| //===---------------------------------------------------------------------===// |
| // Random ideas for the X86 backend. |
| //===---------------------------------------------------------------------===// |
| |
| This should be one DIV/IDIV instruction, not a libcall: |
| |
| unsigned test(unsigned long long X, unsigned Y) { |
| return X/Y; |
| } |
| |
| This can be done trivially with a custom legalizer. What about overflow |
| though? http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14224 |
| |
| //===---------------------------------------------------------------------===// |
| |
| Improvements to the multiply -> shift/add algorithm: |
| http://gcc.gnu.org/ml/gcc-patches/2004-08/msg01590.html |
| |
| //===---------------------------------------------------------------------===// |
| |
| Improve code like this (occurs fairly frequently, e.g. in LLVM): |
| long long foo(int x) { return 1LL << x; } |
| |
| http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01109.html |
| http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01128.html |
| http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01136.html |
| |
| Another useful one would be ~0ULL >> X and ~0ULL << X. |
| |
| One better solution for 1LL << x is: |
| xorl %eax, %eax |
| xorl %edx, %edx |
| testb $32, %cl |
| sete %al |
| setne %dl |
| sall %cl, %eax |
| sall %cl, %edx |
| |
| But that requires good 8-bit subreg support. |
| |
| Also, this might be better. It's an extra shift, but it's one instruction |
| shorter, and doesn't stress 8-bit subreg support. |
| (From http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01148.html, |
| but without the unnecessary and.) |
| movl %ecx, %eax |
| shrl $5, %eax |
| movl %eax, %edx |
| xorl $1, %edx |
| sall %cl, %eax |
| sall %cl. %edx |
| |
| 64-bit shifts (in general) expand to really bad code. Instead of using |
| cmovs, we should expand to a conditional branch like GCC produces. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Some isel ideas: |
| |
| 1. Dynamic programming based approach when compile time is not an |
| issue. |
| 2. Code duplication (addressing mode) during isel. |
| 3. Other ideas from "Register-Sensitive Selection, Duplication, and |
| Sequencing of Instructions". |
| 4. Scheduling for reduced register pressure. E.g. "Minimum Register |
| Instruction Sequence Problem: Revisiting Optimal Code Generation for DAGs" |
| and other related papers. |
| http://citeseer.ist.psu.edu/govindarajan01minimum.html |
| |
| //===---------------------------------------------------------------------===// |
| |
| Should we promote i16 to i32 to avoid partial register update stalls? |
| |
| //===---------------------------------------------------------------------===// |
| |
| Leave any_extend as pseudo instruction and hint to register |
| allocator. Delay codegen until post register allocation. |
| Note. any_extend is now turned into an INSERT_SUBREG. We still need to teach |
| the coalescer how to deal with it though. |
| |
| //===---------------------------------------------------------------------===// |
| |
| It appears icc use push for parameter passing. Need to investigate. |
| |
| //===---------------------------------------------------------------------===// |
| |
| This: |
| |
| void foo(void); |
| void bar(int x, int *P) { |
| x >>= 2; |
| if (x) |
| foo(); |
| *P = x; |
| } |
| |
| compiles into: |
| |
| movq %rsi, %rbx |
| movl %edi, %r14d |
| sarl $2, %r14d |
| testl %r14d, %r14d |
| je LBB0_2 |
| |
| Instead of doing an explicit test, we can use the flags off the sar. This |
| occurs in a bigger testcase like this, which is pretty common: |
| |
| #include <vector> |
| int test1(std::vector<int> &X) { |
| int Sum = 0; |
| for (long i = 0, e = X.size(); i != e; ++i) |
| X[i] = 0; |
| return Sum; |
| } |
| |
| //===---------------------------------------------------------------------===// |
| |
| Only use inc/neg/not instructions on processors where they are faster than |
| add/sub/xor. They are slower on the P4 due to only updating some processor |
| flags. |
| |
| //===---------------------------------------------------------------------===// |
| |
| The instruction selector sometimes misses folding a load into a compare. The |
| pattern is written as (cmp reg, (load p)). Because the compare isn't |
| commutative, it is not matched with the load on both sides. The dag combiner |
| should be made smart enough to cannonicalize the load into the RHS of a compare |
| when it can invert the result of the compare for free. |
| |
| //===---------------------------------------------------------------------===// |
| |
| In many cases, LLVM generates code like this: |
| |
| _test: |
| movl 8(%esp), %eax |
| cmpl %eax, 4(%esp) |
| setl %al |
| movzbl %al, %eax |
| ret |
| |
| on some processors (which ones?), it is more efficient to do this: |
| |
| _test: |
| movl 8(%esp), %ebx |
| xor %eax, %eax |
| cmpl %ebx, 4(%esp) |
| setl %al |
| ret |
| |
| Doing this correctly is tricky though, as the xor clobbers the flags. |
| |
| //===---------------------------------------------------------------------===// |
| |
| We should generate bts/btr/etc instructions on targets where they are cheap or |
| when codesize is important. e.g., for: |
| |
| void setbit(int *target, int bit) { |
| *target |= (1 << bit); |
| } |
| void clearbit(int *target, int bit) { |
| *target &= ~(1 << bit); |
| } |
| |
| //===---------------------------------------------------------------------===// |
| |
| Instead of the following for memset char*, 1, 10: |
| |
| movl $16843009, 4(%edx) |
| movl $16843009, (%edx) |
| movw $257, 8(%edx) |
| |
| It might be better to generate |
| |
| movl $16843009, %eax |
| movl %eax, 4(%edx) |
| movl %eax, (%edx) |
| movw al, 8(%edx) |
| |
| when we can spare a register. It reduces code size. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Evaluate what the best way to codegen sdiv X, (2^C) is. For X/8, we currently |
| get this: |
| |
| define i32 @test1(i32 %X) { |
| %Y = sdiv i32 %X, 8 |
| ret i32 %Y |
| } |
| |
| _test1: |
| movl 4(%esp), %eax |
| movl %eax, %ecx |
| sarl $31, %ecx |
| shrl $29, %ecx |
| addl %ecx, %eax |
| sarl $3, %eax |
| ret |
| |
| GCC knows several different ways to codegen it, one of which is this: |
| |
| _test1: |
| movl 4(%esp), %eax |
| cmpl $-1, %eax |
| leal 7(%eax), %ecx |
| cmovle %ecx, %eax |
| sarl $3, %eax |
| ret |
| |
| which is probably slower, but it's interesting at least :) |
| |
| //===---------------------------------------------------------------------===// |
| |
| We are currently lowering large (1MB+) memmove/memcpy to rep/stosl and rep/movsl |
| We should leave these as libcalls for everything over a much lower threshold, |
| since libc is hand tuned for medium and large mem ops (avoiding RFO for large |
| stores, TLB preheating, etc) |
| |
| //===---------------------------------------------------------------------===// |
| |
| Optimize this into something reasonable: |
| x * copysign(1.0, y) * copysign(1.0, z) |
| |
| //===---------------------------------------------------------------------===// |
| |
| Optimize copysign(x, *y) to use an integer load from y. |
| |
| //===---------------------------------------------------------------------===// |
| |
| The following tests perform worse with LSR: |
| |
| lambda, siod, optimizer-eval, ackermann, hash2, nestedloop, strcat, and Treesor. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Adding to the list of cmp / test poor codegen issues: |
| |
| int test(__m128 *A, __m128 *B) { |
| if (_mm_comige_ss(*A, *B)) |
| return 3; |
| else |
| return 4; |
| } |
| |
| _test: |
| movl 8(%esp), %eax |
| movaps (%eax), %xmm0 |
| movl 4(%esp), %eax |
| movaps (%eax), %xmm1 |
| comiss %xmm0, %xmm1 |
| setae %al |
| movzbl %al, %ecx |
| movl $3, %eax |
| movl $4, %edx |
| cmpl $0, %ecx |
| cmove %edx, %eax |
| ret |
| |
| Note the setae, movzbl, cmpl, cmove can be replaced with a single cmovae. There |
| are a number of issues. 1) We are introducing a setcc between the result of the |
| intrisic call and select. 2) The intrinsic is expected to produce a i32 value |
| so a any extend (which becomes a zero extend) is added. |
| |
| We probably need some kind of target DAG combine hook to fix this. |
| |
| //===---------------------------------------------------------------------===// |
| |
| We generate significantly worse code for this than GCC: |
| http://gcc.gnu.org/bugzilla/show_bug.cgi?id=21150 |
| http://gcc.gnu.org/bugzilla/attachment.cgi?id=8701 |
| |
| There is also one case we do worse on PPC. |
| |
| //===---------------------------------------------------------------------===// |
| |
| For this: |
| |
| int test(int a) |
| { |
| return a * 3; |
| } |
| |
| We currently emits |
| imull $3, 4(%esp), %eax |
| |
| Perhaps this is what we really should generate is? Is imull three or four |
| cycles? Note: ICC generates this: |
| movl 4(%esp), %eax |
| leal (%eax,%eax,2), %eax |
| |
| The current instruction priority is based on pattern complexity. The former is |
| more "complex" because it folds a load so the latter will not be emitted. |
| |
| Perhaps we should use AddedComplexity to give LEA32r a higher priority? We |
| should always try to match LEA first since the LEA matching code does some |
| estimate to determine whether the match is profitable. |
| |
| However, if we care more about code size, then imull is better. It's two bytes |
| shorter than movl + leal. |
| |
| On a Pentium M, both variants have the same characteristics with regard |
| to throughput; however, the multiplication has a latency of four cycles, as |
| opposed to two cycles for the movl+lea variant. |
| |
| //===---------------------------------------------------------------------===// |
| |
| __builtin_ffs codegen is messy. |
| |
| int ffs_(unsigned X) { return __builtin_ffs(X); } |
| |
| llvm produces: |
| ffs_: |
| movl 4(%esp), %ecx |
| bsfl %ecx, %eax |
| movl $32, %edx |
| cmove %edx, %eax |
| incl %eax |
| xorl %edx, %edx |
| testl %ecx, %ecx |
| cmove %edx, %eax |
| ret |
| |
| vs gcc: |
| |
| _ffs_: |
| movl $-1, %edx |
| bsfl 4(%esp), %eax |
| cmove %edx, %eax |
| addl $1, %eax |
| ret |
| |
| Another example of __builtin_ffs (use predsimplify to eliminate a select): |
| |
| int foo (unsigned long j) { |
| if (j) |
| return __builtin_ffs (j) - 1; |
| else |
| return 0; |
| } |
| |
| //===---------------------------------------------------------------------===// |
| |
| It appears gcc place string data with linkonce linkage in |
| .section __TEXT,__const_coal,coalesced instead of |
| .section __DATA,__const_coal,coalesced. |
| Take a look at darwin.h, there are other Darwin assembler directives that we |
| do not make use of. |
| |
| //===---------------------------------------------------------------------===// |
| |
| define i32 @foo(i32* %a, i32 %t) { |
| entry: |
| br label %cond_true |
| |
| cond_true: ; preds = %cond_true, %entry |
| %x.0.0 = phi i32 [ 0, %entry ], [ %tmp9, %cond_true ] ; <i32> [#uses=3] |
| %t_addr.0.0 = phi i32 [ %t, %entry ], [ %tmp7, %cond_true ] ; <i32> [#uses=1] |
| %tmp2 = getelementptr i32* %a, i32 %x.0.0 ; <i32*> [#uses=1] |
| %tmp3 = load i32* %tmp2 ; <i32> [#uses=1] |
| %tmp5 = add i32 %t_addr.0.0, %x.0.0 ; <i32> [#uses=1] |
| %tmp7 = add i32 %tmp5, %tmp3 ; <i32> [#uses=2] |
| %tmp9 = add i32 %x.0.0, 1 ; <i32> [#uses=2] |
| %tmp = icmp sgt i32 %tmp9, 39 ; <i1> [#uses=1] |
| br i1 %tmp, label %bb12, label %cond_true |
| |
| bb12: ; preds = %cond_true |
| ret i32 %tmp7 |
| } |
| is pessimized by -loop-reduce and -indvars |
| |
| //===---------------------------------------------------------------------===// |
| |
| u32 to float conversion improvement: |
| |
| float uint32_2_float( unsigned u ) { |
| float fl = (int) (u & 0xffff); |
| float fh = (int) (u >> 16); |
| fh *= 0x1.0p16f; |
| return fh + fl; |
| } |
| |
| 00000000 subl $0x04,%esp |
| 00000003 movl 0x08(%esp,1),%eax |
| 00000007 movl %eax,%ecx |
| 00000009 shrl $0x10,%ecx |
| 0000000c cvtsi2ss %ecx,%xmm0 |
| 00000010 andl $0x0000ffff,%eax |
| 00000015 cvtsi2ss %eax,%xmm1 |
| 00000019 mulss 0x00000078,%xmm0 |
| 00000021 addss %xmm1,%xmm0 |
| 00000025 movss %xmm0,(%esp,1) |
| 0000002a flds (%esp,1) |
| 0000002d addl $0x04,%esp |
| 00000030 ret |
| |
| //===---------------------------------------------------------------------===// |
| |
| When using fastcc abi, align stack slot of argument of type double on 8 byte |
| boundary to improve performance. |
| |
| //===---------------------------------------------------------------------===// |
| |
| GCC's ix86_expand_int_movcc function (in i386.c) has a ton of interesting |
| simplifications for integer "x cmp y ? a : b". |
| |
| //===---------------------------------------------------------------------===// |
| |
| Consider the expansion of: |
| |
| define i32 @test3(i32 %X) { |
| %tmp1 = urem i32 %X, 255 |
| ret i32 %tmp1 |
| } |
| |
| Currently it compiles to: |
| |
| ... |
| movl $2155905153, %ecx |
| movl 8(%esp), %esi |
| movl %esi, %eax |
| mull %ecx |
| ... |
| |
| This could be "reassociated" into: |
| |
| movl $2155905153, %eax |
| movl 8(%esp), %ecx |
| mull %ecx |
| |
| to avoid the copy. In fact, the existing two-address stuff would do this |
| except that mul isn't a commutative 2-addr instruction. I guess this has |
| to be done at isel time based on the #uses to mul? |
| |
| //===---------------------------------------------------------------------===// |
| |
| Make sure the instruction which starts a loop does not cross a cacheline |
| boundary. This requires knowning the exact length of each machine instruction. |
| That is somewhat complicated, but doable. Example 256.bzip2: |
| |
| In the new trace, the hot loop has an instruction which crosses a cacheline |
| boundary. In addition to potential cache misses, this can't help decoding as I |
| imagine there has to be some kind of complicated decoder reset and realignment |
| to grab the bytes from the next cacheline. |
| |
| 532 532 0x3cfc movb (1809(%esp, %esi), %bl <<<--- spans 2 64 byte lines |
| 942 942 0x3d03 movl %dh, (1809(%esp, %esi) |
| 937 937 0x3d0a incl %esi |
| 3 3 0x3d0b cmpb %bl, %dl |
| 27 27 0x3d0d jnz 0x000062db <main+11707> |
| |
| //===---------------------------------------------------------------------===// |
| |
| In c99 mode, the preprocessor doesn't like assembly comments like #TRUNCATE. |
| |
| //===---------------------------------------------------------------------===// |
| |
| This could be a single 16-bit load. |
| |
| int f(char *p) { |
| if ((p[0] == 1) & (p[1] == 2)) return 1; |
| return 0; |
| } |
| |
| //===---------------------------------------------------------------------===// |
| |
| We should inline lrintf and probably other libc functions. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Use the FLAGS values from arithmetic instructions more. For example, compile: |
| |
| int add_zf(int *x, int y, int a, int b) { |
| if ((*x += y) == 0) |
| return a; |
| else |
| return b; |
| } |
| |
| to: |
| addl %esi, (%rdi) |
| movl %edx, %eax |
| cmovne %ecx, %eax |
| ret |
| instead of: |
| |
| _add_zf: |
| addl (%rdi), %esi |
| movl %esi, (%rdi) |
| testl %esi, %esi |
| cmove %edx, %ecx |
| movl %ecx, %eax |
| ret |
| |
| As another example, compile function f2 in test/CodeGen/X86/cmp-test.ll |
| without a test instruction. |
| |
| //===---------------------------------------------------------------------===// |
| |
| These two functions have identical effects: |
| |
| unsigned int f(unsigned int i, unsigned int n) {++i; if (i == n) ++i; return i;} |
| unsigned int f2(unsigned int i, unsigned int n) {++i; i += i == n; return i;} |
| |
| We currently compile them to: |
| |
| _f: |
| movl 4(%esp), %eax |
| movl %eax, %ecx |
| incl %ecx |
| movl 8(%esp), %edx |
| cmpl %edx, %ecx |
| jne LBB1_2 #UnifiedReturnBlock |
| LBB1_1: #cond_true |
| addl $2, %eax |
| ret |
| LBB1_2: #UnifiedReturnBlock |
| movl %ecx, %eax |
| ret |
| _f2: |
| movl 4(%esp), %eax |
| movl %eax, %ecx |
| incl %ecx |
| cmpl 8(%esp), %ecx |
| sete %cl |
| movzbl %cl, %ecx |
| leal 1(%ecx,%eax), %eax |
| ret |
| |
| both of which are inferior to GCC's: |
| |
| _f: |
| movl 4(%esp), %edx |
| leal 1(%edx), %eax |
| addl $2, %edx |
| cmpl 8(%esp), %eax |
| cmove %edx, %eax |
| ret |
| _f2: |
| movl 4(%esp), %eax |
| addl $1, %eax |
| xorl %edx, %edx |
| cmpl 8(%esp), %eax |
| sete %dl |
| addl %edx, %eax |
| ret |
| |
| //===---------------------------------------------------------------------===// |
| |
| This code: |
| |
| void test(int X) { |
| if (X) abort(); |
| } |
| |
| is currently compiled to: |
| |
| _test: |
| subl $12, %esp |
| cmpl $0, 16(%esp) |
| jne LBB1_1 |
| addl $12, %esp |
| ret |
| LBB1_1: |
| call L_abort$stub |
| |
| It would be better to produce: |
| |
| _test: |
| subl $12, %esp |
| cmpl $0, 16(%esp) |
| jne L_abort$stub |
| addl $12, %esp |
| ret |
| |
| This can be applied to any no-return function call that takes no arguments etc. |
| Alternatively, the stack save/restore logic could be shrink-wrapped, producing |
| something like this: |
| |
| _test: |
| cmpl $0, 4(%esp) |
| jne LBB1_1 |
| ret |
| LBB1_1: |
| subl $12, %esp |
| call L_abort$stub |
| |
| Both are useful in different situations. Finally, it could be shrink-wrapped |
| and tail called, like this: |
| |
| _test: |
| cmpl $0, 4(%esp) |
| jne LBB1_1 |
| ret |
| LBB1_1: |
| pop %eax # realign stack. |
| call L_abort$stub |
| |
| Though this probably isn't worth it. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Sometimes it is better to codegen subtractions from a constant (e.g. 7-x) with |
| a neg instead of a sub instruction. Consider: |
| |
| int test(char X) { return 7-X; } |
| |
| we currently produce: |
| _test: |
| movl $7, %eax |
| movsbl 4(%esp), %ecx |
| subl %ecx, %eax |
| ret |
| |
| We would use one fewer register if codegen'd as: |
| |
| movsbl 4(%esp), %eax |
| neg %eax |
| add $7, %eax |
| ret |
| |
| Note that this isn't beneficial if the load can be folded into the sub. In |
| this case, we want a sub: |
| |
| int test(int X) { return 7-X; } |
| _test: |
| movl $7, %eax |
| subl 4(%esp), %eax |
| ret |
| |
| //===---------------------------------------------------------------------===// |
| |
| Leaf functions that require one 4-byte spill slot have a prolog like this: |
| |
| _foo: |
| pushl %esi |
| subl $4, %esp |
| ... |
| and an epilog like this: |
| addl $4, %esp |
| popl %esi |
| ret |
| |
| It would be smaller, and potentially faster, to push eax on entry and to |
| pop into a dummy register instead of using addl/subl of esp. Just don't pop |
| into any return registers :) |
| |
| //===---------------------------------------------------------------------===// |
| |
| The X86 backend should fold (branch (or (setcc, setcc))) into multiple |
| branches. We generate really poor code for: |
| |
| double testf(double a) { |
| return a == 0.0 ? 0.0 : (a > 0.0 ? 1.0 : -1.0); |
| } |
| |
| For example, the entry BB is: |
| |
| _testf: |
| subl $20, %esp |
| pxor %xmm0, %xmm0 |
| movsd 24(%esp), %xmm1 |
| ucomisd %xmm0, %xmm1 |
| setnp %al |
| sete %cl |
| testb %cl, %al |
| jne LBB1_5 # UnifiedReturnBlock |
| LBB1_1: # cond_true |
| |
| |
| it would be better to replace the last four instructions with: |
| |
| jp LBB1_1 |
| je LBB1_5 |
| LBB1_1: |
| |
| We also codegen the inner ?: into a diamond: |
| |
| cvtss2sd LCPI1_0(%rip), %xmm2 |
| cvtss2sd LCPI1_1(%rip), %xmm3 |
| ucomisd %xmm1, %xmm0 |
| ja LBB1_3 # cond_true |
| LBB1_2: # cond_true |
| movapd %xmm3, %xmm2 |
| LBB1_3: # cond_true |
| movapd %xmm2, %xmm0 |
| ret |
| |
| We should sink the load into xmm3 into the LBB1_2 block. This should |
| be pretty easy, and will nuke all the copies. |
| |
| //===---------------------------------------------------------------------===// |
| |
| This: |
| #include <algorithm> |
| inline std::pair<unsigned, bool> full_add(unsigned a, unsigned b) |
| { return std::make_pair(a + b, a + b < a); } |
| bool no_overflow(unsigned a, unsigned b) |
| { return !full_add(a, b).second; } |
| |
| Should compile to: |
| addl %esi, %edi |
| setae %al |
| movzbl %al, %eax |
| ret |
| |
| on x86-64, instead of the rather stupid-looking: |
| addl %esi, %edi |
| setb %al |
| xorb $1, %al |
| movzbl %al, %eax |
| ret |
| |
| |
| //===---------------------------------------------------------------------===// |
| |
| The following code: |
| |
| bb114.preheader: ; preds = %cond_next94 |
| %tmp231232 = sext i16 %tmp62 to i32 ; <i32> [#uses=1] |
| %tmp233 = sub i32 32, %tmp231232 ; <i32> [#uses=1] |
| %tmp245246 = sext i16 %tmp65 to i32 ; <i32> [#uses=1] |
| %tmp252253 = sext i16 %tmp68 to i32 ; <i32> [#uses=1] |
| %tmp254 = sub i32 32, %tmp252253 ; <i32> [#uses=1] |
| %tmp553554 = bitcast i16* %tmp37 to i8* ; <i8*> [#uses=2] |
| %tmp583584 = sext i16 %tmp98 to i32 ; <i32> [#uses=1] |
| %tmp585 = sub i32 32, %tmp583584 ; <i32> [#uses=1] |
| %tmp614615 = sext i16 %tmp101 to i32 ; <i32> [#uses=1] |
| %tmp621622 = sext i16 %tmp104 to i32 ; <i32> [#uses=1] |
| %tmp623 = sub i32 32, %tmp621622 ; <i32> [#uses=1] |
| br label %bb114 |
| |
| produces: |
| |
| LBB3_5: # bb114.preheader |
| movswl -68(%ebp), %eax |
| movl $32, %ecx |
| movl %ecx, -80(%ebp) |
| subl %eax, -80(%ebp) |
| movswl -52(%ebp), %eax |
| movl %ecx, -84(%ebp) |
| subl %eax, -84(%ebp) |
| movswl -70(%ebp), %eax |
| movl %ecx, -88(%ebp) |
| subl %eax, -88(%ebp) |
| movswl -50(%ebp), %eax |
| subl %eax, %ecx |
| movl %ecx, -76(%ebp) |
| movswl -42(%ebp), %eax |
| movl %eax, -92(%ebp) |
| movswl -66(%ebp), %eax |
| movl %eax, -96(%ebp) |
| movw $0, -98(%ebp) |
| |
| This appears to be bad because the RA is not folding the store to the stack |
| slot into the movl. The above instructions could be: |
| movl $32, -80(%ebp) |
| ... |
| movl $32, -84(%ebp) |
| ... |
| This seems like a cross between remat and spill folding. |
| |
| This has redundant subtractions of %eax from a stack slot. However, %ecx doesn't |
| change, so we could simply subtract %eax from %ecx first and then use %ecx (or |
| vice-versa). |
| |
| //===---------------------------------------------------------------------===// |
| |
| This code: |
| |
| %tmp659 = icmp slt i16 %tmp654, 0 ; <i1> [#uses=1] |
| br i1 %tmp659, label %cond_true662, label %cond_next715 |
| |
| produces this: |
| |
| testw %cx, %cx |
| movswl %cx, %esi |
| jns LBB4_109 # cond_next715 |
| |
| Shark tells us that using %cx in the testw instruction is sub-optimal. It |
| suggests using the 32-bit register (which is what ICC uses). |
| |
| //===---------------------------------------------------------------------===// |
| |
| We compile this: |
| |
| void compare (long long foo) { |
| if (foo < 4294967297LL) |
| abort(); |
| } |
| |
| to: |
| |
| compare: |
| subl $4, %esp |
| cmpl $0, 8(%esp) |
| setne %al |
| movzbw %al, %ax |
| cmpl $1, 12(%esp) |
| setg %cl |
| movzbw %cl, %cx |
| cmove %ax, %cx |
| testb $1, %cl |
| jne .LBB1_2 # UnifiedReturnBlock |
| .LBB1_1: # ifthen |
| call abort |
| .LBB1_2: # UnifiedReturnBlock |
| addl $4, %esp |
| ret |
| |
| (also really horrible code on ppc). This is due to the expand code for 64-bit |
| compares. GCC produces multiple branches, which is much nicer: |
| |
| compare: |
| subl $12, %esp |
| movl 20(%esp), %edx |
| movl 16(%esp), %eax |
| decl %edx |
| jle .L7 |
| .L5: |
| addl $12, %esp |
| ret |
| .p2align 4,,7 |
| .L7: |
| jl .L4 |
| cmpl $0, %eax |
| .p2align 4,,8 |
| ja .L5 |
| .L4: |
| .p2align 4,,9 |
| call abort |
| |
| //===---------------------------------------------------------------------===// |
| |
| Tail call optimization improvements: Tail call optimization currently |
| pushes all arguments on the top of the stack (their normal place for |
| non-tail call optimized calls) that source from the callers arguments |
| or that source from a virtual register (also possibly sourcing from |
| callers arguments). |
| This is done to prevent overwriting of parameters (see example |
| below) that might be used later. |
| |
| example: |
| |
| int callee(int32, int64); |
| int caller(int32 arg1, int32 arg2) { |
| int64 local = arg2 * 2; |
| return callee(arg2, (int64)local); |
| } |
| |
| [arg1] [!arg2 no longer valid since we moved local onto it] |
| [arg2] -> [(int64) |
| [RETADDR] local ] |
| |
| Moving arg1 onto the stack slot of callee function would overwrite |
| arg2 of the caller. |
| |
| Possible optimizations: |
| |
| |
| - Analyse the actual parameters of the callee to see which would |
| overwrite a caller parameter which is used by the callee and only |
| push them onto the top of the stack. |
| |
| int callee (int32 arg1, int32 arg2); |
| int caller (int32 arg1, int32 arg2) { |
| return callee(arg1,arg2); |
| } |
| |
| Here we don't need to write any variables to the top of the stack |
| since they don't overwrite each other. |
| |
| int callee (int32 arg1, int32 arg2); |
| int caller (int32 arg1, int32 arg2) { |
| return callee(arg2,arg1); |
| } |
| |
| Here we need to push the arguments because they overwrite each |
| other. |
| |
| //===---------------------------------------------------------------------===// |
| |
| main () |
| { |
| int i = 0; |
| unsigned long int z = 0; |
| |
| do { |
| z -= 0x00004000; |
| i++; |
| if (i > 0x00040000) |
| abort (); |
| } while (z > 0); |
| exit (0); |
| } |
| |
| gcc compiles this to: |
| |
| _main: |
| subl $28, %esp |
| xorl %eax, %eax |
| jmp L2 |
| L3: |
| cmpl $262144, %eax |
| je L10 |
| L2: |
| addl $1, %eax |
| cmpl $262145, %eax |
| jne L3 |
| call L_abort$stub |
| L10: |
| movl $0, (%esp) |
| call L_exit$stub |
| |
| llvm: |
| |
| _main: |
| subl $12, %esp |
| movl $1, %eax |
| movl $16384, %ecx |
| LBB1_1: # bb |
| cmpl $262145, %eax |
| jge LBB1_4 # cond_true |
| LBB1_2: # cond_next |
| incl %eax |
| addl $4294950912, %ecx |
| cmpl $16384, %ecx |
| jne LBB1_1 # bb |
| LBB1_3: # bb11 |
| xorl %eax, %eax |
| addl $12, %esp |
| ret |
| LBB1_4: # cond_true |
| call L_abort$stub |
| |
| 1. LSR should rewrite the first cmp with induction variable %ecx. |
| 2. DAG combiner should fold |
| leal 1(%eax), %edx |
| cmpl $262145, %edx |
| => |
| cmpl $262144, %eax |
| |
| //===---------------------------------------------------------------------===// |
| |
| define i64 @test(double %X) { |
| %Y = fptosi double %X to i64 |
| ret i64 %Y |
| } |
| |
| compiles to: |
| |
| _test: |
| subl $20, %esp |
| movsd 24(%esp), %xmm0 |
| movsd %xmm0, 8(%esp) |
| fldl 8(%esp) |
| fisttpll (%esp) |
| movl 4(%esp), %edx |
| movl (%esp), %eax |
| addl $20, %esp |
| #FP_REG_KILL |
| ret |
| |
| This should just fldl directly from the input stack slot. |
| |
| //===---------------------------------------------------------------------===// |
| |
| This code: |
| int foo (int x) { return (x & 65535) | 255; } |
| |
| Should compile into: |
| |
| _foo: |
| movzwl 4(%esp), %eax |
| orl $255, %eax |
| ret |
| |
| instead of: |
| _foo: |
| movl $65280, %eax |
| andl 4(%esp), %eax |
| orl $255, %eax |
| ret |
| |
| //===---------------------------------------------------------------------===// |
| |
| We're codegen'ing multiply of long longs inefficiently: |
| |
| unsigned long long LLM(unsigned long long arg1, unsigned long long arg2) { |
| return arg1 * arg2; |
| } |
| |
| We compile to (fomit-frame-pointer): |
| |
| _LLM: |
| pushl %esi |
| movl 8(%esp), %ecx |
| movl 16(%esp), %esi |
| movl %esi, %eax |
| mull %ecx |
| imull 12(%esp), %esi |
| addl %edx, %esi |
| imull 20(%esp), %ecx |
| movl %esi, %edx |
| addl %ecx, %edx |
| popl %esi |
| ret |
| |
| This looks like a scheduling deficiency and lack of remat of the load from |
| the argument area. ICC apparently produces: |
| |
| movl 8(%esp), %ecx |
| imull 12(%esp), %ecx |
| movl 16(%esp), %eax |
| imull 4(%esp), %eax |
| addl %eax, %ecx |
| movl 4(%esp), %eax |
| mull 12(%esp) |
| addl %ecx, %edx |
| ret |
| |
| Note that it remat'd loads from 4(esp) and 12(esp). See this GCC PR: |
| http://gcc.gnu.org/bugzilla/show_bug.cgi?id=17236 |
| |
| //===---------------------------------------------------------------------===// |
| |
| We can fold a store into "zeroing a reg". Instead of: |
| |
| xorl %eax, %eax |
| movl %eax, 124(%esp) |
| |
| we should get: |
| |
| movl $0, 124(%esp) |
| |
| if the flags of the xor are dead. |
| |
| Likewise, we isel "x<<1" into "add reg,reg". If reg is spilled, this should |
| be folded into: shl [mem], 1 |
| |
| //===---------------------------------------------------------------------===// |
| |
| In SSE mode, we turn abs and neg into a load from the constant pool plus a xor |
| or and instruction, for example: |
| |
| xorpd LCPI1_0, %xmm2 |
| |
| However, if xmm2 gets spilled, we end up with really ugly code like this: |
| |
| movsd (%esp), %xmm0 |
| xorpd LCPI1_0, %xmm0 |
| movsd %xmm0, (%esp) |
| |
| Since we 'know' that this is a 'neg', we can actually "fold" the spill into |
| the neg/abs instruction, turning it into an *integer* operation, like this: |
| |
| xorl 2147483648, [mem+4] ## 2147483648 = (1 << 31) |
| |
| you could also use xorb, but xorl is less likely to lead to a partial register |
| stall. Here is a contrived testcase: |
| |
| double a, b, c; |
| void test(double *P) { |
| double X = *P; |
| a = X; |
| bar(); |
| X = -X; |
| b = X; |
| bar(); |
| c = X; |
| } |
| |
| //===---------------------------------------------------------------------===// |
| |
| The generated code on x86 for checking for signed overflow on a multiply the |
| obvious way is much longer than it needs to be. |
| |
| int x(int a, int b) { |
| long long prod = (long long)a*b; |
| return prod > 0x7FFFFFFF || prod < (-0x7FFFFFFF-1); |
| } |
| |
| See PR2053 for more details. |
| |
| //===---------------------------------------------------------------------===// |
| |
| We should investigate using cdq/ctld (effect: edx = sar eax, 31) |
| more aggressively; it should cost the same as a move+shift on any modern |
| processor, but it's a lot shorter. Downside is that it puts more |
| pressure on register allocation because it has fixed operands. |
| |
| Example: |
| int abs(int x) {return x < 0 ? -x : x;} |
| |
| gcc compiles this to the following when using march/mtune=pentium2/3/4/m/etc.: |
| abs: |
| movl 4(%esp), %eax |
| cltd |
| xorl %edx, %eax |
| subl %edx, %eax |
| ret |
| |
| //===---------------------------------------------------------------------===// |
| |
| Take the following code (from |
| http://gcc.gnu.org/bugzilla/show_bug.cgi?id=16541): |
| |
| extern unsigned char first_one[65536]; |
| int FirstOnet(unsigned long long arg1) |
| { |
| if (arg1 >> 48) |
| return (first_one[arg1 >> 48]); |
| return 0; |
| } |
| |
| |
| The following code is currently generated: |
| FirstOnet: |
| movl 8(%esp), %eax |
| cmpl $65536, %eax |
| movl 4(%esp), %ecx |
| jb .LBB1_2 # UnifiedReturnBlock |
| .LBB1_1: # ifthen |
| shrl $16, %eax |
| movzbl first_one(%eax), %eax |
| ret |
| .LBB1_2: # UnifiedReturnBlock |
| xorl %eax, %eax |
| ret |
| |
| We could change the "movl 8(%esp), %eax" into "movzwl 10(%esp), %eax"; this |
| lets us change the cmpl into a testl, which is shorter, and eliminate the shift. |
| |
| //===---------------------------------------------------------------------===// |
| |
| We compile this function: |
| |
| define i32 @foo(i32 %a, i32 %b, i32 %c, i8 zeroext %d) nounwind { |
| entry: |
| %tmp2 = icmp eq i8 %d, 0 ; <i1> [#uses=1] |
| br i1 %tmp2, label %bb7, label %bb |
| |
| bb: ; preds = %entry |
| %tmp6 = add i32 %b, %a ; <i32> [#uses=1] |
| ret i32 %tmp6 |
| |
| bb7: ; preds = %entry |
| %tmp10 = sub i32 %a, %c ; <i32> [#uses=1] |
| ret i32 %tmp10 |
| } |
| |
| to: |
| |
| foo: # @foo |
| # BB#0: # %entry |
| movl 4(%esp), %ecx |
| cmpb $0, 16(%esp) |
| je .LBB0_2 |
| # BB#1: # %bb |
| movl 8(%esp), %eax |
| addl %ecx, %eax |
| ret |
| .LBB0_2: # %bb7 |
| movl 12(%esp), %edx |
| movl %ecx, %eax |
| subl %edx, %eax |
| ret |
| |
| There's an obviously unnecessary movl in .LBB0_2, and we could eliminate a |
| couple more movls by putting 4(%esp) into %eax instead of %ecx. |
| |
| //===---------------------------------------------------------------------===// |
| |
| See rdar://4653682. |
| |
| From flops: |
| |
| LBB1_15: # bb310 |
| cvtss2sd LCPI1_0, %xmm1 |
| addsd %xmm1, %xmm0 |
| movsd 176(%esp), %xmm2 |
| mulsd %xmm0, %xmm2 |
| movapd %xmm2, %xmm3 |
| mulsd %xmm3, %xmm3 |
| movapd %xmm3, %xmm4 |
| mulsd LCPI1_23, %xmm4 |
| addsd LCPI1_24, %xmm4 |
| mulsd %xmm3, %xmm4 |
| addsd LCPI1_25, %xmm4 |
| mulsd %xmm3, %xmm4 |
| addsd LCPI1_26, %xmm4 |
| mulsd %xmm3, %xmm4 |
| addsd LCPI1_27, %xmm4 |
| mulsd %xmm3, %xmm4 |
| addsd LCPI1_28, %xmm4 |
| mulsd %xmm3, %xmm4 |
| addsd %xmm1, %xmm4 |
| mulsd %xmm2, %xmm4 |
| movsd 152(%esp), %xmm1 |
| addsd %xmm4, %xmm1 |
| movsd %xmm1, 152(%esp) |
| incl %eax |
| cmpl %eax, %esi |
| jge LBB1_15 # bb310 |
| LBB1_16: # bb358.loopexit |
| movsd 152(%esp), %xmm0 |
| addsd %xmm0, %xmm0 |
| addsd LCPI1_22, %xmm0 |
| movsd %xmm0, 152(%esp) |
| |
| Rather than spilling the result of the last addsd in the loop, we should have |
| insert a copy to split the interval (one for the duration of the loop, one |
| extending to the fall through). The register pressure in the loop isn't high |
| enough to warrant the spill. |
| |
| Also check why xmm7 is not used at all in the function. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Take the following: |
| |
| target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:32:64-v64:64:64-v128:128:128-a0:0:64-f80:128:128-S128" |
| target triple = "i386-apple-darwin8" |
| @in_exit.4870.b = internal global i1 false ; <i1*> [#uses=2] |
| define fastcc void @abort_gzip() noreturn nounwind { |
| entry: |
| %tmp.b.i = load i1* @in_exit.4870.b ; <i1> [#uses=1] |
| br i1 %tmp.b.i, label %bb.i, label %bb4.i |
| bb.i: ; preds = %entry |
| tail call void @exit( i32 1 ) noreturn nounwind |
| unreachable |
| bb4.i: ; preds = %entry |
| store i1 true, i1* @in_exit.4870.b |
| tail call void @exit( i32 1 ) noreturn nounwind |
| unreachable |
| } |
| declare void @exit(i32) noreturn nounwind |
| |
| This compiles into: |
| _abort_gzip: ## @abort_gzip |
| ## BB#0: ## %entry |
| subl $12, %esp |
| movb _in_exit.4870.b, %al |
| cmpb $1, %al |
| jne LBB0_2 |
| |
| We somehow miss folding the movb into the cmpb. |
| |
| //===---------------------------------------------------------------------===// |
| |
| We compile: |
| |
| int test(int x, int y) { |
| return x-y-1; |
| } |
| |
| into (-m64): |
| |
| _test: |
| decl %edi |
| movl %edi, %eax |
| subl %esi, %eax |
| ret |
| |
| it would be better to codegen as: x+~y (notl+addl) |
| |
| //===---------------------------------------------------------------------===// |
| |
| This code: |
| |
| int foo(const char *str,...) |
| { |
| __builtin_va_list a; int x; |
| __builtin_va_start(a,str); x = __builtin_va_arg(a,int); __builtin_va_end(a); |
| return x; |
| } |
| |
| gets compiled into this on x86-64: |
| subq $200, %rsp |
| movaps %xmm7, 160(%rsp) |
| movaps %xmm6, 144(%rsp) |
| movaps %xmm5, 128(%rsp) |
| movaps %xmm4, 112(%rsp) |
| movaps %xmm3, 96(%rsp) |
| movaps %xmm2, 80(%rsp) |
| movaps %xmm1, 64(%rsp) |
| movaps %xmm0, 48(%rsp) |
| movq %r9, 40(%rsp) |
| movq %r8, 32(%rsp) |
| movq %rcx, 24(%rsp) |
| movq %rdx, 16(%rsp) |
| movq %rsi, 8(%rsp) |
| leaq (%rsp), %rax |
| movq %rax, 192(%rsp) |
| leaq 208(%rsp), %rax |
| movq %rax, 184(%rsp) |
| movl $48, 180(%rsp) |
| movl $8, 176(%rsp) |
| movl 176(%rsp), %eax |
| cmpl $47, %eax |
| jbe .LBB1_3 # bb |
| .LBB1_1: # bb3 |
| movq 184(%rsp), %rcx |
| leaq 8(%rcx), %rax |
| movq %rax, 184(%rsp) |
| .LBB1_2: # bb4 |
| movl (%rcx), %eax |
| addq $200, %rsp |
| ret |
| .LBB1_3: # bb |
| movl %eax, %ecx |
| addl $8, %eax |
| addq 192(%rsp), %rcx |
| movl %eax, 176(%rsp) |
| jmp .LBB1_2 # bb4 |
| |
| gcc 4.3 generates: |
| subq $96, %rsp |
| .LCFI0: |
| leaq 104(%rsp), %rax |
| movq %rsi, -80(%rsp) |
| movl $8, -120(%rsp) |
| movq %rax, -112(%rsp) |
| leaq -88(%rsp), %rax |
| movq %rax, -104(%rsp) |
| movl $8, %eax |
| cmpl $48, %eax |
| jb .L6 |
| movq -112(%rsp), %rdx |
| movl (%rdx), %eax |
| addq $96, %rsp |
| ret |
| .p2align 4,,10 |
| .p2align 3 |
| .L6: |
| mov %eax, %edx |
| addq -104(%rsp), %rdx |
| addl $8, %eax |
| movl %eax, -120(%rsp) |
| movl (%rdx), %eax |
| addq $96, %rsp |
| ret |
| |
| and it gets compiled into this on x86: |
| pushl %ebp |
| movl %esp, %ebp |
| subl $4, %esp |
| leal 12(%ebp), %eax |
| movl %eax, -4(%ebp) |
| leal 16(%ebp), %eax |
| movl %eax, -4(%ebp) |
| movl 12(%ebp), %eax |
| addl $4, %esp |
| popl %ebp |
| ret |
| |
| gcc 4.3 generates: |
| pushl %ebp |
| movl %esp, %ebp |
| movl 12(%ebp), %eax |
| popl %ebp |
| ret |
| |
| //===---------------------------------------------------------------------===// |
| |
| Teach tblgen not to check bitconvert source type in some cases. This allows us |
| to consolidate the following patterns in X86InstrMMX.td: |
| |
| def : Pat<(v2i32 (bitconvert (i64 (vector_extract (v2i64 VR128:$src), |
| (iPTR 0))))), |
| (v2i32 (MMX_MOVDQ2Qrr VR128:$src))>; |
| def : Pat<(v4i16 (bitconvert (i64 (vector_extract (v2i64 VR128:$src), |
| (iPTR 0))))), |
| (v4i16 (MMX_MOVDQ2Qrr VR128:$src))>; |
| def : Pat<(v8i8 (bitconvert (i64 (vector_extract (v2i64 VR128:$src), |
| (iPTR 0))))), |
| (v8i8 (MMX_MOVDQ2Qrr VR128:$src))>; |
| |
| There are other cases in various td files. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Take something like the following on x86-32: |
| unsigned a(unsigned long long x, unsigned y) {return x % y;} |
| |
| We currently generate a libcall, but we really shouldn't: the expansion is |
| shorter and likely faster than the libcall. The expected code is something |
| like the following: |
| |
| movl 12(%ebp), %eax |
| movl 16(%ebp), %ecx |
| xorl %edx, %edx |
| divl %ecx |
| movl 8(%ebp), %eax |
| divl %ecx |
| movl %edx, %eax |
| ret |
| |
| A similar code sequence works for division. |
| |
| //===---------------------------------------------------------------------===// |
| |
| These should compile to the same code, but the later codegen's to useless |
| instructions on X86. This may be a trivial dag combine (GCC PR7061): |
| |
| struct s1 { unsigned char a, b; }; |
| unsigned long f1(struct s1 x) { |
| return x.a + x.b; |
| } |
| struct s2 { unsigned a: 8, b: 8; }; |
| unsigned long f2(struct s2 x) { |
| return x.a + x.b; |
| } |
| |
| //===---------------------------------------------------------------------===// |
| |
| We currently compile this: |
| |
| define i32 @func1(i32 %v1, i32 %v2) nounwind { |
| entry: |
| %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %v1, i32 %v2) |
| %sum = extractvalue {i32, i1} %t, 0 |
| %obit = extractvalue {i32, i1} %t, 1 |
| br i1 %obit, label %overflow, label %normal |
| normal: |
| ret i32 %sum |
| overflow: |
| call void @llvm.trap() |
| unreachable |
| } |
| declare {i32, i1} @llvm.sadd.with.overflow.i32(i32, i32) |
| declare void @llvm.trap() |
| |
| to: |
| |
| _func1: |
| movl 4(%esp), %eax |
| addl 8(%esp), %eax |
| jo LBB1_2 ## overflow |
| LBB1_1: ## normal |
| ret |
| LBB1_2: ## overflow |
| ud2 |
| |
| it would be nice to produce "into" someday. |
| |
| //===---------------------------------------------------------------------===// |
| |
| This code: |
| |
| void vec_mpys1(int y[], const int x[], int scaler) { |
| int i; |
| for (i = 0; i < 150; i++) |
| y[i] += (((long long)scaler * (long long)x[i]) >> 31); |
| } |
| |
| Compiles to this loop with GCC 3.x: |
| |
| .L5: |
| movl %ebx, %eax |
| imull (%edi,%ecx,4) |
| shrdl $31, %edx, %eax |
| addl %eax, (%esi,%ecx,4) |
| incl %ecx |
| cmpl $149, %ecx |
| jle .L5 |
| |
| llvm-gcc compiles it to the much uglier: |
| |
| LBB1_1: ## bb1 |
| movl 24(%esp), %eax |
| movl (%eax,%edi,4), %ebx |
| movl %ebx, %ebp |
| imull %esi, %ebp |
| movl %ebx, %eax |
| mull %ecx |
| addl %ebp, %edx |
| sarl $31, %ebx |
| imull %ecx, %ebx |
| addl %edx, %ebx |
| shldl $1, %eax, %ebx |
| movl 20(%esp), %eax |
| addl %ebx, (%eax,%edi,4) |
| incl %edi |
| cmpl $150, %edi |
| jne LBB1_1 ## bb1 |
| |
| The issue is that we hoist the cast of "scaler" to long long outside of the |
| loop, the value comes into the loop as two values, and |
| RegsForValue::getCopyFromRegs doesn't know how to put an AssertSext on the |
| constructed BUILD_PAIR which represents the cast value. |
| |
| This can be handled by making CodeGenPrepare sink the cast. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Test instructions can be eliminated by using EFLAGS values from arithmetic |
| instructions. This is currently not done for mul, and, or, xor, neg, shl, |
| sra, srl, shld, shrd, atomic ops, and others. It is also currently not done |
| for read-modify-write instructions. It is also current not done if the |
| OF or CF flags are needed. |
| |
| The shift operators have the complication that when the shift count is |
| zero, EFLAGS is not set, so they can only subsume a test instruction if |
| the shift count is known to be non-zero. Also, using the EFLAGS value |
| from a shift is apparently very slow on some x86 implementations. |
| |
| In read-modify-write instructions, the root node in the isel match is |
| the store, and isel has no way for the use of the EFLAGS result of the |
| arithmetic to be remapped to the new node. |
| |
| Add and subtract instructions set OF on signed overflow and CF on unsiged |
| overflow, while test instructions always clear OF and CF. In order to |
| replace a test with an add or subtract in a situation where OF or CF is |
| needed, codegen must be able to prove that the operation cannot see |
| signed or unsigned overflow, respectively. |
| |
| //===---------------------------------------------------------------------===// |
| |
| memcpy/memmove do not lower to SSE copies when possible. A silly example is: |
| define <16 x float> @foo(<16 x float> %A) nounwind { |
| %tmp = alloca <16 x float>, align 16 |
| %tmp2 = alloca <16 x float>, align 16 |
| store <16 x float> %A, <16 x float>* %tmp |
| %s = bitcast <16 x float>* %tmp to i8* |
| %s2 = bitcast <16 x float>* %tmp2 to i8* |
| call void @llvm.memcpy.i64(i8* %s, i8* %s2, i64 64, i32 16) |
| %R = load <16 x float>* %tmp2 |
| ret <16 x float> %R |
| } |
| |
| declare void @llvm.memcpy.i64(i8* nocapture, i8* nocapture, i64, i32) nounwind |
| |
| which compiles to: |
| |
| _foo: |
| subl $140, %esp |
| movaps %xmm3, 112(%esp) |
| movaps %xmm2, 96(%esp) |
| movaps %xmm1, 80(%esp) |
| movaps %xmm0, 64(%esp) |
| movl 60(%esp), %eax |
| movl %eax, 124(%esp) |
| movl 56(%esp), %eax |
| movl %eax, 120(%esp) |
| movl 52(%esp), %eax |
| <many many more 32-bit copies> |
| movaps (%esp), %xmm0 |
| movaps 16(%esp), %xmm1 |
| movaps 32(%esp), %xmm2 |
| movaps 48(%esp), %xmm3 |
| addl $140, %esp |
| ret |
| |
| On Nehalem, it may even be cheaper to just use movups when unaligned than to |
| fall back to lower-granularity chunks. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Implement processor-specific optimizations for parity with GCC on these |
| processors. GCC does two optimizations: |
| |
| 1. ix86_pad_returns inserts a noop before ret instructions if immediately |
| preceded by a conditional branch or is the target of a jump. |
| 2. ix86_avoid_jump_misspredicts inserts noops in cases where a 16-byte block of |
| code contains more than 3 branches. |
| |
| The first one is done for all AMDs, Core2, and "Generic" |
| The second one is done for: Atom, Pentium Pro, all AMDs, Pentium 4, Nocona, |
| Core 2, and "Generic" |
| |
| //===---------------------------------------------------------------------===// |
| Testcase: |
| int x(int a) { return (a&0xf0)>>4; } |
| |
| Current output: |
| movl 4(%esp), %eax |
| shrl $4, %eax |
| andl $15, %eax |
| ret |
| |
| Ideal output: |
| movzbl 4(%esp), %eax |
| shrl $4, %eax |
| ret |
| |
| //===---------------------------------------------------------------------===// |
| |
| Re-implement atomic builtins __sync_add_and_fetch() and __sync_sub_and_fetch |
| properly. |
| |
| When the return value is not used (i.e. only care about the value in the |
| memory), x86 does not have to use add to implement these. Instead, it can use |
| add, sub, inc, dec instructions with the "lock" prefix. |
| |
| This is currently implemented using a bit of instruction selection trick. The |
| issue is the target independent pattern produces one output and a chain and we |
| want to map it into one that just output a chain. The current trick is to select |
| it into a MERGE_VALUES with the first definition being an implicit_def. The |
| proper solution is to add new ISD opcodes for the no-output variant. DAG |
| combiner can then transform the node before it gets to target node selection. |
| |
| Problem #2 is we are adding a whole bunch of x86 atomic instructions when in |
| fact these instructions are identical to the non-lock versions. We need a way to |
| add target specific information to target nodes and have this information |
| carried over to machine instructions. Asm printer (or JIT) can use this |
| information to add the "lock" prefix. |
| |
| //===---------------------------------------------------------------------===// |
| |
| struct B { |
| unsigned char y0 : 1; |
| }; |
| |
| int bar(struct B* a) { return a->y0; } |
| |
| define i32 @bar(%struct.B* nocapture %a) nounwind readonly optsize { |
| %1 = getelementptr inbounds %struct.B* %a, i64 0, i32 0 |
| %2 = load i8* %1, align 1 |
| %3 = and i8 %2, 1 |
| %4 = zext i8 %3 to i32 |
| ret i32 %4 |
| } |
| |
| bar: # @bar |
| # BB#0: |
| movb (%rdi), %al |
| andb $1, %al |
| movzbl %al, %eax |
| ret |
| |
| Missed optimization: should be movl+andl. |
| |
| //===---------------------------------------------------------------------===// |
| |
| The x86_64 abi says: |
| |
| Booleans, when stored in a memory object, are stored as single byte objects the |
| value of which is always 0 (false) or 1 (true). |
| |
| We are not using this fact: |
| |
| int bar(_Bool *a) { return *a; } |
| |
| define i32 @bar(i8* nocapture %a) nounwind readonly optsize { |
| %1 = load i8* %a, align 1, !tbaa !0 |
| %tmp = and i8 %1, 1 |
| %2 = zext i8 %tmp to i32 |
| ret i32 %2 |
| } |
| |
| bar: |
| movb (%rdi), %al |
| andb $1, %al |
| movzbl %al, %eax |
| ret |
| |
| GCC produces |
| |
| bar: |
| movzbl (%rdi), %eax |
| ret |
| |
| //===---------------------------------------------------------------------===// |
| |
| Consider the following two functions compiled with clang: |
| _Bool foo(int *x) { return !(*x & 4); } |
| unsigned bar(int *x) { return !(*x & 4); } |
| |
| foo: |
| movl 4(%esp), %eax |
| testb $4, (%eax) |
| sete %al |
| movzbl %al, %eax |
| ret |
| |
| bar: |
| movl 4(%esp), %eax |
| movl (%eax), %eax |
| shrl $2, %eax |
| andl $1, %eax |
| xorl $1, %eax |
| ret |
| |
| The second function generates more code even though the two functions are |
| are functionally identical. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Take the following C code: |
| int f(int a, int b) { return (unsigned char)a == (unsigned char)b; } |
| |
| We generate the following IR with clang: |
| define i32 @f(i32 %a, i32 %b) nounwind readnone { |
| entry: |
| %tmp = xor i32 %b, %a ; <i32> [#uses=1] |
| %tmp6 = and i32 %tmp, 255 ; <i32> [#uses=1] |
| %cmp = icmp eq i32 %tmp6, 0 ; <i1> [#uses=1] |
| %conv5 = zext i1 %cmp to i32 ; <i32> [#uses=1] |
| ret i32 %conv5 |
| } |
| |
| And the following x86 code: |
| xorl %esi, %edi |
| testb $-1, %dil |
| sete %al |
| movzbl %al, %eax |
| ret |
| |
| A cmpb instead of the xorl+testb would be one instruction shorter. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Given the following C code: |
| int f(int a, int b) { return (signed char)a == (signed char)b; } |
| |
| We generate the following IR with clang: |
| define i32 @f(i32 %a, i32 %b) nounwind readnone { |
| entry: |
| %sext = shl i32 %a, 24 ; <i32> [#uses=1] |
| %conv1 = ashr i32 %sext, 24 ; <i32> [#uses=1] |
| %sext6 = shl i32 %b, 24 ; <i32> [#uses=1] |
| %conv4 = ashr i32 %sext6, 24 ; <i32> [#uses=1] |
| %cmp = icmp eq i32 %conv1, %conv4 ; <i1> [#uses=1] |
| %conv5 = zext i1 %cmp to i32 ; <i32> [#uses=1] |
| ret i32 %conv5 |
| } |
| |
| And the following x86 code: |
| movsbl %sil, %eax |
| movsbl %dil, %ecx |
| cmpl %eax, %ecx |
| sete %al |
| movzbl %al, %eax |
| ret |
| |
| |
| It should be possible to eliminate the sign extensions. |
| |
| //===---------------------------------------------------------------------===// |
| |
| LLVM misses a load+store narrowing opportunity in this code: |
| |
| %struct.bf = type { i64, i16, i16, i32 } |
| |
| @bfi = external global %struct.bf* ; <%struct.bf**> [#uses=2] |
| |
| define void @t1() nounwind ssp { |
| entry: |
| %0 = load %struct.bf** @bfi, align 8 ; <%struct.bf*> [#uses=1] |
| %1 = getelementptr %struct.bf* %0, i64 0, i32 1 ; <i16*> [#uses=1] |
| %2 = bitcast i16* %1 to i32* ; <i32*> [#uses=2] |
| %3 = load i32* %2, align 1 ; <i32> [#uses=1] |
| %4 = and i32 %3, -65537 ; <i32> [#uses=1] |
| store i32 %4, i32* %2, align 1 |
| %5 = load %struct.bf** @bfi, align 8 ; <%struct.bf*> [#uses=1] |
| %6 = getelementptr %struct.bf* %5, i64 0, i32 1 ; <i16*> [#uses=1] |
| %7 = bitcast i16* %6 to i32* ; <i32*> [#uses=2] |
| %8 = load i32* %7, align 1 ; <i32> [#uses=1] |
| %9 = and i32 %8, -131073 ; <i32> [#uses=1] |
| store i32 %9, i32* %7, align 1 |
| ret void |
| } |
| |
| LLVM currently emits this: |
| |
| movq bfi(%rip), %rax |
| andl $-65537, 8(%rax) |
| movq bfi(%rip), %rax |
| andl $-131073, 8(%rax) |
| ret |
| |
| It could narrow the loads and stores to emit this: |
| |
| movq bfi(%rip), %rax |
| andb $-2, 10(%rax) |
| movq bfi(%rip), %rax |
| andb $-3, 10(%rax) |
| ret |
| |
| The trouble is that there is a TokenFactor between the store and the |
| load, making it non-trivial to determine if there's anything between |
| the load and the store which would prohibit narrowing. |
| |
| //===---------------------------------------------------------------------===// |
| |
| This code: |
| void foo(unsigned x) { |
| if (x == 0) bar(); |
| else if (x == 1) qux(); |
| } |
| |
| currently compiles into: |
| _foo: |
| movl 4(%esp), %eax |
| cmpl $1, %eax |
| je LBB0_3 |
| testl %eax, %eax |
| jne LBB0_4 |
| |
| the testl could be removed: |
| _foo: |
| movl 4(%esp), %eax |
| cmpl $1, %eax |
| je LBB0_3 |
| jb LBB0_4 |
| |
| 0 is the only unsigned number < 1. |
| |
| //===---------------------------------------------------------------------===// |
| |
| This code: |
| |
| %0 = type { i32, i1 } |
| |
| define i32 @add32carry(i32 %sum, i32 %x) nounwind readnone ssp { |
| entry: |
| %uadd = tail call %0 @llvm.uadd.with.overflow.i32(i32 %sum, i32 %x) |
| %cmp = extractvalue %0 %uadd, 1 |
| %inc = zext i1 %cmp to i32 |
| %add = add i32 %x, %sum |
| %z.0 = add i32 %add, %inc |
| ret i32 %z.0 |
| } |
| |
| declare %0 @llvm.uadd.with.overflow.i32(i32, i32) nounwind readnone |
| |
| compiles to: |
| |
| _add32carry: ## @add32carry |
| addl %esi, %edi |
| sbbl %ecx, %ecx |
| movl %edi, %eax |
| subl %ecx, %eax |
| ret |
| |
| But it could be: |
| |
| _add32carry: |
| leal (%rsi,%rdi), %eax |
| cmpl %esi, %eax |
| adcl $0, %eax |
| ret |
| |
| //===---------------------------------------------------------------------===// |
| |
| The hot loop of 256.bzip2 contains code that looks a bit like this: |
| |
| int foo(char *P, char *Q, int x, int y) { |
| if (P[0] != Q[0]) |
| return P[0] < Q[0]; |
| if (P[1] != Q[1]) |
| return P[1] < Q[1]; |
| if (P[2] != Q[2]) |
| return P[2] < Q[2]; |
| return P[3] < Q[3]; |
| } |
| |
| In the real code, we get a lot more wrong than this. However, even in this |
| code we generate: |
| |
| _foo: ## @foo |
| ## BB#0: ## %entry |
| movb (%rsi), %al |
| movb (%rdi), %cl |
| cmpb %al, %cl |
| je LBB0_2 |
| LBB0_1: ## %if.then |
| cmpb %al, %cl |
| jmp LBB0_5 |
| LBB0_2: ## %if.end |
| movb 1(%rsi), %al |
| movb 1(%rdi), %cl |
| cmpb %al, %cl |
| jne LBB0_1 |
| ## BB#3: ## %if.end38 |
| movb 2(%rsi), %al |
| movb 2(%rdi), %cl |
| cmpb %al, %cl |
| jne LBB0_1 |
| ## BB#4: ## %if.end60 |
| movb 3(%rdi), %al |
| cmpb 3(%rsi), %al |
| LBB0_5: ## %if.end60 |
| setl %al |
| movzbl %al, %eax |
| ret |
| |
| Note that we generate jumps to LBB0_1 which does a redundant compare. The |
| redundant compare also forces the register values to be live, which prevents |
| folding one of the loads into the compare. In contrast, GCC 4.2 produces: |
| |
| _foo: |
| movzbl (%rsi), %eax |
| cmpb %al, (%rdi) |
| jne L10 |
| L12: |
| movzbl 1(%rsi), %eax |
| cmpb %al, 1(%rdi) |
| jne L10 |
| movzbl 2(%rsi), %eax |
| cmpb %al, 2(%rdi) |
| jne L10 |
| movzbl 3(%rdi), %eax |
| cmpb 3(%rsi), %al |
| L10: |
| setl %al |
| movzbl %al, %eax |
| ret |
| |
| which is "perfect". |
| |
| //===---------------------------------------------------------------------===// |
| |
| For the branch in the following code: |
| int a(); |
| int b(int x, int y) { |
| if (x & (1<<(y&7))) |
| return a(); |
| return y; |
| } |
| |
| We currently generate: |
| movb %sil, %al |
| andb $7, %al |
| movzbl %al, %eax |
| btl %eax, %edi |
| jae .LBB0_2 |
| |
| movl+andl would be shorter than the movb+andb+movzbl sequence. |
| |
| //===---------------------------------------------------------------------===// |
| |
| For the following: |
| struct u1 { |
| float x, y; |
| }; |
| float foo(struct u1 u) { |
| return u.x + u.y; |
| } |
| |
| We currently generate: |
| movdqa %xmm0, %xmm1 |
| pshufd $1, %xmm0, %xmm0 # xmm0 = xmm0[1,0,0,0] |
| addss %xmm1, %xmm0 |
| ret |
| |
| We could save an instruction here by commuting the addss. |
| |
| //===---------------------------------------------------------------------===// |
| |
| This (from PR9661): |
| |
| float clamp_float(float a) { |
| if (a > 1.0f) |
| return 1.0f; |
| else if (a < 0.0f) |
| return 0.0f; |
| else |
| return a; |
| } |
| |
| Could compile to: |
| |
| clamp_float: # @clamp_float |
| movss .LCPI0_0(%rip), %xmm1 |
| minss %xmm1, %xmm0 |
| pxor %xmm1, %xmm1 |
| maxss %xmm1, %xmm0 |
| ret |
| |
| with -ffast-math. |
| |
| //===---------------------------------------------------------------------===// |
| |
| This function (from PR9803): |
| |
| int clamp2(int a) { |
| if (a > 5) |
| a = 5; |
| if (a < 0) |
| return 0; |
| return a; |
| } |
| |
| Compiles to: |
| |
| _clamp2: ## @clamp2 |
| pushq %rbp |
| movq %rsp, %rbp |
| cmpl $5, %edi |
| movl $5, %ecx |
| cmovlel %edi, %ecx |
| testl %ecx, %ecx |
| movl $0, %eax |
| cmovnsl %ecx, %eax |
| popq %rbp |
| ret |
| |
| The move of 0 could be scheduled above the test to make it is xor reg,reg. |
| |
| //===---------------------------------------------------------------------===// |
| |
| GCC PR48986. We currently compile this: |
| |
| void bar(void); |
| void yyy(int* p) { |
| if (__sync_fetch_and_add(p, -1) == 1) |
| bar(); |
| } |
| |
| into: |
| movl $-1, %eax |
| lock |
| xaddl %eax, (%rdi) |
| cmpl $1, %eax |
| je LBB0_2 |
| |
| Instead we could generate: |
| |
| lock |
| dec %rdi |
| je LBB0_2 |
| |
| The trick is to match "fetch_and_add(X, -C) == C". |
| |
| //===---------------------------------------------------------------------===// |
| |
| unsigned t(unsigned a, unsigned b) { |
| return a <= b ? 5 : -5; |
| } |
| |
| We generate: |
| movl $5, %ecx |
| cmpl %esi, %edi |
| movl $-5, %eax |
| cmovbel %ecx, %eax |
| |
| GCC: |
| cmpl %edi, %esi |
| sbbl %eax, %eax |
| andl $-10, %eax |
| addl $5, %eax |
| |
| //===---------------------------------------------------------------------===// |