| //===-- JITMemoryManager.cpp - Memory Allocator for JIT'd code ------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the DefaultJITMemoryManager class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "jit" |
| #include "llvm/ExecutionEngine/JITMemoryManager.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Config/config.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/Support/Allocator.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/DynamicLibrary.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/Memory.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <cassert> |
| #include <climits> |
| #include <cstring> |
| #include <vector> |
| |
| #if defined(__linux__) |
| #if defined(HAVE_SYS_STAT_H) |
| #include <sys/stat.h> |
| #endif |
| #include <fcntl.h> |
| #include <unistd.h> |
| #endif |
| |
| using namespace llvm; |
| |
| STATISTIC(NumSlabs, "Number of slabs of memory allocated by the JIT"); |
| |
| JITMemoryManager::~JITMemoryManager() {} |
| |
| //===----------------------------------------------------------------------===// |
| // Memory Block Implementation. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| /// MemoryRangeHeader - For a range of memory, this is the header that we put |
| /// on the block of memory. It is carefully crafted to be one word of memory. |
| /// Allocated blocks have just this header, free'd blocks have FreeRangeHeader |
| /// which starts with this. |
| struct FreeRangeHeader; |
| struct MemoryRangeHeader { |
| /// ThisAllocated - This is true if this block is currently allocated. If |
| /// not, this can be converted to a FreeRangeHeader. |
| unsigned ThisAllocated : 1; |
| |
| /// PrevAllocated - Keep track of whether the block immediately before us is |
| /// allocated. If not, the word immediately before this header is the size |
| /// of the previous block. |
| unsigned PrevAllocated : 1; |
| |
| /// BlockSize - This is the size in bytes of this memory block, |
| /// including this header. |
| uintptr_t BlockSize : (sizeof(intptr_t)*CHAR_BIT - 2); |
| |
| |
| /// getBlockAfter - Return the memory block immediately after this one. |
| /// |
| MemoryRangeHeader &getBlockAfter() const { |
| return *reinterpret_cast<MemoryRangeHeader *>( |
| reinterpret_cast<char*>( |
| const_cast<MemoryRangeHeader *>(this))+BlockSize); |
| } |
| |
| /// getFreeBlockBefore - If the block before this one is free, return it, |
| /// otherwise return null. |
| FreeRangeHeader *getFreeBlockBefore() const { |
| if (PrevAllocated) return 0; |
| intptr_t PrevSize = reinterpret_cast<intptr_t *>( |
| const_cast<MemoryRangeHeader *>(this))[-1]; |
| return reinterpret_cast<FreeRangeHeader *>( |
| reinterpret_cast<char*>( |
| const_cast<MemoryRangeHeader *>(this))-PrevSize); |
| } |
| |
| /// FreeBlock - Turn an allocated block into a free block, adjusting |
| /// bits in the object headers, and adding an end of region memory block. |
| FreeRangeHeader *FreeBlock(FreeRangeHeader *FreeList); |
| |
| /// TrimAllocationToSize - If this allocated block is significantly larger |
| /// than NewSize, split it into two pieces (where the former is NewSize |
| /// bytes, including the header), and add the new block to the free list. |
| FreeRangeHeader *TrimAllocationToSize(FreeRangeHeader *FreeList, |
| uint64_t NewSize); |
| }; |
| |
| /// FreeRangeHeader - For a memory block that isn't already allocated, this |
| /// keeps track of the current block and has a pointer to the next free block. |
| /// Free blocks are kept on a circularly linked list. |
| struct FreeRangeHeader : public MemoryRangeHeader { |
| FreeRangeHeader *Prev; |
| FreeRangeHeader *Next; |
| |
| /// getMinBlockSize - Get the minimum size for a memory block. Blocks |
| /// smaller than this size cannot be created. |
| static unsigned getMinBlockSize() { |
| return sizeof(FreeRangeHeader)+sizeof(intptr_t); |
| } |
| |
| /// SetEndOfBlockSizeMarker - The word at the end of every free block is |
| /// known to be the size of the free block. Set it for this block. |
| void SetEndOfBlockSizeMarker() { |
| void *EndOfBlock = (char*)this + BlockSize; |
| ((intptr_t *)EndOfBlock)[-1] = BlockSize; |
| } |
| |
| FreeRangeHeader *RemoveFromFreeList() { |
| assert(Next->Prev == this && Prev->Next == this && "Freelist broken!"); |
| Next->Prev = Prev; |
| return Prev->Next = Next; |
| } |
| |
| void AddToFreeList(FreeRangeHeader *FreeList) { |
| Next = FreeList; |
| Prev = FreeList->Prev; |
| Prev->Next = this; |
| Next->Prev = this; |
| } |
| |
| /// GrowBlock - The block after this block just got deallocated. Merge it |
| /// into the current block. |
| void GrowBlock(uintptr_t NewSize); |
| |
| /// AllocateBlock - Mark this entire block allocated, updating freelists |
| /// etc. This returns a pointer to the circular free-list. |
| FreeRangeHeader *AllocateBlock(); |
| }; |
| } |
| |
| |
| /// AllocateBlock - Mark this entire block allocated, updating freelists |
| /// etc. This returns a pointer to the circular free-list. |
| FreeRangeHeader *FreeRangeHeader::AllocateBlock() { |
| assert(!ThisAllocated && !getBlockAfter().PrevAllocated && |
| "Cannot allocate an allocated block!"); |
| // Mark this block allocated. |
| ThisAllocated = 1; |
| getBlockAfter().PrevAllocated = 1; |
| |
| // Remove it from the free list. |
| return RemoveFromFreeList(); |
| } |
| |
| /// FreeBlock - Turn an allocated block into a free block, adjusting |
| /// bits in the object headers, and adding an end of region memory block. |
| /// If possible, coalesce this block with neighboring blocks. Return the |
| /// FreeRangeHeader to allocate from. |
| FreeRangeHeader *MemoryRangeHeader::FreeBlock(FreeRangeHeader *FreeList) { |
| MemoryRangeHeader *FollowingBlock = &getBlockAfter(); |
| assert(ThisAllocated && "This block is already free!"); |
| assert(FollowingBlock->PrevAllocated && "Flags out of sync!"); |
| |
| FreeRangeHeader *FreeListToReturn = FreeList; |
| |
| // If the block after this one is free, merge it into this block. |
| if (!FollowingBlock->ThisAllocated) { |
| FreeRangeHeader &FollowingFreeBlock = *(FreeRangeHeader *)FollowingBlock; |
| // "FreeList" always needs to be a valid free block. If we're about to |
| // coalesce with it, update our notion of what the free list is. |
| if (&FollowingFreeBlock == FreeList) { |
| FreeList = FollowingFreeBlock.Next; |
| FreeListToReturn = 0; |
| assert(&FollowingFreeBlock != FreeList && "No tombstone block?"); |
| } |
| FollowingFreeBlock.RemoveFromFreeList(); |
| |
| // Include the following block into this one. |
| BlockSize += FollowingFreeBlock.BlockSize; |
| FollowingBlock = &FollowingFreeBlock.getBlockAfter(); |
| |
| // Tell the block after the block we are coalescing that this block is |
| // allocated. |
| FollowingBlock->PrevAllocated = 1; |
| } |
| |
| assert(FollowingBlock->ThisAllocated && "Missed coalescing?"); |
| |
| if (FreeRangeHeader *PrevFreeBlock = getFreeBlockBefore()) { |
| PrevFreeBlock->GrowBlock(PrevFreeBlock->BlockSize + BlockSize); |
| return FreeListToReturn ? FreeListToReturn : PrevFreeBlock; |
| } |
| |
| // Otherwise, mark this block free. |
| FreeRangeHeader &FreeBlock = *(FreeRangeHeader*)this; |
| FollowingBlock->PrevAllocated = 0; |
| FreeBlock.ThisAllocated = 0; |
| |
| // Link this into the linked list of free blocks. |
| FreeBlock.AddToFreeList(FreeList); |
| |
| // Add a marker at the end of the block, indicating the size of this free |
| // block. |
| FreeBlock.SetEndOfBlockSizeMarker(); |
| return FreeListToReturn ? FreeListToReturn : &FreeBlock; |
| } |
| |
| /// GrowBlock - The block after this block just got deallocated. Merge it |
| /// into the current block. |
| void FreeRangeHeader::GrowBlock(uintptr_t NewSize) { |
| assert(NewSize > BlockSize && "Not growing block?"); |
| BlockSize = NewSize; |
| SetEndOfBlockSizeMarker(); |
| getBlockAfter().PrevAllocated = 0; |
| } |
| |
| /// TrimAllocationToSize - If this allocated block is significantly larger |
| /// than NewSize, split it into two pieces (where the former is NewSize |
| /// bytes, including the header), and add the new block to the free list. |
| FreeRangeHeader *MemoryRangeHeader:: |
| TrimAllocationToSize(FreeRangeHeader *FreeList, uint64_t NewSize) { |
| assert(ThisAllocated && getBlockAfter().PrevAllocated && |
| "Cannot deallocate part of an allocated block!"); |
| |
| // Don't allow blocks to be trimmed below minimum required size |
| NewSize = std::max<uint64_t>(FreeRangeHeader::getMinBlockSize(), NewSize); |
| |
| // Round up size for alignment of header. |
| unsigned HeaderAlign = __alignof(FreeRangeHeader); |
| NewSize = (NewSize+ (HeaderAlign-1)) & ~(HeaderAlign-1); |
| |
| // Size is now the size of the block we will remove from the start of the |
| // current block. |
| assert(NewSize <= BlockSize && |
| "Allocating more space from this block than exists!"); |
| |
| // If splitting this block will cause the remainder to be too small, do not |
| // split the block. |
| if (BlockSize <= NewSize+FreeRangeHeader::getMinBlockSize()) |
| return FreeList; |
| |
| // Otherwise, we splice the required number of bytes out of this block, form |
| // a new block immediately after it, then mark this block allocated. |
| MemoryRangeHeader &FormerNextBlock = getBlockAfter(); |
| |
| // Change the size of this block. |
| BlockSize = NewSize; |
| |
| // Get the new block we just sliced out and turn it into a free block. |
| FreeRangeHeader &NewNextBlock = (FreeRangeHeader &)getBlockAfter(); |
| NewNextBlock.BlockSize = (char*)&FormerNextBlock - (char*)&NewNextBlock; |
| NewNextBlock.ThisAllocated = 0; |
| NewNextBlock.PrevAllocated = 1; |
| NewNextBlock.SetEndOfBlockSizeMarker(); |
| FormerNextBlock.PrevAllocated = 0; |
| NewNextBlock.AddToFreeList(FreeList); |
| return &NewNextBlock; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Memory Block Implementation. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| class DefaultJITMemoryManager; |
| |
| class JITSlabAllocator : public SlabAllocator { |
| DefaultJITMemoryManager &JMM; |
| public: |
| JITSlabAllocator(DefaultJITMemoryManager &jmm) : JMM(jmm) { } |
| virtual ~JITSlabAllocator() { } |
| virtual MemSlab *Allocate(size_t Size); |
| virtual void Deallocate(MemSlab *Slab); |
| }; |
| |
| /// DefaultJITMemoryManager - Manage memory for the JIT code generation. |
| /// This splits a large block of MAP_NORESERVE'd memory into two |
| /// sections, one for function stubs, one for the functions themselves. We |
| /// have to do this because we may need to emit a function stub while in the |
| /// middle of emitting a function, and we don't know how large the function we |
| /// are emitting is. |
| class DefaultJITMemoryManager : public JITMemoryManager { |
| |
| // Whether to poison freed memory. |
| bool PoisonMemory; |
| |
| /// LastSlab - This points to the last slab allocated and is used as the |
| /// NearBlock parameter to AllocateRWX so that we can attempt to lay out all |
| /// stubs, data, and code contiguously in memory. In general, however, this |
| /// is not possible because the NearBlock parameter is ignored on Windows |
| /// platforms and even on Unix it works on a best-effort pasis. |
| sys::MemoryBlock LastSlab; |
| |
| // Memory slabs allocated by the JIT. We refer to them as slabs so we don't |
| // confuse them with the blocks of memory described above. |
| std::vector<sys::MemoryBlock> CodeSlabs; |
| JITSlabAllocator BumpSlabAllocator; |
| BumpPtrAllocator StubAllocator; |
| BumpPtrAllocator DataAllocator; |
| |
| // Circular list of free blocks. |
| FreeRangeHeader *FreeMemoryList; |
| |
| // When emitting code into a memory block, this is the block. |
| MemoryRangeHeader *CurBlock; |
| |
| uint8_t *GOTBase; // Target Specific reserved memory |
| public: |
| DefaultJITMemoryManager(); |
| ~DefaultJITMemoryManager(); |
| |
| /// allocateNewSlab - Allocates a new MemoryBlock and remembers it as the |
| /// last slab it allocated, so that subsequent allocations follow it. |
| sys::MemoryBlock allocateNewSlab(size_t size); |
| |
| /// DefaultCodeSlabSize - When we have to go map more memory, we allocate at |
| /// least this much unless more is requested. |
| static const size_t DefaultCodeSlabSize; |
| |
| /// DefaultSlabSize - Allocate data into slabs of this size unless we get |
| /// an allocation above SizeThreshold. |
| static const size_t DefaultSlabSize; |
| |
| /// DefaultSizeThreshold - For any allocation larger than this threshold, we |
| /// should allocate a separate slab. |
| static const size_t DefaultSizeThreshold; |
| |
| /// getPointerToNamedFunction - This method returns the address of the |
| /// specified function by using the dlsym function call. |
| virtual void *getPointerToNamedFunction(const std::string &Name, |
| bool AbortOnFailure = true); |
| |
| void AllocateGOT(); |
| |
| // Testing methods. |
| virtual bool CheckInvariants(std::string &ErrorStr); |
| size_t GetDefaultCodeSlabSize() { return DefaultCodeSlabSize; } |
| size_t GetDefaultDataSlabSize() { return DefaultSlabSize; } |
| size_t GetDefaultStubSlabSize() { return DefaultSlabSize; } |
| unsigned GetNumCodeSlabs() { return CodeSlabs.size(); } |
| unsigned GetNumDataSlabs() { return DataAllocator.GetNumSlabs(); } |
| unsigned GetNumStubSlabs() { return StubAllocator.GetNumSlabs(); } |
| |
| /// startFunctionBody - When a function starts, allocate a block of free |
| /// executable memory, returning a pointer to it and its actual size. |
| uint8_t *startFunctionBody(const Function *F, uintptr_t &ActualSize) { |
| |
| FreeRangeHeader* candidateBlock = FreeMemoryList; |
| FreeRangeHeader* head = FreeMemoryList; |
| FreeRangeHeader* iter = head->Next; |
| |
| uintptr_t largest = candidateBlock->BlockSize; |
| |
| // Search for the largest free block |
| while (iter != head) { |
| if (iter->BlockSize > largest) { |
| largest = iter->BlockSize; |
| candidateBlock = iter; |
| } |
| iter = iter->Next; |
| } |
| |
| largest = largest - sizeof(MemoryRangeHeader); |
| |
| // If this block isn't big enough for the allocation desired, allocate |
| // another block of memory and add it to the free list. |
| if (largest < ActualSize || |
| largest <= FreeRangeHeader::getMinBlockSize()) { |
| DEBUG(dbgs() << "JIT: Allocating another slab of memory for function."); |
| candidateBlock = allocateNewCodeSlab((size_t)ActualSize); |
| } |
| |
| // Select this candidate block for allocation |
| CurBlock = candidateBlock; |
| |
| // Allocate the entire memory block. |
| FreeMemoryList = candidateBlock->AllocateBlock(); |
| ActualSize = CurBlock->BlockSize - sizeof(MemoryRangeHeader); |
| return (uint8_t *)(CurBlock + 1); |
| } |
| |
| /// allocateNewCodeSlab - Helper method to allocate a new slab of code |
| /// memory from the OS and add it to the free list. Returns the new |
| /// FreeRangeHeader at the base of the slab. |
| FreeRangeHeader *allocateNewCodeSlab(size_t MinSize) { |
| // If the user needs at least MinSize free memory, then we account for |
| // two MemoryRangeHeaders: the one in the user's block, and the one at the |
| // end of the slab. |
| size_t PaddedMin = MinSize + 2 * sizeof(MemoryRangeHeader); |
| size_t SlabSize = std::max(DefaultCodeSlabSize, PaddedMin); |
| sys::MemoryBlock B = allocateNewSlab(SlabSize); |
| CodeSlabs.push_back(B); |
| char *MemBase = (char*)(B.base()); |
| |
| // Put a tiny allocated block at the end of the memory chunk, so when |
| // FreeBlock calls getBlockAfter it doesn't fall off the end. |
| MemoryRangeHeader *EndBlock = |
| (MemoryRangeHeader*)(MemBase + B.size()) - 1; |
| EndBlock->ThisAllocated = 1; |
| EndBlock->PrevAllocated = 0; |
| EndBlock->BlockSize = sizeof(MemoryRangeHeader); |
| |
| // Start out with a vast new block of free memory. |
| FreeRangeHeader *NewBlock = (FreeRangeHeader*)MemBase; |
| NewBlock->ThisAllocated = 0; |
| // Make sure getFreeBlockBefore doesn't look into unmapped memory. |
| NewBlock->PrevAllocated = 1; |
| NewBlock->BlockSize = (uintptr_t)EndBlock - (uintptr_t)NewBlock; |
| NewBlock->SetEndOfBlockSizeMarker(); |
| NewBlock->AddToFreeList(FreeMemoryList); |
| |
| assert(NewBlock->BlockSize - sizeof(MemoryRangeHeader) >= MinSize && |
| "The block was too small!"); |
| return NewBlock; |
| } |
| |
| /// endFunctionBody - The function F is now allocated, and takes the memory |
| /// in the range [FunctionStart,FunctionEnd). |
| void endFunctionBody(const Function *F, uint8_t *FunctionStart, |
| uint8_t *FunctionEnd) { |
| assert(FunctionEnd > FunctionStart); |
| assert(FunctionStart == (uint8_t *)(CurBlock+1) && |
| "Mismatched function start/end!"); |
| |
| uintptr_t BlockSize = FunctionEnd - (uint8_t *)CurBlock; |
| |
| // Release the memory at the end of this block that isn't needed. |
| FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize); |
| } |
| |
| /// allocateSpace - Allocate a memory block of the given size. This method |
| /// cannot be called between calls to startFunctionBody and endFunctionBody. |
| uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) { |
| CurBlock = FreeMemoryList; |
| FreeMemoryList = FreeMemoryList->AllocateBlock(); |
| |
| uint8_t *result = (uint8_t *)(CurBlock + 1); |
| |
| if (Alignment == 0) Alignment = 1; |
| result = (uint8_t*)(((intptr_t)result+Alignment-1) & |
| ~(intptr_t)(Alignment-1)); |
| |
| uintptr_t BlockSize = result + Size - (uint8_t *)CurBlock; |
| FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize); |
| |
| return result; |
| } |
| |
| /// allocateStub - Allocate memory for a function stub. |
| uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize, |
| unsigned Alignment) { |
| return (uint8_t*)StubAllocator.Allocate(StubSize, Alignment); |
| } |
| |
| /// allocateGlobal - Allocate memory for a global. |
| uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) { |
| return (uint8_t*)DataAllocator.Allocate(Size, Alignment); |
| } |
| |
| /// allocateCodeSection - Allocate memory for a code section. |
| uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment, |
| unsigned SectionID) { |
| // Grow the required block size to account for the block header |
| Size += sizeof(*CurBlock); |
| |
| // FIXME: Alignement handling. |
| FreeRangeHeader* candidateBlock = FreeMemoryList; |
| FreeRangeHeader* head = FreeMemoryList; |
| FreeRangeHeader* iter = head->Next; |
| |
| uintptr_t largest = candidateBlock->BlockSize; |
| |
| // Search for the largest free block. |
| while (iter != head) { |
| if (iter->BlockSize > largest) { |
| largest = iter->BlockSize; |
| candidateBlock = iter; |
| } |
| iter = iter->Next; |
| } |
| |
| largest = largest - sizeof(MemoryRangeHeader); |
| |
| // If this block isn't big enough for the allocation desired, allocate |
| // another block of memory and add it to the free list. |
| if (largest < Size || largest <= FreeRangeHeader::getMinBlockSize()) { |
| DEBUG(dbgs() << "JIT: Allocating another slab of memory for function."); |
| candidateBlock = allocateNewCodeSlab((size_t)Size); |
| } |
| |
| // Select this candidate block for allocation |
| CurBlock = candidateBlock; |
| |
| // Allocate the entire memory block. |
| FreeMemoryList = candidateBlock->AllocateBlock(); |
| // Release the memory at the end of this block that isn't needed. |
| FreeMemoryList = CurBlock->TrimAllocationToSize(FreeMemoryList, Size); |
| return (uint8_t *)(CurBlock + 1); |
| } |
| |
| /// allocateDataSection - Allocate memory for a data section. |
| uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment, |
| unsigned SectionID, bool IsReadOnly) { |
| return (uint8_t*)DataAllocator.Allocate(Size, Alignment); |
| } |
| |
| bool applyPermissions(std::string *ErrMsg) { |
| return false; |
| } |
| |
| /// startExceptionTable - Use startFunctionBody to allocate memory for the |
| /// function's exception table. |
| uint8_t* startExceptionTable(const Function* F, uintptr_t &ActualSize) { |
| return startFunctionBody(F, ActualSize); |
| } |
| |
| /// endExceptionTable - The exception table of F is now allocated, |
| /// and takes the memory in the range [TableStart,TableEnd). |
| void endExceptionTable(const Function *F, uint8_t *TableStart, |
| uint8_t *TableEnd, uint8_t* FrameRegister) { |
| assert(TableEnd > TableStart); |
| assert(TableStart == (uint8_t *)(CurBlock+1) && |
| "Mismatched table start/end!"); |
| |
| uintptr_t BlockSize = TableEnd - (uint8_t *)CurBlock; |
| |
| // Release the memory at the end of this block that isn't needed. |
| FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize); |
| } |
| |
| uint8_t *getGOTBase() const { |
| return GOTBase; |
| } |
| |
| void deallocateBlock(void *Block) { |
| // Find the block that is allocated for this function. |
| MemoryRangeHeader *MemRange = static_cast<MemoryRangeHeader*>(Block) - 1; |
| assert(MemRange->ThisAllocated && "Block isn't allocated!"); |
| |
| // Fill the buffer with garbage! |
| if (PoisonMemory) { |
| memset(MemRange+1, 0xCD, MemRange->BlockSize-sizeof(*MemRange)); |
| } |
| |
| // Free the memory. |
| FreeMemoryList = MemRange->FreeBlock(FreeMemoryList); |
| } |
| |
| /// deallocateFunctionBody - Deallocate all memory for the specified |
| /// function body. |
| void deallocateFunctionBody(void *Body) { |
| if (Body) deallocateBlock(Body); |
| } |
| |
| /// deallocateExceptionTable - Deallocate memory for the specified |
| /// exception table. |
| void deallocateExceptionTable(void *ET) { |
| if (ET) deallocateBlock(ET); |
| } |
| |
| /// setMemoryWritable - When code generation is in progress, |
| /// the code pages may need permissions changed. |
| void setMemoryWritable() |
| { |
| for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i) |
| sys::Memory::setWritable(CodeSlabs[i]); |
| } |
| /// setMemoryExecutable - When code generation is done and we're ready to |
| /// start execution, the code pages may need permissions changed. |
| void setMemoryExecutable() |
| { |
| for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i) |
| sys::Memory::setExecutable(CodeSlabs[i]); |
| } |
| |
| /// setPoisonMemory - Controls whether we write garbage over freed memory. |
| /// |
| void setPoisonMemory(bool poison) { |
| PoisonMemory = poison; |
| } |
| }; |
| } |
| |
| MemSlab *JITSlabAllocator::Allocate(size_t Size) { |
| sys::MemoryBlock B = JMM.allocateNewSlab(Size); |
| MemSlab *Slab = (MemSlab*)B.base(); |
| Slab->Size = B.size(); |
| Slab->NextPtr = 0; |
| return Slab; |
| } |
| |
| void JITSlabAllocator::Deallocate(MemSlab *Slab) { |
| sys::MemoryBlock B(Slab, Slab->Size); |
| sys::Memory::ReleaseRWX(B); |
| } |
| |
| DefaultJITMemoryManager::DefaultJITMemoryManager() |
| : |
| #ifdef NDEBUG |
| PoisonMemory(false), |
| #else |
| PoisonMemory(true), |
| #endif |
| LastSlab(0, 0), |
| BumpSlabAllocator(*this), |
| StubAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator), |
| DataAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator) { |
| |
| // Allocate space for code. |
| sys::MemoryBlock MemBlock = allocateNewSlab(DefaultCodeSlabSize); |
| CodeSlabs.push_back(MemBlock); |
| uint8_t *MemBase = (uint8_t*)MemBlock.base(); |
| |
| // We set up the memory chunk with 4 mem regions, like this: |
| // [ START |
| // [ Free #0 ] -> Large space to allocate functions from. |
| // [ Allocated #1 ] -> Tiny space to separate regions. |
| // [ Free #2 ] -> Tiny space so there is always at least 1 free block. |
| // [ Allocated #3 ] -> Tiny space to prevent looking past end of block. |
| // END ] |
| // |
| // The last three blocks are never deallocated or touched. |
| |
| // Add MemoryRangeHeader to the end of the memory region, indicating that |
| // the space after the block of memory is allocated. This is block #3. |
| MemoryRangeHeader *Mem3 = (MemoryRangeHeader*)(MemBase+MemBlock.size())-1; |
| Mem3->ThisAllocated = 1; |
| Mem3->PrevAllocated = 0; |
| Mem3->BlockSize = sizeof(MemoryRangeHeader); |
| |
| /// Add a tiny free region so that the free list always has one entry. |
| FreeRangeHeader *Mem2 = |
| (FreeRangeHeader *)(((char*)Mem3)-FreeRangeHeader::getMinBlockSize()); |
| Mem2->ThisAllocated = 0; |
| Mem2->PrevAllocated = 1; |
| Mem2->BlockSize = FreeRangeHeader::getMinBlockSize(); |
| Mem2->SetEndOfBlockSizeMarker(); |
| Mem2->Prev = Mem2; // Mem2 *is* the free list for now. |
| Mem2->Next = Mem2; |
| |
| /// Add a tiny allocated region so that Mem2 is never coalesced away. |
| MemoryRangeHeader *Mem1 = (MemoryRangeHeader*)Mem2-1; |
| Mem1->ThisAllocated = 1; |
| Mem1->PrevAllocated = 0; |
| Mem1->BlockSize = sizeof(MemoryRangeHeader); |
| |
| // Add a FreeRangeHeader to the start of the function body region, indicating |
| // that the space is free. Mark the previous block allocated so we never look |
| // at it. |
| FreeRangeHeader *Mem0 = (FreeRangeHeader*)MemBase; |
| Mem0->ThisAllocated = 0; |
| Mem0->PrevAllocated = 1; |
| Mem0->BlockSize = (char*)Mem1-(char*)Mem0; |
| Mem0->SetEndOfBlockSizeMarker(); |
| Mem0->AddToFreeList(Mem2); |
| |
| // Start out with the freelist pointing to Mem0. |
| FreeMemoryList = Mem0; |
| |
| GOTBase = NULL; |
| } |
| |
| void DefaultJITMemoryManager::AllocateGOT() { |
| assert(GOTBase == 0 && "Cannot allocate the got multiple times"); |
| GOTBase = new uint8_t[sizeof(void*) * 8192]; |
| HasGOT = true; |
| } |
| |
| DefaultJITMemoryManager::~DefaultJITMemoryManager() { |
| for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i) |
| sys::Memory::ReleaseRWX(CodeSlabs[i]); |
| |
| delete[] GOTBase; |
| } |
| |
| sys::MemoryBlock DefaultJITMemoryManager::allocateNewSlab(size_t size) { |
| // Allocate a new block close to the last one. |
| std::string ErrMsg; |
| sys::MemoryBlock *LastSlabPtr = LastSlab.base() ? &LastSlab : 0; |
| sys::MemoryBlock B = sys::Memory::AllocateRWX(size, LastSlabPtr, &ErrMsg); |
| if (B.base() == 0) { |
| report_fatal_error("Allocation failed when allocating new memory in the" |
| " JIT\n" + Twine(ErrMsg)); |
| } |
| LastSlab = B; |
| ++NumSlabs; |
| // Initialize the slab to garbage when debugging. |
| if (PoisonMemory) { |
| memset(B.base(), 0xCD, B.size()); |
| } |
| return B; |
| } |
| |
| /// CheckInvariants - For testing only. Return "" if all internal invariants |
| /// are preserved, and a helpful error message otherwise. For free and |
| /// allocated blocks, make sure that adding BlockSize gives a valid block. |
| /// For free blocks, make sure they're in the free list and that their end of |
| /// block size marker is correct. This function should return an error before |
| /// accessing bad memory. This function is defined here instead of in |
| /// JITMemoryManagerTest.cpp so that we don't have to expose all of the |
| /// implementation details of DefaultJITMemoryManager. |
| bool DefaultJITMemoryManager::CheckInvariants(std::string &ErrorStr) { |
| raw_string_ostream Err(ErrorStr); |
| |
| // Construct a the set of FreeRangeHeader pointers so we can query it |
| // efficiently. |
| llvm::SmallPtrSet<MemoryRangeHeader*, 16> FreeHdrSet; |
| FreeRangeHeader* FreeHead = FreeMemoryList; |
| FreeRangeHeader* FreeRange = FreeHead; |
| |
| do { |
| // Check that the free range pointer is in the blocks we've allocated. |
| bool Found = false; |
| for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(), |
| E = CodeSlabs.end(); I != E && !Found; ++I) { |
| char *Start = (char*)I->base(); |
| char *End = Start + I->size(); |
| Found = (Start <= (char*)FreeRange && (char*)FreeRange < End); |
| } |
| if (!Found) { |
| Err << "Corrupt free list; points to " << FreeRange; |
| return false; |
| } |
| |
| if (FreeRange->Next->Prev != FreeRange) { |
| Err << "Next and Prev pointers do not match."; |
| return false; |
| } |
| |
| // Otherwise, add it to the set. |
| FreeHdrSet.insert(FreeRange); |
| FreeRange = FreeRange->Next; |
| } while (FreeRange != FreeHead); |
| |
| // Go over each block, and look at each MemoryRangeHeader. |
| for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(), |
| E = CodeSlabs.end(); I != E; ++I) { |
| char *Start = (char*)I->base(); |
| char *End = Start + I->size(); |
| |
| // Check each memory range. |
| for (MemoryRangeHeader *Hdr = (MemoryRangeHeader*)Start, *LastHdr = NULL; |
| Start <= (char*)Hdr && (char*)Hdr < End; |
| Hdr = &Hdr->getBlockAfter()) { |
| if (Hdr->ThisAllocated == 0) { |
| // Check that this range is in the free list. |
| if (!FreeHdrSet.count(Hdr)) { |
| Err << "Found free header at " << Hdr << " that is not in free list."; |
| return false; |
| } |
| |
| // Now make sure the size marker at the end of the block is correct. |
| uintptr_t *Marker = ((uintptr_t*)&Hdr->getBlockAfter()) - 1; |
| if (!(Start <= (char*)Marker && (char*)Marker < End)) { |
| Err << "Block size in header points out of current MemoryBlock."; |
| return false; |
| } |
| if (Hdr->BlockSize != *Marker) { |
| Err << "End of block size marker (" << *Marker << ") " |
| << "and BlockSize (" << Hdr->BlockSize << ") don't match."; |
| return false; |
| } |
| } |
| |
| if (LastHdr && LastHdr->ThisAllocated != Hdr->PrevAllocated) { |
| Err << "Hdr->PrevAllocated (" << Hdr->PrevAllocated << ") != " |
| << "LastHdr->ThisAllocated (" << LastHdr->ThisAllocated << ")"; |
| return false; |
| } else if (!LastHdr && !Hdr->PrevAllocated) { |
| Err << "The first header should have PrevAllocated true."; |
| return false; |
| } |
| |
| // Remember the last header. |
| LastHdr = Hdr; |
| } |
| } |
| |
| // All invariants are preserved. |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // getPointerToNamedFunction() implementation. |
| //===----------------------------------------------------------------------===// |
| |
| // AtExitHandlers - List of functions to call when the program exits, |
| // registered with the atexit() library function. |
| static std::vector<void (*)()> AtExitHandlers; |
| |
| /// runAtExitHandlers - Run any functions registered by the program's |
| /// calls to atexit(3), which we intercept and store in |
| /// AtExitHandlers. |
| /// |
| static void runAtExitHandlers() { |
| while (!AtExitHandlers.empty()) { |
| void (*Fn)() = AtExitHandlers.back(); |
| AtExitHandlers.pop_back(); |
| Fn(); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Function stubs that are invoked instead of certain library calls |
| // |
| // Force the following functions to be linked in to anything that uses the |
| // JIT. This is a hack designed to work around the all-too-clever Glibc |
| // strategy of making these functions work differently when inlined vs. when |
| // not inlined, and hiding their real definitions in a separate archive file |
| // that the dynamic linker can't see. For more info, search for |
| // 'libc_nonshared.a' on Google, or read http://llvm.org/PR274. |
| #if defined(__linux__) |
| /* stat functions are redirecting to __xstat with a version number. On x86-64 |
| * linking with libc_nonshared.a and -Wl,--export-dynamic doesn't make 'stat' |
| * available as an exported symbol, so we have to add it explicitly. |
| */ |
| namespace { |
| class StatSymbols { |
| public: |
| StatSymbols() { |
| sys::DynamicLibrary::AddSymbol("stat", (void*)(intptr_t)stat); |
| sys::DynamicLibrary::AddSymbol("fstat", (void*)(intptr_t)fstat); |
| sys::DynamicLibrary::AddSymbol("lstat", (void*)(intptr_t)lstat); |
| sys::DynamicLibrary::AddSymbol("stat64", (void*)(intptr_t)stat64); |
| sys::DynamicLibrary::AddSymbol("\x1stat64", (void*)(intptr_t)stat64); |
| sys::DynamicLibrary::AddSymbol("\x1open64", (void*)(intptr_t)open64); |
| sys::DynamicLibrary::AddSymbol("\x1lseek64", (void*)(intptr_t)lseek64); |
| sys::DynamicLibrary::AddSymbol("fstat64", (void*)(intptr_t)fstat64); |
| sys::DynamicLibrary::AddSymbol("lstat64", (void*)(intptr_t)lstat64); |
| sys::DynamicLibrary::AddSymbol("atexit", (void*)(intptr_t)atexit); |
| sys::DynamicLibrary::AddSymbol("mknod", (void*)(intptr_t)mknod); |
| } |
| }; |
| } |
| static StatSymbols initStatSymbols; |
| #endif // __linux__ |
| |
| // jit_exit - Used to intercept the "exit" library call. |
| static void jit_exit(int Status) { |
| runAtExitHandlers(); // Run atexit handlers... |
| exit(Status); |
| } |
| |
| // jit_atexit - Used to intercept the "atexit" library call. |
| static int jit_atexit(void (*Fn)()) { |
| AtExitHandlers.push_back(Fn); // Take note of atexit handler... |
| return 0; // Always successful |
| } |
| |
| static int jit_noop() { |
| return 0; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // |
| /// getPointerToNamedFunction - This method returns the address of the specified |
| /// function by using the dynamic loader interface. As such it is only useful |
| /// for resolving library symbols, not code generated symbols. |
| /// |
| void *DefaultJITMemoryManager::getPointerToNamedFunction(const std::string &Name, |
| bool AbortOnFailure) { |
| // Check to see if this is one of the functions we want to intercept. Note, |
| // we cast to intptr_t here to silence a -pedantic warning that complains |
| // about casting a function pointer to a normal pointer. |
| if (Name == "exit") return (void*)(intptr_t)&jit_exit; |
| if (Name == "atexit") return (void*)(intptr_t)&jit_atexit; |
| |
| // We should not invoke parent's ctors/dtors from generated main()! |
| // On Mingw and Cygwin, the symbol __main is resolved to |
| // callee's(eg. tools/lli) one, to invoke wrong duplicated ctors |
| // (and register wrong callee's dtors with atexit(3)). |
| // We expect ExecutionEngine::runStaticConstructorsDestructors() |
| // is called before ExecutionEngine::runFunctionAsMain() is called. |
| if (Name == "__main") return (void*)(intptr_t)&jit_noop; |
| |
| const char *NameStr = Name.c_str(); |
| // If this is an asm specifier, skip the sentinal. |
| if (NameStr[0] == 1) ++NameStr; |
| |
| // If it's an external function, look it up in the process image... |
| void *Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr); |
| if (Ptr) return Ptr; |
| |
| // If it wasn't found and if it starts with an underscore ('_') character, |
| // try again without the underscore. |
| if (NameStr[0] == '_') { |
| Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr+1); |
| if (Ptr) return Ptr; |
| } |
| |
| // Darwin/PPC adds $LDBLStub suffixes to various symbols like printf. These |
| // are references to hidden visibility symbols that dlsym cannot resolve. |
| // If we have one of these, strip off $LDBLStub and try again. |
| #if defined(__APPLE__) && defined(__ppc__) |
| if (Name.size() > 9 && Name[Name.size()-9] == '$' && |
| memcmp(&Name[Name.size()-8], "LDBLStub", 8) == 0) { |
| // First try turning $LDBLStub into $LDBL128. If that fails, strip it off. |
| // This mirrors logic in libSystemStubs.a. |
| std::string Prefix = std::string(Name.begin(), Name.end()-9); |
| if (void *Ptr = getPointerToNamedFunction(Prefix+"$LDBL128", false)) |
| return Ptr; |
| if (void *Ptr = getPointerToNamedFunction(Prefix, false)) |
| return Ptr; |
| } |
| #endif |
| |
| if (AbortOnFailure) { |
| report_fatal_error("Program used external function '"+Name+ |
| "' which could not be resolved!"); |
| } |
| return 0; |
| } |
| |
| |
| |
| JITMemoryManager *JITMemoryManager::CreateDefaultMemManager() { |
| return new DefaultJITMemoryManager(); |
| } |
| |
| // Allocate memory for code in 512K slabs. |
| const size_t DefaultJITMemoryManager::DefaultCodeSlabSize = 512 * 1024; |
| |
| // Allocate globals and stubs in slabs of 64K. (probably 16 pages) |
| const size_t DefaultJITMemoryManager::DefaultSlabSize = 64 * 1024; |
| |
| // Waste at most 16K at the end of each bump slab. (probably 4 pages) |
| const size_t DefaultJITMemoryManager::DefaultSizeThreshold = 16 * 1024; |