| //===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the X86 specific subclass of TargetSubtargetInfo. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "subtarget" |
| #include "X86Subtarget.h" |
| #include "X86InstrInfo.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/Host.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| |
| #define GET_SUBTARGETINFO_TARGET_DESC |
| #define GET_SUBTARGETINFO_CTOR |
| #include "X86GenSubtargetInfo.inc" |
| |
| using namespace llvm; |
| |
| #if defined(_MSC_VER) |
| #include <intrin.h> |
| #endif |
| |
| /// ClassifyBlockAddressReference - Classify a blockaddress reference for the |
| /// current subtarget according to how we should reference it in a non-pcrel |
| /// context. |
| unsigned char X86Subtarget:: |
| ClassifyBlockAddressReference() const { |
| if (isPICStyleGOT()) // 32-bit ELF targets. |
| return X86II::MO_GOTOFF; |
| |
| if (isPICStyleStubPIC()) // Darwin/32 in PIC mode. |
| return X86II::MO_PIC_BASE_OFFSET; |
| |
| // Direct static reference to label. |
| return X86II::MO_NO_FLAG; |
| } |
| |
| /// ClassifyGlobalReference - Classify a global variable reference for the |
| /// current subtarget according to how we should reference it in a non-pcrel |
| /// context. |
| unsigned char X86Subtarget:: |
| ClassifyGlobalReference(const GlobalValue *GV, const TargetMachine &TM) const { |
| // DLLImport only exists on windows, it is implemented as a load from a |
| // DLLIMPORT stub. |
| if (GV->hasDLLImportLinkage()) |
| return X86II::MO_DLLIMPORT; |
| |
| // Determine whether this is a reference to a definition or a declaration. |
| // Materializable GVs (in JIT lazy compilation mode) do not require an extra |
| // load from stub. |
| bool isDecl = GV->hasAvailableExternallyLinkage(); |
| if (GV->isDeclaration() && !GV->isMaterializable()) |
| isDecl = true; |
| |
| // X86-64 in PIC mode. |
| if (isPICStyleRIPRel()) { |
| // Large model never uses stubs. |
| if (TM.getCodeModel() == CodeModel::Large) |
| return X86II::MO_NO_FLAG; |
| |
| if (isTargetDarwin()) { |
| // If symbol visibility is hidden, the extra load is not needed if |
| // target is x86-64 or the symbol is definitely defined in the current |
| // translation unit. |
| if (GV->hasDefaultVisibility() && |
| (isDecl || GV->isWeakForLinker())) |
| return X86II::MO_GOTPCREL; |
| } else if (!isTargetWin64()) { |
| assert(isTargetELF() && "Unknown rip-relative target"); |
| |
| // Extra load is needed for all externally visible. |
| if (!GV->hasLocalLinkage() && GV->hasDefaultVisibility()) |
| return X86II::MO_GOTPCREL; |
| } |
| |
| return X86II::MO_NO_FLAG; |
| } |
| |
| if (isPICStyleGOT()) { // 32-bit ELF targets. |
| // Extra load is needed for all externally visible. |
| if (GV->hasLocalLinkage() || GV->hasHiddenVisibility()) |
| return X86II::MO_GOTOFF; |
| return X86II::MO_GOT; |
| } |
| |
| if (isPICStyleStubPIC()) { // Darwin/32 in PIC mode. |
| // Determine whether we have a stub reference and/or whether the reference |
| // is relative to the PIC base or not. |
| |
| // If this is a strong reference to a definition, it is definitely not |
| // through a stub. |
| if (!isDecl && !GV->isWeakForLinker()) |
| return X86II::MO_PIC_BASE_OFFSET; |
| |
| // Unless we have a symbol with hidden visibility, we have to go through a |
| // normal $non_lazy_ptr stub because this symbol might be resolved late. |
| if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference. |
| return X86II::MO_DARWIN_NONLAZY_PIC_BASE; |
| |
| // If symbol visibility is hidden, we have a stub for common symbol |
| // references and external declarations. |
| if (isDecl || GV->hasCommonLinkage()) { |
| // Hidden $non_lazy_ptr reference. |
| return X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE; |
| } |
| |
| // Otherwise, no stub. |
| return X86II::MO_PIC_BASE_OFFSET; |
| } |
| |
| if (isPICStyleStubNoDynamic()) { // Darwin/32 in -mdynamic-no-pic mode. |
| // Determine whether we have a stub reference. |
| |
| // If this is a strong reference to a definition, it is definitely not |
| // through a stub. |
| if (!isDecl && !GV->isWeakForLinker()) |
| return X86II::MO_NO_FLAG; |
| |
| // Unless we have a symbol with hidden visibility, we have to go through a |
| // normal $non_lazy_ptr stub because this symbol might be resolved late. |
| if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference. |
| return X86II::MO_DARWIN_NONLAZY; |
| |
| // Otherwise, no stub. |
| return X86II::MO_NO_FLAG; |
| } |
| |
| // Direct static reference to global. |
| return X86II::MO_NO_FLAG; |
| } |
| |
| |
| /// getBZeroEntry - This function returns the name of a function which has an |
| /// interface like the non-standard bzero function, if such a function exists on |
| /// the current subtarget and it is considered prefereable over memset with zero |
| /// passed as the second argument. Otherwise it returns null. |
| const char *X86Subtarget::getBZeroEntry() const { |
| // Darwin 10 has a __bzero entry point for this purpose. |
| if (getTargetTriple().isMacOSX() && |
| !getTargetTriple().isMacOSXVersionLT(10, 6)) |
| return "__bzero"; |
| |
| return 0; |
| } |
| |
| bool X86Subtarget::hasSinCos() const { |
| return getTargetTriple().isMacOSX() && |
| !getTargetTriple().isMacOSXVersionLT(10, 9) && |
| is64Bit(); |
| } |
| |
| /// IsLegalToCallImmediateAddr - Return true if the subtarget allows calls |
| /// to immediate address. |
| bool X86Subtarget::IsLegalToCallImmediateAddr(const TargetMachine &TM) const { |
| if (In64BitMode) |
| return false; |
| return isTargetELF() || TM.getRelocationModel() == Reloc::Static; |
| } |
| |
| void X86Subtarget::AutoDetectSubtargetFeatures() { |
| unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; |
| unsigned MaxLevel; |
| union { |
| unsigned u[3]; |
| char c[12]; |
| } text; |
| |
| if (X86_MC::GetCpuIDAndInfo(0, &MaxLevel, text.u+0, text.u+2, text.u+1) || |
| MaxLevel < 1) |
| return; |
| |
| X86_MC::GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX); |
| |
| if ((EDX >> 15) & 1) { HasCMov = true; ToggleFeature(X86::FeatureCMOV); } |
| if ((EDX >> 23) & 1) { X86SSELevel = MMX; ToggleFeature(X86::FeatureMMX); } |
| if ((EDX >> 25) & 1) { X86SSELevel = SSE1; ToggleFeature(X86::FeatureSSE1); } |
| if ((EDX >> 26) & 1) { X86SSELevel = SSE2; ToggleFeature(X86::FeatureSSE2); } |
| if (ECX & 0x1) { X86SSELevel = SSE3; ToggleFeature(X86::FeatureSSE3); } |
| if ((ECX >> 9) & 1) { X86SSELevel = SSSE3; ToggleFeature(X86::FeatureSSSE3);} |
| if ((ECX >> 19) & 1) { X86SSELevel = SSE41; ToggleFeature(X86::FeatureSSE41);} |
| if ((ECX >> 20) & 1) { X86SSELevel = SSE42; ToggleFeature(X86::FeatureSSE42);} |
| if ((ECX >> 28) & 1) { X86SSELevel = AVX; ToggleFeature(X86::FeatureAVX); } |
| |
| bool IsIntel = memcmp(text.c, "GenuineIntel", 12) == 0; |
| bool IsAMD = !IsIntel && memcmp(text.c, "AuthenticAMD", 12) == 0; |
| |
| if ((ECX >> 1) & 0x1) { |
| HasPCLMUL = true; |
| ToggleFeature(X86::FeaturePCLMUL); |
| } |
| if ((ECX >> 12) & 0x1) { |
| HasFMA = true; |
| ToggleFeature(X86::FeatureFMA); |
| } |
| if (IsIntel && ((ECX >> 22) & 0x1)) { |
| HasMOVBE = true; |
| ToggleFeature(X86::FeatureMOVBE); |
| } |
| if ((ECX >> 23) & 0x1) { |
| HasPOPCNT = true; |
| ToggleFeature(X86::FeaturePOPCNT); |
| } |
| if ((ECX >> 25) & 0x1) { |
| HasAES = true; |
| ToggleFeature(X86::FeatureAES); |
| } |
| if ((ECX >> 29) & 0x1) { |
| HasF16C = true; |
| ToggleFeature(X86::FeatureF16C); |
| } |
| if (IsIntel && ((ECX >> 30) & 0x1)) { |
| HasRDRAND = true; |
| ToggleFeature(X86::FeatureRDRAND); |
| } |
| |
| if ((ECX >> 13) & 0x1) { |
| HasCmpxchg16b = true; |
| ToggleFeature(X86::FeatureCMPXCHG16B); |
| } |
| |
| if (IsIntel || IsAMD) { |
| // Determine if bit test memory instructions are slow. |
| unsigned Family = 0; |
| unsigned Model = 0; |
| X86_MC::DetectFamilyModel(EAX, Family, Model); |
| if (IsAMD || (Family == 6 && Model >= 13)) { |
| IsBTMemSlow = true; |
| ToggleFeature(X86::FeatureSlowBTMem); |
| } |
| |
| // If it's an Intel chip since Nehalem and not an Atom chip, unaligned |
| // memory access is fast. We hard code model numbers here because they |
| // aren't strictly increasing for Intel chips it seems. |
| if (IsIntel && |
| ((Family == 6 && Model == 0x1E) || // Nehalem: Clarksfield, Lynnfield, |
| // Jasper Froest |
| (Family == 6 && Model == 0x1A) || // Nehalem: Bloomfield, Nehalem-EP |
| (Family == 6 && Model == 0x2E) || // Nehalem: Nehalem-EX |
| (Family == 6 && Model == 0x25) || // Westmere: Arrandale, Clarksdale |
| (Family == 6 && Model == 0x2C) || // Westmere: Gulftown, Westmere-EP |
| (Family == 6 && Model == 0x2F) || // Westmere: Westmere-EX |
| (Family == 6 && Model == 0x2A) || // SandyBridge |
| (Family == 6 && Model == 0x2D) || // SandyBridge: SandyBridge-E* |
| (Family == 6 && Model == 0x3A))) {// IvyBridge |
| IsUAMemFast = true; |
| ToggleFeature(X86::FeatureFastUAMem); |
| } |
| |
| // Set processor type. Currently only Atom is detected. |
| if (Family == 6 && |
| (Model == 28 || Model == 38 || Model == 39 |
| || Model == 53 || Model == 54)) { |
| X86ProcFamily = IntelAtom; |
| |
| UseLeaForSP = true; |
| ToggleFeature(X86::FeatureLeaForSP); |
| } |
| |
| unsigned MaxExtLevel; |
| X86_MC::GetCpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX); |
| |
| if (MaxExtLevel >= 0x80000001) { |
| X86_MC::GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); |
| if ((EDX >> 29) & 0x1) { |
| HasX86_64 = true; |
| ToggleFeature(X86::Feature64Bit); |
| } |
| if ((ECX >> 5) & 0x1) { |
| HasLZCNT = true; |
| ToggleFeature(X86::FeatureLZCNT); |
| } |
| if (IsAMD) { |
| if ((ECX >> 6) & 0x1) { |
| HasSSE4A = true; |
| ToggleFeature(X86::FeatureSSE4A); |
| } |
| if ((ECX >> 11) & 0x1) { |
| HasXOP = true; |
| ToggleFeature(X86::FeatureXOP); |
| } |
| if ((ECX >> 16) & 0x1) { |
| HasFMA4 = true; |
| ToggleFeature(X86::FeatureFMA4); |
| } |
| } |
| } |
| } |
| |
| if (MaxLevel >= 7) { |
| if (!X86_MC::GetCpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX)) { |
| if (IsIntel && (EBX & 0x1)) { |
| HasFSGSBase = true; |
| ToggleFeature(X86::FeatureFSGSBase); |
| } |
| if ((EBX >> 3) & 0x1) { |
| HasBMI = true; |
| ToggleFeature(X86::FeatureBMI); |
| } |
| if (IsIntel && ((EBX >> 5) & 0x1)) { |
| X86SSELevel = AVX2; |
| ToggleFeature(X86::FeatureAVX2); |
| } |
| if (IsIntel && ((EBX >> 8) & 0x1)) { |
| HasBMI2 = true; |
| ToggleFeature(X86::FeatureBMI2); |
| } |
| if (IsIntel && ((EBX >> 11) & 0x1)) { |
| HasRTM = true; |
| ToggleFeature(X86::FeatureRTM); |
| } |
| } |
| } |
| } |
| |
| void X86Subtarget::resetSubtargetFeatures(const MachineFunction *MF) { |
| AttributeSet FnAttrs = MF->getFunction()->getAttributes(); |
| Attribute CPUAttr = FnAttrs.getAttribute(AttributeSet::FunctionIndex, |
| "target-cpu"); |
| Attribute FSAttr = FnAttrs.getAttribute(AttributeSet::FunctionIndex, |
| "target-features"); |
| std::string CPU = |
| !CPUAttr.hasAttribute(Attribute::None) ?CPUAttr.getValueAsString() : ""; |
| std::string FS = |
| !FSAttr.hasAttribute(Attribute::None) ? FSAttr.getValueAsString() : ""; |
| if (!FS.empty()) { |
| initializeEnvironment(); |
| resetSubtargetFeatures(CPU, FS); |
| } |
| } |
| |
| void X86Subtarget::resetSubtargetFeatures(StringRef CPU, StringRef FS) { |
| std::string CPUName = CPU; |
| if (!FS.empty() || !CPU.empty()) { |
| if (CPUName.empty()) { |
| #if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)\ |
| || defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64) |
| CPUName = sys::getHostCPUName(); |
| #else |
| CPUName = "generic"; |
| #endif |
| } |
| |
| // Make sure 64-bit features are available in 64-bit mode. (But make sure |
| // SSE2 can be turned off explicitly.) |
| std::string FullFS = FS; |
| if (In64BitMode) { |
| if (!FullFS.empty()) |
| FullFS = "+64bit,+sse2," + FullFS; |
| else |
| FullFS = "+64bit,+sse2"; |
| } |
| |
| // If feature string is not empty, parse features string. |
| ParseSubtargetFeatures(CPUName, FullFS); |
| } else { |
| if (CPUName.empty()) { |
| #if defined (__x86_64__) || defined(__i386__) |
| CPUName = sys::getHostCPUName(); |
| #else |
| CPUName = "generic"; |
| #endif |
| } |
| // Otherwise, use CPUID to auto-detect feature set. |
| AutoDetectSubtargetFeatures(); |
| |
| // Make sure 64-bit features are available in 64-bit mode. |
| if (In64BitMode) { |
| HasX86_64 = true; ToggleFeature(X86::Feature64Bit); |
| HasCMov = true; ToggleFeature(X86::FeatureCMOV); |
| |
| if (X86SSELevel < SSE2) { |
| X86SSELevel = SSE2; |
| ToggleFeature(X86::FeatureSSE1); |
| ToggleFeature(X86::FeatureSSE2); |
| } |
| } |
| } |
| |
| // CPUName may have been set by the CPU detection code. Make sure the |
| // new MCSchedModel is used. |
| InitMCProcessorInfo(CPUName, FS); |
| |
| if (X86ProcFamily == IntelAtom) |
| PostRAScheduler = true; |
| |
| InstrItins = getInstrItineraryForCPU(CPUName); |
| |
| // It's important to keep the MCSubtargetInfo feature bits in sync with |
| // target data structure which is shared with MC code emitter, etc. |
| if (In64BitMode) |
| ToggleFeature(X86::Mode64Bit); |
| |
| DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel |
| << ", 3DNowLevel " << X863DNowLevel |
| << ", 64bit " << HasX86_64 << "\n"); |
| assert((!In64BitMode || HasX86_64) && |
| "64-bit code requested on a subtarget that doesn't support it!"); |
| |
| // Stack alignment is 16 bytes on Darwin, Linux and Solaris (both |
| // 32 and 64 bit) and for all 64-bit targets. |
| if (StackAlignOverride) |
| stackAlignment = StackAlignOverride; |
| else if (isTargetDarwin() || isTargetLinux() || isTargetSolaris() || |
| In64BitMode) |
| stackAlignment = 16; |
| } |
| |
| void X86Subtarget::initializeEnvironment() { |
| X86SSELevel = NoMMXSSE; |
| X863DNowLevel = NoThreeDNow; |
| HasCMov = false; |
| HasX86_64 = false; |
| HasPOPCNT = false; |
| HasSSE4A = false; |
| HasAES = false; |
| HasPCLMUL = false; |
| HasFMA = false; |
| HasFMA4 = false; |
| HasXOP = false; |
| HasMOVBE = false; |
| HasRDRAND = false; |
| HasF16C = false; |
| HasFSGSBase = false; |
| HasLZCNT = false; |
| HasBMI = false; |
| HasBMI2 = false; |
| HasRTM = false; |
| HasADX = false; |
| IsBTMemSlow = false; |
| IsUAMemFast = false; |
| HasVectorUAMem = false; |
| HasCmpxchg16b = false; |
| UseLeaForSP = false; |
| HasSlowDivide = false; |
| PostRAScheduler = false; |
| PadShortFunctions = false; |
| stackAlignment = 4; |
| // FIXME: this is a known good value for Yonah. How about others? |
| MaxInlineSizeThreshold = 128; |
| } |
| |
| X86Subtarget::X86Subtarget(const std::string &TT, const std::string &CPU, |
| const std::string &FS, |
| unsigned StackAlignOverride, bool is64Bit) |
| : X86GenSubtargetInfo(TT, CPU, FS) |
| , X86ProcFamily(Others) |
| , PICStyle(PICStyles::None) |
| , TargetTriple(TT) |
| , StackAlignOverride(StackAlignOverride) |
| , In64BitMode(is64Bit) { |
| initializeEnvironment(); |
| resetSubtargetFeatures(CPU, FS); |
| } |
| |
| bool X86Subtarget::enablePostRAScheduler( |
| CodeGenOpt::Level OptLevel, |
| TargetSubtargetInfo::AntiDepBreakMode& Mode, |
| RegClassVector& CriticalPathRCs) const { |
| Mode = TargetSubtargetInfo::ANTIDEP_CRITICAL; |
| CriticalPathRCs.clear(); |
| return PostRAScheduler && OptLevel >= CodeGenOpt::Default; |
| } |