| //===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the LiveVariable analysis pass. For each machine |
| // instruction in the function, this pass calculates the set of registers that |
| // are immediately dead after the instruction (i.e., the instruction calculates |
| // the value, but it is never used) and the set of registers that are used by |
| // the instruction, but are never used after the instruction (i.e., they are |
| // killed). |
| // |
| // This class computes live variables using are sparse implementation based on |
| // the machine code SSA form. This class computes live variable information for |
| // each virtual and _register allocatable_ physical register in a function. It |
| // uses the dominance properties of SSA form to efficiently compute live |
| // variables for virtual registers, and assumes that physical registers are only |
| // live within a single basic block (allowing it to do a single local analysis |
| // to resolve physical register lifetimes in each basic block). If a physical |
| // register is not register allocatable, it is not tracked. This is useful for |
| // things like the stack pointer and condition codes. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/LiveVariables.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/Target/MRegisterInfo.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/Config/alloca.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| char LiveVariables::ID = 0; |
| static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis"); |
| |
| void LiveVariables::VarInfo::dump() const { |
| cerr << "Register Defined by: "; |
| if (DefInst) |
| cerr << *DefInst; |
| else |
| cerr << "<null>\n"; |
| cerr << " Alive in blocks: "; |
| for (unsigned i = 0, e = AliveBlocks.size(); i != e; ++i) |
| if (AliveBlocks[i]) cerr << i << ", "; |
| cerr << "\n Killed by:"; |
| if (Kills.empty()) |
| cerr << " No instructions.\n"; |
| else { |
| for (unsigned i = 0, e = Kills.size(); i != e; ++i) |
| cerr << "\n #" << i << ": " << *Kills[i]; |
| cerr << "\n"; |
| } |
| } |
| |
| LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) { |
| assert(MRegisterInfo::isVirtualRegister(RegIdx) && |
| "getVarInfo: not a virtual register!"); |
| RegIdx -= MRegisterInfo::FirstVirtualRegister; |
| if (RegIdx >= VirtRegInfo.size()) { |
| if (RegIdx >= 2*VirtRegInfo.size()) |
| VirtRegInfo.resize(RegIdx*2); |
| else |
| VirtRegInfo.resize(2*VirtRegInfo.size()); |
| } |
| VarInfo &VI = VirtRegInfo[RegIdx]; |
| VI.AliveBlocks.resize(MF->getNumBlockIDs()); |
| return VI; |
| } |
| |
| bool LiveVariables::KillsRegister(MachineInstr *MI, unsigned Reg) const { |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg() && MO.isKill()) { |
| if ((MO.getReg() == Reg) || |
| (MRegisterInfo::isPhysicalRegister(MO.getReg()) && |
| MRegisterInfo::isPhysicalRegister(Reg) && |
| RegInfo->isSubRegister(MO.getReg(), Reg))) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool LiveVariables::RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const { |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg() && MO.isDead()) { |
| if ((MO.getReg() == Reg) || |
| (MRegisterInfo::isPhysicalRegister(MO.getReg()) && |
| MRegisterInfo::isPhysicalRegister(Reg) && |
| RegInfo->isSubRegister(MO.getReg(), Reg))) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool LiveVariables::ModifiesRegister(MachineInstr *MI, unsigned Reg) const { |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) |
| return true; |
| } |
| return false; |
| } |
| |
| void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, |
| MachineBasicBlock *MBB, |
| std::vector<MachineBasicBlock*> &WorkList) { |
| unsigned BBNum = MBB->getNumber(); |
| |
| // Check to see if this basic block is one of the killing blocks. If so, |
| // remove it... |
| for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) |
| if (VRInfo.Kills[i]->getParent() == MBB) { |
| VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry |
| break; |
| } |
| |
| if (MBB == VRInfo.DefInst->getParent()) return; // Terminate recursion |
| |
| if (VRInfo.AliveBlocks[BBNum]) |
| return; // We already know the block is live |
| |
| // Mark the variable known alive in this bb |
| VRInfo.AliveBlocks[BBNum] = true; |
| |
| for (MachineBasicBlock::const_pred_reverse_iterator PI = MBB->pred_rbegin(), |
| E = MBB->pred_rend(); PI != E; ++PI) |
| WorkList.push_back(*PI); |
| } |
| |
| void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, |
| MachineBasicBlock *MBB) { |
| std::vector<MachineBasicBlock*> WorkList; |
| MarkVirtRegAliveInBlock(VRInfo, MBB, WorkList); |
| while (!WorkList.empty()) { |
| MachineBasicBlock *Pred = WorkList.back(); |
| WorkList.pop_back(); |
| MarkVirtRegAliveInBlock(VRInfo, Pred, WorkList); |
| } |
| } |
| |
| |
| void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB, |
| MachineInstr *MI) { |
| assert(VRInfo.DefInst && "Register use before def!"); |
| |
| VRInfo.NumUses++; |
| |
| // Check to see if this basic block is already a kill block... |
| if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) { |
| // Yes, this register is killed in this basic block already. Increase the |
| // live range by updating the kill instruction. |
| VRInfo.Kills.back() = MI; |
| return; |
| } |
| |
| #ifndef NDEBUG |
| for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) |
| assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!"); |
| #endif |
| |
| assert(MBB != VRInfo.DefInst->getParent() && |
| "Should have kill for defblock!"); |
| |
| // Add a new kill entry for this basic block. |
| // If this virtual register is already marked as alive in this basic block, |
| // that means it is alive in at least one of the successor block, it's not |
| // a kill. |
| if (!VRInfo.AliveBlocks[MBB->getNumber()]) |
| VRInfo.Kills.push_back(MI); |
| |
| // Update all dominating blocks to mark them known live. |
| for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), |
| E = MBB->pred_end(); PI != E; ++PI) |
| MarkVirtRegAliveInBlock(VRInfo, *PI); |
| } |
| |
| bool LiveVariables::addRegisterKilled(unsigned IncomingReg, MachineInstr *MI, |
| bool AddIfNotFound) { |
| bool Found = false; |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg() && MO.isUse()) { |
| unsigned Reg = MO.getReg(); |
| if (!Reg) |
| continue; |
| if (Reg == IncomingReg) { |
| MO.setIsKill(); |
| Found = true; |
| break; |
| } else if (MRegisterInfo::isPhysicalRegister(Reg) && |
| MRegisterInfo::isPhysicalRegister(IncomingReg) && |
| RegInfo->isSuperRegister(IncomingReg, Reg) && |
| MO.isKill()) |
| // A super-register kill already exists. |
| return true; |
| } |
| } |
| |
| // If not found, this means an alias of one of the operand is killed. Add a |
| // new implicit operand if required. |
| if (!Found && AddIfNotFound) { |
| MI->addRegOperand(IncomingReg, false/*IsDef*/,true/*IsImp*/,true/*IsKill*/); |
| return true; |
| } |
| return Found; |
| } |
| |
| bool LiveVariables::addRegisterDead(unsigned IncomingReg, MachineInstr *MI, |
| bool AddIfNotFound) { |
| bool Found = false; |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg() && MO.isDef()) { |
| unsigned Reg = MO.getReg(); |
| if (!Reg) |
| continue; |
| if (Reg == IncomingReg) { |
| MO.setIsDead(); |
| Found = true; |
| break; |
| } else if (MRegisterInfo::isPhysicalRegister(Reg) && |
| MRegisterInfo::isPhysicalRegister(IncomingReg) && |
| RegInfo->isSuperRegister(IncomingReg, Reg) && |
| MO.isDead()) |
| // There exists a super-register that's marked dead. |
| return true; |
| } |
| } |
| |
| // If not found, this means an alias of one of the operand is dead. Add a |
| // new implicit operand. |
| if (!Found && AddIfNotFound) { |
| MI->addRegOperand(IncomingReg, true/*IsDef*/,true/*IsImp*/,false/*IsKill*/, |
| true/*IsDead*/); |
| return true; |
| } |
| return Found; |
| } |
| |
| void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) { |
| // There is a now a proper use, forget about the last partial use. |
| PhysRegPartUse[Reg] = NULL; |
| |
| // Turn previous partial def's into read/mod/write. |
| for (unsigned i = 0, e = PhysRegPartDef[Reg].size(); i != e; ++i) { |
| MachineInstr *Def = PhysRegPartDef[Reg][i]; |
| // First one is just a def. This means the use is reading some undef bits. |
| if (i != 0) |
| Def->addRegOperand(Reg, false/*IsDef*/,true/*IsImp*/,true/*IsKill*/); |
| Def->addRegOperand(Reg, true/*IsDef*/,true/*IsImp*/); |
| } |
| PhysRegPartDef[Reg].clear(); |
| |
| // There was an earlier def of a super-register. Add implicit def to that MI. |
| // A: EAX = ... |
| // B: = AX |
| // Add implicit def to A. |
| if (PhysRegInfo[Reg] && !PhysRegUsed[Reg]) { |
| MachineInstr *Def = PhysRegInfo[Reg]; |
| if (!Def->findRegisterDefOperand(Reg)) |
| Def->addRegOperand(Reg, true/*IsDef*/,true/*IsImp*/); |
| } |
| |
| PhysRegInfo[Reg] = MI; |
| PhysRegUsed[Reg] = true; |
| |
| for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg); |
| unsigned SubReg = *SubRegs; ++SubRegs) { |
| PhysRegInfo[SubReg] = MI; |
| PhysRegUsed[SubReg] = true; |
| } |
| |
| // Remember the partial uses. |
| for (const unsigned *SuperRegs = RegInfo->getSuperRegisters(Reg); |
| unsigned SuperReg = *SuperRegs; ++SuperRegs) |
| PhysRegPartUse[SuperReg] = MI; |
| } |
| |
| bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *RefMI, |
| SmallSet<unsigned, 4> &SubKills) { |
| for (const unsigned *SubRegs = RegInfo->getImmediateSubRegisters(Reg); |
| unsigned SubReg = *SubRegs; ++SubRegs) { |
| MachineInstr *LastRef = PhysRegInfo[SubReg]; |
| if (LastRef != RefMI) |
| SubKills.insert(SubReg); |
| else if (!HandlePhysRegKill(SubReg, RefMI, SubKills)) |
| SubKills.insert(SubReg); |
| } |
| |
| if (*RegInfo->getImmediateSubRegisters(Reg) == 0) { |
| // No sub-registers, just check if reg is killed by RefMI. |
| if (PhysRegInfo[Reg] == RefMI) |
| return true; |
| } else if (SubKills.empty()) |
| // None of the sub-registers are killed elsewhere... |
| return true; |
| return false; |
| } |
| |
| void LiveVariables::addRegisterKills(unsigned Reg, MachineInstr *MI, |
| SmallSet<unsigned, 4> &SubKills) { |
| if (SubKills.count(Reg) == 0) |
| addRegisterKilled(Reg, MI, true); |
| else { |
| for (const unsigned *SubRegs = RegInfo->getImmediateSubRegisters(Reg); |
| unsigned SubReg = *SubRegs; ++SubRegs) |
| addRegisterKills(SubReg, MI, SubKills); |
| } |
| } |
| |
| bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *RefMI) { |
| SmallSet<unsigned, 4> SubKills; |
| if (HandlePhysRegKill(Reg, RefMI, SubKills)) { |
| addRegisterKilled(Reg, RefMI); |
| return true; |
| } else { |
| // Some sub-registers are killed by another MI. |
| for (const unsigned *SubRegs = RegInfo->getImmediateSubRegisters(Reg); |
| unsigned SubReg = *SubRegs; ++SubRegs) |
| addRegisterKills(SubReg, RefMI, SubKills); |
| return false; |
| } |
| } |
| |
| void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) { |
| // Does this kill a previous version of this register? |
| if (MachineInstr *LastRef = PhysRegInfo[Reg]) { |
| if (PhysRegUsed[Reg]) { |
| if (!HandlePhysRegKill(Reg, LastRef)) { |
| if (PhysRegPartUse[Reg]) |
| addRegisterKilled(Reg, PhysRegPartUse[Reg], true); |
| } |
| } else if (PhysRegPartUse[Reg]) |
| // Add implicit use / kill to last use of a sub-register. |
| addRegisterKilled(Reg, PhysRegPartUse[Reg], true); |
| else |
| addRegisterDead(Reg, LastRef); |
| } |
| |
| for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg); |
| unsigned SubReg = *SubRegs; ++SubRegs) { |
| if (MachineInstr *LastRef = PhysRegInfo[SubReg]) { |
| if (PhysRegUsed[SubReg]) { |
| if (!HandlePhysRegKill(SubReg, LastRef)) { |
| if (PhysRegPartUse[SubReg]) |
| addRegisterKilled(SubReg, PhysRegPartUse[SubReg], true); |
| } |
| //addRegisterKilled(SubReg, LastRef); |
| } else if (PhysRegPartUse[SubReg]) |
| // Add implicit use / kill to last use of a sub-register. |
| addRegisterKilled(SubReg, PhysRegPartUse[SubReg], true); |
| else |
| addRegisterDead(SubReg, LastRef); |
| } |
| } |
| |
| if (MI) { |
| for (const unsigned *SuperRegs = RegInfo->getSuperRegisters(Reg); |
| unsigned SuperReg = *SuperRegs; ++SuperRegs) { |
| if (PhysRegInfo[SuperReg]) { |
| // The larger register is previously defined. Now a smaller part is |
| // being re-defined. Treat it as read/mod/write. |
| // EAX = |
| // AX = EAX<imp-use,kill>, EAX<imp-def> |
| MI->addRegOperand(SuperReg, false/*IsDef*/,true/*IsImp*/,true/*IsKill*/); |
| MI->addRegOperand(SuperReg, true/*IsDef*/,true/*IsImp*/); |
| PhysRegInfo[SuperReg] = MI; |
| PhysRegUsed[SuperReg] = false; |
| PhysRegPartUse[SuperReg] = NULL; |
| } else { |
| // Remember this partial def. |
| PhysRegPartDef[SuperReg].push_back(MI); |
| } |
| } |
| |
| PhysRegInfo[Reg] = MI; |
| PhysRegUsed[Reg] = false; |
| PhysRegPartUse[Reg] = NULL; |
| for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg); |
| unsigned SubReg = *SubRegs; ++SubRegs) { |
| PhysRegInfo[SubReg] = MI; |
| PhysRegUsed[SubReg] = false; |
| PhysRegPartUse[SubReg] = NULL; |
| } |
| } |
| } |
| |
| bool LiveVariables::runOnMachineFunction(MachineFunction &mf) { |
| MF = &mf; |
| const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo(); |
| RegInfo = MF->getTarget().getRegisterInfo(); |
| assert(RegInfo && "Target doesn't have register information?"); |
| |
| ReservedRegisters = RegInfo->getReservedRegs(mf); |
| |
| unsigned NumRegs = RegInfo->getNumRegs(); |
| PhysRegInfo = new MachineInstr*[NumRegs]; |
| PhysRegUsed = new bool[NumRegs]; |
| PhysRegPartUse = new MachineInstr*[NumRegs]; |
| PhysRegPartDef = new SmallVector<MachineInstr*,4>[NumRegs]; |
| PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()]; |
| std::fill(PhysRegInfo, PhysRegInfo + NumRegs, (MachineInstr*)0); |
| std::fill(PhysRegUsed, PhysRegUsed + NumRegs, false); |
| std::fill(PhysRegPartUse, PhysRegPartUse + NumRegs, (MachineInstr*)0); |
| |
| /// Get some space for a respectable number of registers... |
| VirtRegInfo.resize(64); |
| |
| analyzePHINodes(mf); |
| |
| // Calculate live variable information in depth first order on the CFG of the |
| // function. This guarantees that we will see the definition of a virtual |
| // register before its uses due to dominance properties of SSA (except for PHI |
| // nodes, which are treated as a special case). |
| // |
| MachineBasicBlock *Entry = MF->begin(); |
| SmallPtrSet<MachineBasicBlock*,16> Visited; |
| for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> > |
| DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited); |
| DFI != E; ++DFI) { |
| MachineBasicBlock *MBB = *DFI; |
| |
| // Mark live-in registers as live-in. |
| for (MachineBasicBlock::const_livein_iterator II = MBB->livein_begin(), |
| EE = MBB->livein_end(); II != EE; ++II) { |
| assert(MRegisterInfo::isPhysicalRegister(*II) && |
| "Cannot have a live-in virtual register!"); |
| HandlePhysRegDef(*II, 0); |
| } |
| |
| // Loop over all of the instructions, processing them. |
| for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); |
| I != E; ++I) { |
| MachineInstr *MI = I; |
| |
| // Process all of the operands of the instruction... |
| unsigned NumOperandsToProcess = MI->getNumOperands(); |
| |
| // Unless it is a PHI node. In this case, ONLY process the DEF, not any |
| // of the uses. They will be handled in other basic blocks. |
| if (MI->getOpcode() == TargetInstrInfo::PHI) |
| NumOperandsToProcess = 1; |
| |
| // Process all uses... |
| for (unsigned i = 0; i != NumOperandsToProcess; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isRegister() && MO.isUse() && MO.getReg()) { |
| if (MRegisterInfo::isVirtualRegister(MO.getReg())){ |
| HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI); |
| } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) && |
| !ReservedRegisters[MO.getReg()]) { |
| HandlePhysRegUse(MO.getReg(), MI); |
| } |
| } |
| } |
| |
| // Process all defs... |
| for (unsigned i = 0; i != NumOperandsToProcess; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isRegister() && MO.isDef() && MO.getReg()) { |
| if (MRegisterInfo::isVirtualRegister(MO.getReg())) { |
| VarInfo &VRInfo = getVarInfo(MO.getReg()); |
| |
| assert(VRInfo.DefInst == 0 && "Variable multiply defined!"); |
| VRInfo.DefInst = MI; |
| // Defaults to dead |
| VRInfo.Kills.push_back(MI); |
| } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) && |
| !ReservedRegisters[MO.getReg()]) { |
| HandlePhysRegDef(MO.getReg(), MI); |
| } |
| } |
| } |
| } |
| |
| // Handle any virtual assignments from PHI nodes which might be at the |
| // bottom of this basic block. We check all of our successor blocks to see |
| // if they have PHI nodes, and if so, we simulate an assignment at the end |
| // of the current block. |
| if (!PHIVarInfo[MBB->getNumber()].empty()) { |
| SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()]; |
| |
| for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(), |
| E = VarInfoVec.end(); I != E; ++I) { |
| VarInfo& VRInfo = getVarInfo(*I); |
| assert(VRInfo.DefInst && "Register use before def (or no def)!"); |
| |
| // Only mark it alive only in the block we are representing. |
| MarkVirtRegAliveInBlock(VRInfo, MBB); |
| } |
| } |
| |
| // Finally, if the last instruction in the block is a return, make sure to mark |
| // it as using all of the live-out values in the function. |
| if (!MBB->empty() && TII.isReturn(MBB->back().getOpcode())) { |
| MachineInstr *Ret = &MBB->back(); |
| for (MachineFunction::liveout_iterator I = MF->liveout_begin(), |
| E = MF->liveout_end(); I != E; ++I) { |
| assert(MRegisterInfo::isPhysicalRegister(*I) && |
| "Cannot have a live-in virtual register!"); |
| HandlePhysRegUse(*I, Ret); |
| // Add live-out registers as implicit uses. |
| if (Ret->findRegisterUseOperandIdx(*I) == -1) |
| Ret->addRegOperand(*I, false, true); |
| } |
| } |
| |
| // Loop over PhysRegInfo, killing any registers that are available at the |
| // end of the basic block. This also resets the PhysRegInfo map. |
| for (unsigned i = 0; i != NumRegs; ++i) |
| if (PhysRegInfo[i]) |
| HandlePhysRegDef(i, 0); |
| |
| // Clear some states between BB's. These are purely local information. |
| for (unsigned i = 0; i != NumRegs; ++i) |
| PhysRegPartDef[i].clear(); |
| std::fill(PhysRegInfo, PhysRegInfo + NumRegs, (MachineInstr*)0); |
| std::fill(PhysRegUsed, PhysRegUsed + NumRegs, false); |
| std::fill(PhysRegPartUse, PhysRegPartUse + NumRegs, (MachineInstr*)0); |
| } |
| |
| // Convert and transfer the dead / killed information we have gathered into |
| // VirtRegInfo onto MI's. |
| // |
| for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i) |
| for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j) { |
| if (VirtRegInfo[i].Kills[j] == VirtRegInfo[i].DefInst) |
| addRegisterDead(i + MRegisterInfo::FirstVirtualRegister, |
| VirtRegInfo[i].Kills[j]); |
| else |
| addRegisterKilled(i + MRegisterInfo::FirstVirtualRegister, |
| VirtRegInfo[i].Kills[j]); |
| } |
| |
| // Check to make sure there are no unreachable blocks in the MC CFG for the |
| // function. If so, it is due to a bug in the instruction selector or some |
| // other part of the code generator if this happens. |
| #ifndef NDEBUG |
| for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i) |
| assert(Visited.count(&*i) != 0 && "unreachable basic block found"); |
| #endif |
| |
| delete[] PhysRegInfo; |
| delete[] PhysRegUsed; |
| delete[] PhysRegPartUse; |
| delete[] PhysRegPartDef; |
| delete[] PHIVarInfo; |
| |
| return false; |
| } |
| |
| /// instructionChanged - When the address of an instruction changes, this |
| /// method should be called so that live variables can update its internal |
| /// data structures. This removes the records for OldMI, transfering them to |
| /// the records for NewMI. |
| void LiveVariables::instructionChanged(MachineInstr *OldMI, |
| MachineInstr *NewMI) { |
| // If the instruction defines any virtual registers, update the VarInfo, |
| // kill and dead information for the instruction. |
| for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = OldMI->getOperand(i); |
| if (MO.isRegister() && MO.getReg() && |
| MRegisterInfo::isVirtualRegister(MO.getReg())) { |
| unsigned Reg = MO.getReg(); |
| VarInfo &VI = getVarInfo(Reg); |
| if (MO.isDef()) { |
| if (MO.isDead()) { |
| MO.unsetIsDead(); |
| addVirtualRegisterDead(Reg, NewMI); |
| } |
| // Update the defining instruction. |
| if (VI.DefInst == OldMI) |
| VI.DefInst = NewMI; |
| } |
| if (MO.isUse()) { |
| if (MO.isKill()) { |
| MO.unsetIsKill(); |
| addVirtualRegisterKilled(Reg, NewMI); |
| } |
| // If this is a kill of the value, update the VI kills list. |
| if (VI.removeKill(OldMI)) |
| VI.Kills.push_back(NewMI); // Yes, there was a kill of it |
| } |
| } |
| } |
| } |
| |
| /// removeVirtualRegistersKilled - Remove all killed info for the specified |
| /// instruction. |
| void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) { |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg() && MO.isKill()) { |
| MO.unsetIsKill(); |
| unsigned Reg = MO.getReg(); |
| if (MRegisterInfo::isVirtualRegister(Reg)) { |
| bool removed = getVarInfo(Reg).removeKill(MI); |
| assert(removed && "kill not in register's VarInfo?"); |
| } |
| } |
| } |
| } |
| |
| /// removeVirtualRegistersDead - Remove all of the dead registers for the |
| /// specified instruction from the live variable information. |
| void LiveVariables::removeVirtualRegistersDead(MachineInstr *MI) { |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg() && MO.isDead()) { |
| MO.unsetIsDead(); |
| unsigned Reg = MO.getReg(); |
| if (MRegisterInfo::isVirtualRegister(Reg)) { |
| bool removed = getVarInfo(Reg).removeKill(MI); |
| assert(removed && "kill not in register's VarInfo?"); |
| } |
| } |
| } |
| } |
| |
| /// analyzePHINodes - Gather information about the PHI nodes in here. In |
| /// particular, we want to map the variable information of a virtual |
| /// register which is used in a PHI node. We map that to the BB the vreg is |
| /// coming from. |
| /// |
| void LiveVariables::analyzePHINodes(const MachineFunction& Fn) { |
| for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end(); |
| I != E; ++I) |
| for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); |
| BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) |
| for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) |
| PHIVarInfo[BBI->getOperand(i + 1).getMachineBasicBlock()->getNumber()]. |
| push_back(BBI->getOperand(i).getReg()); |
| } |