| //===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the pass that transforms the ARM machine instructions into |
| // relocatable machine code. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "jit" |
| #include "ARM.h" |
| #include "ARMBaseInstrInfo.h" |
| #include "ARMConstantPoolValue.h" |
| #include "ARMRelocations.h" |
| #include "ARMSubtarget.h" |
| #include "ARMTargetMachine.h" |
| #include "MCTargetDesc/ARMAddressingModes.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/CodeGen/JITCodeEmitter.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/PassManager.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #ifndef NDEBUG |
| #include <iomanip> |
| #endif |
| using namespace llvm; |
| |
| STATISTIC(NumEmitted, "Number of machine instructions emitted"); |
| |
| namespace { |
| |
| class ARMCodeEmitter : public MachineFunctionPass { |
| ARMJITInfo *JTI; |
| const ARMBaseInstrInfo *II; |
| const DataLayout *TD; |
| const ARMSubtarget *Subtarget; |
| TargetMachine &TM; |
| JITCodeEmitter &MCE; |
| MachineModuleInfo *MMI; |
| const std::vector<MachineConstantPoolEntry> *MCPEs; |
| const std::vector<MachineJumpTableEntry> *MJTEs; |
| bool IsPIC; |
| bool IsThumb; |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<MachineModuleInfo>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| static char ID; |
| public: |
| ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce) |
| : MachineFunctionPass(ID), JTI(0), |
| II((const ARMBaseInstrInfo *)tm.getInstrInfo()), |
| TD(tm.getDataLayout()), TM(tm), |
| MCE(mce), MCPEs(0), MJTEs(0), |
| IsPIC(TM.getRelocationModel() == Reloc::PIC_), IsThumb(false) {} |
| |
| /// getBinaryCodeForInstr - This function, generated by the |
| /// CodeEmitterGenerator using TableGen, produces the binary encoding for |
| /// machine instructions. |
| uint64_t getBinaryCodeForInstr(const MachineInstr &MI) const; |
| |
| bool runOnMachineFunction(MachineFunction &MF); |
| |
| virtual const char *getPassName() const { |
| return "ARM Machine Code Emitter"; |
| } |
| |
| void emitInstruction(const MachineInstr &MI); |
| |
| private: |
| |
| void emitWordLE(unsigned Binary); |
| void emitDWordLE(uint64_t Binary); |
| void emitConstPoolInstruction(const MachineInstr &MI); |
| void emitMOVi32immInstruction(const MachineInstr &MI); |
| void emitMOVi2piecesInstruction(const MachineInstr &MI); |
| void emitLEApcrelJTInstruction(const MachineInstr &MI); |
| void emitPseudoMoveInstruction(const MachineInstr &MI); |
| void addPCLabel(unsigned LabelID); |
| void emitPseudoInstruction(const MachineInstr &MI); |
| unsigned getMachineSoRegOpValue(const MachineInstr &MI, |
| const MCInstrDesc &MCID, |
| const MachineOperand &MO, |
| unsigned OpIdx); |
| |
| unsigned getMachineSoImmOpValue(unsigned SoImm); |
| unsigned getAddrModeSBit(const MachineInstr &MI, |
| const MCInstrDesc &MCID) const; |
| |
| void emitDataProcessingInstruction(const MachineInstr &MI, |
| unsigned ImplicitRd = 0, |
| unsigned ImplicitRn = 0); |
| |
| void emitLoadStoreInstruction(const MachineInstr &MI, |
| unsigned ImplicitRd = 0, |
| unsigned ImplicitRn = 0); |
| |
| void emitMiscLoadStoreInstruction(const MachineInstr &MI, |
| unsigned ImplicitRn = 0); |
| |
| void emitLoadStoreMultipleInstruction(const MachineInstr &MI); |
| |
| void emitMulFrmInstruction(const MachineInstr &MI); |
| |
| void emitExtendInstruction(const MachineInstr &MI); |
| |
| void emitMiscArithInstruction(const MachineInstr &MI); |
| |
| void emitSaturateInstruction(const MachineInstr &MI); |
| |
| void emitBranchInstruction(const MachineInstr &MI); |
| |
| void emitInlineJumpTable(unsigned JTIndex); |
| |
| void emitMiscBranchInstruction(const MachineInstr &MI); |
| |
| void emitVFPArithInstruction(const MachineInstr &MI); |
| |
| void emitVFPConversionInstruction(const MachineInstr &MI); |
| |
| void emitVFPLoadStoreInstruction(const MachineInstr &MI); |
| |
| void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI); |
| |
| void emitNEONLaneInstruction(const MachineInstr &MI); |
| void emitNEONDupInstruction(const MachineInstr &MI); |
| void emitNEON1RegModImmInstruction(const MachineInstr &MI); |
| void emitNEON2RegInstruction(const MachineInstr &MI); |
| void emitNEON3RegInstruction(const MachineInstr &MI); |
| |
| /// getMachineOpValue - Return binary encoding of operand. If the machine |
| /// operand requires relocation, record the relocation and return zero. |
| unsigned getMachineOpValue(const MachineInstr &MI, |
| const MachineOperand &MO) const; |
| unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) const { |
| return getMachineOpValue(MI, MI.getOperand(OpIdx)); |
| } |
| |
| // FIXME: The legacy JIT ARMCodeEmitter doesn't rely on the the |
| // TableGen'erated getBinaryCodeForInstr() function to encode any |
| // operand values, instead querying getMachineOpValue() directly for |
| // each operand it needs to encode. Thus, any of the new encoder |
| // helper functions can simply return 0 as the values the return |
| // are already handled elsewhere. They are placeholders to allow this |
| // encoder to continue to function until the MC encoder is sufficiently |
| // far along that this one can be eliminated entirely. |
| unsigned NEONThumb2DataIPostEncoder(const MachineInstr &MI, unsigned Val) |
| const { return 0; } |
| unsigned NEONThumb2LoadStorePostEncoder(const MachineInstr &MI,unsigned Val) |
| const { return 0; } |
| unsigned NEONThumb2DupPostEncoder(const MachineInstr &MI,unsigned Val) |
| const { return 0; } |
| unsigned VFPThumb2PostEncoder(const MachineInstr&MI, unsigned Val) |
| const { return 0; } |
| unsigned getAdrLabelOpValue(const MachineInstr &MI, unsigned Op) |
| const { return 0; } |
| unsigned getThumbAdrLabelOpValue(const MachineInstr &MI, unsigned Op) |
| const { return 0; } |
| unsigned getThumbBLTargetOpValue(const MachineInstr &MI, unsigned Op) |
| const { return 0; } |
| unsigned getThumbBLXTargetOpValue(const MachineInstr &MI, unsigned Op) |
| const { return 0; } |
| unsigned getThumbBRTargetOpValue(const MachineInstr &MI, unsigned Op) |
| const { return 0; } |
| unsigned getThumbBCCTargetOpValue(const MachineInstr &MI, unsigned Op) |
| const { return 0; } |
| unsigned getThumbCBTargetOpValue(const MachineInstr &MI, unsigned Op) |
| const { return 0; } |
| unsigned getBranchTargetOpValue(const MachineInstr &MI, unsigned Op) |
| const { return 0; } |
| unsigned getUnconditionalBranchTargetOpValue(const MachineInstr &MI, |
| unsigned Op) const { return 0; } |
| unsigned getARMBranchTargetOpValue(const MachineInstr &MI, unsigned Op) |
| const { return 0; } |
| unsigned getARMBLTargetOpValue(const MachineInstr &MI, unsigned Op) |
| const { return 0; } |
| unsigned getARMBLXTargetOpValue(const MachineInstr &MI, unsigned Op) |
| const { return 0; } |
| unsigned getCCOutOpValue(const MachineInstr &MI, unsigned Op) |
| const { return 0; } |
| unsigned getSOImmOpValue(const MachineInstr &MI, unsigned Op) |
| const { return 0; } |
| unsigned getT2SOImmOpValue(const MachineInstr &MI, unsigned Op) |
| const { return 0; } |
| unsigned getSORegRegOpValue(const MachineInstr &MI, unsigned Op) |
| const { return 0; } |
| unsigned getSORegImmOpValue(const MachineInstr &MI, unsigned Op) |
| const { return 0; } |
| unsigned getThumbAddrModeRegRegOpValue(const MachineInstr &MI, unsigned Op) |
| const { return 0; } |
| unsigned getT2AddrModeImm12OpValue(const MachineInstr &MI, unsigned Op) |
| const { return 0; } |
| unsigned getT2AddrModeImm8OpValue(const MachineInstr &MI, unsigned Op) |
| const { return 0; } |
| unsigned getT2Imm8s4OpValue(const MachineInstr &MI, unsigned Op) |
| const { return 0; } |
| unsigned getT2AddrModeImm8s4OpValue(const MachineInstr &MI, unsigned Op) |
| const { return 0; } |
| unsigned getT2AddrModeImm0_1020s4OpValue(const MachineInstr &MI,unsigned Op) |
| const { return 0; } |
| unsigned getT2AddrModeImm8OffsetOpValue(const MachineInstr &MI, unsigned Op) |
| const { return 0; } |
| unsigned getT2AddrModeImm12OffsetOpValue(const MachineInstr &MI,unsigned Op) |
| const { return 0; } |
| unsigned getT2AddrModeSORegOpValue(const MachineInstr &MI, unsigned Op) |
| const { return 0; } |
| unsigned getT2SORegOpValue(const MachineInstr &MI, unsigned Op) |
| const { return 0; } |
| unsigned getT2AdrLabelOpValue(const MachineInstr &MI, unsigned Op) |
| const { return 0; } |
| unsigned getAddrMode6AddressOpValue(const MachineInstr &MI, unsigned Op) |
| const { return 0; } |
| unsigned getAddrMode6OneLane32AddressOpValue(const MachineInstr &MI, |
| unsigned Op) |
| const { return 0; } |
| unsigned getAddrMode6DupAddressOpValue(const MachineInstr &MI, unsigned Op) |
| const { return 0; } |
| unsigned getAddrMode6OffsetOpValue(const MachineInstr &MI, unsigned Op) |
| const { return 0; } |
| unsigned getBitfieldInvertedMaskOpValue(const MachineInstr &MI, |
| unsigned Op) const { return 0; } |
| unsigned getSsatBitPosValue(const MachineInstr &MI, |
| unsigned Op) const { return 0; } |
| uint32_t getLdStmModeOpValue(const MachineInstr &MI, unsigned OpIdx) |
| const {return 0; } |
| uint32_t getLdStSORegOpValue(const MachineInstr &MI, unsigned OpIdx) |
| const { return 0; } |
| |
| unsigned getAddrModeImm12OpValue(const MachineInstr &MI, unsigned Op) |
| const { |
| // {17-13} = reg |
| // {12} = (U)nsigned (add == '1', sub == '0') |
| // {11-0} = imm12 |
| const MachineOperand &MO = MI.getOperand(Op); |
| const MachineOperand &MO1 = MI.getOperand(Op + 1); |
| if (!MO.isReg()) { |
| emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry); |
| return 0; |
| } |
| unsigned Reg = II->getRegisterInfo().getEncodingValue(MO.getReg()); |
| int32_t Imm12 = MO1.getImm(); |
| uint32_t Binary; |
| Binary = Imm12 & 0xfff; |
| if (Imm12 >= 0) |
| Binary |= (1 << 12); |
| Binary |= (Reg << 13); |
| return Binary; |
| } |
| |
| unsigned getHiLo16ImmOpValue(const MachineInstr &MI, unsigned Op) const { |
| return 0; |
| } |
| |
| uint32_t getAddrMode2OpValue(const MachineInstr &MI, unsigned OpIdx) |
| const { return 0;} |
| uint32_t getAddrMode2OffsetOpValue(const MachineInstr &MI, unsigned OpIdx) |
| const { return 0;} |
| uint32_t getPostIdxRegOpValue(const MachineInstr &MI, unsigned OpIdx) |
| const { return 0;} |
| uint32_t getAddrMode3OffsetOpValue(const MachineInstr &MI, unsigned OpIdx) |
| const { return 0;} |
| uint32_t getAddrMode3OpValue(const MachineInstr &MI, unsigned Op) |
| const { return 0; } |
| uint32_t getAddrModeThumbSPOpValue(const MachineInstr &MI, unsigned Op) |
| const { return 0; } |
| uint32_t getAddrModeSOpValue(const MachineInstr &MI, unsigned Op) |
| const { return 0; } |
| uint32_t getAddrModeISOpValue(const MachineInstr &MI, unsigned Op) |
| const { return 0; } |
| uint32_t getAddrModePCOpValue(const MachineInstr &MI, unsigned Op) |
| const { return 0; } |
| uint32_t getAddrMode5OpValue(const MachineInstr &MI, unsigned Op) const { |
| // {17-13} = reg |
| // {12} = (U)nsigned (add == '1', sub == '0') |
| // {11-0} = imm12 |
| const MachineOperand &MO = MI.getOperand(Op); |
| const MachineOperand &MO1 = MI.getOperand(Op + 1); |
| if (!MO.isReg()) { |
| emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry); |
| return 0; |
| } |
| unsigned Reg = II->getRegisterInfo().getEncodingValue(MO.getReg()); |
| int32_t Imm12 = MO1.getImm(); |
| |
| // Special value for #-0 |
| if (Imm12 == INT32_MIN) |
| Imm12 = 0; |
| |
| // Immediate is always encoded as positive. The 'U' bit controls add vs |
| // sub. |
| bool isAdd = true; |
| if (Imm12 < 0) { |
| Imm12 = -Imm12; |
| isAdd = false; |
| } |
| |
| uint32_t Binary = Imm12 & 0xfff; |
| if (isAdd) |
| Binary |= (1 << 12); |
| Binary |= (Reg << 13); |
| return Binary; |
| } |
| unsigned getNEONVcvtImm32OpValue(const MachineInstr &MI, unsigned Op) |
| const { return 0; } |
| |
| unsigned getRegisterListOpValue(const MachineInstr &MI, unsigned Op) |
| const { return 0; } |
| |
| unsigned getShiftRight8Imm(const MachineInstr &MI, unsigned Op) |
| const { return 0; } |
| unsigned getShiftRight16Imm(const MachineInstr &MI, unsigned Op) |
| const { return 0; } |
| unsigned getShiftRight32Imm(const MachineInstr &MI, unsigned Op) |
| const { return 0; } |
| unsigned getShiftRight64Imm(const MachineInstr &MI, unsigned Op) |
| const { return 0; } |
| |
| /// getMovi32Value - Return binary encoding of operand for movw/movt. If the |
| /// machine operand requires relocation, record the relocation and return |
| /// zero. |
| unsigned getMovi32Value(const MachineInstr &MI,const MachineOperand &MO, |
| unsigned Reloc); |
| |
| /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value. |
| /// |
| unsigned getShiftOp(unsigned Imm) const ; |
| |
| /// Routines that handle operands which add machine relocations which are |
| /// fixed up by the relocation stage. |
| void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc, |
| bool MayNeedFarStub, bool Indirect, |
| intptr_t ACPV = 0) const; |
| void emitExternalSymbolAddress(const char *ES, unsigned Reloc) const; |
| void emitConstPoolAddress(unsigned CPI, unsigned Reloc) const; |
| void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const; |
| void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc, |
| intptr_t JTBase = 0) const; |
| unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) const; |
| unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) const; |
| unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) const; |
| unsigned encodeNEONRd(const MachineInstr &MI, unsigned OpIdx) const; |
| unsigned encodeNEONRn(const MachineInstr &MI, unsigned OpIdx) const; |
| unsigned encodeNEONRm(const MachineInstr &MI, unsigned OpIdx) const; |
| }; |
| } |
| |
| char ARMCodeEmitter::ID = 0; |
| |
| /// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM |
| /// code to the specified MCE object. |
| FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM, |
| JITCodeEmitter &JCE) { |
| return new ARMCodeEmitter(TM, JCE); |
| } |
| |
| bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) { |
| TargetMachine &Target = const_cast<TargetMachine&>(MF.getTarget()); |
| |
| assert((Target.getRelocationModel() != Reloc::Default || |
| Target.getRelocationModel() != Reloc::Static) && |
| "JIT relocation model must be set to static or default!"); |
| |
| JTI = static_cast<ARMJITInfo*>(Target.getJITInfo()); |
| II = static_cast<const ARMBaseInstrInfo*>(Target.getInstrInfo()); |
| TD = Target.getDataLayout(); |
| |
| Subtarget = &TM.getSubtarget<ARMSubtarget>(); |
| MCPEs = &MF.getConstantPool()->getConstants(); |
| MJTEs = 0; |
| if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables(); |
| IsPIC = TM.getRelocationModel() == Reloc::PIC_; |
| IsThumb = MF.getInfo<ARMFunctionInfo>()->isThumbFunction(); |
| JTI->Initialize(MF, IsPIC); |
| MMI = &getAnalysis<MachineModuleInfo>(); |
| MCE.setModuleInfo(MMI); |
| |
| do { |
| DEBUG(errs() << "JITTing function '" |
| << MF.getName() << "'\n"); |
| MCE.startFunction(MF); |
| for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); |
| MBB != E; ++MBB) { |
| MCE.StartMachineBasicBlock(MBB); |
| for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); |
| I != E; ++I) |
| emitInstruction(*I); |
| } |
| } while (MCE.finishFunction(MF)); |
| |
| return false; |
| } |
| |
| /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value. |
| /// |
| unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const { |
| switch (ARM_AM::getAM2ShiftOpc(Imm)) { |
| default: llvm_unreachable("Unknown shift opc!"); |
| case ARM_AM::asr: return 2; |
| case ARM_AM::lsl: return 0; |
| case ARM_AM::lsr: return 1; |
| case ARM_AM::ror: |
| case ARM_AM::rrx: return 3; |
| } |
| } |
| |
| /// getMovi32Value - Return binary encoding of operand for movw/movt. If the |
| /// machine operand requires relocation, record the relocation and return zero. |
| unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr &MI, |
| const MachineOperand &MO, |
| unsigned Reloc) { |
| assert(((Reloc == ARM::reloc_arm_movt) || (Reloc == ARM::reloc_arm_movw)) |
| && "Relocation to this function should be for movt or movw"); |
| |
| if (MO.isImm()) |
| return static_cast<unsigned>(MO.getImm()); |
| else if (MO.isGlobal()) |
| emitGlobalAddress(MO.getGlobal(), Reloc, true, false); |
| else if (MO.isSymbol()) |
| emitExternalSymbolAddress(MO.getSymbolName(), Reloc); |
| else if (MO.isMBB()) |
| emitMachineBasicBlock(MO.getMBB(), Reloc); |
| else { |
| #ifndef NDEBUG |
| errs() << MO; |
| #endif |
| llvm_unreachable("Unsupported operand type for movw/movt"); |
| } |
| return 0; |
| } |
| |
| /// getMachineOpValue - Return binary encoding of operand. If the machine |
| /// operand requires relocation, record the relocation and return zero. |
| unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI, |
| const MachineOperand &MO) const { |
| if (MO.isReg()) |
| return II->getRegisterInfo().getEncodingValue(MO.getReg()); |
| else if (MO.isImm()) |
| return static_cast<unsigned>(MO.getImm()); |
| else if (MO.isGlobal()) |
| emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false); |
| else if (MO.isSymbol()) |
| emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch); |
| else if (MO.isCPI()) { |
| const MCInstrDesc &MCID = MI.getDesc(); |
| // For VFP load, the immediate offset is multiplied by 4. |
| unsigned Reloc = ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm) |
| ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry; |
| emitConstPoolAddress(MO.getIndex(), Reloc); |
| } else if (MO.isJTI()) |
| emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative); |
| else if (MO.isMBB()) |
| emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch); |
| else |
| llvm_unreachable("Unable to encode MachineOperand!"); |
| return 0; |
| } |
| |
| /// emitGlobalAddress - Emit the specified address to the code stream. |
| /// |
| void ARMCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc, |
| bool MayNeedFarStub, bool Indirect, |
| intptr_t ACPV) const { |
| MachineRelocation MR = Indirect |
| ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc, |
| const_cast<GlobalValue *>(GV), |
| ACPV, MayNeedFarStub) |
| : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc, |
| const_cast<GlobalValue *>(GV), ACPV, |
| MayNeedFarStub); |
| MCE.addRelocation(MR); |
| } |
| |
| /// emitExternalSymbolAddress - Arrange for the address of an external symbol to |
| /// be emitted to the current location in the function, and allow it to be PC |
| /// relative. |
| void ARMCodeEmitter:: |
| emitExternalSymbolAddress(const char *ES, unsigned Reloc) const { |
| MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(), |
| Reloc, ES)); |
| } |
| |
| /// emitConstPoolAddress - Arrange for the address of an constant pool |
| /// to be emitted to the current location in the function, and allow it to be PC |
| /// relative. |
| void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) const { |
| // Tell JIT emitter we'll resolve the address. |
| MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(), |
| Reloc, CPI, 0, true)); |
| } |
| |
| /// emitJumpTableAddress - Arrange for the address of a jump table to |
| /// be emitted to the current location in the function, and allow it to be PC |
| /// relative. |
| void ARMCodeEmitter:: |
| emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const { |
| MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(), |
| Reloc, JTIndex, 0, true)); |
| } |
| |
| /// emitMachineBasicBlock - Emit the specified address basic block. |
| void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB, |
| unsigned Reloc, |
| intptr_t JTBase) const { |
| MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(), |
| Reloc, BB, JTBase)); |
| } |
| |
| void ARMCodeEmitter::emitWordLE(unsigned Binary) { |
| DEBUG(errs() << " 0x"; |
| errs().write_hex(Binary) << "\n"); |
| MCE.emitWordLE(Binary); |
| } |
| |
| void ARMCodeEmitter::emitDWordLE(uint64_t Binary) { |
| DEBUG(errs() << " 0x"; |
| errs().write_hex(Binary) << "\n"); |
| MCE.emitDWordLE(Binary); |
| } |
| |
| void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) { |
| DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI); |
| |
| MCE.processDebugLoc(MI.getDebugLoc(), true); |
| |
| ++NumEmitted; // Keep track of the # of mi's emitted |
| switch (MI.getDesc().TSFlags & ARMII::FormMask) { |
| default: { |
| llvm_unreachable("Unhandled instruction encoding format!"); |
| } |
| case ARMII::MiscFrm: |
| if (MI.getOpcode() == ARM::LEApcrelJT) { |
| // Materialize jumptable address. |
| emitLEApcrelJTInstruction(MI); |
| break; |
| } |
| llvm_unreachable("Unhandled instruction encoding!"); |
| case ARMII::Pseudo: |
| emitPseudoInstruction(MI); |
| break; |
| case ARMII::DPFrm: |
| case ARMII::DPSoRegFrm: |
| emitDataProcessingInstruction(MI); |
| break; |
| case ARMII::LdFrm: |
| case ARMII::StFrm: |
| emitLoadStoreInstruction(MI); |
| break; |
| case ARMII::LdMiscFrm: |
| case ARMII::StMiscFrm: |
| emitMiscLoadStoreInstruction(MI); |
| break; |
| case ARMII::LdStMulFrm: |
| emitLoadStoreMultipleInstruction(MI); |
| break; |
| case ARMII::MulFrm: |
| emitMulFrmInstruction(MI); |
| break; |
| case ARMII::ExtFrm: |
| emitExtendInstruction(MI); |
| break; |
| case ARMII::ArithMiscFrm: |
| emitMiscArithInstruction(MI); |
| break; |
| case ARMII::SatFrm: |
| emitSaturateInstruction(MI); |
| break; |
| case ARMII::BrFrm: |
| emitBranchInstruction(MI); |
| break; |
| case ARMII::BrMiscFrm: |
| emitMiscBranchInstruction(MI); |
| break; |
| // VFP instructions. |
| case ARMII::VFPUnaryFrm: |
| case ARMII::VFPBinaryFrm: |
| emitVFPArithInstruction(MI); |
| break; |
| case ARMII::VFPConv1Frm: |
| case ARMII::VFPConv2Frm: |
| case ARMII::VFPConv3Frm: |
| case ARMII::VFPConv4Frm: |
| case ARMII::VFPConv5Frm: |
| emitVFPConversionInstruction(MI); |
| break; |
| case ARMII::VFPLdStFrm: |
| emitVFPLoadStoreInstruction(MI); |
| break; |
| case ARMII::VFPLdStMulFrm: |
| emitVFPLoadStoreMultipleInstruction(MI); |
| break; |
| |
| // NEON instructions. |
| case ARMII::NGetLnFrm: |
| case ARMII::NSetLnFrm: |
| emitNEONLaneInstruction(MI); |
| break; |
| case ARMII::NDupFrm: |
| emitNEONDupInstruction(MI); |
| break; |
| case ARMII::N1RegModImmFrm: |
| emitNEON1RegModImmInstruction(MI); |
| break; |
| case ARMII::N2RegFrm: |
| emitNEON2RegInstruction(MI); |
| break; |
| case ARMII::N3RegFrm: |
| emitNEON3RegInstruction(MI); |
| break; |
| } |
| MCE.processDebugLoc(MI.getDebugLoc(), false); |
| } |
| |
| void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) { |
| unsigned CPI = MI.getOperand(0).getImm(); // CP instruction index. |
| unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index. |
| const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex]; |
| |
| // Remember the CONSTPOOL_ENTRY address for later relocation. |
| JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue()); |
| |
| // Emit constpool island entry. In most cases, the actual values will be |
| // resolved and relocated after code emission. |
| if (MCPE.isMachineConstantPoolEntry()) { |
| ARMConstantPoolValue *ACPV = |
| static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal); |
| |
| DEBUG(errs() << " ** ARM constant pool #" << CPI << " @ " |
| << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n'); |
| |
| assert(ACPV->isGlobalValue() && "unsupported constant pool value"); |
| const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV(); |
| if (GV) { |
| Reloc::Model RelocM = TM.getRelocationModel(); |
| emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry, |
| isa<Function>(GV), |
| Subtarget->GVIsIndirectSymbol(GV, RelocM), |
| (intptr_t)ACPV); |
| } else { |
| const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(); |
| emitExternalSymbolAddress(Sym, ARM::reloc_arm_absolute); |
| } |
| emitWordLE(0); |
| } else { |
| const Constant *CV = MCPE.Val.ConstVal; |
| |
| DEBUG({ |
| errs() << " ** Constant pool #" << CPI << " @ " |
| << (void*)MCE.getCurrentPCValue() << " "; |
| if (const Function *F = dyn_cast<Function>(CV)) |
| errs() << F->getName(); |
| else |
| errs() << *CV; |
| errs() << '\n'; |
| }); |
| |
| if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) { |
| emitGlobalAddress(GV, ARM::reloc_arm_absolute, isa<Function>(GV), false); |
| emitWordLE(0); |
| } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { |
| uint32_t Val = uint32_t(*CI->getValue().getRawData()); |
| emitWordLE(Val); |
| } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { |
| if (CFP->getType()->isFloatTy()) |
| emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); |
| else if (CFP->getType()->isDoubleTy()) |
| emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); |
| else { |
| llvm_unreachable("Unable to handle this constantpool entry!"); |
| } |
| } else { |
| llvm_unreachable("Unable to handle this constantpool entry!"); |
| } |
| } |
| } |
| |
| void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr &MI) { |
| const MachineOperand &MO0 = MI.getOperand(0); |
| const MachineOperand &MO1 = MI.getOperand(1); |
| |
| // Emit the 'movw' instruction. |
| unsigned Binary = 0x30 << 20; // mov: Insts{27-20} = 0b00110000 |
| |
| unsigned Lo16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movw) & 0xFFFF; |
| |
| // Set the conditional execution predicate. |
| Binary |= II->getPredicate(&MI) << ARMII::CondShift; |
| |
| // Encode Rd. |
| Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift; |
| |
| // Encode imm16 as imm4:imm12 |
| Binary |= Lo16 & 0xFFF; // Insts{11-0} = imm12 |
| Binary |= ((Lo16 >> 12) & 0xF) << 16; // Insts{19-16} = imm4 |
| emitWordLE(Binary); |
| |
| unsigned Hi16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movt) >> 16; |
| // Emit the 'movt' instruction. |
| Binary = 0x34 << 20; // movt: Insts{27-20} = 0b00110100 |
| |
| // Set the conditional execution predicate. |
| Binary |= II->getPredicate(&MI) << ARMII::CondShift; |
| |
| // Encode Rd. |
| Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift; |
| |
| // Encode imm16 as imm4:imm1, same as movw above. |
| Binary |= Hi16 & 0xFFF; |
| Binary |= ((Hi16 >> 12) & 0xF) << 16; |
| emitWordLE(Binary); |
| } |
| |
| void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) { |
| const MachineOperand &MO0 = MI.getOperand(0); |
| const MachineOperand &MO1 = MI.getOperand(1); |
| assert(MO1.isImm() && ARM_AM::isSOImmTwoPartVal(MO1.getImm()) && |
| "Not a valid so_imm value!"); |
| unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm()); |
| unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm()); |
| |
| // Emit the 'mov' instruction. |
| unsigned Binary = 0xd << 21; // mov: Insts{24-21} = 0b1101 |
| |
| // Set the conditional execution predicate. |
| Binary |= II->getPredicate(&MI) << ARMII::CondShift; |
| |
| // Encode Rd. |
| Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift; |
| |
| // Encode so_imm. |
| // Set bit I(25) to identify this is the immediate form of <shifter_op> |
| Binary |= 1 << ARMII::I_BitShift; |
| Binary |= getMachineSoImmOpValue(V1); |
| emitWordLE(Binary); |
| |
| // Now the 'orr' instruction. |
| Binary = 0xc << 21; // orr: Insts{24-21} = 0b1100 |
| |
| // Set the conditional execution predicate. |
| Binary |= II->getPredicate(&MI) << ARMII::CondShift; |
| |
| // Encode Rd. |
| Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift; |
| |
| // Encode Rn. |
| Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift; |
| |
| // Encode so_imm. |
| // Set bit I(25) to identify this is the immediate form of <shifter_op> |
| Binary |= 1 << ARMII::I_BitShift; |
| Binary |= getMachineSoImmOpValue(V2); |
| emitWordLE(Binary); |
| } |
| |
| void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) { |
| // It's basically add r, pc, (LJTI - $+8) |
| |
| const MCInstrDesc &MCID = MI.getDesc(); |
| |
| // Emit the 'add' instruction. |
| unsigned Binary = 0x4 << 21; // add: Insts{24-21} = 0b0100 |
| |
| // Set the conditional execution predicate |
| Binary |= II->getPredicate(&MI) << ARMII::CondShift; |
| |
| // Encode S bit if MI modifies CPSR. |
| Binary |= getAddrModeSBit(MI, MCID); |
| |
| // Encode Rd. |
| Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift; |
| |
| // Encode Rn which is PC. |
| Binary |= II->getRegisterInfo().getEncodingValue(ARM::PC) << ARMII::RegRnShift; |
| |
| // Encode the displacement. |
| Binary |= 1 << ARMII::I_BitShift; |
| emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base); |
| |
| emitWordLE(Binary); |
| } |
| |
| void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr &MI) { |
| unsigned Opcode = MI.getDesc().Opcode; |
| |
| // Part of binary is determined by TableGn. |
| unsigned Binary = getBinaryCodeForInstr(MI); |
| |
| // Set the conditional execution predicate |
| Binary |= II->getPredicate(&MI) << ARMII::CondShift; |
| |
| // Encode S bit if MI modifies CPSR. |
| if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag) |
| Binary |= 1 << ARMII::S_BitShift; |
| |
| // Encode register def if there is one. |
| Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift; |
| |
| // Encode the shift operation. |
| switch (Opcode) { |
| default: break; |
| case ARM::RRX: |
| // rrx |
| Binary |= 0x6 << 4; |
| break; |
| case ARM::MOVsrl_flag: |
| // lsr #1 |
| Binary |= (0x2 << 4) | (1 << 7); |
| break; |
| case ARM::MOVsra_flag: |
| // asr #1 |
| Binary |= (0x4 << 4) | (1 << 7); |
| break; |
| } |
| |
| // Encode register Rm. |
| Binary |= getMachineOpValue(MI, 1); |
| |
| emitWordLE(Binary); |
| } |
| |
| void ARMCodeEmitter::addPCLabel(unsigned LabelID) { |
| DEBUG(errs() << " ** LPC" << LabelID << " @ " |
| << (void*)MCE.getCurrentPCValue() << '\n'); |
| JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue()); |
| } |
| |
| void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) { |
| unsigned Opcode = MI.getDesc().Opcode; |
| switch (Opcode) { |
| default: |
| llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction"); |
| case ARM::BX_CALL: |
| case ARM::BMOVPCRX_CALL: { |
| // First emit mov lr, pc |
| unsigned Binary = 0x01a0e00f; |
| Binary |= II->getPredicate(&MI) << ARMII::CondShift; |
| emitWordLE(Binary); |
| |
| // and then emit the branch. |
| emitMiscBranchInstruction(MI); |
| break; |
| } |
| case TargetOpcode::INLINEASM: { |
| // We allow inline assembler nodes with empty bodies - they can |
| // implicitly define registers, which is ok for JIT. |
| if (MI.getOperand(0).getSymbolName()[0]) { |
| report_fatal_error("JIT does not support inline asm!"); |
| } |
| break; |
| } |
| case TargetOpcode::PROLOG_LABEL: |
| case TargetOpcode::EH_LABEL: |
| MCE.emitLabel(MI.getOperand(0).getMCSymbol()); |
| break; |
| case TargetOpcode::IMPLICIT_DEF: |
| case TargetOpcode::KILL: |
| // Do nothing. |
| break; |
| case ARM::CONSTPOOL_ENTRY: |
| emitConstPoolInstruction(MI); |
| break; |
| case ARM::PICADD: { |
| // Remember of the address of the PC label for relocation later. |
| addPCLabel(MI.getOperand(2).getImm()); |
| // PICADD is just an add instruction that implicitly read pc. |
| emitDataProcessingInstruction(MI, 0, ARM::PC); |
| break; |
| } |
| case ARM::PICLDR: |
| case ARM::PICLDRB: |
| case ARM::PICSTR: |
| case ARM::PICSTRB: { |
| // Remember of the address of the PC label for relocation later. |
| addPCLabel(MI.getOperand(2).getImm()); |
| // These are just load / store instructions that implicitly read pc. |
| emitLoadStoreInstruction(MI, 0, ARM::PC); |
| break; |
| } |
| case ARM::PICLDRH: |
| case ARM::PICLDRSH: |
| case ARM::PICLDRSB: |
| case ARM::PICSTRH: { |
| // Remember of the address of the PC label for relocation later. |
| addPCLabel(MI.getOperand(2).getImm()); |
| // These are just load / store instructions that implicitly read pc. |
| emitMiscLoadStoreInstruction(MI, ARM::PC); |
| break; |
| } |
| |
| case ARM::MOVi32imm: |
| // Two instructions to materialize a constant. |
| if (Subtarget->hasV6T2Ops()) |
| emitMOVi32immInstruction(MI); |
| else |
| emitMOVi2piecesInstruction(MI); |
| break; |
| |
| case ARM::LEApcrelJT: |
| // Materialize jumptable address. |
| emitLEApcrelJTInstruction(MI); |
| break; |
| case ARM::RRX: |
| case ARM::MOVsrl_flag: |
| case ARM::MOVsra_flag: |
| emitPseudoMoveInstruction(MI); |
| break; |
| } |
| } |
| |
| unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI, |
| const MCInstrDesc &MCID, |
| const MachineOperand &MO, |
| unsigned OpIdx) { |
| unsigned Binary = getMachineOpValue(MI, MO); |
| |
| const MachineOperand &MO1 = MI.getOperand(OpIdx + 1); |
| const MachineOperand &MO2 = MI.getOperand(OpIdx + 2); |
| ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm()); |
| |
| // Encode the shift opcode. |
| unsigned SBits = 0; |
| unsigned Rs = MO1.getReg(); |
| if (Rs) { |
| // Set shift operand (bit[7:4]). |
| // LSL - 0001 |
| // LSR - 0011 |
| // ASR - 0101 |
| // ROR - 0111 |
| // RRX - 0110 and bit[11:8] clear. |
| switch (SOpc) { |
| default: llvm_unreachable("Unknown shift opc!"); |
| case ARM_AM::lsl: SBits = 0x1; break; |
| case ARM_AM::lsr: SBits = 0x3; break; |
| case ARM_AM::asr: SBits = 0x5; break; |
| case ARM_AM::ror: SBits = 0x7; break; |
| case ARM_AM::rrx: SBits = 0x6; break; |
| } |
| } else { |
| // Set shift operand (bit[6:4]). |
| // LSL - 000 |
| // LSR - 010 |
| // ASR - 100 |
| // ROR - 110 |
| switch (SOpc) { |
| default: llvm_unreachable("Unknown shift opc!"); |
| case ARM_AM::lsl: SBits = 0x0; break; |
| case ARM_AM::lsr: SBits = 0x2; break; |
| case ARM_AM::asr: SBits = 0x4; break; |
| case ARM_AM::ror: SBits = 0x6; break; |
| } |
| } |
| Binary |= SBits << 4; |
| if (SOpc == ARM_AM::rrx) |
| return Binary; |
| |
| // Encode the shift operation Rs or shift_imm (except rrx). |
| if (Rs) { |
| // Encode Rs bit[11:8]. |
| assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0); |
| return Binary | (II->getRegisterInfo().getEncodingValue(Rs) << ARMII::RegRsShift); |
| } |
| |
| // Encode shift_imm bit[11:7]. |
| return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7; |
| } |
| |
| unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) { |
| int SoImmVal = ARM_AM::getSOImmVal(SoImm); |
| assert(SoImmVal != -1 && "Not a valid so_imm value!"); |
| |
| // Encode rotate_imm. |
| unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1) |
| << ARMII::SoRotImmShift; |
| |
| // Encode immed_8. |
| Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal); |
| return Binary; |
| } |
| |
| unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI, |
| const MCInstrDesc &MCID) const { |
| for (unsigned i = MI.getNumOperands(), e = MCID.getNumOperands(); i >= e;--i){ |
| const MachineOperand &MO = MI.getOperand(i-1); |
| if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) |
| return 1 << ARMII::S_BitShift; |
| } |
| return 0; |
| } |
| |
| void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI, |
| unsigned ImplicitRd, |
| unsigned ImplicitRn) { |
| const MCInstrDesc &MCID = MI.getDesc(); |
| |
| // Part of binary is determined by TableGn. |
| unsigned Binary = getBinaryCodeForInstr(MI); |
| |
| // Set the conditional execution predicate |
| Binary |= II->getPredicate(&MI) << ARMII::CondShift; |
| |
| // Encode S bit if MI modifies CPSR. |
| Binary |= getAddrModeSBit(MI, MCID); |
| |
| // Encode register def if there is one. |
| unsigned NumDefs = MCID.getNumDefs(); |
| unsigned OpIdx = 0; |
| if (NumDefs) |
| Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift; |
| else if (ImplicitRd) |
| // Special handling for implicit use (e.g. PC). |
| Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRd) << ARMII::RegRdShift); |
| |
| if (MCID.Opcode == ARM::MOVi16) { |
| // Get immediate from MI. |
| unsigned Lo16 = getMovi32Value(MI, MI.getOperand(OpIdx), |
| ARM::reloc_arm_movw); |
| // Encode imm which is the same as in emitMOVi32immInstruction(). |
| Binary |= Lo16 & 0xFFF; |
| Binary |= ((Lo16 >> 12) & 0xF) << 16; |
| emitWordLE(Binary); |
| return; |
| } else if(MCID.Opcode == ARM::MOVTi16) { |
| unsigned Hi16 = (getMovi32Value(MI, MI.getOperand(OpIdx), |
| ARM::reloc_arm_movt) >> 16); |
| Binary |= Hi16 & 0xFFF; |
| Binary |= ((Hi16 >> 12) & 0xF) << 16; |
| emitWordLE(Binary); |
| return; |
| } else if ((MCID.Opcode == ARM::BFC) || (MCID.Opcode == ARM::BFI)) { |
| uint32_t v = ~MI.getOperand(2).getImm(); |
| int32_t lsb = CountTrailingZeros_32(v); |
| int32_t msb = (32 - CountLeadingZeros_32(v)) - 1; |
| // Instr{20-16} = msb, Instr{11-7} = lsb |
| Binary |= (msb & 0x1F) << 16; |
| Binary |= (lsb & 0x1F) << 7; |
| emitWordLE(Binary); |
| return; |
| } else if ((MCID.Opcode == ARM::UBFX) || (MCID.Opcode == ARM::SBFX)) { |
| // Encode Rn in Instr{0-3} |
| Binary |= getMachineOpValue(MI, OpIdx++); |
| |
| uint32_t lsb = MI.getOperand(OpIdx++).getImm(); |
| uint32_t widthm1 = MI.getOperand(OpIdx++).getImm() - 1; |
| |
| // Instr{20-16} = widthm1, Instr{11-7} = lsb |
| Binary |= (widthm1 & 0x1F) << 16; |
| Binary |= (lsb & 0x1F) << 7; |
| emitWordLE(Binary); |
| return; |
| } |
| |
| // If this is a two-address operand, skip it. e.g. MOVCCr operand 1. |
| if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1) |
| ++OpIdx; |
| |
| // Encode first non-shifter register operand if there is one. |
| bool isUnary = MCID.TSFlags & ARMII::UnaryDP; |
| if (!isUnary) { |
| if (ImplicitRn) |
| // Special handling for implicit use (e.g. PC). |
| Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift); |
| else { |
| Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift; |
| ++OpIdx; |
| } |
| } |
| |
| // Encode shifter operand. |
| const MachineOperand &MO = MI.getOperand(OpIdx); |
| if ((MCID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) { |
| // Encode SoReg. |
| emitWordLE(Binary | getMachineSoRegOpValue(MI, MCID, MO, OpIdx)); |
| return; |
| } |
| |
| if (MO.isReg()) { |
| // Encode register Rm. |
| emitWordLE(Binary | II->getRegisterInfo().getEncodingValue(MO.getReg())); |
| return; |
| } |
| |
| // Encode so_imm. |
| Binary |= getMachineSoImmOpValue((unsigned)MO.getImm()); |
| |
| emitWordLE(Binary); |
| } |
| |
| void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI, |
| unsigned ImplicitRd, |
| unsigned ImplicitRn) { |
| const MCInstrDesc &MCID = MI.getDesc(); |
| unsigned Form = MCID.TSFlags & ARMII::FormMask; |
| bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0; |
| |
| // Part of binary is determined by TableGn. |
| unsigned Binary = getBinaryCodeForInstr(MI); |
| |
| // If this is an LDRi12, STRi12 or LDRcp, nothing more needs be done. |
| if (MI.getOpcode() == ARM::LDRi12 || MI.getOpcode() == ARM::LDRcp || |
| MI.getOpcode() == ARM::STRi12) { |
| emitWordLE(Binary); |
| return; |
| } |
| |
| // Set the conditional execution predicate |
| Binary |= II->getPredicate(&MI) << ARMII::CondShift; |
| |
| unsigned OpIdx = 0; |
| |
| // Operand 0 of a pre- and post-indexed store is the address base |
| // writeback. Skip it. |
| bool Skipped = false; |
| if (IsPrePost && Form == ARMII::StFrm) { |
| ++OpIdx; |
| Skipped = true; |
| } |
| |
| // Set first operand |
| if (ImplicitRd) |
| // Special handling for implicit use (e.g. PC). |
| Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRd) << ARMII::RegRdShift); |
| else |
| Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift; |
| |
| // Set second operand |
| if (ImplicitRn) |
| // Special handling for implicit use (e.g. PC). |
| Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift); |
| else |
| Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift; |
| |
| // If this is a two-address operand, skip it. e.g. LDR_PRE. |
| if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1) |
| ++OpIdx; |
| |
| const MachineOperand &MO2 = MI.getOperand(OpIdx); |
| unsigned AM2Opc = (ImplicitRn == ARM::PC) |
| ? 0 : MI.getOperand(OpIdx+1).getImm(); |
| |
| // Set bit U(23) according to sign of immed value (positive or negative). |
| Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) << |
| ARMII::U_BitShift); |
| if (!MO2.getReg()) { // is immediate |
| if (ARM_AM::getAM2Offset(AM2Opc)) |
| // Set the value of offset_12 field |
| Binary |= ARM_AM::getAM2Offset(AM2Opc); |
| emitWordLE(Binary); |
| return; |
| } |
| |
| // Set bit I(25), because this is not in immediate encoding. |
| Binary |= 1 << ARMII::I_BitShift; |
| assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg())); |
| // Set bit[3:0] to the corresponding Rm register |
| Binary |= II->getRegisterInfo().getEncodingValue(MO2.getReg()); |
| |
| // If this instr is in scaled register offset/index instruction, set |
| // shift_immed(bit[11:7]) and shift(bit[6:5]) fields. |
| if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) { |
| Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift; // shift |
| Binary |= ShImm << ARMII::ShiftShift; // shift_immed |
| } |
| |
| emitWordLE(Binary); |
| } |
| |
| void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI, |
| unsigned ImplicitRn) { |
| const MCInstrDesc &MCID = MI.getDesc(); |
| unsigned Form = MCID.TSFlags & ARMII::FormMask; |
| bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0; |
| |
| // Part of binary is determined by TableGn. |
| unsigned Binary = getBinaryCodeForInstr(MI); |
| |
| // Set the conditional execution predicate |
| Binary |= II->getPredicate(&MI) << ARMII::CondShift; |
| |
| unsigned OpIdx = 0; |
| |
| // Operand 0 of a pre- and post-indexed store is the address base |
| // writeback. Skip it. |
| bool Skipped = false; |
| if (IsPrePost && Form == ARMII::StMiscFrm) { |
| ++OpIdx; |
| Skipped = true; |
| } |
| |
| // Set first operand |
| Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift; |
| |
| // Skip LDRD and STRD's second operand. |
| if (MCID.Opcode == ARM::LDRD || MCID.Opcode == ARM::STRD) |
| ++OpIdx; |
| |
| // Set second operand |
| if (ImplicitRn) |
| // Special handling for implicit use (e.g. PC). |
| Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift); |
| else |
| Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift; |
| |
| // If this is a two-address operand, skip it. e.g. LDRH_POST. |
| if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1) |
| ++OpIdx; |
| |
| const MachineOperand &MO2 = MI.getOperand(OpIdx); |
| unsigned AM3Opc = (ImplicitRn == ARM::PC) |
| ? 0 : MI.getOperand(OpIdx+1).getImm(); |
| |
| // Set bit U(23) according to sign of immed value (positive or negative) |
| Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) << |
| ARMII::U_BitShift); |
| |
| // If this instr is in register offset/index encoding, set bit[3:0] |
| // to the corresponding Rm register. |
| if (MO2.getReg()) { |
| Binary |= II->getRegisterInfo().getEncodingValue(MO2.getReg()); |
| emitWordLE(Binary); |
| return; |
| } |
| |
| // This instr is in immediate offset/index encoding, set bit 22 to 1. |
| Binary |= 1 << ARMII::AM3_I_BitShift; |
| if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) { |
| // Set operands |
| Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift; // immedH |
| Binary |= (ImmOffs & 0xF); // immedL |
| } |
| |
| emitWordLE(Binary); |
| } |
| |
| static unsigned getAddrModeUPBits(unsigned Mode) { |
| unsigned Binary = 0; |
| |
| // Set addressing mode by modifying bits U(23) and P(24) |
| // IA - Increment after - bit U = 1 and bit P = 0 |
| // IB - Increment before - bit U = 1 and bit P = 1 |
| // DA - Decrement after - bit U = 0 and bit P = 0 |
| // DB - Decrement before - bit U = 0 and bit P = 1 |
| switch (Mode) { |
| default: llvm_unreachable("Unknown addressing sub-mode!"); |
| case ARM_AM::da: break; |
| case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break; |
| case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break; |
| case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break; |
| } |
| |
| return Binary; |
| } |
| |
| void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) { |
| const MCInstrDesc &MCID = MI.getDesc(); |
| bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0; |
| |
| // Part of binary is determined by TableGn. |
| unsigned Binary = getBinaryCodeForInstr(MI); |
| |
| // Set the conditional execution predicate |
| Binary |= II->getPredicate(&MI) << ARMII::CondShift; |
| |
| // Skip operand 0 of an instruction with base register update. |
| unsigned OpIdx = 0; |
| if (IsUpdating) |
| ++OpIdx; |
| |
| // Set base address operand |
| Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift; |
| |
| // Set addressing mode by modifying bits U(23) and P(24) |
| ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode()); |
| Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode)); |
| |
| // Set bit W(21) |
| if (IsUpdating) |
| Binary |= 0x1 << ARMII::W_BitShift; |
| |
| // Set registers |
| for (unsigned i = OpIdx+2, e = MI.getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = MI.getOperand(i); |
| if (!MO.isReg() || MO.isImplicit()) |
| break; |
| unsigned RegNum = II->getRegisterInfo().getEncodingValue(MO.getReg()); |
| assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) && |
| RegNum < 16); |
| Binary |= 0x1 << RegNum; |
| } |
| |
| emitWordLE(Binary); |
| } |
| |
| void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) { |
| const MCInstrDesc &MCID = MI.getDesc(); |
| |
| // Part of binary is determined by TableGn. |
| unsigned Binary = getBinaryCodeForInstr(MI); |
| |
| // Set the conditional execution predicate |
| Binary |= II->getPredicate(&MI) << ARMII::CondShift; |
| |
| // Encode S bit if MI modifies CPSR. |
| Binary |= getAddrModeSBit(MI, MCID); |
| |
| // 32x32->64bit operations have two destination registers. The number |
| // of register definitions will tell us if that's what we're dealing with. |
| unsigned OpIdx = 0; |
| if (MCID.getNumDefs() == 2) |
| Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift; |
| |
| // Encode Rd |
| Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift; |
| |
| // Encode Rm |
| Binary |= getMachineOpValue(MI, OpIdx++); |
| |
| // Encode Rs |
| Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift; |
| |
| // Many multiple instructions (e.g. MLA) have three src operands. Encode |
| // it as Rn (for multiply, that's in the same offset as RdLo. |
| if (MCID.getNumOperands() > OpIdx && |
| !MCID.OpInfo[OpIdx].isPredicate() && |
| !MCID.OpInfo[OpIdx].isOptionalDef()) |
| Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift; |
| |
| emitWordLE(Binary); |
| } |
| |
| void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) { |
| const MCInstrDesc &MCID = MI.getDesc(); |
| |
| // Part of binary is determined by TableGn. |
| unsigned Binary = getBinaryCodeForInstr(MI); |
| |
| // Set the conditional execution predicate |
| Binary |= II->getPredicate(&MI) << ARMII::CondShift; |
| |
| unsigned OpIdx = 0; |
| |
| // Encode Rd |
| Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift; |
| |
| const MachineOperand &MO1 = MI.getOperand(OpIdx++); |
| const MachineOperand &MO2 = MI.getOperand(OpIdx); |
| if (MO2.isReg()) { |
| // Two register operand form. |
| // Encode Rn. |
| Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift; |
| |
| // Encode Rm. |
| Binary |= getMachineOpValue(MI, MO2); |
| ++OpIdx; |
| } else { |
| Binary |= getMachineOpValue(MI, MO1); |
| } |
| |
| // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand. |
| if (MI.getOperand(OpIdx).isImm() && |
| !MCID.OpInfo[OpIdx].isPredicate() && |
| !MCID.OpInfo[OpIdx].isOptionalDef()) |
| Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift; |
| |
| emitWordLE(Binary); |
| } |
| |
| void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) { |
| const MCInstrDesc &MCID = MI.getDesc(); |
| |
| // Part of binary is determined by TableGn. |
| unsigned Binary = getBinaryCodeForInstr(MI); |
| |
| // Set the conditional execution predicate |
| Binary |= II->getPredicate(&MI) << ARMII::CondShift; |
| |
| // PKH instructions are finished at this point |
| if (MCID.Opcode == ARM::PKHBT || MCID.Opcode == ARM::PKHTB) { |
| emitWordLE(Binary); |
| return; |
| } |
| |
| unsigned OpIdx = 0; |
| |
| // Encode Rd |
| Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift; |
| |
| const MachineOperand &MO = MI.getOperand(OpIdx++); |
| if (OpIdx == MCID.getNumOperands() || |
| MCID.OpInfo[OpIdx].isPredicate() || |
| MCID.OpInfo[OpIdx].isOptionalDef()) { |
| // Encode Rm and it's done. |
| Binary |= getMachineOpValue(MI, MO); |
| emitWordLE(Binary); |
| return; |
| } |
| |
| // Encode Rn. |
| Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift; |
| |
| // Encode Rm. |
| Binary |= getMachineOpValue(MI, OpIdx++); |
| |
| // Encode shift_imm. |
| unsigned ShiftAmt = MI.getOperand(OpIdx).getImm(); |
| if (MCID.Opcode == ARM::PKHTB) { |
| assert(ShiftAmt != 0 && "PKHTB shift_imm is 0!"); |
| if (ShiftAmt == 32) |
| ShiftAmt = 0; |
| } |
| assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!"); |
| Binary |= ShiftAmt << ARMII::ShiftShift; |
| |
| emitWordLE(Binary); |
| } |
| |
| void ARMCodeEmitter::emitSaturateInstruction(const MachineInstr &MI) { |
| const MCInstrDesc &MCID = MI.getDesc(); |
| |
| // Part of binary is determined by TableGen. |
| unsigned Binary = getBinaryCodeForInstr(MI); |
| |
| // Set the conditional execution predicate |
| Binary |= II->getPredicate(&MI) << ARMII::CondShift; |
| |
| // Encode Rd |
| Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift; |
| |
| // Encode saturate bit position. |
| unsigned Pos = MI.getOperand(1).getImm(); |
| if (MCID.Opcode == ARM::SSAT || MCID.Opcode == ARM::SSAT16) |
| Pos -= 1; |
| assert((Pos < 16 || (Pos < 32 && |
| MCID.Opcode != ARM::SSAT16 && |
| MCID.Opcode != ARM::USAT16)) && |
| "saturate bit position out of range"); |
| Binary |= Pos << 16; |
| |
| // Encode Rm |
| Binary |= getMachineOpValue(MI, 2); |
| |
| // Encode shift_imm. |
| if (MCID.getNumOperands() == 4) { |
| unsigned ShiftOp = MI.getOperand(3).getImm(); |
| ARM_AM::ShiftOpc Opc = ARM_AM::getSORegShOp(ShiftOp); |
| if (Opc == ARM_AM::asr) |
| Binary |= (1 << 6); |
| unsigned ShiftAmt = MI.getOperand(3).getImm(); |
| if (ShiftAmt == 32 && Opc == ARM_AM::asr) |
| ShiftAmt = 0; |
| assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!"); |
| Binary |= ShiftAmt << ARMII::ShiftShift; |
| } |
| |
| emitWordLE(Binary); |
| } |
| |
| void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) { |
| const MCInstrDesc &MCID = MI.getDesc(); |
| |
| if (MCID.Opcode == ARM::TPsoft) { |
| llvm_unreachable("ARM::TPsoft FIXME"); // FIXME |
| } |
| |
| // Part of binary is determined by TableGn. |
| unsigned Binary = getBinaryCodeForInstr(MI); |
| |
| // Set the conditional execution predicate |
| Binary |= II->getPredicate(&MI) << ARMII::CondShift; |
| |
| // Set signed_immed_24 field |
| Binary |= getMachineOpValue(MI, 0); |
| |
| emitWordLE(Binary); |
| } |
| |
| void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) { |
| // Remember the base address of the inline jump table. |
| uintptr_t JTBase = MCE.getCurrentPCValue(); |
| JTI->addJumpTableBaseAddr(JTIndex, JTBase); |
| DEBUG(errs() << " ** Jump Table #" << JTIndex << " @ " << (void*)JTBase |
| << '\n'); |
| |
| // Now emit the jump table entries. |
| const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs; |
| for (unsigned i = 0, e = MBBs.size(); i != e; ++i) { |
| if (IsPIC) |
| // DestBB address - JT base. |
| emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase); |
| else |
| // Absolute DestBB address. |
| emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute); |
| emitWordLE(0); |
| } |
| } |
| |
| void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) { |
| const MCInstrDesc &MCID = MI.getDesc(); |
| |
| // Handle jump tables. |
| if (MCID.Opcode == ARM::BR_JTr || MCID.Opcode == ARM::BR_JTadd) { |
| // First emit a ldr pc, [] instruction. |
| emitDataProcessingInstruction(MI, ARM::PC); |
| |
| // Then emit the inline jump table. |
| unsigned JTIndex = |
| (MCID.Opcode == ARM::BR_JTr) |
| ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex(); |
| emitInlineJumpTable(JTIndex); |
| return; |
| } else if (MCID.Opcode == ARM::BR_JTm) { |
| // First emit a ldr pc, [] instruction. |
| emitLoadStoreInstruction(MI, ARM::PC); |
| |
| // Then emit the inline jump table. |
| emitInlineJumpTable(MI.getOperand(3).getIndex()); |
| return; |
| } |
| |
| // Part of binary is determined by TableGn. |
| unsigned Binary = getBinaryCodeForInstr(MI); |
| |
| // Set the conditional execution predicate |
| Binary |= II->getPredicate(&MI) << ARMII::CondShift; |
| |
| if (MCID.Opcode == ARM::BX_RET || MCID.Opcode == ARM::MOVPCLR) |
| // The return register is LR. |
| Binary |= II->getRegisterInfo().getEncodingValue(ARM::LR); |
| else |
| // otherwise, set the return register |
| Binary |= getMachineOpValue(MI, 0); |
| |
| emitWordLE(Binary); |
| } |
| |
| unsigned ARMCodeEmitter::encodeVFPRd(const MachineInstr &MI, |
| unsigned OpIdx) const { |
| unsigned RegD = MI.getOperand(OpIdx).getReg(); |
| unsigned Binary = 0; |
| bool isSPVFP = ARM::SPRRegClass.contains(RegD); |
| RegD = II->getRegisterInfo().getEncodingValue(RegD); |
| if (!isSPVFP) |
| Binary |= RegD << ARMII::RegRdShift; |
| else { |
| Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift; |
| Binary |= (RegD & 0x01) << ARMII::D_BitShift; |
| } |
| return Binary; |
| } |
| |
| unsigned ARMCodeEmitter::encodeVFPRn(const MachineInstr &MI, |
| unsigned OpIdx) const { |
| unsigned RegN = MI.getOperand(OpIdx).getReg(); |
| unsigned Binary = 0; |
| bool isSPVFP = ARM::SPRRegClass.contains(RegN); |
| RegN = II->getRegisterInfo().getEncodingValue(RegN); |
| if (!isSPVFP) |
| Binary |= RegN << ARMII::RegRnShift; |
| else { |
| Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift; |
| Binary |= (RegN & 0x01) << ARMII::N_BitShift; |
| } |
| return Binary; |
| } |
| |
| unsigned ARMCodeEmitter::encodeVFPRm(const MachineInstr &MI, |
| unsigned OpIdx) const { |
| unsigned RegM = MI.getOperand(OpIdx).getReg(); |
| unsigned Binary = 0; |
| bool isSPVFP = ARM::SPRRegClass.contains(RegM); |
| RegM = II->getRegisterInfo().getEncodingValue(RegM); |
| if (!isSPVFP) |
| Binary |= RegM; |
| else { |
| Binary |= ((RegM & 0x1E) >> 1); |
| Binary |= (RegM & 0x01) << ARMII::M_BitShift; |
| } |
| return Binary; |
| } |
| |
| void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) { |
| const MCInstrDesc &MCID = MI.getDesc(); |
| |
| // Part of binary is determined by TableGn. |
| unsigned Binary = getBinaryCodeForInstr(MI); |
| |
| // Set the conditional execution predicate |
| Binary |= II->getPredicate(&MI) << ARMII::CondShift; |
| |
| unsigned OpIdx = 0; |
| assert((Binary & ARMII::D_BitShift) == 0 && |
| (Binary & ARMII::N_BitShift) == 0 && |
| (Binary & ARMII::M_BitShift) == 0 && "VFP encoding bug!"); |
| |
| // Encode Dd / Sd. |
| Binary |= encodeVFPRd(MI, OpIdx++); |
| |
| // If this is a two-address operand, skip it, e.g. FMACD. |
| if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1) |
| ++OpIdx; |
| |
| // Encode Dn / Sn. |
| if ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm) |
| Binary |= encodeVFPRn(MI, OpIdx++); |
| |
| if (OpIdx == MCID.getNumOperands() || |
| MCID.OpInfo[OpIdx].isPredicate() || |
| MCID.OpInfo[OpIdx].isOptionalDef()) { |
| // FCMPEZD etc. has only one operand. |
| emitWordLE(Binary); |
| return; |
| } |
| |
| // Encode Dm / Sm. |
| Binary |= encodeVFPRm(MI, OpIdx); |
| |
| emitWordLE(Binary); |
| } |
| |
| void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) { |
| const MCInstrDesc &MCID = MI.getDesc(); |
| unsigned Form = MCID.TSFlags & ARMII::FormMask; |
| |
| // Part of binary is determined by TableGn. |
| unsigned Binary = getBinaryCodeForInstr(MI); |
| |
| // Set the conditional execution predicate |
| Binary |= II->getPredicate(&MI) << ARMII::CondShift; |
| |
| switch (Form) { |
| default: break; |
| case ARMII::VFPConv1Frm: |
| case ARMII::VFPConv2Frm: |
| case ARMII::VFPConv3Frm: |
| // Encode Dd / Sd. |
| Binary |= encodeVFPRd(MI, 0); |
| break; |
| case ARMII::VFPConv4Frm: |
| // Encode Dn / Sn. |
| Binary |= encodeVFPRn(MI, 0); |
| break; |
| case ARMII::VFPConv5Frm: |
| // Encode Dm / Sm. |
| Binary |= encodeVFPRm(MI, 0); |
| break; |
| } |
| |
| switch (Form) { |
| default: break; |
| case ARMII::VFPConv1Frm: |
| // Encode Dm / Sm. |
| Binary |= encodeVFPRm(MI, 1); |
| break; |
| case ARMII::VFPConv2Frm: |
| case ARMII::VFPConv3Frm: |
| // Encode Dn / Sn. |
| Binary |= encodeVFPRn(MI, 1); |
| break; |
| case ARMII::VFPConv4Frm: |
| case ARMII::VFPConv5Frm: |
| // Encode Dd / Sd. |
| Binary |= encodeVFPRd(MI, 1); |
| break; |
| } |
| |
| if (Form == ARMII::VFPConv5Frm) |
| // Encode Dn / Sn. |
| Binary |= encodeVFPRn(MI, 2); |
| else if (Form == ARMII::VFPConv3Frm) |
| // Encode Dm / Sm. |
| Binary |= encodeVFPRm(MI, 2); |
| |
| emitWordLE(Binary); |
| } |
| |
| void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) { |
| // Part of binary is determined by TableGn. |
| unsigned Binary = getBinaryCodeForInstr(MI); |
| |
| // Set the conditional execution predicate |
| Binary |= II->getPredicate(&MI) << ARMII::CondShift; |
| |
| unsigned OpIdx = 0; |
| |
| // Encode Dd / Sd. |
| Binary |= encodeVFPRd(MI, OpIdx++); |
| |
| // Encode address base. |
| const MachineOperand &Base = MI.getOperand(OpIdx++); |
| Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift; |
| |
| // If there is a non-zero immediate offset, encode it. |
| if (Base.isReg()) { |
| const MachineOperand &Offset = MI.getOperand(OpIdx); |
| if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) { |
| if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add) |
| Binary |= 1 << ARMII::U_BitShift; |
| Binary |= ImmOffs; |
| emitWordLE(Binary); |
| return; |
| } |
| } |
| |
| // If immediate offset is omitted, default to +0. |
| Binary |= 1 << ARMII::U_BitShift; |
| |
| emitWordLE(Binary); |
| } |
| |
| void |
| ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) { |
| const MCInstrDesc &MCID = MI.getDesc(); |
| bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0; |
| |
| // Part of binary is determined by TableGn. |
| unsigned Binary = getBinaryCodeForInstr(MI); |
| |
| // Set the conditional execution predicate |
| Binary |= II->getPredicate(&MI) << ARMII::CondShift; |
| |
| // Skip operand 0 of an instruction with base register update. |
| unsigned OpIdx = 0; |
| if (IsUpdating) |
| ++OpIdx; |
| |
| // Set base address operand |
| Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift; |
| |
| // Set addressing mode by modifying bits U(23) and P(24) |
| ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode()); |
| Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode)); |
| |
| // Set bit W(21) |
| if (IsUpdating) |
| Binary |= 0x1 << ARMII::W_BitShift; |
| |
| // First register is encoded in Dd. |
| Binary |= encodeVFPRd(MI, OpIdx+2); |
| |
| // Count the number of registers. |
| unsigned NumRegs = 1; |
| for (unsigned i = OpIdx+3, e = MI.getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = MI.getOperand(i); |
| if (!MO.isReg() || MO.isImplicit()) |
| break; |
| ++NumRegs; |
| } |
| // Bit 8 will be set if <list> is consecutive 64-bit registers (e.g., D0) |
| // Otherwise, it will be 0, in the case of 32-bit registers. |
| if(Binary & 0x100) |
| Binary |= NumRegs * 2; |
| else |
| Binary |= NumRegs; |
| |
| emitWordLE(Binary); |
| } |
| |
| unsigned ARMCodeEmitter::encodeNEONRd(const MachineInstr &MI, |
| unsigned OpIdx) const { |
| unsigned RegD = MI.getOperand(OpIdx).getReg(); |
| unsigned Binary = 0; |
| RegD = II->getRegisterInfo().getEncodingValue(RegD); |
| Binary |= (RegD & 0xf) << ARMII::RegRdShift; |
| Binary |= ((RegD >> 4) & 1) << ARMII::D_BitShift; |
| return Binary; |
| } |
| |
| unsigned ARMCodeEmitter::encodeNEONRn(const MachineInstr &MI, |
| unsigned OpIdx) const { |
| unsigned RegN = MI.getOperand(OpIdx).getReg(); |
| unsigned Binary = 0; |
| RegN = II->getRegisterInfo().getEncodingValue(RegN); |
| Binary |= (RegN & 0xf) << ARMII::RegRnShift; |
| Binary |= ((RegN >> 4) & 1) << ARMII::N_BitShift; |
| return Binary; |
| } |
| |
| unsigned ARMCodeEmitter::encodeNEONRm(const MachineInstr &MI, |
| unsigned OpIdx) const { |
| unsigned RegM = MI.getOperand(OpIdx).getReg(); |
| unsigned Binary = 0; |
| RegM = II->getRegisterInfo().getEncodingValue(RegM); |
| Binary |= (RegM & 0xf); |
| Binary |= ((RegM >> 4) & 1) << ARMII::M_BitShift; |
| return Binary; |
| } |
| |
| /// convertNEONDataProcToThumb - Convert the ARM mode encoding for a NEON |
| /// data-processing instruction to the corresponding Thumb encoding. |
| static unsigned convertNEONDataProcToThumb(unsigned Binary) { |
| assert((Binary & 0xfe000000) == 0xf2000000 && |
| "not an ARM NEON data-processing instruction"); |
| unsigned UBit = (Binary >> 24) & 1; |
| return 0xef000000 | (UBit << 28) | (Binary & 0xffffff); |
| } |
| |
| void ARMCodeEmitter::emitNEONLaneInstruction(const MachineInstr &MI) { |
| unsigned Binary = getBinaryCodeForInstr(MI); |
| |
| unsigned RegTOpIdx, RegNOpIdx, LnOpIdx; |
| const MCInstrDesc &MCID = MI.getDesc(); |
| if ((MCID.TSFlags & ARMII::FormMask) == ARMII::NGetLnFrm) { |
| RegTOpIdx = 0; |
| RegNOpIdx = 1; |
| LnOpIdx = 2; |
| } else { // ARMII::NSetLnFrm |
| RegTOpIdx = 2; |
| RegNOpIdx = 0; |
| LnOpIdx = 3; |
| } |
| |
| // Set the conditional execution predicate |
| Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift; |
| |
| unsigned RegT = MI.getOperand(RegTOpIdx).getReg(); |
| RegT = II->getRegisterInfo().getEncodingValue(RegT); |
| Binary |= (RegT << ARMII::RegRdShift); |
| Binary |= encodeNEONRn(MI, RegNOpIdx); |
| |
| unsigned LaneShift; |
| if ((Binary & (1 << 22)) != 0) |
| LaneShift = 0; // 8-bit elements |
| else if ((Binary & (1 << 5)) != 0) |
| LaneShift = 1; // 16-bit elements |
| else |
| LaneShift = 2; // 32-bit elements |
| |
| unsigned Lane = MI.getOperand(LnOpIdx).getImm() << LaneShift; |
| unsigned Opc1 = Lane >> 2; |
| unsigned Opc2 = Lane & 3; |
| assert((Opc1 & 3) == 0 && "out-of-range lane number operand"); |
| Binary |= (Opc1 << 21); |
| Binary |= (Opc2 << 5); |
| |
| emitWordLE(Binary); |
| } |
| |
| void ARMCodeEmitter::emitNEONDupInstruction(const MachineInstr &MI) { |
| unsigned Binary = getBinaryCodeForInstr(MI); |
| |
| // Set the conditional execution predicate |
| Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift; |
| |
| unsigned RegT = MI.getOperand(1).getReg(); |
| RegT = II->getRegisterInfo().getEncodingValue(RegT); |
| Binary |= (RegT << ARMII::RegRdShift); |
| Binary |= encodeNEONRn(MI, 0); |
| emitWordLE(Binary); |
| } |
| |
| void ARMCodeEmitter::emitNEON1RegModImmInstruction(const MachineInstr &MI) { |
| unsigned Binary = getBinaryCodeForInstr(MI); |
| // Destination register is encoded in Dd. |
| Binary |= encodeNEONRd(MI, 0); |
| // Immediate fields: Op, Cmode, I, Imm3, Imm4 |
| unsigned Imm = MI.getOperand(1).getImm(); |
| unsigned Op = (Imm >> 12) & 1; |
| unsigned Cmode = (Imm >> 8) & 0xf; |
| unsigned I = (Imm >> 7) & 1; |
| unsigned Imm3 = (Imm >> 4) & 0x7; |
| unsigned Imm4 = Imm & 0xf; |
| Binary |= (I << 24) | (Imm3 << 16) | (Cmode << 8) | (Op << 5) | Imm4; |
| if (IsThumb) |
| Binary = convertNEONDataProcToThumb(Binary); |
| emitWordLE(Binary); |
| } |
| |
| void ARMCodeEmitter::emitNEON2RegInstruction(const MachineInstr &MI) { |
| const MCInstrDesc &MCID = MI.getDesc(); |
| unsigned Binary = getBinaryCodeForInstr(MI); |
| // Destination register is encoded in Dd; source register in Dm. |
| unsigned OpIdx = 0; |
| Binary |= encodeNEONRd(MI, OpIdx++); |
| if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1) |
| ++OpIdx; |
| Binary |= encodeNEONRm(MI, OpIdx); |
| if (IsThumb) |
| Binary = convertNEONDataProcToThumb(Binary); |
| // FIXME: This does not handle VDUPfdf or VDUPfqf. |
| emitWordLE(Binary); |
| } |
| |
| void ARMCodeEmitter::emitNEON3RegInstruction(const MachineInstr &MI) { |
| const MCInstrDesc &MCID = MI.getDesc(); |
| unsigned Binary = getBinaryCodeForInstr(MI); |
| // Destination register is encoded in Dd; source registers in Dn and Dm. |
| unsigned OpIdx = 0; |
| Binary |= encodeNEONRd(MI, OpIdx++); |
| if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1) |
| ++OpIdx; |
| Binary |= encodeNEONRn(MI, OpIdx++); |
| if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1) |
| ++OpIdx; |
| Binary |= encodeNEONRm(MI, OpIdx); |
| if (IsThumb) |
| Binary = convertNEONDataProcToThumb(Binary); |
| // FIXME: This does not handle VMOVDneon or VMOVQ. |
| emitWordLE(Binary); |
| } |
| |
| #include "ARMGenCodeEmitter.inc" |