| //===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements Loop Rotation Pass. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "loop-rotate" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/CodeMetrics.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/LoopPass.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Transforms/Utils/SSAUpdater.h" |
| #include "llvm/Transforms/Utils/ValueMapper.h" |
| using namespace llvm; |
| |
| #define MAX_HEADER_SIZE 16 |
| |
| STATISTIC(NumRotated, "Number of loops rotated"); |
| namespace { |
| |
| class LoopRotate : public LoopPass { |
| public: |
| static char ID; // Pass ID, replacement for typeid |
| LoopRotate() : LoopPass(ID) { |
| initializeLoopRotatePass(*PassRegistry::getPassRegistry()); |
| } |
| |
| // LCSSA form makes instruction renaming easier. |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addPreserved<DominatorTree>(); |
| AU.addRequired<LoopInfo>(); |
| AU.addPreserved<LoopInfo>(); |
| AU.addRequiredID(LoopSimplifyID); |
| AU.addPreservedID(LoopSimplifyID); |
| AU.addRequiredID(LCSSAID); |
| AU.addPreservedID(LCSSAID); |
| AU.addPreserved<ScalarEvolution>(); |
| AU.addRequired<TargetTransformInfo>(); |
| } |
| |
| bool runOnLoop(Loop *L, LPPassManager &LPM); |
| void simplifyLoopLatch(Loop *L); |
| bool rotateLoop(Loop *L); |
| |
| private: |
| LoopInfo *LI; |
| const TargetTransformInfo *TTI; |
| }; |
| } |
| |
| char LoopRotate::ID = 0; |
| INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false) |
| INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) |
| INITIALIZE_PASS_DEPENDENCY(LoopInfo) |
| INITIALIZE_PASS_DEPENDENCY(LoopSimplify) |
| INITIALIZE_PASS_DEPENDENCY(LCSSA) |
| INITIALIZE_PASS_END(LoopRotate, "loop-rotate", "Rotate Loops", false, false) |
| |
| Pass *llvm::createLoopRotatePass() { return new LoopRotate(); } |
| |
| /// Rotate Loop L as many times as possible. Return true if |
| /// the loop is rotated at least once. |
| bool LoopRotate::runOnLoop(Loop *L, LPPassManager &LPM) { |
| LI = &getAnalysis<LoopInfo>(); |
| TTI = &getAnalysis<TargetTransformInfo>(); |
| |
| // Simplify the loop latch before attempting to rotate the header |
| // upward. Rotation may not be needed if the loop tail can be folded into the |
| // loop exit. |
| simplifyLoopLatch(L); |
| |
| // One loop can be rotated multiple times. |
| bool MadeChange = false; |
| while (rotateLoop(L)) |
| MadeChange = true; |
| |
| return MadeChange; |
| } |
| |
| /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the |
| /// old header into the preheader. If there were uses of the values produced by |
| /// these instruction that were outside of the loop, we have to insert PHI nodes |
| /// to merge the two values. Do this now. |
| static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader, |
| BasicBlock *OrigPreheader, |
| ValueToValueMapTy &ValueMap) { |
| // Remove PHI node entries that are no longer live. |
| BasicBlock::iterator I, E = OrigHeader->end(); |
| for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I) |
| PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader)); |
| |
| // Now fix up users of the instructions in OrigHeader, inserting PHI nodes |
| // as necessary. |
| SSAUpdater SSA; |
| for (I = OrigHeader->begin(); I != E; ++I) { |
| Value *OrigHeaderVal = I; |
| |
| // If there are no uses of the value (e.g. because it returns void), there |
| // is nothing to rewrite. |
| if (OrigHeaderVal->use_empty()) |
| continue; |
| |
| Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal]; |
| |
| // The value now exits in two versions: the initial value in the preheader |
| // and the loop "next" value in the original header. |
| SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName()); |
| SSA.AddAvailableValue(OrigHeader, OrigHeaderVal); |
| SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal); |
| |
| // Visit each use of the OrigHeader instruction. |
| for (Value::use_iterator UI = OrigHeaderVal->use_begin(), |
| UE = OrigHeaderVal->use_end(); UI != UE; ) { |
| // Grab the use before incrementing the iterator. |
| Use &U = UI.getUse(); |
| |
| // Increment the iterator before removing the use from the list. |
| ++UI; |
| |
| // SSAUpdater can't handle a non-PHI use in the same block as an |
| // earlier def. We can easily handle those cases manually. |
| Instruction *UserInst = cast<Instruction>(U.getUser()); |
| if (!isa<PHINode>(UserInst)) { |
| BasicBlock *UserBB = UserInst->getParent(); |
| |
| // The original users in the OrigHeader are already using the |
| // original definitions. |
| if (UserBB == OrigHeader) |
| continue; |
| |
| // Users in the OrigPreHeader need to use the value to which the |
| // original definitions are mapped. |
| if (UserBB == OrigPreheader) { |
| U = OrigPreHeaderVal; |
| continue; |
| } |
| } |
| |
| // Anything else can be handled by SSAUpdater. |
| SSA.RewriteUse(U); |
| } |
| } |
| } |
| |
| /// Determine whether the instructions in this range my be safely and cheaply |
| /// speculated. This is not an important enough situation to develop complex |
| /// heuristics. We handle a single arithmetic instruction along with any type |
| /// conversions. |
| static bool shouldSpeculateInstrs(BasicBlock::iterator Begin, |
| BasicBlock::iterator End) { |
| bool seenIncrement = false; |
| for (BasicBlock::iterator I = Begin; I != End; ++I) { |
| |
| if (!isSafeToSpeculativelyExecute(I)) |
| return false; |
| |
| if (isa<DbgInfoIntrinsic>(I)) |
| continue; |
| |
| switch (I->getOpcode()) { |
| default: |
| return false; |
| case Instruction::GetElementPtr: |
| // GEPs are cheap if all indices are constant. |
| if (!cast<GEPOperator>(I)->hasAllConstantIndices()) |
| return false; |
| // fall-thru to increment case |
| case Instruction::Add: |
| case Instruction::Sub: |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: |
| case Instruction::Shl: |
| case Instruction::LShr: |
| case Instruction::AShr: |
| if (seenIncrement) |
| return false; |
| seenIncrement = true; |
| break; |
| case Instruction::Trunc: |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| // ignore type conversions |
| break; |
| } |
| } |
| return true; |
| } |
| |
| /// Fold the loop tail into the loop exit by speculating the loop tail |
| /// instructions. Typically, this is a single post-increment. In the case of a |
| /// simple 2-block loop, hoisting the increment can be much better than |
| /// duplicating the entire loop header. In the cast of loops with early exits, |
| /// rotation will not work anyway, but simplifyLoopLatch will put the loop in |
| /// canonical form so downstream passes can handle it. |
| /// |
| /// I don't believe this invalidates SCEV. |
| void LoopRotate::simplifyLoopLatch(Loop *L) { |
| BasicBlock *Latch = L->getLoopLatch(); |
| if (!Latch || Latch->hasAddressTaken()) |
| return; |
| |
| BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator()); |
| if (!Jmp || !Jmp->isUnconditional()) |
| return; |
| |
| BasicBlock *LastExit = Latch->getSinglePredecessor(); |
| if (!LastExit || !L->isLoopExiting(LastExit)) |
| return; |
| |
| BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator()); |
| if (!BI) |
| return; |
| |
| if (!shouldSpeculateInstrs(Latch->begin(), Jmp)) |
| return; |
| |
| DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into " |
| << LastExit->getName() << "\n"); |
| |
| // Hoist the instructions from Latch into LastExit. |
| LastExit->getInstList().splice(BI, Latch->getInstList(), Latch->begin(), Jmp); |
| |
| unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1; |
| BasicBlock *Header = Jmp->getSuccessor(0); |
| assert(Header == L->getHeader() && "expected a backward branch"); |
| |
| // Remove Latch from the CFG so that LastExit becomes the new Latch. |
| BI->setSuccessor(FallThruPath, Header); |
| Latch->replaceSuccessorsPhiUsesWith(LastExit); |
| Jmp->eraseFromParent(); |
| |
| // Nuke the Latch block. |
| assert(Latch->empty() && "unable to evacuate Latch"); |
| LI->removeBlock(Latch); |
| if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) |
| DT->eraseNode(Latch); |
| Latch->eraseFromParent(); |
| } |
| |
| /// Rotate loop LP. Return true if the loop is rotated. |
| bool LoopRotate::rotateLoop(Loop *L) { |
| // If the loop has only one block then there is not much to rotate. |
| if (L->getBlocks().size() == 1) |
| return false; |
| |
| BasicBlock *OrigHeader = L->getHeader(); |
| BasicBlock *OrigLatch = L->getLoopLatch(); |
| |
| BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator()); |
| if (BI == 0 || BI->isUnconditional()) |
| return false; |
| |
| // If the loop header is not one of the loop exiting blocks then |
| // either this loop is already rotated or it is not |
| // suitable for loop rotation transformations. |
| if (!L->isLoopExiting(OrigHeader)) |
| return false; |
| |
| // If the loop latch already contains a branch that leaves the loop then the |
| // loop is already rotated. |
| if (OrigLatch == 0 || L->isLoopExiting(OrigLatch)) |
| return false; |
| |
| // Check size of original header and reject loop if it is very big or we can't |
| // duplicate blocks inside it. |
| { |
| CodeMetrics Metrics; |
| Metrics.analyzeBasicBlock(OrigHeader, *TTI); |
| if (Metrics.notDuplicatable) { |
| DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non duplicatable" |
| << " instructions: "; L->dump()); |
| return false; |
| } |
| if (Metrics.NumInsts > MAX_HEADER_SIZE) |
| return false; |
| } |
| |
| // Now, this loop is suitable for rotation. |
| BasicBlock *OrigPreheader = L->getLoopPreheader(); |
| |
| // If the loop could not be converted to canonical form, it must have an |
| // indirectbr in it, just give up. |
| if (OrigPreheader == 0) |
| return false; |
| |
| // Anything ScalarEvolution may know about this loop or the PHI nodes |
| // in its header will soon be invalidated. |
| if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>()) |
| SE->forgetLoop(L); |
| |
| DEBUG(dbgs() << "LoopRotation: rotating "; L->dump()); |
| |
| // Find new Loop header. NewHeader is a Header's one and only successor |
| // that is inside loop. Header's other successor is outside the |
| // loop. Otherwise loop is not suitable for rotation. |
| BasicBlock *Exit = BI->getSuccessor(0); |
| BasicBlock *NewHeader = BI->getSuccessor(1); |
| if (L->contains(Exit)) |
| std::swap(Exit, NewHeader); |
| assert(NewHeader && "Unable to determine new loop header"); |
| assert(L->contains(NewHeader) && !L->contains(Exit) && |
| "Unable to determine loop header and exit blocks"); |
| |
| // This code assumes that the new header has exactly one predecessor. |
| // Remove any single-entry PHI nodes in it. |
| assert(NewHeader->getSinglePredecessor() && |
| "New header doesn't have one pred!"); |
| FoldSingleEntryPHINodes(NewHeader); |
| |
| // Begin by walking OrigHeader and populating ValueMap with an entry for |
| // each Instruction. |
| BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end(); |
| ValueToValueMapTy ValueMap; |
| |
| // For PHI nodes, the value available in OldPreHeader is just the |
| // incoming value from OldPreHeader. |
| for (; PHINode *PN = dyn_cast<PHINode>(I); ++I) |
| ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader); |
| |
| // For the rest of the instructions, either hoist to the OrigPreheader if |
| // possible or create a clone in the OldPreHeader if not. |
| TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator(); |
| while (I != E) { |
| Instruction *Inst = I++; |
| |
| // If the instruction's operands are invariant and it doesn't read or write |
| // memory, then it is safe to hoist. Doing this doesn't change the order of |
| // execution in the preheader, but does prevent the instruction from |
| // executing in each iteration of the loop. This means it is safe to hoist |
| // something that might trap, but isn't safe to hoist something that reads |
| // memory (without proving that the loop doesn't write). |
| if (L->hasLoopInvariantOperands(Inst) && |
| !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() && |
| !isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst) && |
| !isa<AllocaInst>(Inst)) { |
| Inst->moveBefore(LoopEntryBranch); |
| continue; |
| } |
| |
| // Otherwise, create a duplicate of the instruction. |
| Instruction *C = Inst->clone(); |
| |
| // Eagerly remap the operands of the instruction. |
| RemapInstruction(C, ValueMap, |
| RF_NoModuleLevelChanges|RF_IgnoreMissingEntries); |
| |
| // With the operands remapped, see if the instruction constant folds or is |
| // otherwise simplifyable. This commonly occurs because the entry from PHI |
| // nodes allows icmps and other instructions to fold. |
| Value *V = SimplifyInstruction(C); |
| if (V && LI->replacementPreservesLCSSAForm(C, V)) { |
| // If so, then delete the temporary instruction and stick the folded value |
| // in the map. |
| delete C; |
| ValueMap[Inst] = V; |
| } else { |
| // Otherwise, stick the new instruction into the new block! |
| C->setName(Inst->getName()); |
| C->insertBefore(LoopEntryBranch); |
| ValueMap[Inst] = C; |
| } |
| } |
| |
| // Along with all the other instructions, we just cloned OrigHeader's |
| // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's |
| // successors by duplicating their incoming values for OrigHeader. |
| TerminatorInst *TI = OrigHeader->getTerminator(); |
| for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) |
| for (BasicBlock::iterator BI = TI->getSuccessor(i)->begin(); |
| PHINode *PN = dyn_cast<PHINode>(BI); ++BI) |
| PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader); |
| |
| // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove |
| // OrigPreHeader's old terminator (the original branch into the loop), and |
| // remove the corresponding incoming values from the PHI nodes in OrigHeader. |
| LoopEntryBranch->eraseFromParent(); |
| |
| // If there were any uses of instructions in the duplicated block outside the |
| // loop, update them, inserting PHI nodes as required |
| RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap); |
| |
| // NewHeader is now the header of the loop. |
| L->moveToHeader(NewHeader); |
| assert(L->getHeader() == NewHeader && "Latch block is our new header"); |
| |
| |
| // At this point, we've finished our major CFG changes. As part of cloning |
| // the loop into the preheader we've simplified instructions and the |
| // duplicated conditional branch may now be branching on a constant. If it is |
| // branching on a constant and if that constant means that we enter the loop, |
| // then we fold away the cond branch to an uncond branch. This simplifies the |
| // loop in cases important for nested loops, and it also means we don't have |
| // to split as many edges. |
| BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator()); |
| assert(PHBI->isConditional() && "Should be clone of BI condbr!"); |
| if (!isa<ConstantInt>(PHBI->getCondition()) || |
| PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) |
| != NewHeader) { |
| // The conditional branch can't be folded, handle the general case. |
| // Update DominatorTree to reflect the CFG change we just made. Then split |
| // edges as necessary to preserve LoopSimplify form. |
| if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) { |
| // Everything that was dominated by the old loop header is now dominated |
| // by the original loop preheader. Conceptually the header was merged |
| // into the preheader, even though we reuse the actual block as a new |
| // loop latch. |
| DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader); |
| SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(), |
| OrigHeaderNode->end()); |
| DomTreeNode *OrigPreheaderNode = DT->getNode(OrigPreheader); |
| for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) |
| DT->changeImmediateDominator(HeaderChildren[I], OrigPreheaderNode); |
| |
| assert(DT->getNode(Exit)->getIDom() == OrigPreheaderNode); |
| assert(DT->getNode(NewHeader)->getIDom() == OrigPreheaderNode); |
| |
| // Update OrigHeader to be dominated by the new header block. |
| DT->changeImmediateDominator(OrigHeader, OrigLatch); |
| } |
| |
| // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and |
| // thus is not a preheader anymore. |
| // Split the edge to form a real preheader. |
| BasicBlock *NewPH = SplitCriticalEdge(OrigPreheader, NewHeader, this); |
| NewPH->setName(NewHeader->getName() + ".lr.ph"); |
| |
| // Preserve canonical loop form, which means that 'Exit' should have only |
| // one predecessor. |
| BasicBlock *ExitSplit = SplitCriticalEdge(L->getLoopLatch(), Exit, this); |
| ExitSplit->moveBefore(Exit); |
| } else { |
| // We can fold the conditional branch in the preheader, this makes things |
| // simpler. The first step is to remove the extra edge to the Exit block. |
| Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/); |
| BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI); |
| NewBI->setDebugLoc(PHBI->getDebugLoc()); |
| PHBI->eraseFromParent(); |
| |
| // With our CFG finalized, update DomTree if it is available. |
| if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) { |
| // Update OrigHeader to be dominated by the new header block. |
| DT->changeImmediateDominator(NewHeader, OrigPreheader); |
| DT->changeImmediateDominator(OrigHeader, OrigLatch); |
| |
| // Brute force incremental dominator tree update. Call |
| // findNearestCommonDominator on all CFG predecessors of each child of the |
| // original header. |
| DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader); |
| SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(), |
| OrigHeaderNode->end()); |
| bool Changed; |
| do { |
| Changed = false; |
| for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) { |
| DomTreeNode *Node = HeaderChildren[I]; |
| BasicBlock *BB = Node->getBlock(); |
| |
| pred_iterator PI = pred_begin(BB); |
| BasicBlock *NearestDom = *PI; |
| for (pred_iterator PE = pred_end(BB); PI != PE; ++PI) |
| NearestDom = DT->findNearestCommonDominator(NearestDom, *PI); |
| |
| // Remember if this changes the DomTree. |
| if (Node->getIDom()->getBlock() != NearestDom) { |
| DT->changeImmediateDominator(BB, NearestDom); |
| Changed = true; |
| } |
| } |
| |
| // If the dominator changed, this may have an effect on other |
| // predecessors, continue until we reach a fixpoint. |
| } while (Changed); |
| } |
| } |
| |
| assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation"); |
| assert(L->getLoopLatch() && "Invalid loop latch after loop rotation"); |
| |
| // Now that the CFG and DomTree are in a consistent state again, try to merge |
| // the OrigHeader block into OrigLatch. This will succeed if they are |
| // connected by an unconditional branch. This is just a cleanup so the |
| // emitted code isn't too gross in this common case. |
| MergeBlockIntoPredecessor(OrigHeader, this); |
| |
| DEBUG(dbgs() << "LoopRotation: into "; L->dump()); |
| |
| ++NumRotated; |
| return true; |
| } |
| |