| //===-- SparcInstrInfo.td - Target Description for Sparc Target -----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file describes the Sparc instructions in TableGen format. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| //===----------------------------------------------------------------------===// |
| // Instruction format superclass |
| //===----------------------------------------------------------------------===// |
| |
| include "SparcInstrFormats.td" |
| |
| //===----------------------------------------------------------------------===// |
| // Feature predicates. |
| //===----------------------------------------------------------------------===// |
| |
| // HasV9 - This predicate is true when the target processor supports V9 |
| // instructions. Note that the machine may be running in 32-bit mode. |
| def HasV9 : Predicate<"Subtarget.isV9()">; |
| |
| // HasNoV9 - This predicate is true when the target doesn't have V9 |
| // instructions. Use of this is just a hack for the isel not having proper |
| // costs for V8 instructions that are more expensive than their V9 ones. |
| def HasNoV9 : Predicate<"!Subtarget.isV9()">; |
| |
| // HasVIS - This is true when the target processor has VIS extensions. |
| def HasVIS : Predicate<"Subtarget.isVIS()">; |
| |
| // UseDeprecatedInsts - This predicate is true when the target processor is a |
| // V8, or when it is V9 but the V8 deprecated instructions are efficient enough |
| // to use when appropriate. In either of these cases, the instruction selector |
| // will pick deprecated instructions. |
| def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">; |
| |
| //===----------------------------------------------------------------------===// |
| // Instruction Pattern Stuff |
| //===----------------------------------------------------------------------===// |
| |
| def simm11 : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>; |
| |
| def simm13 : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>; |
| |
| def LO10 : SDNodeXForm<imm, [{ |
| return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023, |
| MVT::i32); |
| }]>; |
| |
| def HI22 : SDNodeXForm<imm, [{ |
| // Transformation function: shift the immediate value down into the low bits. |
| return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, MVT::i32); |
| }]>; |
| |
| def SETHIimm : PatLeaf<(imm), [{ |
| return (((unsigned)N->getZExtValue() >> 10) << 10) == |
| (unsigned)N->getZExtValue(); |
| }], HI22>; |
| |
| // Addressing modes. |
| def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>; |
| def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex], []>; |
| |
| // Address operands |
| def MEMrr : Operand<i32> { |
| let PrintMethod = "printMemOperand"; |
| let MIOperandInfo = (ops IntRegs, IntRegs); |
| } |
| def MEMri : Operand<i32> { |
| let PrintMethod = "printMemOperand"; |
| let MIOperandInfo = (ops IntRegs, i32imm); |
| } |
| |
| // Branch targets have OtherVT type. |
| def brtarget : Operand<OtherVT>; |
| def calltarget : Operand<i32>; |
| |
| // Operand for printing out a condition code. |
| let PrintMethod = "printCCOperand" in |
| def CCOp : Operand<i32>; |
| |
| def SDTSPcmpfcc : |
| SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>; |
| def SDTSPbrcc : |
| SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>; |
| def SDTSPselectcc : |
| SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>; |
| def SDTSPFTOI : |
| SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>; |
| def SDTSPITOF : |
| SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>; |
| |
| def SPcmpicc : SDNode<"SPISD::CMPICC", SDTIntBinOp, [SDNPOutGlue]>; |
| def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>; |
| def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; |
| def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; |
| |
| def SPhi : SDNode<"SPISD::Hi", SDTIntUnaryOp>; |
| def SPlo : SDNode<"SPISD::Lo", SDTIntUnaryOp>; |
| |
| def SPftoi : SDNode<"SPISD::FTOI", SDTSPFTOI>; |
| def SPitof : SDNode<"SPISD::ITOF", SDTSPITOF>; |
| |
| def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>; |
| def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>; |
| |
| // These are target-independent nodes, but have target-specific formats. |
| def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>; |
| def SDT_SPCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>, |
| SDTCisVT<1, i32> ]>; |
| |
| def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart, |
| [SDNPHasChain, SDNPOutGlue]>; |
| def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeqEnd, |
| [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; |
| |
| def SDT_SPCall : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>; |
| def call : SDNode<"SPISD::CALL", SDT_SPCall, |
| [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, |
| SDNPVariadic]>; |
| |
| def SDT_SPRet : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; |
| def retflag : SDNode<"SPISD::RET_FLAG", SDT_SPRet, |
| [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; |
| |
| def flushw : SDNode<"SPISD::FLUSHW", SDTNone, |
| [SDNPHasChain, SDNPSideEffect, SDNPMayStore]>; |
| |
| def getPCX : Operand<i32> { |
| let PrintMethod = "printGetPCX"; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SPARC Flag Conditions |
| //===----------------------------------------------------------------------===// |
| |
| // Note that these values must be kept in sync with the CCOp::CondCode enum |
| // values. |
| class ICC_VAL<int N> : PatLeaf<(i32 N)>; |
| def ICC_NE : ICC_VAL< 9>; // Not Equal |
| def ICC_E : ICC_VAL< 1>; // Equal |
| def ICC_G : ICC_VAL<10>; // Greater |
| def ICC_LE : ICC_VAL< 2>; // Less or Equal |
| def ICC_GE : ICC_VAL<11>; // Greater or Equal |
| def ICC_L : ICC_VAL< 3>; // Less |
| def ICC_GU : ICC_VAL<12>; // Greater Unsigned |
| def ICC_LEU : ICC_VAL< 4>; // Less or Equal Unsigned |
| def ICC_CC : ICC_VAL<13>; // Carry Clear/Great or Equal Unsigned |
| def ICC_CS : ICC_VAL< 5>; // Carry Set/Less Unsigned |
| def ICC_POS : ICC_VAL<14>; // Positive |
| def ICC_NEG : ICC_VAL< 6>; // Negative |
| def ICC_VC : ICC_VAL<15>; // Overflow Clear |
| def ICC_VS : ICC_VAL< 7>; // Overflow Set |
| |
| class FCC_VAL<int N> : PatLeaf<(i32 N)>; |
| def FCC_U : FCC_VAL<23>; // Unordered |
| def FCC_G : FCC_VAL<22>; // Greater |
| def FCC_UG : FCC_VAL<21>; // Unordered or Greater |
| def FCC_L : FCC_VAL<20>; // Less |
| def FCC_UL : FCC_VAL<19>; // Unordered or Less |
| def FCC_LG : FCC_VAL<18>; // Less or Greater |
| def FCC_NE : FCC_VAL<17>; // Not Equal |
| def FCC_E : FCC_VAL<25>; // Equal |
| def FCC_UE : FCC_VAL<24>; // Unordered or Equal |
| def FCC_GE : FCC_VAL<25>; // Greater or Equal |
| def FCC_UGE : FCC_VAL<26>; // Unordered or Greater or Equal |
| def FCC_LE : FCC_VAL<27>; // Less or Equal |
| def FCC_ULE : FCC_VAL<28>; // Unordered or Less or Equal |
| def FCC_O : FCC_VAL<29>; // Ordered |
| |
| //===----------------------------------------------------------------------===// |
| // Instruction Class Templates |
| //===----------------------------------------------------------------------===// |
| |
| /// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot. |
| multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode> { |
| def rr : F3_1<2, Op3Val, |
| (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), |
| !strconcat(OpcStr, " $b, $c, $dst"), |
| [(set IntRegs:$dst, (OpNode IntRegs:$b, IntRegs:$c))]>; |
| def ri : F3_2<2, Op3Val, |
| (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c), |
| !strconcat(OpcStr, " $b, $c, $dst"), |
| [(set IntRegs:$dst, (OpNode IntRegs:$b, simm13:$c))]>; |
| } |
| |
| /// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no |
| /// pattern. |
| multiclass F3_12np<string OpcStr, bits<6> Op3Val> { |
| def rr : F3_1<2, Op3Val, |
| (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), |
| !strconcat(OpcStr, " $b, $c, $dst"), []>; |
| def ri : F3_2<2, Op3Val, |
| (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c), |
| !strconcat(OpcStr, " $b, $c, $dst"), []>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Instructions |
| //===----------------------------------------------------------------------===// |
| |
| // Pseudo instructions. |
| class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern> |
| : InstSP<outs, ins, asmstr, pattern>; |
| |
| // GETPCX for PIC |
| let Defs = [O7] in { |
| def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >; |
| } |
| |
| let Defs = [O6], Uses = [O6] in { |
| def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt), |
| "!ADJCALLSTACKDOWN $amt", |
| [(callseq_start timm:$amt)]>; |
| def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), |
| "!ADJCALLSTACKUP $amt1", |
| [(callseq_end timm:$amt1, timm:$amt2)]>; |
| } |
| |
| let hasSideEffects = 1, mayStore = 1 in { |
| let rd = 0, rs1 = 0, rs2 = 0 in |
| def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins), |
| "flushw", |
| [(flushw)]>, Requires<[HasV9]>; |
| let rd = 0, rs1 = 1, simm13 = 3 in |
| def TA3 : F3_2<0b10, 0b111010, (outs), (ins), |
| "ta 3", |
| [(flushw)]>; |
| } |
| |
| def UNIMP : F2_1<0b000, (outs), (ins i32imm:$val), |
| "unimp $val", []>; |
| |
| // FpMOVD/FpNEGD/FpABSD - These are lowered to single-precision ops by the |
| // fpmover pass. |
| let Predicates = [HasNoV9] in { // Only emit these in V8 mode. |
| def FpMOVD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src), |
| "!FpMOVD $src, $dst", []>; |
| def FpNEGD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src), |
| "!FpNEGD $src, $dst", |
| [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>; |
| def FpABSD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src), |
| "!FpABSD $src, $dst", |
| [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>; |
| } |
| |
| // SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded after |
| // instruction selection into a branch sequence. This has to handle all |
| // permutations of selection between i32/f32/f64 on ICC and FCC. |
| // Expanded after instruction selection. |
| let Uses = [ICC], usesCustomInserter = 1 in { |
| def SELECT_CC_Int_ICC |
| : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond), |
| "; SELECT_CC_Int_ICC PSEUDO!", |
| [(set IntRegs:$dst, (SPselecticc IntRegs:$T, IntRegs:$F, |
| imm:$Cond))]>; |
| def SELECT_CC_FP_ICC |
| : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond), |
| "; SELECT_CC_FP_ICC PSEUDO!", |
| [(set FPRegs:$dst, (SPselecticc FPRegs:$T, FPRegs:$F, |
| imm:$Cond))]>; |
| |
| def SELECT_CC_DFP_ICC |
| : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond), |
| "; SELECT_CC_DFP_ICC PSEUDO!", |
| [(set DFPRegs:$dst, (SPselecticc DFPRegs:$T, DFPRegs:$F, |
| imm:$Cond))]>; |
| } |
| |
| let usesCustomInserter = 1, Uses = [FCC] in { |
| |
| def SELECT_CC_Int_FCC |
| : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond), |
| "; SELECT_CC_Int_FCC PSEUDO!", |
| [(set IntRegs:$dst, (SPselectfcc IntRegs:$T, IntRegs:$F, |
| imm:$Cond))]>; |
| |
| def SELECT_CC_FP_FCC |
| : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond), |
| "; SELECT_CC_FP_FCC PSEUDO!", |
| [(set FPRegs:$dst, (SPselectfcc FPRegs:$T, FPRegs:$F, |
| imm:$Cond))]>; |
| def SELECT_CC_DFP_FCC |
| : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond), |
| "; SELECT_CC_DFP_FCC PSEUDO!", |
| [(set DFPRegs:$dst, (SPselectfcc DFPRegs:$T, DFPRegs:$F, |
| imm:$Cond))]>; |
| } |
| |
| |
| // Section A.3 - Synthetic Instructions, p. 85 |
| // special cases of JMPL: |
| let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1 in { |
| let rd = O7.Num, rs1 = G0.Num in |
| def RETL: F3_2<2, 0b111000, (outs), (ins i32imm:$val), |
| "jmp %o7+$val", [(retflag simm13:$val)]>; |
| |
| let rd = I7.Num, rs1 = G0.Num in |
| def RET: F3_2<2, 0b111000, (outs), (ins i32imm:$val), |
| "jmp %i7+$val", []>; |
| } |
| |
| // Section B.1 - Load Integer Instructions, p. 90 |
| def LDSBrr : F3_1<3, 0b001001, |
| (outs IntRegs:$dst), (ins MEMrr:$addr), |
| "ldsb [$addr], $dst", |
| [(set IntRegs:$dst, (sextloadi8 ADDRrr:$addr))]>; |
| def LDSBri : F3_2<3, 0b001001, |
| (outs IntRegs:$dst), (ins MEMri:$addr), |
| "ldsb [$addr], $dst", |
| [(set IntRegs:$dst, (sextloadi8 ADDRri:$addr))]>; |
| def LDSHrr : F3_1<3, 0b001010, |
| (outs IntRegs:$dst), (ins MEMrr:$addr), |
| "ldsh [$addr], $dst", |
| [(set IntRegs:$dst, (sextloadi16 ADDRrr:$addr))]>; |
| def LDSHri : F3_2<3, 0b001010, |
| (outs IntRegs:$dst), (ins MEMri:$addr), |
| "ldsh [$addr], $dst", |
| [(set IntRegs:$dst, (sextloadi16 ADDRri:$addr))]>; |
| def LDUBrr : F3_1<3, 0b000001, |
| (outs IntRegs:$dst), (ins MEMrr:$addr), |
| "ldub [$addr], $dst", |
| [(set IntRegs:$dst, (zextloadi8 ADDRrr:$addr))]>; |
| def LDUBri : F3_2<3, 0b000001, |
| (outs IntRegs:$dst), (ins MEMri:$addr), |
| "ldub [$addr], $dst", |
| [(set IntRegs:$dst, (zextloadi8 ADDRri:$addr))]>; |
| def LDUHrr : F3_1<3, 0b000010, |
| (outs IntRegs:$dst), (ins MEMrr:$addr), |
| "lduh [$addr], $dst", |
| [(set IntRegs:$dst, (zextloadi16 ADDRrr:$addr))]>; |
| def LDUHri : F3_2<3, 0b000010, |
| (outs IntRegs:$dst), (ins MEMri:$addr), |
| "lduh [$addr], $dst", |
| [(set IntRegs:$dst, (zextloadi16 ADDRri:$addr))]>; |
| def LDrr : F3_1<3, 0b000000, |
| (outs IntRegs:$dst), (ins MEMrr:$addr), |
| "ld [$addr], $dst", |
| [(set IntRegs:$dst, (load ADDRrr:$addr))]>; |
| def LDri : F3_2<3, 0b000000, |
| (outs IntRegs:$dst), (ins MEMri:$addr), |
| "ld [$addr], $dst", |
| [(set IntRegs:$dst, (load ADDRri:$addr))]>; |
| |
| // Section B.2 - Load Floating-point Instructions, p. 92 |
| def LDFrr : F3_1<3, 0b100000, |
| (outs FPRegs:$dst), (ins MEMrr:$addr), |
| "ld [$addr], $dst", |
| [(set FPRegs:$dst, (load ADDRrr:$addr))]>; |
| def LDFri : F3_2<3, 0b100000, |
| (outs FPRegs:$dst), (ins MEMri:$addr), |
| "ld [$addr], $dst", |
| [(set FPRegs:$dst, (load ADDRri:$addr))]>; |
| def LDDFrr : F3_1<3, 0b100011, |
| (outs DFPRegs:$dst), (ins MEMrr:$addr), |
| "ldd [$addr], $dst", |
| [(set DFPRegs:$dst, (load ADDRrr:$addr))]>; |
| def LDDFri : F3_2<3, 0b100011, |
| (outs DFPRegs:$dst), (ins MEMri:$addr), |
| "ldd [$addr], $dst", |
| [(set DFPRegs:$dst, (load ADDRri:$addr))]>; |
| |
| // Section B.4 - Store Integer Instructions, p. 95 |
| def STBrr : F3_1<3, 0b000101, |
| (outs), (ins MEMrr:$addr, IntRegs:$src), |
| "stb $src, [$addr]", |
| [(truncstorei8 IntRegs:$src, ADDRrr:$addr)]>; |
| def STBri : F3_2<3, 0b000101, |
| (outs), (ins MEMri:$addr, IntRegs:$src), |
| "stb $src, [$addr]", |
| [(truncstorei8 IntRegs:$src, ADDRri:$addr)]>; |
| def STHrr : F3_1<3, 0b000110, |
| (outs), (ins MEMrr:$addr, IntRegs:$src), |
| "sth $src, [$addr]", |
| [(truncstorei16 IntRegs:$src, ADDRrr:$addr)]>; |
| def STHri : F3_2<3, 0b000110, |
| (outs), (ins MEMri:$addr, IntRegs:$src), |
| "sth $src, [$addr]", |
| [(truncstorei16 IntRegs:$src, ADDRri:$addr)]>; |
| def STrr : F3_1<3, 0b000100, |
| (outs), (ins MEMrr:$addr, IntRegs:$src), |
| "st $src, [$addr]", |
| [(store IntRegs:$src, ADDRrr:$addr)]>; |
| def STri : F3_2<3, 0b000100, |
| (outs), (ins MEMri:$addr, IntRegs:$src), |
| "st $src, [$addr]", |
| [(store IntRegs:$src, ADDRri:$addr)]>; |
| |
| // Section B.5 - Store Floating-point Instructions, p. 97 |
| def STFrr : F3_1<3, 0b100100, |
| (outs), (ins MEMrr:$addr, FPRegs:$src), |
| "st $src, [$addr]", |
| [(store FPRegs:$src, ADDRrr:$addr)]>; |
| def STFri : F3_2<3, 0b100100, |
| (outs), (ins MEMri:$addr, FPRegs:$src), |
| "st $src, [$addr]", |
| [(store FPRegs:$src, ADDRri:$addr)]>; |
| def STDFrr : F3_1<3, 0b100111, |
| (outs), (ins MEMrr:$addr, DFPRegs:$src), |
| "std $src, [$addr]", |
| [(store DFPRegs:$src, ADDRrr:$addr)]>; |
| def STDFri : F3_2<3, 0b100111, |
| (outs), (ins MEMri:$addr, DFPRegs:$src), |
| "std $src, [$addr]", |
| [(store DFPRegs:$src, ADDRri:$addr)]>; |
| |
| // Section B.9 - SETHI Instruction, p. 104 |
| def SETHIi: F2_1<0b100, |
| (outs IntRegs:$dst), (ins i32imm:$src), |
| "sethi $src, $dst", |
| [(set IntRegs:$dst, SETHIimm:$src)]>; |
| |
| // Section B.10 - NOP Instruction, p. 105 |
| // (It's a special case of SETHI) |
| let rd = 0, imm22 = 0 in |
| def NOP : F2_1<0b100, (outs), (ins), "nop", []>; |
| |
| // Section B.11 - Logical Instructions, p. 106 |
| defm AND : F3_12<"and", 0b000001, and>; |
| |
| def ANDNrr : F3_1<2, 0b000101, |
| (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), |
| "andn $b, $c, $dst", |
| [(set IntRegs:$dst, (and IntRegs:$b, (not IntRegs:$c)))]>; |
| def ANDNri : F3_2<2, 0b000101, |
| (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c), |
| "andn $b, $c, $dst", []>; |
| |
| defm OR : F3_12<"or", 0b000010, or>; |
| |
| def ORNrr : F3_1<2, 0b000110, |
| (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), |
| "orn $b, $c, $dst", |
| [(set IntRegs:$dst, (or IntRegs:$b, (not IntRegs:$c)))]>; |
| def ORNri : F3_2<2, 0b000110, |
| (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c), |
| "orn $b, $c, $dst", []>; |
| defm XOR : F3_12<"xor", 0b000011, xor>; |
| |
| def XNORrr : F3_1<2, 0b000111, |
| (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), |
| "xnor $b, $c, $dst", |
| [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>; |
| def XNORri : F3_2<2, 0b000111, |
| (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c), |
| "xnor $b, $c, $dst", []>; |
| |
| // Section B.12 - Shift Instructions, p. 107 |
| defm SLL : F3_12<"sll", 0b100101, shl>; |
| defm SRL : F3_12<"srl", 0b100110, srl>; |
| defm SRA : F3_12<"sra", 0b100111, sra>; |
| |
| // Section B.13 - Add Instructions, p. 108 |
| defm ADD : F3_12<"add", 0b000000, add>; |
| |
| // "LEA" forms of add (patterns to make tblgen happy) |
| def LEA_ADDri : F3_2<2, 0b000000, |
| (outs IntRegs:$dst), (ins MEMri:$addr), |
| "add ${addr:arith}, $dst", |
| [(set IntRegs:$dst, ADDRri:$addr)]>; |
| |
| let Defs = [ICC] in |
| defm ADDCC : F3_12<"addcc", 0b010000, addc>; |
| |
| let Uses = [ICC] in |
| defm ADDX : F3_12<"addx", 0b001000, adde>; |
| |
| // Section B.15 - Subtract Instructions, p. 110 |
| defm SUB : F3_12 <"sub" , 0b000100, sub>; |
| let Uses = [ICC] in |
| defm SUBX : F3_12 <"subx" , 0b001100, sube>; |
| |
| let Defs = [ICC] in |
| defm SUBCC : F3_12 <"subcc", 0b010100, SPcmpicc>; |
| |
| let Uses = [ICC], Defs = [ICC] in |
| def SUBXCCrr: F3_1<2, 0b011100, |
| (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), |
| "subxcc $b, $c, $dst", []>; |
| |
| |
| // Section B.18 - Multiply Instructions, p. 113 |
| let Defs = [Y] in { |
| defm UMUL : F3_12np<"umul", 0b001010>; |
| defm SMUL : F3_12 <"smul", 0b001011, mul>; |
| } |
| |
| // Section B.19 - Divide Instructions, p. 115 |
| let Defs = [Y] in { |
| defm UDIV : F3_12np<"udiv", 0b001110>; |
| defm SDIV : F3_12np<"sdiv", 0b001111>; |
| } |
| |
| // Section B.20 - SAVE and RESTORE, p. 117 |
| defm SAVE : F3_12np<"save" , 0b111100>; |
| defm RESTORE : F3_12np<"restore", 0b111101>; |
| |
| // Section B.21 - Branch on Integer Condition Codes Instructions, p. 119 |
| |
| // conditional branch class: |
| class BranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern> |
| : F2_2<cc, 0b010, (outs), ins, asmstr, pattern> { |
| let isBranch = 1; |
| let isTerminator = 1; |
| let hasDelaySlot = 1; |
| } |
| |
| let isBarrier = 1 in |
| def BA : BranchSP<0b1000, (ins brtarget:$dst), |
| "ba $dst", |
| [(br bb:$dst)]>; |
| |
| // FIXME: the encoding for the JIT should look at the condition field. |
| let Uses = [ICC] in |
| def BCOND : BranchSP<0, (ins brtarget:$dst, CCOp:$cc), |
| "b$cc $dst", |
| [(SPbricc bb:$dst, imm:$cc)]>; |
| |
| |
| // Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121 |
| |
| // floating-point conditional branch class: |
| class FPBranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern> |
| : F2_2<cc, 0b110, (outs), ins, asmstr, pattern> { |
| let isBranch = 1; |
| let isTerminator = 1; |
| let hasDelaySlot = 1; |
| } |
| |
| // FIXME: the encoding for the JIT should look at the condition field. |
| let Uses = [FCC] in |
| def FBCOND : FPBranchSP<0, (ins brtarget:$dst, CCOp:$cc), |
| "fb$cc $dst", |
| [(SPbrfcc bb:$dst, imm:$cc)]>; |
| |
| |
| // Section B.24 - Call and Link Instruction, p. 125 |
| // This is the only Format 1 instruction |
| let Uses = [O6], |
| hasDelaySlot = 1, isCall = 1, |
| Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7, |
| D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15, |
| ICC, FCC, Y] in { |
| def CALL : InstSP<(outs), (ins calltarget:$dst, variable_ops), |
| "call $dst", []> { |
| bits<30> disp; |
| let op = 1; |
| let Inst{29-0} = disp; |
| } |
| |
| // indirect calls |
| def JMPLrr : F3_1<2, 0b111000, |
| (outs), (ins MEMrr:$ptr, variable_ops), |
| "call $ptr", |
| [(call ADDRrr:$ptr)]>; |
| def JMPLri : F3_2<2, 0b111000, |
| (outs), (ins MEMri:$ptr, variable_ops), |
| "call $ptr", |
| [(call ADDRri:$ptr)]>; |
| } |
| |
| // Section B.28 - Read State Register Instructions |
| let Uses = [Y] in |
| def RDY : F3_1<2, 0b101000, |
| (outs IntRegs:$dst), (ins), |
| "rd %y, $dst", []>; |
| |
| // Section B.29 - Write State Register Instructions |
| let Defs = [Y] in { |
| def WRYrr : F3_1<2, 0b110000, |
| (outs), (ins IntRegs:$b, IntRegs:$c), |
| "wr $b, $c, %y", []>; |
| def WRYri : F3_2<2, 0b110000, |
| (outs), (ins IntRegs:$b, i32imm:$c), |
| "wr $b, $c, %y", []>; |
| } |
| // Convert Integer to Floating-point Instructions, p. 141 |
| def FITOS : F3_3<2, 0b110100, 0b011000100, |
| (outs FPRegs:$dst), (ins FPRegs:$src), |
| "fitos $src, $dst", |
| [(set FPRegs:$dst, (SPitof FPRegs:$src))]>; |
| def FITOD : F3_3<2, 0b110100, 0b011001000, |
| (outs DFPRegs:$dst), (ins FPRegs:$src), |
| "fitod $src, $dst", |
| [(set DFPRegs:$dst, (SPitof FPRegs:$src))]>; |
| |
| // Convert Floating-point to Integer Instructions, p. 142 |
| def FSTOI : F3_3<2, 0b110100, 0b011010001, |
| (outs FPRegs:$dst), (ins FPRegs:$src), |
| "fstoi $src, $dst", |
| [(set FPRegs:$dst, (SPftoi FPRegs:$src))]>; |
| def FDTOI : F3_3<2, 0b110100, 0b011010010, |
| (outs FPRegs:$dst), (ins DFPRegs:$src), |
| "fdtoi $src, $dst", |
| [(set FPRegs:$dst, (SPftoi DFPRegs:$src))]>; |
| |
| // Convert between Floating-point Formats Instructions, p. 143 |
| def FSTOD : F3_3<2, 0b110100, 0b011001001, |
| (outs DFPRegs:$dst), (ins FPRegs:$src), |
| "fstod $src, $dst", |
| [(set DFPRegs:$dst, (fextend FPRegs:$src))]>; |
| def FDTOS : F3_3<2, 0b110100, 0b011000110, |
| (outs FPRegs:$dst), (ins DFPRegs:$src), |
| "fdtos $src, $dst", |
| [(set FPRegs:$dst, (fround DFPRegs:$src))]>; |
| |
| // Floating-point Move Instructions, p. 144 |
| def FMOVS : F3_3<2, 0b110100, 0b000000001, |
| (outs FPRegs:$dst), (ins FPRegs:$src), |
| "fmovs $src, $dst", []>; |
| def FNEGS : F3_3<2, 0b110100, 0b000000101, |
| (outs FPRegs:$dst), (ins FPRegs:$src), |
| "fnegs $src, $dst", |
| [(set FPRegs:$dst, (fneg FPRegs:$src))]>; |
| def FABSS : F3_3<2, 0b110100, 0b000001001, |
| (outs FPRegs:$dst), (ins FPRegs:$src), |
| "fabss $src, $dst", |
| [(set FPRegs:$dst, (fabs FPRegs:$src))]>; |
| |
| |
| // Floating-point Square Root Instructions, p.145 |
| def FSQRTS : F3_3<2, 0b110100, 0b000101001, |
| (outs FPRegs:$dst), (ins FPRegs:$src), |
| "fsqrts $src, $dst", |
| [(set FPRegs:$dst, (fsqrt FPRegs:$src))]>; |
| def FSQRTD : F3_3<2, 0b110100, 0b000101010, |
| (outs DFPRegs:$dst), (ins DFPRegs:$src), |
| "fsqrtd $src, $dst", |
| [(set DFPRegs:$dst, (fsqrt DFPRegs:$src))]>; |
| |
| |
| |
| // Floating-point Add and Subtract Instructions, p. 146 |
| def FADDS : F3_3<2, 0b110100, 0b001000001, |
| (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2), |
| "fadds $src1, $src2, $dst", |
| [(set FPRegs:$dst, (fadd FPRegs:$src1, FPRegs:$src2))]>; |
| def FADDD : F3_3<2, 0b110100, 0b001000010, |
| (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2), |
| "faddd $src1, $src2, $dst", |
| [(set DFPRegs:$dst, (fadd DFPRegs:$src1, DFPRegs:$src2))]>; |
| def FSUBS : F3_3<2, 0b110100, 0b001000101, |
| (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2), |
| "fsubs $src1, $src2, $dst", |
| [(set FPRegs:$dst, (fsub FPRegs:$src1, FPRegs:$src2))]>; |
| def FSUBD : F3_3<2, 0b110100, 0b001000110, |
| (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2), |
| "fsubd $src1, $src2, $dst", |
| [(set DFPRegs:$dst, (fsub DFPRegs:$src1, DFPRegs:$src2))]>; |
| |
| // Floating-point Multiply and Divide Instructions, p. 147 |
| def FMULS : F3_3<2, 0b110100, 0b001001001, |
| (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2), |
| "fmuls $src1, $src2, $dst", |
| [(set FPRegs:$dst, (fmul FPRegs:$src1, FPRegs:$src2))]>; |
| def FMULD : F3_3<2, 0b110100, 0b001001010, |
| (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2), |
| "fmuld $src1, $src2, $dst", |
| [(set DFPRegs:$dst, (fmul DFPRegs:$src1, DFPRegs:$src2))]>; |
| def FSMULD : F3_3<2, 0b110100, 0b001101001, |
| (outs DFPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2), |
| "fsmuld $src1, $src2, $dst", |
| [(set DFPRegs:$dst, (fmul (fextend FPRegs:$src1), |
| (fextend FPRegs:$src2)))]>; |
| def FDIVS : F3_3<2, 0b110100, 0b001001101, |
| (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2), |
| "fdivs $src1, $src2, $dst", |
| [(set FPRegs:$dst, (fdiv FPRegs:$src1, FPRegs:$src2))]>; |
| def FDIVD : F3_3<2, 0b110100, 0b001001110, |
| (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2), |
| "fdivd $src1, $src2, $dst", |
| [(set DFPRegs:$dst, (fdiv DFPRegs:$src1, DFPRegs:$src2))]>; |
| |
| // Floating-point Compare Instructions, p. 148 |
| // Note: the 2nd template arg is different for these guys. |
| // Note 2: the result of a FCMP is not available until the 2nd cycle |
| // after the instr is retired, but there is no interlock. This behavior |
| // is modelled with a forced noop after the instruction. |
| let Defs = [FCC] in { |
| def FCMPS : F3_3<2, 0b110101, 0b001010001, |
| (outs), (ins FPRegs:$src1, FPRegs:$src2), |
| "fcmps $src1, $src2\n\tnop", |
| [(SPcmpfcc FPRegs:$src1, FPRegs:$src2)]>; |
| def FCMPD : F3_3<2, 0b110101, 0b001010010, |
| (outs), (ins DFPRegs:$src1, DFPRegs:$src2), |
| "fcmpd $src1, $src2\n\tnop", |
| [(SPcmpfcc DFPRegs:$src1, DFPRegs:$src2)]>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // V9 Instructions |
| //===----------------------------------------------------------------------===// |
| |
| // V9 Conditional Moves. |
| let Predicates = [HasV9], Constraints = "$T = $dst" in { |
| // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual. |
| // FIXME: Add instruction encodings for the JIT some day. |
| let Uses = [ICC] in { |
| def MOVICCrr |
| : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc), |
| "mov$cc %icc, $F, $dst", |
| [(set IntRegs:$dst, |
| (SPselecticc IntRegs:$F, IntRegs:$T, imm:$cc))]>; |
| def MOVICCri |
| : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc), |
| "mov$cc %icc, $F, $dst", |
| [(set IntRegs:$dst, |
| (SPselecticc simm11:$F, IntRegs:$T, imm:$cc))]>; |
| } |
| |
| let Uses = [FCC] in { |
| def MOVFCCrr |
| : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc), |
| "mov$cc %fcc0, $F, $dst", |
| [(set IntRegs:$dst, |
| (SPselectfcc IntRegs:$F, IntRegs:$T, imm:$cc))]>; |
| def MOVFCCri |
| : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc), |
| "mov$cc %fcc0, $F, $dst", |
| [(set IntRegs:$dst, |
| (SPselectfcc simm11:$F, IntRegs:$T, imm:$cc))]>; |
| } |
| |
| let Uses = [ICC] in { |
| def FMOVS_ICC |
| : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc), |
| "fmovs$cc %icc, $F, $dst", |
| [(set FPRegs:$dst, |
| (SPselecticc FPRegs:$F, FPRegs:$T, imm:$cc))]>; |
| def FMOVD_ICC |
| : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc), |
| "fmovd$cc %icc, $F, $dst", |
| [(set DFPRegs:$dst, |
| (SPselecticc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>; |
| } |
| |
| let Uses = [FCC] in { |
| def FMOVS_FCC |
| : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc), |
| "fmovs$cc %fcc0, $F, $dst", |
| [(set FPRegs:$dst, |
| (SPselectfcc FPRegs:$F, FPRegs:$T, imm:$cc))]>; |
| def FMOVD_FCC |
| : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc), |
| "fmovd$cc %fcc0, $F, $dst", |
| [(set DFPRegs:$dst, |
| (SPselectfcc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>; |
| } |
| |
| } |
| |
| // Floating-Point Move Instructions, p. 164 of the V9 manual. |
| let Predicates = [HasV9] in { |
| def FMOVD : F3_3<2, 0b110100, 0b000000010, |
| (outs DFPRegs:$dst), (ins DFPRegs:$src), |
| "fmovd $src, $dst", []>; |
| def FNEGD : F3_3<2, 0b110100, 0b000000110, |
| (outs DFPRegs:$dst), (ins DFPRegs:$src), |
| "fnegd $src, $dst", |
| [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>; |
| def FABSD : F3_3<2, 0b110100, 0b000001010, |
| (outs DFPRegs:$dst), (ins DFPRegs:$src), |
| "fabsd $src, $dst", |
| [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>; |
| } |
| |
| // POPCrr - This does a ctpop of a 64-bit register. As such, we have to clear |
| // the top 32-bits before using it. To do this clearing, we use a SLLri X,0. |
| def POPCrr : F3_1<2, 0b101110, |
| (outs IntRegs:$dst), (ins IntRegs:$src), |
| "popc $src, $dst", []>, Requires<[HasV9]>; |
| def : Pat<(ctpop IntRegs:$src), |
| (POPCrr (SLLri IntRegs:$src, 0))>; |
| |
| //===----------------------------------------------------------------------===// |
| // Non-Instruction Patterns |
| //===----------------------------------------------------------------------===// |
| |
| // Small immediates. |
| def : Pat<(i32 simm13:$val), |
| (ORri G0, imm:$val)>; |
| // Arbitrary immediates. |
| def : Pat<(i32 imm:$val), |
| (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>; |
| |
| // subc |
| def : Pat<(subc IntRegs:$b, IntRegs:$c), |
| (SUBCCrr IntRegs:$b, IntRegs:$c)>; |
| def : Pat<(subc IntRegs:$b, simm13:$val), |
| (SUBCCri IntRegs:$b, imm:$val)>; |
| |
| // Global addresses, constant pool entries |
| def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>; |
| def : Pat<(SPlo tglobaladdr:$in), (ORri G0, tglobaladdr:$in)>; |
| def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>; |
| def : Pat<(SPlo tconstpool:$in), (ORri G0, tconstpool:$in)>; |
| |
| // Add reg, lo. This is used when taking the addr of a global/constpool entry. |
| def : Pat<(add IntRegs:$r, (SPlo tglobaladdr:$in)), |
| (ADDri IntRegs:$r, tglobaladdr:$in)>; |
| def : Pat<(add IntRegs:$r, (SPlo tconstpool:$in)), |
| (ADDri IntRegs:$r, tconstpool:$in)>; |
| |
| // Calls: |
| def : Pat<(call tglobaladdr:$dst), |
| (CALL tglobaladdr:$dst)>; |
| def : Pat<(call texternalsym:$dst), |
| (CALL texternalsym:$dst)>; |
| |
| // Map integer extload's to zextloads. |
| def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; |
| def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>; |
| def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; |
| def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>; |
| def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>; |
| def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>; |
| |
| // zextload bool -> zextload byte |
| def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; |
| def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>; |