| //===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This tool implements a just-in-time compiler for LLVM, allowing direct |
| // execution of LLVM bitcode in an efficient manner. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "JIT.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/CodeGen/JITCodeEmitter.h" |
| #include "llvm/CodeGen/MachineCodeInfo.h" |
| #include "llvm/Config/config.h" |
| #include "llvm/ExecutionEngine/GenericValue.h" |
| #include "llvm/ExecutionEngine/JITEventListener.h" |
| #include "llvm/ExecutionEngine/JITMemoryManager.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/Support/Dwarf.h" |
| #include "llvm/Support/DynamicLibrary.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/ManagedStatic.h" |
| #include "llvm/Support/MutexGuard.h" |
| #include "llvm/Target/TargetJITInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| |
| using namespace llvm; |
| |
| #ifdef __APPLE__ |
| // Apple gcc defaults to -fuse-cxa-atexit (i.e. calls __cxa_atexit instead |
| // of atexit). It passes the address of linker generated symbol __dso_handle |
| // to the function. |
| // This configuration change happened at version 5330. |
| # include <AvailabilityMacros.h> |
| # if defined(MAC_OS_X_VERSION_10_4) && \ |
| ((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \ |
| (MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \ |
| __APPLE_CC__ >= 5330)) |
| # ifndef HAVE___DSO_HANDLE |
| # define HAVE___DSO_HANDLE 1 |
| # endif |
| # endif |
| #endif |
| |
| #if HAVE___DSO_HANDLE |
| extern void *__dso_handle __attribute__ ((__visibility__ ("hidden"))); |
| #endif |
| |
| namespace { |
| |
| static struct RegisterJIT { |
| RegisterJIT() { JIT::Register(); } |
| } JITRegistrator; |
| |
| } |
| |
| extern "C" void LLVMLinkInJIT() { |
| } |
| |
| // Determine whether we can register EH tables. |
| #if (defined(__GNUC__) && !defined(__ARM_EABI__) && \ |
| !defined(__USING_SJLJ_EXCEPTIONS__)) |
| #define HAVE_EHTABLE_SUPPORT 1 |
| #else |
| #define HAVE_EHTABLE_SUPPORT 0 |
| #endif |
| |
| #if HAVE_EHTABLE_SUPPORT |
| |
| // libgcc defines the __register_frame function to dynamically register new |
| // dwarf frames for exception handling. This functionality is not portable |
| // across compilers and is only provided by GCC. We use the __register_frame |
| // function here so that code generated by the JIT cooperates with the unwinding |
| // runtime of libgcc. When JITting with exception handling enable, LLVM |
| // generates dwarf frames and registers it to libgcc with __register_frame. |
| // |
| // The __register_frame function works with Linux. |
| // |
| // Unfortunately, this functionality seems to be in libgcc after the unwinding |
| // library of libgcc for darwin was written. The code for darwin overwrites the |
| // value updated by __register_frame with a value fetched with "keymgr". |
| // "keymgr" is an obsolete functionality, which should be rewritten some day. |
| // In the meantime, since "keymgr" is on all libgccs shipped with apple-gcc, we |
| // need a workaround in LLVM which uses the "keymgr" to dynamically modify the |
| // values of an opaque key, used by libgcc to find dwarf tables. |
| |
| extern "C" void __register_frame(void*); |
| extern "C" void __deregister_frame(void*); |
| |
| #if defined(__APPLE__) && MAC_OS_X_VERSION_MAX_ALLOWED <= 1050 |
| # define USE_KEYMGR 1 |
| #else |
| # define USE_KEYMGR 0 |
| #endif |
| |
| #if USE_KEYMGR |
| |
| namespace { |
| |
| // LibgccObject - This is the structure defined in libgcc. There is no #include |
| // provided for this structure, so we also define it here. libgcc calls it |
| // "struct object". The structure is undocumented in libgcc. |
| struct LibgccObject { |
| void *unused1; |
| void *unused2; |
| void *unused3; |
| |
| /// frame - Pointer to the exception table. |
| void *frame; |
| |
| /// encoding - The encoding of the object? |
| union { |
| struct { |
| unsigned long sorted : 1; |
| unsigned long from_array : 1; |
| unsigned long mixed_encoding : 1; |
| unsigned long encoding : 8; |
| unsigned long count : 21; |
| } b; |
| size_t i; |
| } encoding; |
| |
| /// fde_end - libgcc defines this field only if some macro is defined. We |
| /// include this field even if it may not there, to make libgcc happy. |
| char *fde_end; |
| |
| /// next - At least we know it's a chained list! |
| struct LibgccObject *next; |
| }; |
| |
| // "kemgr" stuff. Apparently, all frame tables are stored there. |
| extern "C" void _keymgr_set_and_unlock_processwide_ptr(int, void *); |
| extern "C" void *_keymgr_get_and_lock_processwide_ptr(int); |
| #define KEYMGR_GCC3_DW2_OBJ_LIST 302 /* Dwarf2 object list */ |
| |
| /// LibgccObjectInfo - libgcc defines this struct as km_object_info. It |
| /// probably contains all dwarf tables that are loaded. |
| struct LibgccObjectInfo { |
| |
| /// seenObjects - LibgccObjects already parsed by the unwinding runtime. |
| /// |
| struct LibgccObject* seenObjects; |
| |
| /// unseenObjects - LibgccObjects not parsed yet by the unwinding runtime. |
| /// |
| struct LibgccObject* unseenObjects; |
| |
| unsigned unused[2]; |
| }; |
| |
| /// darwin_register_frame - Since __register_frame does not work with darwin's |
| /// libgcc,we provide our own function, which "tricks" libgcc by modifying the |
| /// "Dwarf2 object list" key. |
| void DarwinRegisterFrame(void* FrameBegin) { |
| // Get the key. |
| LibgccObjectInfo* LOI = (struct LibgccObjectInfo*) |
| _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST); |
| assert(LOI && "This should be preallocated by the runtime"); |
| |
| // Allocate a new LibgccObject to represent this frame. Deallocation of this |
| // object may be impossible: since darwin code in libgcc was written after |
| // the ability to dynamically register frames, things may crash if we |
| // deallocate it. |
| struct LibgccObject* ob = (struct LibgccObject*) |
| malloc(sizeof(struct LibgccObject)); |
| |
| // Do like libgcc for the values of the field. |
| ob->unused1 = (void *)-1; |
| ob->unused2 = 0; |
| ob->unused3 = 0; |
| ob->frame = FrameBegin; |
| ob->encoding.i = 0; |
| ob->encoding.b.encoding = llvm::dwarf::DW_EH_PE_omit; |
| |
| // Put the info on both places, as libgcc uses the first or the second |
| // field. Note that we rely on having two pointers here. If fde_end was a |
| // char, things would get complicated. |
| ob->fde_end = (char*)LOI->unseenObjects; |
| ob->next = LOI->unseenObjects; |
| |
| // Update the key's unseenObjects list. |
| LOI->unseenObjects = ob; |
| |
| // Finally update the "key". Apparently, libgcc requires it. |
| _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST, |
| LOI); |
| |
| } |
| |
| } |
| #endif // __APPLE__ |
| #endif // HAVE_EHTABLE_SUPPORT |
| |
| /// createJIT - This is the factory method for creating a JIT for the current |
| /// machine, it does not fall back to the interpreter. This takes ownership |
| /// of the module. |
| ExecutionEngine *JIT::createJIT(Module *M, |
| std::string *ErrorStr, |
| JITMemoryManager *JMM, |
| bool GVsWithCode, |
| TargetMachine *TM) { |
| // Try to register the program as a source of symbols to resolve against. |
| // |
| // FIXME: Don't do this here. |
| sys::DynamicLibrary::LoadLibraryPermanently(0, NULL); |
| |
| // If the target supports JIT code generation, create the JIT. |
| if (TargetJITInfo *TJ = TM->getJITInfo()) { |
| return new JIT(M, *TM, *TJ, JMM, GVsWithCode); |
| } else { |
| if (ErrorStr) |
| *ErrorStr = "target does not support JIT code generation"; |
| return 0; |
| } |
| } |
| |
| namespace { |
| /// This class supports the global getPointerToNamedFunction(), which allows |
| /// bugpoint or gdb users to search for a function by name without any context. |
| class JitPool { |
| SmallPtrSet<JIT*, 1> JITs; // Optimize for process containing just 1 JIT. |
| mutable sys::Mutex Lock; |
| public: |
| void Add(JIT *jit) { |
| MutexGuard guard(Lock); |
| JITs.insert(jit); |
| } |
| void Remove(JIT *jit) { |
| MutexGuard guard(Lock); |
| JITs.erase(jit); |
| } |
| void *getPointerToNamedFunction(const char *Name) const { |
| MutexGuard guard(Lock); |
| assert(JITs.size() != 0 && "No Jit registered"); |
| //search function in every instance of JIT |
| for (SmallPtrSet<JIT*, 1>::const_iterator Jit = JITs.begin(), |
| end = JITs.end(); |
| Jit != end; ++Jit) { |
| if (Function *F = (*Jit)->FindFunctionNamed(Name)) |
| return (*Jit)->getPointerToFunction(F); |
| } |
| // The function is not available : fallback on the first created (will |
| // search in symbol of the current program/library) |
| return (*JITs.begin())->getPointerToNamedFunction(Name); |
| } |
| }; |
| ManagedStatic<JitPool> AllJits; |
| } |
| extern "C" { |
| // getPointerToNamedFunction - This function is used as a global wrapper to |
| // JIT::getPointerToNamedFunction for the purpose of resolving symbols when |
| // bugpoint is debugging the JIT. In that scenario, we are loading an .so and |
| // need to resolve function(s) that are being mis-codegenerated, so we need to |
| // resolve their addresses at runtime, and this is the way to do it. |
| void *getPointerToNamedFunction(const char *Name) { |
| return AllJits->getPointerToNamedFunction(Name); |
| } |
| } |
| |
| JIT::JIT(Module *M, TargetMachine &tm, TargetJITInfo &tji, |
| JITMemoryManager *jmm, bool GVsWithCode) |
| : ExecutionEngine(M), TM(tm), TJI(tji), |
| JMM(jmm ? jmm : JITMemoryManager::CreateDefaultMemManager()), |
| AllocateGVsWithCode(GVsWithCode), isAlreadyCodeGenerating(false) { |
| setDataLayout(TM.getDataLayout()); |
| |
| jitstate = new JITState(M); |
| |
| // Initialize JCE |
| JCE = createEmitter(*this, JMM, TM); |
| |
| // Register in global list of all JITs. |
| AllJits->Add(this); |
| |
| // Add target data |
| MutexGuard locked(lock); |
| FunctionPassManager &PM = jitstate->getPM(locked); |
| PM.add(new DataLayout(*TM.getDataLayout())); |
| |
| // Turn the machine code intermediate representation into bytes in memory that |
| // may be executed. |
| if (TM.addPassesToEmitMachineCode(PM, *JCE)) { |
| report_fatal_error("Target does not support machine code emission!"); |
| } |
| |
| // Register routine for informing unwinding runtime about new EH frames |
| #if HAVE_EHTABLE_SUPPORT |
| #if USE_KEYMGR |
| struct LibgccObjectInfo* LOI = (struct LibgccObjectInfo*) |
| _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST); |
| |
| // The key is created on demand, and libgcc creates it the first time an |
| // exception occurs. Since we need the key to register frames, we create |
| // it now. |
| if (!LOI) |
| LOI = (LibgccObjectInfo*)calloc(sizeof(struct LibgccObjectInfo), 1); |
| _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST, LOI); |
| InstallExceptionTableRegister(DarwinRegisterFrame); |
| // Not sure about how to deregister on Darwin. |
| #else |
| InstallExceptionTableRegister(__register_frame); |
| InstallExceptionTableDeregister(__deregister_frame); |
| #endif // __APPLE__ |
| #endif // HAVE_EHTABLE_SUPPORT |
| |
| // Initialize passes. |
| PM.doInitialization(); |
| } |
| |
| JIT::~JIT() { |
| // Unregister all exception tables registered by this JIT. |
| DeregisterAllTables(); |
| // Cleanup. |
| AllJits->Remove(this); |
| delete jitstate; |
| delete JCE; |
| // JMM is a ownership of JCE, so we no need delete JMM here. |
| delete &TM; |
| } |
| |
| /// addModule - Add a new Module to the JIT. If we previously removed the last |
| /// Module, we need re-initialize jitstate with a valid Module. |
| void JIT::addModule(Module *M) { |
| MutexGuard locked(lock); |
| |
| if (Modules.empty()) { |
| assert(!jitstate && "jitstate should be NULL if Modules vector is empty!"); |
| |
| jitstate = new JITState(M); |
| |
| FunctionPassManager &PM = jitstate->getPM(locked); |
| PM.add(new DataLayout(*TM.getDataLayout())); |
| |
| // Turn the machine code intermediate representation into bytes in memory |
| // that may be executed. |
| if (TM.addPassesToEmitMachineCode(PM, *JCE)) { |
| report_fatal_error("Target does not support machine code emission!"); |
| } |
| |
| // Initialize passes. |
| PM.doInitialization(); |
| } |
| |
| ExecutionEngine::addModule(M); |
| } |
| |
| /// removeModule - If we are removing the last Module, invalidate the jitstate |
| /// since the PassManager it contains references a released Module. |
| bool JIT::removeModule(Module *M) { |
| bool result = ExecutionEngine::removeModule(M); |
| |
| MutexGuard locked(lock); |
| |
| if (jitstate && jitstate->getModule() == M) { |
| delete jitstate; |
| jitstate = 0; |
| } |
| |
| if (!jitstate && !Modules.empty()) { |
| jitstate = new JITState(Modules[0]); |
| |
| FunctionPassManager &PM = jitstate->getPM(locked); |
| PM.add(new DataLayout(*TM.getDataLayout())); |
| |
| // Turn the machine code intermediate representation into bytes in memory |
| // that may be executed. |
| if (TM.addPassesToEmitMachineCode(PM, *JCE)) { |
| report_fatal_error("Target does not support machine code emission!"); |
| } |
| |
| // Initialize passes. |
| PM.doInitialization(); |
| } |
| return result; |
| } |
| |
| /// run - Start execution with the specified function and arguments. |
| /// |
| GenericValue JIT::runFunction(Function *F, |
| const std::vector<GenericValue> &ArgValues) { |
| assert(F && "Function *F was null at entry to run()"); |
| |
| void *FPtr = getPointerToFunction(F); |
| assert(FPtr && "Pointer to fn's code was null after getPointerToFunction"); |
| FunctionType *FTy = F->getFunctionType(); |
| Type *RetTy = FTy->getReturnType(); |
| |
| assert((FTy->getNumParams() == ArgValues.size() || |
| (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) && |
| "Wrong number of arguments passed into function!"); |
| assert(FTy->getNumParams() == ArgValues.size() && |
| "This doesn't support passing arguments through varargs (yet)!"); |
| |
| // Handle some common cases first. These cases correspond to common `main' |
| // prototypes. |
| if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) { |
| switch (ArgValues.size()) { |
| case 3: |
| if (FTy->getParamType(0)->isIntegerTy(32) && |
| FTy->getParamType(1)->isPointerTy() && |
| FTy->getParamType(2)->isPointerTy()) { |
| int (*PF)(int, char **, const char **) = |
| (int(*)(int, char **, const char **))(intptr_t)FPtr; |
| |
| // Call the function. |
| GenericValue rv; |
| rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(), |
| (char **)GVTOP(ArgValues[1]), |
| (const char **)GVTOP(ArgValues[2]))); |
| return rv; |
| } |
| break; |
| case 2: |
| if (FTy->getParamType(0)->isIntegerTy(32) && |
| FTy->getParamType(1)->isPointerTy()) { |
| int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr; |
| |
| // Call the function. |
| GenericValue rv; |
| rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(), |
| (char **)GVTOP(ArgValues[1]))); |
| return rv; |
| } |
| break; |
| case 1: |
| if (FTy->getParamType(0)->isIntegerTy(32)) { |
| GenericValue rv; |
| int (*PF)(int) = (int(*)(int))(intptr_t)FPtr; |
| rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue())); |
| return rv; |
| } |
| if (FTy->getParamType(0)->isPointerTy()) { |
| GenericValue rv; |
| int (*PF)(char *) = (int(*)(char *))(intptr_t)FPtr; |
| rv.IntVal = APInt(32, PF((char*)GVTOP(ArgValues[0]))); |
| return rv; |
| } |
| break; |
| } |
| } |
| |
| // Handle cases where no arguments are passed first. |
| if (ArgValues.empty()) { |
| GenericValue rv; |
| switch (RetTy->getTypeID()) { |
| default: llvm_unreachable("Unknown return type for function call!"); |
| case Type::IntegerTyID: { |
| unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth(); |
| if (BitWidth == 1) |
| rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)()); |
| else if (BitWidth <= 8) |
| rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)()); |
| else if (BitWidth <= 16) |
| rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)()); |
| else if (BitWidth <= 32) |
| rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)()); |
| else if (BitWidth <= 64) |
| rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)()); |
| else |
| llvm_unreachable("Integer types > 64 bits not supported"); |
| return rv; |
| } |
| case Type::VoidTyID: |
| rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)()); |
| return rv; |
| case Type::FloatTyID: |
| rv.FloatVal = ((float(*)())(intptr_t)FPtr)(); |
| return rv; |
| case Type::DoubleTyID: |
| rv.DoubleVal = ((double(*)())(intptr_t)FPtr)(); |
| return rv; |
| case Type::X86_FP80TyID: |
| case Type::FP128TyID: |
| case Type::PPC_FP128TyID: |
| llvm_unreachable("long double not supported yet"); |
| case Type::PointerTyID: |
| return PTOGV(((void*(*)())(intptr_t)FPtr)()); |
| } |
| } |
| |
| // Okay, this is not one of our quick and easy cases. Because we don't have a |
| // full FFI, we have to codegen a nullary stub function that just calls the |
| // function we are interested in, passing in constants for all of the |
| // arguments. Make this function and return. |
| |
| // First, create the function. |
| FunctionType *STy=FunctionType::get(RetTy, false); |
| Function *Stub = Function::Create(STy, Function::InternalLinkage, "", |
| F->getParent()); |
| |
| // Insert a basic block. |
| BasicBlock *StubBB = BasicBlock::Create(F->getContext(), "", Stub); |
| |
| // Convert all of the GenericValue arguments over to constants. Note that we |
| // currently don't support varargs. |
| SmallVector<Value*, 8> Args; |
| for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) { |
| Constant *C = 0; |
| Type *ArgTy = FTy->getParamType(i); |
| const GenericValue &AV = ArgValues[i]; |
| switch (ArgTy->getTypeID()) { |
| default: llvm_unreachable("Unknown argument type for function call!"); |
| case Type::IntegerTyID: |
| C = ConstantInt::get(F->getContext(), AV.IntVal); |
| break; |
| case Type::FloatTyID: |
| C = ConstantFP::get(F->getContext(), APFloat(AV.FloatVal)); |
| break; |
| case Type::DoubleTyID: |
| C = ConstantFP::get(F->getContext(), APFloat(AV.DoubleVal)); |
| break; |
| case Type::PPC_FP128TyID: |
| case Type::X86_FP80TyID: |
| case Type::FP128TyID: |
| C = ConstantFP::get(F->getContext(), APFloat(ArgTy->getFltSemantics(), |
| AV.IntVal)); |
| break; |
| case Type::PointerTyID: |
| void *ArgPtr = GVTOP(AV); |
| if (sizeof(void*) == 4) |
| C = ConstantInt::get(Type::getInt32Ty(F->getContext()), |
| (int)(intptr_t)ArgPtr); |
| else |
| C = ConstantInt::get(Type::getInt64Ty(F->getContext()), |
| (intptr_t)ArgPtr); |
| // Cast the integer to pointer |
| C = ConstantExpr::getIntToPtr(C, ArgTy); |
| break; |
| } |
| Args.push_back(C); |
| } |
| |
| CallInst *TheCall = CallInst::Create(F, Args, "", StubBB); |
| TheCall->setCallingConv(F->getCallingConv()); |
| TheCall->setTailCall(); |
| if (!TheCall->getType()->isVoidTy()) |
| // Return result of the call. |
| ReturnInst::Create(F->getContext(), TheCall, StubBB); |
| else |
| ReturnInst::Create(F->getContext(), StubBB); // Just return void. |
| |
| // Finally, call our nullary stub function. |
| GenericValue Result = runFunction(Stub, std::vector<GenericValue>()); |
| // Erase it, since no other function can have a reference to it. |
| Stub->eraseFromParent(); |
| // And return the result. |
| return Result; |
| } |
| |
| void JIT::RegisterJITEventListener(JITEventListener *L) { |
| if (L == NULL) |
| return; |
| MutexGuard locked(lock); |
| EventListeners.push_back(L); |
| } |
| void JIT::UnregisterJITEventListener(JITEventListener *L) { |
| if (L == NULL) |
| return; |
| MutexGuard locked(lock); |
| std::vector<JITEventListener*>::reverse_iterator I= |
| std::find(EventListeners.rbegin(), EventListeners.rend(), L); |
| if (I != EventListeners.rend()) { |
| std::swap(*I, EventListeners.back()); |
| EventListeners.pop_back(); |
| } |
| } |
| void JIT::NotifyFunctionEmitted( |
| const Function &F, |
| void *Code, size_t Size, |
| const JITEvent_EmittedFunctionDetails &Details) { |
| MutexGuard locked(lock); |
| for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) { |
| EventListeners[I]->NotifyFunctionEmitted(F, Code, Size, Details); |
| } |
| } |
| |
| void JIT::NotifyFreeingMachineCode(void *OldPtr) { |
| MutexGuard locked(lock); |
| for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) { |
| EventListeners[I]->NotifyFreeingMachineCode(OldPtr); |
| } |
| } |
| |
| /// runJITOnFunction - Run the FunctionPassManager full of |
| /// just-in-time compilation passes on F, hopefully filling in |
| /// GlobalAddress[F] with the address of F's machine code. |
| /// |
| void JIT::runJITOnFunction(Function *F, MachineCodeInfo *MCI) { |
| MutexGuard locked(lock); |
| |
| class MCIListener : public JITEventListener { |
| MachineCodeInfo *const MCI; |
| public: |
| MCIListener(MachineCodeInfo *mci) : MCI(mci) {} |
| virtual void NotifyFunctionEmitted(const Function &, |
| void *Code, size_t Size, |
| const EmittedFunctionDetails &) { |
| MCI->setAddress(Code); |
| MCI->setSize(Size); |
| } |
| }; |
| MCIListener MCIL(MCI); |
| if (MCI) |
| RegisterJITEventListener(&MCIL); |
| |
| runJITOnFunctionUnlocked(F, locked); |
| |
| if (MCI) |
| UnregisterJITEventListener(&MCIL); |
| } |
| |
| void JIT::runJITOnFunctionUnlocked(Function *F, const MutexGuard &locked) { |
| assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!"); |
| |
| jitTheFunction(F, locked); |
| |
| // If the function referred to another function that had not yet been |
| // read from bitcode, and we are jitting non-lazily, emit it now. |
| while (!jitstate->getPendingFunctions(locked).empty()) { |
| Function *PF = jitstate->getPendingFunctions(locked).back(); |
| jitstate->getPendingFunctions(locked).pop_back(); |
| |
| assert(!PF->hasAvailableExternallyLinkage() && |
| "Externally-defined function should not be in pending list."); |
| |
| jitTheFunction(PF, locked); |
| |
| // Now that the function has been jitted, ask the JITEmitter to rewrite |
| // the stub with real address of the function. |
| updateFunctionStub(PF); |
| } |
| } |
| |
| void JIT::jitTheFunction(Function *F, const MutexGuard &locked) { |
| isAlreadyCodeGenerating = true; |
| jitstate->getPM(locked).run(*F); |
| isAlreadyCodeGenerating = false; |
| |
| // clear basic block addresses after this function is done |
| getBasicBlockAddressMap(locked).clear(); |
| } |
| |
| /// getPointerToFunction - This method is used to get the address of the |
| /// specified function, compiling it if necessary. |
| /// |
| void *JIT::getPointerToFunction(Function *F) { |
| |
| if (void *Addr = getPointerToGlobalIfAvailable(F)) |
| return Addr; // Check if function already code gen'd |
| |
| MutexGuard locked(lock); |
| |
| // Now that this thread owns the lock, make sure we read in the function if it |
| // exists in this Module. |
| std::string ErrorMsg; |
| if (F->Materialize(&ErrorMsg)) { |
| report_fatal_error("Error reading function '" + F->getName()+ |
| "' from bitcode file: " + ErrorMsg); |
| } |
| |
| // ... and check if another thread has already code gen'd the function. |
| if (void *Addr = getPointerToGlobalIfAvailable(F)) |
| return Addr; |
| |
| if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) { |
| bool AbortOnFailure = !F->hasExternalWeakLinkage(); |
| void *Addr = getPointerToNamedFunction(F->getName(), AbortOnFailure); |
| addGlobalMapping(F, Addr); |
| return Addr; |
| } |
| |
| runJITOnFunctionUnlocked(F, locked); |
| |
| void *Addr = getPointerToGlobalIfAvailable(F); |
| assert(Addr && "Code generation didn't add function to GlobalAddress table!"); |
| return Addr; |
| } |
| |
| void JIT::addPointerToBasicBlock(const BasicBlock *BB, void *Addr) { |
| MutexGuard locked(lock); |
| |
| BasicBlockAddressMapTy::iterator I = |
| getBasicBlockAddressMap(locked).find(BB); |
| if (I == getBasicBlockAddressMap(locked).end()) { |
| getBasicBlockAddressMap(locked)[BB] = Addr; |
| } else { |
| // ignore repeats: some BBs can be split into few MBBs? |
| } |
| } |
| |
| void JIT::clearPointerToBasicBlock(const BasicBlock *BB) { |
| MutexGuard locked(lock); |
| getBasicBlockAddressMap(locked).erase(BB); |
| } |
| |
| void *JIT::getPointerToBasicBlock(BasicBlock *BB) { |
| // make sure it's function is compiled by JIT |
| (void)getPointerToFunction(BB->getParent()); |
| |
| // resolve basic block address |
| MutexGuard locked(lock); |
| |
| BasicBlockAddressMapTy::iterator I = |
| getBasicBlockAddressMap(locked).find(BB); |
| if (I != getBasicBlockAddressMap(locked).end()) { |
| return I->second; |
| } else { |
| llvm_unreachable("JIT does not have BB address for address-of-label, was" |
| " it eliminated by optimizer?"); |
| } |
| } |
| |
| void *JIT::getPointerToNamedFunction(const std::string &Name, |
| bool AbortOnFailure){ |
| if (!isSymbolSearchingDisabled()) { |
| void *ptr = JMM->getPointerToNamedFunction(Name, false); |
| if (ptr) |
| return ptr; |
| } |
| |
| /// If a LazyFunctionCreator is installed, use it to get/create the function. |
| if (LazyFunctionCreator) |
| if (void *RP = LazyFunctionCreator(Name)) |
| return RP; |
| |
| if (AbortOnFailure) { |
| report_fatal_error("Program used external function '"+Name+ |
| "' which could not be resolved!"); |
| } |
| return 0; |
| } |
| |
| |
| /// getOrEmitGlobalVariable - Return the address of the specified global |
| /// variable, possibly emitting it to memory if needed. This is used by the |
| /// Emitter. |
| void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) { |
| MutexGuard locked(lock); |
| |
| void *Ptr = getPointerToGlobalIfAvailable(GV); |
| if (Ptr) return Ptr; |
| |
| // If the global is external, just remember the address. |
| if (GV->isDeclaration() || GV->hasAvailableExternallyLinkage()) { |
| #if HAVE___DSO_HANDLE |
| if (GV->getName() == "__dso_handle") |
| return (void*)&__dso_handle; |
| #endif |
| Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName()); |
| if (Ptr == 0) { |
| report_fatal_error("Could not resolve external global address: " |
| +GV->getName()); |
| } |
| addGlobalMapping(GV, Ptr); |
| } else { |
| // If the global hasn't been emitted to memory yet, allocate space and |
| // emit it into memory. |
| Ptr = getMemoryForGV(GV); |
| addGlobalMapping(GV, Ptr); |
| EmitGlobalVariable(GV); // Initialize the variable. |
| } |
| return Ptr; |
| } |
| |
| /// recompileAndRelinkFunction - This method is used to force a function |
| /// which has already been compiled, to be compiled again, possibly |
| /// after it has been modified. Then the entry to the old copy is overwritten |
| /// with a branch to the new copy. If there was no old copy, this acts |
| /// just like JIT::getPointerToFunction(). |
| /// |
| void *JIT::recompileAndRelinkFunction(Function *F) { |
| void *OldAddr = getPointerToGlobalIfAvailable(F); |
| |
| // If it's not already compiled there is no reason to patch it up. |
| if (OldAddr == 0) { return getPointerToFunction(F); } |
| |
| // Delete the old function mapping. |
| addGlobalMapping(F, 0); |
| |
| // Recodegen the function |
| runJITOnFunction(F); |
| |
| // Update state, forward the old function to the new function. |
| void *Addr = getPointerToGlobalIfAvailable(F); |
| assert(Addr && "Code generation didn't add function to GlobalAddress table!"); |
| TJI.replaceMachineCodeForFunction(OldAddr, Addr); |
| return Addr; |
| } |
| |
| /// getMemoryForGV - This method abstracts memory allocation of global |
| /// variable so that the JIT can allocate thread local variables depending |
| /// on the target. |
| /// |
| char* JIT::getMemoryForGV(const GlobalVariable* GV) { |
| char *Ptr; |
| |
| // GlobalVariable's which are not "constant" will cause trouble in a server |
| // situation. It's returned in the same block of memory as code which may |
| // not be writable. |
| if (isGVCompilationDisabled() && !GV->isConstant()) { |
| report_fatal_error("Compilation of non-internal GlobalValue is disabled!"); |
| } |
| |
| // Some applications require globals and code to live together, so they may |
| // be allocated into the same buffer, but in general globals are allocated |
| // through the memory manager which puts them near the code but not in the |
| // same buffer. |
| Type *GlobalType = GV->getType()->getElementType(); |
| size_t S = getDataLayout()->getTypeAllocSize(GlobalType); |
| size_t A = getDataLayout()->getPreferredAlignment(GV); |
| if (GV->isThreadLocal()) { |
| MutexGuard locked(lock); |
| Ptr = TJI.allocateThreadLocalMemory(S); |
| } else if (TJI.allocateSeparateGVMemory()) { |
| if (A <= 8) { |
| Ptr = (char*)malloc(S); |
| } else { |
| // Allocate S+A bytes of memory, then use an aligned pointer within that |
| // space. |
| Ptr = (char*)malloc(S+A); |
| unsigned MisAligned = ((intptr_t)Ptr & (A-1)); |
| Ptr = Ptr + (MisAligned ? (A-MisAligned) : 0); |
| } |
| } else if (AllocateGVsWithCode) { |
| Ptr = (char*)JCE->allocateSpace(S, A); |
| } else { |
| Ptr = (char*)JCE->allocateGlobal(S, A); |
| } |
| return Ptr; |
| } |
| |
| void JIT::addPendingFunction(Function *F) { |
| MutexGuard locked(lock); |
| jitstate->getPendingFunctions(locked).push_back(F); |
| } |
| |
| |
| JITEventListener::~JITEventListener() {} |