| //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements some loop unrolling utilities for loops with run-time |
| // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time |
| // trip counts. |
| // |
| // The functions in this file are used to generate extra code when the |
| // run-time trip count modulo the unroll factor is not 0. When this is the |
| // case, we need to generate code to execute these 'left over' iterations. |
| // |
| // The current strategy generates an if-then-else sequence prior to the |
| // unrolled loop to execute the 'left over' iterations. Other strategies |
| // include generate a loop before or after the unrolled loop. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "loop-unroll" |
| #include "llvm/Transforms/Utils/UnrollLoop.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/LoopIterator.h" |
| #include "llvm/Analysis/LoopPass.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Analysis/ScalarEvolutionExpander.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Cloning.h" |
| #include <algorithm> |
| |
| using namespace llvm; |
| |
| STATISTIC(NumRuntimeUnrolled, |
| "Number of loops unrolled with run-time trip counts"); |
| |
| /// Connect the unrolling prolog code to the original loop. |
| /// The unrolling prolog code contains code to execute the |
| /// 'extra' iterations if the run-time trip count modulo the |
| /// unroll count is non-zero. |
| /// |
| /// This function performs the following: |
| /// - Create PHI nodes at prolog end block to combine values |
| /// that exit the prolog code and jump around the prolog. |
| /// - Add a PHI operand to a PHI node at the loop exit block |
| /// for values that exit the prolog and go around the loop. |
| /// - Branch around the original loop if the trip count is less |
| /// than the unroll factor. |
| /// |
| static void ConnectProlog(Loop *L, Value *TripCount, unsigned Count, |
| BasicBlock *LastPrologBB, BasicBlock *PrologEnd, |
| BasicBlock *OrigPH, BasicBlock *NewPH, |
| ValueToValueMapTy &LVMap, Pass *P) { |
| BasicBlock *Latch = L->getLoopLatch(); |
| assert(Latch != 0 && "Loop must have a latch"); |
| |
| // Create a PHI node for each outgoing value from the original loop |
| // (which means it is an outgoing value from the prolog code too). |
| // The new PHI node is inserted in the prolog end basic block. |
| // The new PHI name is added as an operand of a PHI node in either |
| // the loop header or the loop exit block. |
| for (succ_iterator SBI = succ_begin(Latch), SBE = succ_end(Latch); |
| SBI != SBE; ++SBI) { |
| for (BasicBlock::iterator BBI = (*SBI)->begin(); |
| PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI) { |
| |
| // Add a new PHI node to the prolog end block and add the |
| // appropriate incoming values. |
| PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName()+".unr", |
| PrologEnd->getTerminator()); |
| // Adding a value to the new PHI node from the original loop preheader. |
| // This is the value that skips all the prolog code. |
| if (L->contains(PN)) { |
| NewPN->addIncoming(PN->getIncomingValueForBlock(NewPH), OrigPH); |
| } else { |
| NewPN->addIncoming(Constant::getNullValue(PN->getType()), OrigPH); |
| } |
| |
| Value *V = PN->getIncomingValueForBlock(Latch); |
| if (Instruction *I = dyn_cast<Instruction>(V)) { |
| if (L->contains(I)) { |
| V = LVMap[I]; |
| } |
| } |
| // Adding a value to the new PHI node from the last prolog block |
| // that was created. |
| NewPN->addIncoming(V, LastPrologBB); |
| |
| // Update the existing PHI node operand with the value from the |
| // new PHI node. How this is done depends on if the existing |
| // PHI node is in the original loop block, or the exit block. |
| if (L->contains(PN)) { |
| PN->setIncomingValue(PN->getBasicBlockIndex(NewPH), NewPN); |
| } else { |
| PN->addIncoming(NewPN, PrologEnd); |
| } |
| } |
| } |
| |
| // Create a branch around the orignal loop, which is taken if the |
| // trip count is less than the unroll factor. |
| Instruction *InsertPt = PrologEnd->getTerminator(); |
| Instruction *BrLoopExit = |
| new ICmpInst(InsertPt, ICmpInst::ICMP_ULT, TripCount, |
| ConstantInt::get(TripCount->getType(), Count)); |
| BasicBlock *Exit = L->getUniqueExitBlock(); |
| assert(Exit != 0 && "Loop must have a single exit block only"); |
| // Split the exit to maintain loop canonicalization guarantees |
| SmallVector<BasicBlock*, 4> Preds(pred_begin(Exit), pred_end(Exit)); |
| if (!Exit->isLandingPad()) { |
| SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", P); |
| } else { |
| SmallVector<BasicBlock*, 2> NewBBs; |
| SplitLandingPadPredecessors(Exit, Preds, ".unr1-lcssa", ".unr2-lcssa", |
| P, NewBBs); |
| } |
| // Add the branch to the exit block (around the unrolled loop) |
| BranchInst::Create(Exit, NewPH, BrLoopExit, InsertPt); |
| InsertPt->eraseFromParent(); |
| } |
| |
| /// Create a clone of the blocks in a loop and connect them together. |
| /// This function doesn't create a clone of the loop structure. |
| /// |
| /// There are two value maps that are defined and used. VMap is |
| /// for the values in the current loop instance. LVMap contains |
| /// the values from the last loop instance. We need the LVMap values |
| /// to update the initial values for the current loop instance. |
| /// |
| static void CloneLoopBlocks(Loop *L, |
| bool FirstCopy, |
| BasicBlock *InsertTop, |
| BasicBlock *InsertBot, |
| std::vector<BasicBlock *> &NewBlocks, |
| LoopBlocksDFS &LoopBlocks, |
| ValueToValueMapTy &VMap, |
| ValueToValueMapTy &LVMap, |
| LoopInfo *LI) { |
| |
| BasicBlock *Preheader = L->getLoopPreheader(); |
| BasicBlock *Header = L->getHeader(); |
| BasicBlock *Latch = L->getLoopLatch(); |
| Function *F = Header->getParent(); |
| LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); |
| LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); |
| // For each block in the original loop, create a new copy, |
| // and update the value map with the newly created values. |
| for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { |
| BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".unr", F); |
| NewBlocks.push_back(NewBB); |
| |
| if (Loop *ParentLoop = L->getParentLoop()) |
| ParentLoop->addBasicBlockToLoop(NewBB, LI->getBase()); |
| |
| VMap[*BB] = NewBB; |
| if (Header == *BB) { |
| // For the first block, add a CFG connection to this newly |
| // created block |
| InsertTop->getTerminator()->setSuccessor(0, NewBB); |
| |
| // Change the incoming values to the ones defined in the |
| // previously cloned loop. |
| for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { |
| PHINode *NewPHI = cast<PHINode>(VMap[I]); |
| if (FirstCopy) { |
| // We replace the first phi node with the value from the preheader |
| VMap[I] = NewPHI->getIncomingValueForBlock(Preheader); |
| NewBB->getInstList().erase(NewPHI); |
| } else { |
| // Update VMap with values from the previous block |
| unsigned idx = NewPHI->getBasicBlockIndex(Latch); |
| Value *InVal = NewPHI->getIncomingValue(idx); |
| if (Instruction *I = dyn_cast<Instruction>(InVal)) |
| if (L->contains(I)) |
| InVal = LVMap[InVal]; |
| NewPHI->setIncomingValue(idx, InVal); |
| NewPHI->setIncomingBlock(idx, InsertTop); |
| } |
| } |
| } |
| |
| if (Latch == *BB) { |
| VMap.erase((*BB)->getTerminator()); |
| NewBB->getTerminator()->eraseFromParent(); |
| BranchInst::Create(InsertBot, NewBB); |
| } |
| } |
| // LastValueMap is updated with the values for the current loop |
| // which are used the next time this function is called. |
| for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); |
| VI != VE; ++VI) { |
| LVMap[VI->first] = VI->second; |
| } |
| } |
| |
| /// Insert code in the prolog code when unrolling a loop with a |
| /// run-time trip-count. |
| /// |
| /// This method assumes that the loop unroll factor is total number |
| /// of loop bodes in the loop after unrolling. (Some folks refer |
| /// to the unroll factor as the number of *extra* copies added). |
| /// We assume also that the loop unroll factor is a power-of-two. So, after |
| /// unrolling the loop, the number of loop bodies executed is 2, |
| /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch |
| /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for |
| /// the switch instruction is generated. |
| /// |
| /// extraiters = tripcount % loopfactor |
| /// if (extraiters == 0) jump Loop: |
| /// if (extraiters == loopfactor) jump L1 |
| /// if (extraiters == loopfactor-1) jump L2 |
| /// ... |
| /// L1: LoopBody; |
| /// L2: LoopBody; |
| /// ... |
| /// if tripcount < loopfactor jump End |
| /// Loop: |
| /// ... |
| /// End: |
| /// |
| bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count, LoopInfo *LI, |
| LPPassManager *LPM) { |
| // for now, only unroll loops that contain a single exit |
| if (!L->getExitingBlock()) |
| return false; |
| |
| // Make sure the loop is in canonical form, and there is a single |
| // exit block only. |
| if (!L->isLoopSimplifyForm() || L->getUniqueExitBlock() == 0) |
| return false; |
| |
| // Use Scalar Evolution to compute the trip count. This allows more |
| // loops to be unrolled than relying on induction var simplification |
| if (!LPM) |
| return false; |
| ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>(); |
| if (SE == 0) |
| return false; |
| |
| // Only unroll loops with a computable trip count and the trip count needs |
| // to be an int value (allowing a pointer type is a TODO item) |
| const SCEV *BECount = SE->getBackedgeTakenCount(L); |
| if (isa<SCEVCouldNotCompute>(BECount) || !BECount->getType()->isIntegerTy()) |
| return false; |
| |
| // Add 1 since the backedge count doesn't include the first loop iteration |
| const SCEV *TripCountSC = |
| SE->getAddExpr(BECount, SE->getConstant(BECount->getType(), 1)); |
| if (isa<SCEVCouldNotCompute>(TripCountSC)) |
| return false; |
| |
| // We only handle cases when the unroll factor is a power of 2. |
| // Count is the loop unroll factor, the number of extra copies added + 1. |
| if ((Count & (Count-1)) != 0) |
| return false; |
| |
| // If this loop is nested, then the loop unroller changes the code in |
| // parent loop, so the Scalar Evolution pass needs to be run again |
| if (Loop *ParentLoop = L->getParentLoop()) |
| SE->forgetLoop(ParentLoop); |
| |
| BasicBlock *PH = L->getLoopPreheader(); |
| BasicBlock *Header = L->getHeader(); |
| BasicBlock *Latch = L->getLoopLatch(); |
| // It helps to splits the original preheader twice, one for the end of the |
| // prolog code and one for a new loop preheader |
| BasicBlock *PEnd = SplitEdge(PH, Header, LPM->getAsPass()); |
| BasicBlock *NewPH = SplitBlock(PEnd, PEnd->getTerminator(), LPM->getAsPass()); |
| BranchInst *PreHeaderBR = cast<BranchInst>(PH->getTerminator()); |
| |
| // Compute the number of extra iterations required, which is: |
| // extra iterations = run-time trip count % (loop unroll factor + 1) |
| SCEVExpander Expander(*SE, "loop-unroll"); |
| Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(), |
| PreHeaderBR); |
| Type *CountTy = TripCount->getType(); |
| BinaryOperator *ModVal = |
| BinaryOperator::CreateURem(TripCount, |
| ConstantInt::get(CountTy, Count), |
| "xtraiter"); |
| ModVal->insertBefore(PreHeaderBR); |
| |
| // Check if for no extra iterations, then jump to unrolled loop |
| Value *BranchVal = new ICmpInst(PreHeaderBR, |
| ICmpInst::ICMP_NE, ModVal, |
| ConstantInt::get(CountTy, 0), "lcmp"); |
| // Branch to either the extra iterations or the unrolled loop |
| // We will fix up the true branch label when adding loop body copies |
| BranchInst::Create(PEnd, PEnd, BranchVal, PreHeaderBR); |
| assert(PreHeaderBR->isUnconditional() && |
| PreHeaderBR->getSuccessor(0) == PEnd && |
| "CFG edges in Preheader are not correct"); |
| PreHeaderBR->eraseFromParent(); |
| |
| ValueToValueMapTy LVMap; |
| Function *F = Header->getParent(); |
| // These variables are used to update the CFG links in each iteration |
| BasicBlock *CompareBB = 0; |
| BasicBlock *LastLoopBB = PH; |
| // Get an ordered list of blocks in the loop to help with the ordering of the |
| // cloned blocks in the prolog code |
| LoopBlocksDFS LoopBlocks(L); |
| LoopBlocks.perform(LI); |
| |
| // |
| // For each extra loop iteration, create a copy of the loop's basic blocks |
| // and generate a condition that branches to the copy depending on the |
| // number of 'left over' iterations. |
| // |
| for (unsigned leftOverIters = Count-1; leftOverIters > 0; --leftOverIters) { |
| std::vector<BasicBlock*> NewBlocks; |
| ValueToValueMapTy VMap; |
| |
| // Clone all the basic blocks in the loop, but we don't clone the loop |
| // This function adds the appropriate CFG connections. |
| CloneLoopBlocks(L, (leftOverIters == Count-1), LastLoopBB, PEnd, NewBlocks, |
| LoopBlocks, VMap, LVMap, LI); |
| LastLoopBB = cast<BasicBlock>(VMap[Latch]); |
| |
| // Insert the cloned blocks into function just before the original loop |
| F->getBasicBlockList().splice(PEnd, F->getBasicBlockList(), |
| NewBlocks[0], F->end()); |
| |
| // Generate the code for the comparison which determines if the loop |
| // prolog code needs to be executed. |
| if (leftOverIters == Count-1) { |
| // There is no compare block for the fall-thru case when for the last |
| // left over iteration |
| CompareBB = NewBlocks[0]; |
| } else { |
| // Create a new block for the comparison |
| BasicBlock *NewBB = BasicBlock::Create(CompareBB->getContext(), "unr.cmp", |
| F, CompareBB); |
| if (Loop *ParentLoop = L->getParentLoop()) { |
| // Add the new block to the parent loop, if needed |
| ParentLoop->addBasicBlockToLoop(NewBB, LI->getBase()); |
| } |
| |
| // The comparison w/ the extra iteration value and branch |
| Value *BranchVal = new ICmpInst(*NewBB, ICmpInst::ICMP_EQ, ModVal, |
| ConstantInt::get(CountTy, leftOverIters), |
| "un.tmp"); |
| // Branch to either the extra iterations or the unrolled loop |
| BranchInst::Create(NewBlocks[0], CompareBB, |
| BranchVal, NewBB); |
| CompareBB = NewBB; |
| PH->getTerminator()->setSuccessor(0, NewBB); |
| VMap[NewPH] = CompareBB; |
| } |
| |
| // Rewrite the cloned instruction operands to use the values |
| // created when the clone is created. |
| for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) { |
| for (BasicBlock::iterator I = NewBlocks[i]->begin(), |
| E = NewBlocks[i]->end(); I != E; ++I) { |
| RemapInstruction(I, VMap, |
| RF_NoModuleLevelChanges|RF_IgnoreMissingEntries); |
| } |
| } |
| } |
| |
| // Connect the prolog code to the original loop and update the |
| // PHI functions. |
| ConnectProlog(L, TripCount, Count, LastLoopBB, PEnd, PH, NewPH, LVMap, |
| LPM->getAsPass()); |
| NumRuntimeUnrolled++; |
| return true; |
| } |