| //===-- ThreadSanitizer.cpp - race detector -------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file is a part of ThreadSanitizer, a race detector. |
| // |
| // The tool is under development, for the details about previous versions see |
| // http://code.google.com/p/data-race-test |
| // |
| // The instrumentation phase is quite simple: |
| // - Insert calls to run-time library before every memory access. |
| // - Optimizations may apply to avoid instrumenting some of the accesses. |
| // - Insert calls at function entry/exit. |
| // The rest is handled by the run-time library. |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "tsan" |
| |
| #include "llvm/Transforms/Instrumentation.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/BlackList.h" |
| #include "llvm/Transforms/Utils/ModuleUtils.h" |
| |
| using namespace llvm; |
| |
| static cl::opt<std::string> ClBlacklistFile("tsan-blacklist", |
| cl::desc("Blacklist file"), cl::Hidden); |
| static cl::opt<bool> ClInstrumentMemoryAccesses( |
| "tsan-instrument-memory-accesses", cl::init(true), |
| cl::desc("Instrument memory accesses"), cl::Hidden); |
| static cl::opt<bool> ClInstrumentFuncEntryExit( |
| "tsan-instrument-func-entry-exit", cl::init(true), |
| cl::desc("Instrument function entry and exit"), cl::Hidden); |
| static cl::opt<bool> ClInstrumentAtomics( |
| "tsan-instrument-atomics", cl::init(true), |
| cl::desc("Instrument atomics"), cl::Hidden); |
| |
| STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); |
| STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); |
| STATISTIC(NumOmittedReadsBeforeWrite, |
| "Number of reads ignored due to following writes"); |
| STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size"); |
| STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes"); |
| STATISTIC(NumOmittedReadsFromConstantGlobals, |
| "Number of reads from constant globals"); |
| STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads"); |
| |
| namespace { |
| |
| /// ThreadSanitizer: instrument the code in module to find races. |
| struct ThreadSanitizer : public FunctionPass { |
| ThreadSanitizer(StringRef BlacklistFile = StringRef()) |
| : FunctionPass(ID), |
| TD(0), |
| BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile |
| : BlacklistFile) { } |
| const char *getPassName() const; |
| bool runOnFunction(Function &F); |
| bool doInitialization(Module &M); |
| static char ID; // Pass identification, replacement for typeid. |
| |
| private: |
| void initializeCallbacks(Module &M); |
| bool instrumentLoadOrStore(Instruction *I); |
| bool instrumentAtomic(Instruction *I); |
| void chooseInstructionsToInstrument(SmallVectorImpl<Instruction*> &Local, |
| SmallVectorImpl<Instruction*> &All); |
| bool addrPointsToConstantData(Value *Addr); |
| int getMemoryAccessFuncIndex(Value *Addr); |
| |
| DataLayout *TD; |
| SmallString<64> BlacklistFile; |
| OwningPtr<BlackList> BL; |
| IntegerType *OrdTy; |
| // Callbacks to run-time library are computed in doInitialization. |
| Function *TsanFuncEntry; |
| Function *TsanFuncExit; |
| // Accesses sizes are powers of two: 1, 2, 4, 8, 16. |
| static const size_t kNumberOfAccessSizes = 5; |
| Function *TsanRead[kNumberOfAccessSizes]; |
| Function *TsanWrite[kNumberOfAccessSizes]; |
| Function *TsanAtomicLoad[kNumberOfAccessSizes]; |
| Function *TsanAtomicStore[kNumberOfAccessSizes]; |
| Function *TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1][kNumberOfAccessSizes]; |
| Function *TsanAtomicCAS[kNumberOfAccessSizes]; |
| Function *TsanAtomicThreadFence; |
| Function *TsanAtomicSignalFence; |
| Function *TsanVptrUpdate; |
| }; |
| } // namespace |
| |
| char ThreadSanitizer::ID = 0; |
| INITIALIZE_PASS(ThreadSanitizer, "tsan", |
| "ThreadSanitizer: detects data races.", |
| false, false) |
| |
| const char *ThreadSanitizer::getPassName() const { |
| return "ThreadSanitizer"; |
| } |
| |
| FunctionPass *llvm::createThreadSanitizerPass(StringRef BlacklistFile) { |
| return new ThreadSanitizer(BlacklistFile); |
| } |
| |
| static Function *checkInterfaceFunction(Constant *FuncOrBitcast) { |
| if (Function *F = dyn_cast<Function>(FuncOrBitcast)) |
| return F; |
| FuncOrBitcast->dump(); |
| report_fatal_error("ThreadSanitizer interface function redefined"); |
| } |
| |
| void ThreadSanitizer::initializeCallbacks(Module &M) { |
| IRBuilder<> IRB(M.getContext()); |
| // Initialize the callbacks. |
| TsanFuncEntry = checkInterfaceFunction(M.getOrInsertFunction( |
| "__tsan_func_entry", IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL)); |
| TsanFuncExit = checkInterfaceFunction(M.getOrInsertFunction( |
| "__tsan_func_exit", IRB.getVoidTy(), NULL)); |
| OrdTy = IRB.getInt32Ty(); |
| for (size_t i = 0; i < kNumberOfAccessSizes; ++i) { |
| const size_t ByteSize = 1 << i; |
| const size_t BitSize = ByteSize * 8; |
| SmallString<32> ReadName("__tsan_read" + itostr(ByteSize)); |
| TsanRead[i] = checkInterfaceFunction(M.getOrInsertFunction( |
| ReadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL)); |
| |
| SmallString<32> WriteName("__tsan_write" + itostr(ByteSize)); |
| TsanWrite[i] = checkInterfaceFunction(M.getOrInsertFunction( |
| WriteName, IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL)); |
| |
| Type *Ty = Type::getIntNTy(M.getContext(), BitSize); |
| Type *PtrTy = Ty->getPointerTo(); |
| SmallString<32> AtomicLoadName("__tsan_atomic" + itostr(BitSize) + |
| "_load"); |
| TsanAtomicLoad[i] = checkInterfaceFunction(M.getOrInsertFunction( |
| AtomicLoadName, Ty, PtrTy, OrdTy, NULL)); |
| |
| SmallString<32> AtomicStoreName("__tsan_atomic" + itostr(BitSize) + |
| "_store"); |
| TsanAtomicStore[i] = checkInterfaceFunction(M.getOrInsertFunction( |
| AtomicStoreName, IRB.getVoidTy(), PtrTy, Ty, OrdTy, |
| NULL)); |
| |
| for (int op = AtomicRMWInst::FIRST_BINOP; |
| op <= AtomicRMWInst::LAST_BINOP; ++op) { |
| TsanAtomicRMW[op][i] = NULL; |
| const char *NamePart = NULL; |
| if (op == AtomicRMWInst::Xchg) |
| NamePart = "_exchange"; |
| else if (op == AtomicRMWInst::Add) |
| NamePart = "_fetch_add"; |
| else if (op == AtomicRMWInst::Sub) |
| NamePart = "_fetch_sub"; |
| else if (op == AtomicRMWInst::And) |
| NamePart = "_fetch_and"; |
| else if (op == AtomicRMWInst::Or) |
| NamePart = "_fetch_or"; |
| else if (op == AtomicRMWInst::Xor) |
| NamePart = "_fetch_xor"; |
| else if (op == AtomicRMWInst::Nand) |
| NamePart = "_fetch_nand"; |
| else |
| continue; |
| SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart); |
| TsanAtomicRMW[op][i] = checkInterfaceFunction(M.getOrInsertFunction( |
| RMWName, Ty, PtrTy, Ty, OrdTy, NULL)); |
| } |
| |
| SmallString<32> AtomicCASName("__tsan_atomic" + itostr(BitSize) + |
| "_compare_exchange_val"); |
| TsanAtomicCAS[i] = checkInterfaceFunction(M.getOrInsertFunction( |
| AtomicCASName, Ty, PtrTy, Ty, Ty, OrdTy, OrdTy, NULL)); |
| } |
| TsanVptrUpdate = checkInterfaceFunction(M.getOrInsertFunction( |
| "__tsan_vptr_update", IRB.getVoidTy(), IRB.getInt8PtrTy(), |
| IRB.getInt8PtrTy(), NULL)); |
| TsanAtomicThreadFence = checkInterfaceFunction(M.getOrInsertFunction( |
| "__tsan_atomic_thread_fence", IRB.getVoidTy(), OrdTy, NULL)); |
| TsanAtomicSignalFence = checkInterfaceFunction(M.getOrInsertFunction( |
| "__tsan_atomic_signal_fence", IRB.getVoidTy(), OrdTy, NULL)); |
| } |
| |
| bool ThreadSanitizer::doInitialization(Module &M) { |
| TD = getAnalysisIfAvailable<DataLayout>(); |
| if (!TD) |
| return false; |
| BL.reset(new BlackList(BlacklistFile)); |
| |
| // Always insert a call to __tsan_init into the module's CTORs. |
| IRBuilder<> IRB(M.getContext()); |
| Value *TsanInit = M.getOrInsertFunction("__tsan_init", |
| IRB.getVoidTy(), NULL); |
| appendToGlobalCtors(M, cast<Function>(TsanInit), 0); |
| |
| return true; |
| } |
| |
| static bool isVtableAccess(Instruction *I) { |
| if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa)) { |
| if (Tag->getNumOperands() < 1) return false; |
| if (MDString *Tag1 = dyn_cast<MDString>(Tag->getOperand(0))) { |
| if (Tag1->getString() == "vtable pointer") return true; |
| } |
| } |
| return false; |
| } |
| |
| bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) { |
| // If this is a GEP, just analyze its pointer operand. |
| if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) |
| Addr = GEP->getPointerOperand(); |
| |
| if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { |
| if (GV->isConstant()) { |
| // Reads from constant globals can not race with any writes. |
| NumOmittedReadsFromConstantGlobals++; |
| return true; |
| } |
| } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) { |
| if (isVtableAccess(L)) { |
| // Reads from a vtable pointer can not race with any writes. |
| NumOmittedReadsFromVtable++; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| // Instrumenting some of the accesses may be proven redundant. |
| // Currently handled: |
| // - read-before-write (within same BB, no calls between) |
| // |
| // We do not handle some of the patterns that should not survive |
| // after the classic compiler optimizations. |
| // E.g. two reads from the same temp should be eliminated by CSE, |
| // two writes should be eliminated by DSE, etc. |
| // |
| // 'Local' is a vector of insns within the same BB (no calls between). |
| // 'All' is a vector of insns that will be instrumented. |
| void ThreadSanitizer::chooseInstructionsToInstrument( |
| SmallVectorImpl<Instruction*> &Local, |
| SmallVectorImpl<Instruction*> &All) { |
| SmallSet<Value*, 8> WriteTargets; |
| // Iterate from the end. |
| for (SmallVectorImpl<Instruction*>::reverse_iterator It = Local.rbegin(), |
| E = Local.rend(); It != E; ++It) { |
| Instruction *I = *It; |
| if (StoreInst *Store = dyn_cast<StoreInst>(I)) { |
| WriteTargets.insert(Store->getPointerOperand()); |
| } else { |
| LoadInst *Load = cast<LoadInst>(I); |
| Value *Addr = Load->getPointerOperand(); |
| if (WriteTargets.count(Addr)) { |
| // We will write to this temp, so no reason to analyze the read. |
| NumOmittedReadsBeforeWrite++; |
| continue; |
| } |
| if (addrPointsToConstantData(Addr)) { |
| // Addr points to some constant data -- it can not race with any writes. |
| continue; |
| } |
| } |
| All.push_back(I); |
| } |
| Local.clear(); |
| } |
| |
| static bool isAtomic(Instruction *I) { |
| if (LoadInst *LI = dyn_cast<LoadInst>(I)) |
| return LI->isAtomic() && LI->getSynchScope() == CrossThread; |
| if (StoreInst *SI = dyn_cast<StoreInst>(I)) |
| return SI->isAtomic() && SI->getSynchScope() == CrossThread; |
| if (isa<AtomicRMWInst>(I)) |
| return true; |
| if (isa<AtomicCmpXchgInst>(I)) |
| return true; |
| if (isa<FenceInst>(I)) |
| return true; |
| return false; |
| } |
| |
| bool ThreadSanitizer::runOnFunction(Function &F) { |
| if (!TD) return false; |
| if (BL->isIn(F)) return false; |
| initializeCallbacks(*F.getParent()); |
| SmallVector<Instruction*, 8> RetVec; |
| SmallVector<Instruction*, 8> AllLoadsAndStores; |
| SmallVector<Instruction*, 8> LocalLoadsAndStores; |
| SmallVector<Instruction*, 8> AtomicAccesses; |
| bool Res = false; |
| bool HasCalls = false; |
| |
| // Traverse all instructions, collect loads/stores/returns, check for calls. |
| for (Function::iterator FI = F.begin(), FE = F.end(); |
| FI != FE; ++FI) { |
| BasicBlock &BB = *FI; |
| for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); |
| BI != BE; ++BI) { |
| if (isAtomic(BI)) |
| AtomicAccesses.push_back(BI); |
| else if (isa<LoadInst>(BI) || isa<StoreInst>(BI)) |
| LocalLoadsAndStores.push_back(BI); |
| else if (isa<ReturnInst>(BI)) |
| RetVec.push_back(BI); |
| else if (isa<CallInst>(BI) || isa<InvokeInst>(BI)) { |
| HasCalls = true; |
| chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores); |
| } |
| } |
| chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores); |
| } |
| |
| // We have collected all loads and stores. |
| // FIXME: many of these accesses do not need to be checked for races |
| // (e.g. variables that do not escape, etc). |
| |
| // Instrument memory accesses. |
| if (ClInstrumentMemoryAccesses) |
| for (size_t i = 0, n = AllLoadsAndStores.size(); i < n; ++i) { |
| Res |= instrumentLoadOrStore(AllLoadsAndStores[i]); |
| } |
| |
| // Instrument atomic memory accesses. |
| if (ClInstrumentAtomics) |
| for (size_t i = 0, n = AtomicAccesses.size(); i < n; ++i) { |
| Res |= instrumentAtomic(AtomicAccesses[i]); |
| } |
| |
| // Instrument function entry/exit points if there were instrumented accesses. |
| if ((Res || HasCalls) && ClInstrumentFuncEntryExit) { |
| IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); |
| Value *ReturnAddress = IRB.CreateCall( |
| Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress), |
| IRB.getInt32(0)); |
| IRB.CreateCall(TsanFuncEntry, ReturnAddress); |
| for (size_t i = 0, n = RetVec.size(); i < n; ++i) { |
| IRBuilder<> IRBRet(RetVec[i]); |
| IRBRet.CreateCall(TsanFuncExit); |
| } |
| Res = true; |
| } |
| return Res; |
| } |
| |
| bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I) { |
| IRBuilder<> IRB(I); |
| bool IsWrite = isa<StoreInst>(*I); |
| Value *Addr = IsWrite |
| ? cast<StoreInst>(I)->getPointerOperand() |
| : cast<LoadInst>(I)->getPointerOperand(); |
| int Idx = getMemoryAccessFuncIndex(Addr); |
| if (Idx < 0) |
| return false; |
| if (IsWrite && isVtableAccess(I)) { |
| DEBUG(dbgs() << " VPTR : " << *I << "\n"); |
| Value *StoredValue = cast<StoreInst>(I)->getValueOperand(); |
| // StoredValue does not necessary have a pointer type. |
| if (isa<IntegerType>(StoredValue->getType())) |
| StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy()); |
| // Call TsanVptrUpdate. |
| IRB.CreateCall2(TsanVptrUpdate, |
| IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), |
| IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy())); |
| NumInstrumentedVtableWrites++; |
| return true; |
| } |
| Value *OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx]; |
| IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy())); |
| if (IsWrite) NumInstrumentedWrites++; |
| else NumInstrumentedReads++; |
| return true; |
| } |
| |
| static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) { |
| uint32_t v = 0; |
| switch (ord) { |
| case NotAtomic: assert(false); |
| case Unordered: // Fall-through. |
| case Monotonic: v = 0; break; |
| // case Consume: v = 1; break; // Not specified yet. |
| case Acquire: v = 2; break; |
| case Release: v = 3; break; |
| case AcquireRelease: v = 4; break; |
| case SequentiallyConsistent: v = 5; break; |
| } |
| return IRB->getInt32(v); |
| } |
| |
| static ConstantInt *createFailOrdering(IRBuilder<> *IRB, AtomicOrdering ord) { |
| uint32_t v = 0; |
| switch (ord) { |
| case NotAtomic: assert(false); |
| case Unordered: // Fall-through. |
| case Monotonic: v = 0; break; |
| // case Consume: v = 1; break; // Not specified yet. |
| case Acquire: v = 2; break; |
| case Release: v = 0; break; |
| case AcquireRelease: v = 2; break; |
| case SequentiallyConsistent: v = 5; break; |
| } |
| return IRB->getInt32(v); |
| } |
| |
| // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x |
| // standards. For background see C++11 standard. A slightly older, publically |
| // available draft of the standard (not entirely up-to-date, but close enough |
| // for casual browsing) is available here: |
| // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf |
| // The following page contains more background information: |
| // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/ |
| |
| bool ThreadSanitizer::instrumentAtomic(Instruction *I) { |
| IRBuilder<> IRB(I); |
| if (LoadInst *LI = dyn_cast<LoadInst>(I)) { |
| Value *Addr = LI->getPointerOperand(); |
| int Idx = getMemoryAccessFuncIndex(Addr); |
| if (Idx < 0) |
| return false; |
| const size_t ByteSize = 1 << Idx; |
| const size_t BitSize = ByteSize * 8; |
| Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); |
| Type *PtrTy = Ty->getPointerTo(); |
| Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), |
| createOrdering(&IRB, LI->getOrdering())}; |
| CallInst *C = CallInst::Create(TsanAtomicLoad[Idx], |
| ArrayRef<Value*>(Args)); |
| ReplaceInstWithInst(I, C); |
| |
| } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { |
| Value *Addr = SI->getPointerOperand(); |
| int Idx = getMemoryAccessFuncIndex(Addr); |
| if (Idx < 0) |
| return false; |
| const size_t ByteSize = 1 << Idx; |
| const size_t BitSize = ByteSize * 8; |
| Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); |
| Type *PtrTy = Ty->getPointerTo(); |
| Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), |
| IRB.CreateIntCast(SI->getValueOperand(), Ty, false), |
| createOrdering(&IRB, SI->getOrdering())}; |
| CallInst *C = CallInst::Create(TsanAtomicStore[Idx], |
| ArrayRef<Value*>(Args)); |
| ReplaceInstWithInst(I, C); |
| } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) { |
| Value *Addr = RMWI->getPointerOperand(); |
| int Idx = getMemoryAccessFuncIndex(Addr); |
| if (Idx < 0) |
| return false; |
| Function *F = TsanAtomicRMW[RMWI->getOperation()][Idx]; |
| if (F == NULL) |
| return false; |
| const size_t ByteSize = 1 << Idx; |
| const size_t BitSize = ByteSize * 8; |
| Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); |
| Type *PtrTy = Ty->getPointerTo(); |
| Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), |
| IRB.CreateIntCast(RMWI->getValOperand(), Ty, false), |
| createOrdering(&IRB, RMWI->getOrdering())}; |
| CallInst *C = CallInst::Create(F, ArrayRef<Value*>(Args)); |
| ReplaceInstWithInst(I, C); |
| } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) { |
| Value *Addr = CASI->getPointerOperand(); |
| int Idx = getMemoryAccessFuncIndex(Addr); |
| if (Idx < 0) |
| return false; |
| const size_t ByteSize = 1 << Idx; |
| const size_t BitSize = ByteSize * 8; |
| Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); |
| Type *PtrTy = Ty->getPointerTo(); |
| Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), |
| IRB.CreateIntCast(CASI->getCompareOperand(), Ty, false), |
| IRB.CreateIntCast(CASI->getNewValOperand(), Ty, false), |
| createOrdering(&IRB, CASI->getOrdering()), |
| createFailOrdering(&IRB, CASI->getOrdering())}; |
| CallInst *C = CallInst::Create(TsanAtomicCAS[Idx], ArrayRef<Value*>(Args)); |
| ReplaceInstWithInst(I, C); |
| } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) { |
| Value *Args[] = {createOrdering(&IRB, FI->getOrdering())}; |
| Function *F = FI->getSynchScope() == SingleThread ? |
| TsanAtomicSignalFence : TsanAtomicThreadFence; |
| CallInst *C = CallInst::Create(F, ArrayRef<Value*>(Args)); |
| ReplaceInstWithInst(I, C); |
| } |
| return true; |
| } |
| |
| int ThreadSanitizer::getMemoryAccessFuncIndex(Value *Addr) { |
| Type *OrigPtrTy = Addr->getType(); |
| Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType(); |
| assert(OrigTy->isSized()); |
| uint32_t TypeSize = TD->getTypeStoreSizeInBits(OrigTy); |
| if (TypeSize != 8 && TypeSize != 16 && |
| TypeSize != 32 && TypeSize != 64 && TypeSize != 128) { |
| NumAccessesWithBadSize++; |
| // Ignore all unusual sizes. |
| return -1; |
| } |
| size_t Idx = CountTrailingZeros_32(TypeSize / 8); |
| assert(Idx < kNumberOfAccessSizes); |
| return Idx; |
| } |