blob: 311f67173f3761af9c71eb672b0634251d02eb17 [file] [log] [blame]
//===- opt.cpp - The LLVM Modular Optimizer -------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Optimizations may be specified an arbitrary number of times on the command
// line, They are run in the order specified.
//
//===----------------------------------------------------------------------===//
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/PassManager.h"
#include "llvm/CallGraphSCCPass.h"
#include "llvm/Bitcode/ReaderWriter.h"
#include "llvm/Assembly/PrintModulePass.h"
#include "llvm/Analysis/Verifier.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/PassNameParser.h"
#include "llvm/System/Signals.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/IRReader.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/PluginLoader.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/StandardPasses.h"
#include "llvm/Support/SystemUtils.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/LinkAllPasses.h"
#include "llvm/LinkAllVMCore.h"
#include <memory>
#include <algorithm>
using namespace llvm;
// The OptimizationList is automatically populated with registered Passes by the
// PassNameParser.
//
static cl::list<const PassInfo*, bool, PassNameParser>
PassList(cl::desc("Optimizations available:"));
// Other command line options...
//
static cl::opt<std::string>
InputFilename(cl::Positional, cl::desc("<input bitcode file>"),
cl::init("-"), cl::value_desc("filename"));
static cl::opt<std::string>
OutputFilename("o", cl::desc("Override output filename"),
cl::value_desc("filename"), cl::init("-"));
static cl::opt<bool>
Force("f", cl::desc("Enable binary output on terminals"));
static cl::opt<bool>
PrintEachXForm("p", cl::desc("Print module after each transformation"));
static cl::opt<bool>
NoOutput("disable-output",
cl::desc("Do not write result bitcode file"), cl::Hidden);
static cl::opt<bool>
OutputAssembly("S", cl::desc("Write output as LLVM assembly"));
static cl::opt<bool>
NoVerify("disable-verify", cl::desc("Do not verify result module"), cl::Hidden);
static cl::opt<bool>
VerifyEach("verify-each", cl::desc("Verify after each transform"));
static cl::opt<bool>
StripDebug("strip-debug",
cl::desc("Strip debugger symbol info from translation unit"));
static cl::opt<bool>
DisableInline("disable-inlining", cl::desc("Do not run the inliner pass"));
static cl::opt<bool>
DisableOptimizations("disable-opt",
cl::desc("Do not run any optimization passes"));
static cl::opt<bool>
DisableInternalize("disable-internalize",
cl::desc("Do not mark all symbols as internal"));
static cl::opt<bool>
StandardCompileOpts("std-compile-opts",
cl::desc("Include the standard compile time optimizations"));
static cl::opt<bool>
StandardLinkOpts("std-link-opts",
cl::desc("Include the standard link time optimizations"));
static cl::opt<bool>
OptLevelO1("O1",
cl::desc("Optimization level 1. Similar to llvm-gcc -O1"));
static cl::opt<bool>
OptLevelO2("O2",
cl::desc("Optimization level 2. Similar to llvm-gcc -O2"));
static cl::opt<bool>
OptLevelO3("O3",
cl::desc("Optimization level 3. Similar to llvm-gcc -O3"));
static cl::opt<bool>
UnitAtATime("funit-at-a-time",
cl::desc("Enable IPO. This is same as llvm-gcc's -funit-at-a-time"),
cl::init(true));
static cl::opt<bool>
DisableSimplifyLibCalls("disable-simplify-libcalls",
cl::desc("Disable simplify-libcalls"));
static cl::opt<bool>
Quiet("q", cl::desc("Obsolete option"), cl::Hidden);
static cl::alias
QuietA("quiet", cl::desc("Alias for -q"), cl::aliasopt(Quiet));
static cl::opt<bool>
AnalyzeOnly("analyze", cl::desc("Only perform analysis, no optimization"));
static cl::opt<std::string>
DefaultDataLayout("default-data-layout",
cl::desc("data layout string to use if not specified by module"),
cl::value_desc("layout-string"), cl::init(""));
// ---------- Define Printers for module and function passes ------------
namespace {
struct CallGraphSCCPassPrinter : public CallGraphSCCPass {
static char ID;
const PassInfo *PassToPrint;
CallGraphSCCPassPrinter(const PassInfo *PI) :
CallGraphSCCPass(&ID), PassToPrint(PI) {}
virtual bool runOnSCC(std::vector<CallGraphNode *>&SCC) {
if (!Quiet) {
outs() << "Printing analysis '" << PassToPrint->getPassName() << "':\n";
for (unsigned i = 0, e = SCC.size(); i != e; ++i) {
Function *F = SCC[i]->getFunction();
if (F) {
getAnalysisID<Pass>(PassToPrint).print(outs(), F->getParent());
}
}
}
// Get and print pass...
return false;
}
virtual const char *getPassName() const { return "'Pass' Printer"; }
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequiredID(PassToPrint);
AU.setPreservesAll();
}
};
char CallGraphSCCPassPrinter::ID = 0;
struct ModulePassPrinter : public ModulePass {
static char ID;
const PassInfo *PassToPrint;
ModulePassPrinter(const PassInfo *PI) : ModulePass(&ID),
PassToPrint(PI) {}
virtual bool runOnModule(Module &M) {
if (!Quiet) {
outs() << "Printing analysis '" << PassToPrint->getPassName() << "':\n";
getAnalysisID<Pass>(PassToPrint).print(outs(), &M);
}
// Get and print pass...
return false;
}
virtual const char *getPassName() const { return "'Pass' Printer"; }
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequiredID(PassToPrint);
AU.setPreservesAll();
}
};
char ModulePassPrinter::ID = 0;
struct FunctionPassPrinter : public FunctionPass {
const PassInfo *PassToPrint;
static char ID;
FunctionPassPrinter(const PassInfo *PI) : FunctionPass(&ID),
PassToPrint(PI) {}
virtual bool runOnFunction(Function &F) {
if (!Quiet) {
outs() << "Printing analysis '" << PassToPrint->getPassName()
<< "' for function '" << F.getName() << "':\n";
}
// Get and print pass...
getAnalysisID<Pass>(PassToPrint).print(outs(), F.getParent());
return false;
}
virtual const char *getPassName() const { return "FunctionPass Printer"; }
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequiredID(PassToPrint);
AU.setPreservesAll();
}
};
char FunctionPassPrinter::ID = 0;
struct LoopPassPrinter : public LoopPass {
static char ID;
const PassInfo *PassToPrint;
LoopPassPrinter(const PassInfo *PI) :
LoopPass(&ID), PassToPrint(PI) {}
virtual bool runOnLoop(Loop *L, LPPassManager &LPM) {
if (!Quiet) {
outs() << "Printing analysis '" << PassToPrint->getPassName() << "':\n";
getAnalysisID<Pass>(PassToPrint).print(outs(),
L->getHeader()->getParent()->getParent());
}
// Get and print pass...
return false;
}
virtual const char *getPassName() const { return "'Pass' Printer"; }
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequiredID(PassToPrint);
AU.setPreservesAll();
}
};
char LoopPassPrinter::ID = 0;
struct BasicBlockPassPrinter : public BasicBlockPass {
const PassInfo *PassToPrint;
static char ID;
BasicBlockPassPrinter(const PassInfo *PI)
: BasicBlockPass(&ID), PassToPrint(PI) {}
virtual bool runOnBasicBlock(BasicBlock &BB) {
if (!Quiet) {
outs() << "Printing Analysis info for BasicBlock '" << BB.getName()
<< "': Pass " << PassToPrint->getPassName() << ":\n";
}
// Get and print pass...
getAnalysisID<Pass>(PassToPrint).print(outs(), BB.getParent()->getParent());
return false;
}
virtual const char *getPassName() const { return "BasicBlockPass Printer"; }
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequiredID(PassToPrint);
AU.setPreservesAll();
}
};
char BasicBlockPassPrinter::ID = 0;
inline void addPass(PassManager &PM, Pass *P) {
// Add the pass to the pass manager...
PM.add(P);
// If we are verifying all of the intermediate steps, add the verifier...
if (VerifyEach) PM.add(createVerifierPass());
}
/// AddOptimizationPasses - This routine adds optimization passes
/// based on selected optimization level, OptLevel. This routine
/// duplicates llvm-gcc behaviour.
///
/// OptLevel - Optimization Level
void AddOptimizationPasses(PassManager &MPM, FunctionPassManager &FPM,
unsigned OptLevel) {
createStandardFunctionPasses(&FPM, OptLevel);
llvm::Pass *InliningPass = 0;
if (DisableInline) {
// No inlining pass
} else if (OptLevel) {
unsigned Threshold = 200;
if (OptLevel > 2)
Threshold = 250;
InliningPass = createFunctionInliningPass(Threshold);
} else {
InliningPass = createAlwaysInlinerPass();
}
createStandardModulePasses(&MPM, OptLevel,
/*OptimizeSize=*/ false,
UnitAtATime,
/*UnrollLoops=*/ OptLevel > 1,
!DisableSimplifyLibCalls,
/*HaveExceptions=*/ true,
InliningPass);
}
void AddStandardCompilePasses(PassManager &PM) {
PM.add(createVerifierPass()); // Verify that input is correct
addPass(PM, createLowerSetJmpPass()); // Lower llvm.setjmp/.longjmp
// If the -strip-debug command line option was specified, do it.
if (StripDebug)
addPass(PM, createStripSymbolsPass(true));
if (DisableOptimizations) return;
llvm::Pass *InliningPass = !DisableInline ? createFunctionInliningPass() : 0;
// -std-compile-opts adds the same module passes as -O3.
createStandardModulePasses(&PM, 3,
/*OptimizeSize=*/ false,
/*UnitAtATime=*/ true,
/*UnrollLoops=*/ true,
/*SimplifyLibCalls=*/ true,
/*HaveExceptions=*/ true,
InliningPass);
}
void AddStandardLinkPasses(PassManager &PM) {
PM.add(createVerifierPass()); // Verify that input is correct
// If the -strip-debug command line option was specified, do it.
if (StripDebug)
addPass(PM, createStripSymbolsPass(true));
if (DisableOptimizations) return;
createStandardLTOPasses(&PM, /*Internalize=*/ !DisableInternalize,
/*RunInliner=*/ !DisableInline,
/*VerifyEach=*/ VerifyEach);
}
} // anonymous namespace
//===----------------------------------------------------------------------===//
// main for opt
//
int main(int argc, char **argv) {
sys::PrintStackTraceOnErrorSignal();
llvm::PrettyStackTraceProgram X(argc, argv);
// Enable debug stream buffering.
EnableDebugBuffering = true;
llvm_shutdown_obj Y; // Call llvm_shutdown() on exit.
LLVMContext &Context = getGlobalContext();
cl::ParseCommandLineOptions(argc, argv,
"llvm .bc -> .bc modular optimizer and analysis printer\n");
// Allocate a full target machine description only if necessary.
// FIXME: The choice of target should be controllable on the command line.
std::auto_ptr<TargetMachine> target;
SMDiagnostic Err;
// Load the input module...
std::auto_ptr<Module> M;
M.reset(ParseIRFile(InputFilename, Err, Context));
if (M.get() == 0) {
Err.Print(argv[0], errs());
return 1;
}
// Figure out what stream we are supposed to write to...
// FIXME: outs() is not binary!
raw_ostream *Out = &outs(); // Default to printing to stdout...
if (OutputFilename != "-") {
if (NoOutput || AnalyzeOnly) {
errs() << "WARNING: The -o (output filename) option is ignored when\n"
"the --disable-output or --analyze options are used.\n";
} else {
// Make sure that the Output file gets unlinked from the disk if we get a
// SIGINT
sys::RemoveFileOnSignal(sys::Path(OutputFilename));
std::string ErrorInfo;
Out = new raw_fd_ostream(OutputFilename.c_str(), ErrorInfo,
raw_fd_ostream::F_Binary);
if (!ErrorInfo.empty()) {
errs() << ErrorInfo << '\n';
delete Out;
return 1;
}
}
}
// If the output is set to be emitted to standard out, and standard out is a
// console, print out a warning message and refuse to do it. We don't
// impress anyone by spewing tons of binary goo to a terminal.
if (!Force && !NoOutput && !AnalyzeOnly && !OutputAssembly)
if (CheckBitcodeOutputToConsole(*Out, !Quiet))
NoOutput = true;
// Create a PassManager to hold and optimize the collection of passes we are
// about to build...
//
PassManager Passes;
// Add an appropriate TargetData instance for this module...
TargetData *TD = 0;
const std::string &ModuleDataLayout = M.get()->getDataLayout();
if (!ModuleDataLayout.empty())
TD = new TargetData(ModuleDataLayout);
else if (!DefaultDataLayout.empty())
TD = new TargetData(DefaultDataLayout);
if (TD)
Passes.add(TD);
OwningPtr<FunctionPassManager> FPasses;
if (OptLevelO1 || OptLevelO2 || OptLevelO3) {
FPasses.reset(new FunctionPassManager(M.get()));
if (TD)
FPasses->add(new TargetData(*TD));
}
// If the -strip-debug command line option was specified, add it. If
// -std-compile-opts was also specified, it will handle StripDebug.
if (StripDebug && !StandardCompileOpts)
addPass(Passes, createStripSymbolsPass(true));
// Create a new optimization pass for each one specified on the command line
for (unsigned i = 0; i < PassList.size(); ++i) {
// Check to see if -std-compile-opts was specified before this option. If
// so, handle it.
if (StandardCompileOpts &&
StandardCompileOpts.getPosition() < PassList.getPosition(i)) {
AddStandardCompilePasses(Passes);
StandardCompileOpts = false;
}
if (StandardLinkOpts &&
StandardLinkOpts.getPosition() < PassList.getPosition(i)) {
AddStandardLinkPasses(Passes);
StandardLinkOpts = false;
}
if (OptLevelO1 && OptLevelO1.getPosition() < PassList.getPosition(i)) {
AddOptimizationPasses(Passes, *FPasses, 1);
OptLevelO1 = false;
}
if (OptLevelO2 && OptLevelO2.getPosition() < PassList.getPosition(i)) {
AddOptimizationPasses(Passes, *FPasses, 2);
OptLevelO2 = false;
}
if (OptLevelO3 && OptLevelO3.getPosition() < PassList.getPosition(i)) {
AddOptimizationPasses(Passes, *FPasses, 3);
OptLevelO3 = false;
}
const PassInfo *PassInf = PassList[i];
Pass *P = 0;
if (PassInf->getNormalCtor())
P = PassInf->getNormalCtor()();
else
errs() << argv[0] << ": cannot create pass: "
<< PassInf->getPassName() << "\n";
if (P) {
PassKind Kind = P->getPassKind();
addPass(Passes, P);
if (AnalyzeOnly) {
switch (Kind) {
case PT_BasicBlock:
Passes.add(new BasicBlockPassPrinter(PassInf));
break;
case PT_Loop:
Passes.add(new LoopPassPrinter(PassInf));
break;
case PT_Function:
Passes.add(new FunctionPassPrinter(PassInf));
break;
case PT_CallGraphSCC:
Passes.add(new CallGraphSCCPassPrinter(PassInf));
break;
default:
Passes.add(new ModulePassPrinter(PassInf));
break;
}
}
}
if (PrintEachXForm)
Passes.add(createPrintModulePass(&errs()));
}
// If -std-compile-opts was specified at the end of the pass list, add them.
if (StandardCompileOpts) {
AddStandardCompilePasses(Passes);
StandardCompileOpts = false;
}
if (StandardLinkOpts) {
AddStandardLinkPasses(Passes);
StandardLinkOpts = false;
}
if (OptLevelO1)
AddOptimizationPasses(Passes, *FPasses, 1);
if (OptLevelO2)
AddOptimizationPasses(Passes, *FPasses, 2);
if (OptLevelO3)
AddOptimizationPasses(Passes, *FPasses, 3);
if (OptLevelO1 || OptLevelO2 || OptLevelO3) {
FPasses->doInitialization();
for (Module::iterator I = M.get()->begin(), E = M.get()->end();
I != E; ++I)
FPasses->run(*I);
}
// Check that the module is well formed on completion of optimization
if (!NoVerify && !VerifyEach)
Passes.add(createVerifierPass());
// Write bitcode or assembly out to disk or outs() as the last step...
if (!NoOutput && !AnalyzeOnly) {
if (OutputAssembly)
Passes.add(createPrintModulePass(Out));
else
Passes.add(createBitcodeWriterPass(*Out));
}
// Now that we have all of the passes ready, run them.
Passes.run(*M.get());
// Delete the raw_fd_ostream.
if (Out != &outs())
delete Out;
return 0;
}