |
| DestTy->getScalarType()->isIntegerTy()) { |
| if (Ran->Rand() & 1) |
| return PT->push_back( |
| new FPToSIInst(V, DestTy, "FC", BB->getTerminator())); |
| return PT->push_back(new FPToUIInst(V, DestTy, "FC", BB->getTerminator())); |
| } |
| |
| // Int to fp. |
| if (VTy->getScalarType()->isIntegerTy() && |
| DestTy->getScalarType()->isFloatingPointTy()) { |
| if (Ran->Rand() & 1) |
| return PT->push_back( |
| new SIToFPInst(V, DestTy, "FC", BB->getTerminator())); |
| return PT->push_back(new UIToFPInst(V, DestTy, "FC", BB->getTerminator())); |
| |
| } |
| |
| // Both floats. |
| if (VTy->getScalarType()->isFloatingPointTy() && |
| DestTy->getScalarType()->isFloatingPointTy()) { |
| if (VSize > DestSize) { |
| return PT->push_back( |
| new FPTruncInst(V, DestTy, "Tr", BB->getTerminator())); |
| } else if (VSize < DestSize) { |
| return PT->push_back( |
| new FPExtInst(V, DestTy, "ZE", BB->getTerminator())); |
| } |
| // If VSize == DestSize, then the two types must be fp128 and ppc_fp128, |
| // for which there is no defined conversion. So do nothing. |
| } |
| } |
| |
| }; |
| |
| struct SelectModifier: public Modifier { |
| SelectModifier(BasicBlock *BB, PieceTable *PT, Random *R): |
| Modifier(BB, PT, R) {} |
| |
| virtual void Act() { |
| // Try a bunch of different select configuration until a valid one is found. |
| Value *Val0 = getRandomVal(); |
| Value *Val1 = getRandomValue(Val0->getType()); |
| |
| Type *CondTy = Type::getInt1Ty(Context); |
| |
| // If the value type is a vector, and we allow vector select, then in 50% |
| // of the cases generate a vector select. |
| if (Val0->getType()->isVectorTy() && (Ran->Rand() % 1)) { |
| unsigned NumElem = cast<VectorType>(Val0->getType())->getNumElements(); |
| CondTy = VectorType::get(CondTy, NumElem); |
| } |
| |
| Value *Cond = getRandomValue(CondTy); |
| Value *V = SelectInst::Create(Cond, Val0, Val1, "Sl", BB->getTerminator()); |
| return PT->push_back(V); |
| } |
| }; |
| |
| |
| struct CmpModifier: public Modifier { |
| CmpModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {} |
| virtual void Act() { |
| |
| Value *Val0 = getRandomVal(); |
| Value *Val1 = getRandomValue(Val0->getType()); |
| |
| if (Val0->getType()->isPointerTy()) return; |
| bool fp = Val0->getType()->getScalarType()->isFloatingPointTy(); |
| |
| int op; |
| if (fp) { |
| op = Ran->Rand() % |
| (CmpInst::LAST_FCMP_PREDICATE - CmpInst::FIRST_FCMP_PREDICATE) + |
| CmpInst::FIRST_FCMP_PREDICATE; |
| } else { |
| op = Ran->Rand() % |
| (CmpInst::LAST_ICMP_PREDICATE - CmpInst::FIRST_ICMP_PREDICATE) + |
| CmpInst::FIRST_ICMP_PREDICATE; |
| } |
| |
| Value *V = CmpInst::Create(fp ? Instruction::FCmp : Instruction::ICmp, |
| op, Val0, Val1, "Cmp", BB->getTerminator()); |
| return PT->push_back(V); |
| } |
| }; |
| |
| void FillFunction(Function *F, Random &R) { |
| // Create a legal entry block. |
| BasicBlock *BB = BasicBlock::Create(F->getContext(), "BB", F); |
| ReturnInst::Create(F->getContext(), BB); |
| |
| // Create the value table. |
| Modifier::PieceTable PT; |
| |
| // Consider arguments as legal values. |
| for (Function::arg_iterator it = F->arg_begin(), e = F->arg_end(); |
| it != e; ++it) |
| PT.push_back(it); |
| |
| // List of modifiers which add new random instructions. |
| std::vector<Modifier*> Modifiers; |
| OwningPtr<Modifier> LM(new LoadModifier(BB, &PT, &R)); |
| OwningPtr<Modifier> SM(new StoreModifier(BB, &PT, &R)); |
| OwningPtr<Modifier> EE(new ExtractElementModifier(BB, &PT, &R)); |
| OwningPtr<Modifier> SHM(new ShuffModifier(BB, &PT, &R)); |
| OwningPtr<Modifier> IE(new InsertElementModifier(BB, &PT, &R)); |
| OwningPtr<Modifier> BM(new BinModifier(BB, &PT, &R)); |
| OwningPtr<Modifier> CM(new CastModifier(BB, &PT, &R)); |
| OwningPtr<Modifier> SLM(new SelectModifier(BB, &PT, &R)); |
| OwningPtr<Modifier> PM(new CmpModifier(BB, &PT, &R)); |
| Modifiers.push_back(LM.get()); |
| Modifiers.push_back(SM.get()); |
| Modifiers.push_back(EE.get()); |
| Modifiers.push_back(SHM.get()); |
| Modifiers.push_back(IE.get()); |
| Modifiers.push_back(BM.get()); |
| Modifiers.push_back(CM.get()); |
| Modifiers.push_back(SLM.get()); |
| Modifiers.push_back(PM.get()); |
| |
| // Generate the random instructions |
| AllocaModifier AM(BB, &PT, &R); AM.ActN(5); // Throw in a few allocas |
| ConstModifier COM(BB, &PT, &R); COM.ActN(40); // Throw in a few constants |
| |
| for (unsigned i=0; i< SizeCL / Modifiers.size(); ++i) |
| for (std::vector<Modifier*>::iterator it = Modifiers.begin(), |
| e = Modifiers.end(); it != e; ++it) { |
| (*it)->Act(); |
| } |
| |
| SM->ActN(5); // Throw in a few stores. |
| } |
| |
| void IntroduceControlFlow(Function *F, Random &R) { |
| std::vector<Instruction*> BoolInst; |
| for (BasicBlock::iterator it = F->begin()->begin(), |
| e = F->begin()->end(); it != e; ++it) { |
| if (it->getType() == IntegerType::getInt1Ty(F->getContext())) |
| BoolInst.push_back(it); |
| } |
| |
| std::random_shuffle(BoolInst.begin(), BoolInst.end(), R); |
| |
| for (std::vector<Instruction*>::iterator it = BoolInst.begin(), |
| e = BoolInst.end(); it != e; ++it) { |
| Instruction *Instr = *it; |
| BasicBlock *Curr = Instr->getParent(); |
| BasicBlock::iterator Loc= Instr; |
| BasicBlock *Next = Curr->splitBasicBlock(Loc, "CF"); |
| Instr->moveBefore(Curr->getTerminator()); |
| if (Curr != &F->getEntryBlock()) { |
| BranchInst::Create(Curr, Next, Instr, Curr->getTerminator()); |
| Curr->getTerminator()->eraseFromParent(); |
| } |
| } |
| } |
| |
| int main(int argc, char **argv) { |
| // Init LLVM, call llvm_shutdown() on exit, parse args, etc. |
| llvm::PrettyStackTraceProgram X(argc, argv); |
| cl::ParseCommandLineOptions(argc, argv, "llvm codegen stress-tester\n"); |
| llvm_shutdown_obj Y; |
| |
| OwningPtr<Module> M(new Module("/tmp/autogen.bc", getGlobalContext())); |
| Function *F = GenEmptyFunction(M.get()); |
| |
| // Pick an initial seed value |
| Random R(SeedCL); |
| // Generate lots of random instructions inside a single basic block. |
| FillFunction(F, R); |
| // Break the basic block into many loops. |
| IntroduceControlFlow(F, R); |
| |
| // Figure out what stream we are supposed to write to... |
| OwningPtr<tool_output_file> Out; |
| // Default to standard output. |
| if (OutputFilename.empty()) |
| OutputFilename = "-"; |
| |
| std::string ErrorInfo; |
| Out.reset(new tool_output_file(OutputFilename.c_str(), ErrorInfo, |
| raw_fd_ostream::F_Binary)); |
| if (!ErrorInfo.empty()) { |
| errs() << ErrorInfo << '\n'; |
| return 1; |
| } |
| |
| PassManager Passes; |
| Passes.add(createVerifierPass()); |
| Passes.add(createPrintModulePass(&Out->os())); |
| Passes.run(*M.get()); |
| Out->keep(); |
| |
| return 0; |
| } |